TW200933948A - A colored organic electronic device - Google Patents

A colored organic electronic device

Info

Publication number
TW200933948A
TW200933948A TW097140172A TW97140172A TW200933948A TW 200933948 A TW200933948 A TW 200933948A TW 097140172 A TW097140172 A TW 097140172A TW 97140172 A TW97140172 A TW 97140172A TW 200933948 A TW200933948 A TW 200933948A
Authority
TW
Taiwan
Prior art keywords
layer
color
reflective layer
electronic device
providing
Prior art date
Application number
TW097140172A
Other languages
Chinese (zh)
Inventor
Cristina Tanase
Mihaela-Ioana Popovici
Herbert Lifka
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW200933948A publication Critical patent/TW200933948A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3031Two-side emission, e.g. transparent OLEDs [TOLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

This invention relates to a colored organic electronic device comprising a transparent substrate (100) provided with a first transparent conducting layer (110), a plurality of organic layers (120), from which at least one is optoelectronic active. The plurality of organic layers are arranged on the first transparent conducting layer. The device further comprises a second conducting layer (130) arranged above the plurality of organic layers, and a reflecting layer (140) arranged in conjunction with the second conducting layer. The reflecting layer has a first color which causes the device to have an appearance of the first color in the off-state. The on-state is defined by said device receiving a predetermined voltage from an external source and said off-state is defined by the device not receiving a voltage from an external source.

Description

200933948 九、發明說明: 【發明所屬之技術領域】 本發明係關於有機電子裝置領域,且更特定言之,本發 明係關於一種在通電狀態及斷電狀態皆具有一彩色外觀的 彩色有機電子裝置,及一種用於製造此一裝置的對應方 - 法。 . 【先前技術】 有機電子裝置通常包括複數個配置在兩個透明電極間的 © 有機層,該等有機層之中至少一層為光電活性,例如發光 或光伏打。一發光層係一能在一發光模式中發光作為接收 一電壓之回應的有機材料。當在一光伏打模式中接收並吸 收光時,一光伏打層產生一電流及/或電壓。因此,在該 光伏打模式中施加一跨過該等電極之電壓,此舉導致光從 該發光有機層被發射,且在該光伏打模式中該裝置上的亮 光導致一電流及/或電壓產生在該等電極上。利用該發光 模式之有機電子裝置通常係已知為有機發光二極體 (0LED)。吾人熟知的利用該光伏打模式之有機電子裝置 係太陽能電池。在下文中主要描述〇Led,但本文以下描 述的該等裝置之組態亦有益於產生太陽能電池。 有機發光二極體(0LED)通常係用於背光及顯示應用 中。如圖1中所繪示,〇LED通常包括許多基於小分子及/ 或聚合物之有機層12〇。每一層自身的功能性係經最優 化。在基本OLED結構中,亦包括一發光層的該等有機層 120係堆疊在兩個電極11〇與13〇間。該陽極11〇為透明且 135031.doc 200933948 (例如)係由一透明基板100上的氧化銦錫(ΙΤ〇)組成。圖1中 繪示a)—底部發射組態及b)—雙側發射組態中的先前技術 0 L E D γ列 〇 對於底部發射OLED,該陰極130通常係由(例如)Ba或 LiF及一厚鋁層(後者亦可用於太陽能裝置)組成。在此情況 下,該陰極130為非透明且來自該裝置之主要光輸出係經 由該基板100(且同樣地,至該裝置之周遭光之主要輸入亦 經由該基板1〇〇進入)。 如圖lb)中所繪示的該雙側發射〇LED 2〇具有一透明陰極 1 3〇。因此,光係經由該基板1 〇〇且經由該透明陰極丨3〇兩 者自該裝置輸出。該陰極13 0之材料例如係LiF/A1/Ag。視 障况,該OLED裝置具有一諸如ZnSe或ZnS的具有高折射 率的透明介電層135,用於該光學傳輸之增強且因此該光 輸出之增強。 當著眼於一在其通電狀態下的底部發射〇Led 1〇之外觀 時,亦即,當一電壓係施加至該等電極上時,該〇LED係 均勻擴散光源,且在斷電狀態下,該〇LED主要係由於 其非透明的上電極,亦即該陰極13〇而為折射性。在一些 先刚技術解決方案中,該陰極或多或少為反射性,其有助 於增強該裝置在其通電狀態下的發射之亮度。在斷電狀態 下的該代表性的OLED(及一太陽能電池)之色彩主要係藉 由該有機材料之色彩及或多或少反射陰極之組合而給予。 W〇 2005015640幻揭示一具有一高反射率陰極之〇led, 該陰極額外給予該OLED在斷電狀態的一似鏡外觀。 135031.doc 200933948 此外,先前技術中已提出其他解決方案以便改良該 OLED之外觀’該等解決方案包含在該基本結構上增 加層。此等額外層通常係由據光器、前擴散器或偏光器等 組成。在此等先前技術解決方案中,在該發光層中發射的 光可受到負面影響。舉例而言,當增加一偏光器以給予該 • $置之彩色外觀時,該發射光之高達40%的強度係在該偏 * 光器中吸收。 歐洲專利申請案第EP 1 256 990號揭示一0LED,其中該 © 〇LED之結構係、由-額外的中間層形成。在該基本oled結 構中,-薄型中間層係提供在一透明陰極與一該薄型中間 層上的額外反射層間。該薄型中間層係經配置以減少在該 反射層中反射的周遭光量,使得由於減少的來自該反射層 之周遭光之反射而實現一較高的顯示對比。 【發明内容】 本發明t目的係提供一減輕上述提及的先前技術之缺 _ 點的有機電子裝置。 ρ 此目的係藉由根據獨立技術方案1及12中定義的本發明 之I色有機電子裝置及一種用於製造一彩色有機電子裝 置之對應方法而實現。 本發7係基於瞭解藉由增加—高反射彩色層至該有機電 子裝置、、。冑彳藉由該發光模式中該通電狀態下的發射光 之反射及該斷電壯能·Λ 下該周遭光之反射而實現該有機電子 裝置之彩色外觀。 因此根據本發明之一態樣,提供有一彩色有機電子裝 135031.doc 200933948 置’其包括一具有一第一透明導電層之透明基板、複數個 有機層,其等中至少一有機層為光電活性。該複數個有機 層係配置在該第一透明導電層上。該裝置進一步包括一配 置在該複數個有機層上的第二導電層,及一經配置與該第 二導電層結合的反射層。該反射層具有一第一色彩,其導 致該裝置在一斷電狀態下具有一第一色彩之外觀。一通電 狀態係藉由該裝置接收一來自一外部源之預定電壓而定 義,且該斷電狀態係藉由該裝置未接收來自一外部源之電 ❹ 壓而定義。 因此,實現一光電活性且斷電具有一在斷電狀態下反射 周遭光之反射彩色層的裝置。由此,該裝置在該斷電狀態 下具有一迷人外觀。這在許多應用中受青睞,舉例而言, 當在一馬賽克環境中整合一光電活性裝置時,該裝置在其 斷電狀態下必須呈現與該等馬赛克碑相同的色彩。 、 根據如技術方案2中定義的該裝置之一實施例,該複數 _ 個有機層進-步包括至少—在—光伏打模式中吸收光的 層。因此’本發明之原理進一步提供利用一光伏打模式之 有機電子裝置的迷人彩色外觀。藉由適當地選擇該反射層 • t色彩’該等裝置可經設計以適合其等被放置的環境例 如屋頂或牆壁。 根據如技術方案3中定義的該裝置之—實施例,該光電 活性層在該通電狀態下發射具有一第二色彩的光。因此, 提供-彩色有機發光二極體裝置(〇LED),由於該斷電狀 態下的該彩色反射層,該裝置具有一彩色外觀且其在該通 135031.doc -9- 200933948 電狀態下發射具有一第二色彩的光。當將該裝置整合在一 其中該裝置應調和或提供一裝飾外觀之環境中時,這為有 利。此外’藉由該光電活性裝置在該斷電狀態及該通電狀 態下提供的光被去耦合’使得不會察覺該〇LED之電致發 光中的變化。 根據如技術方案4中定義的該裝置之一實施例,該第二 導電層為透明且該反射層係被配置在該第二透明導電層上 方。因此’易於將該反射層施加於該〇LEd上,因為舉例 而5 ’該反射層可在一模造製程中被增加。此外,該反射 層提供二額外封裝層用於保護該OLED裝置免受機械損 壞。 根據如技術方案5中定義的該裝置之一實施例,該第二 導電層包括一電子注入層及一導電金屬層,且其中該反射 層係配置在该電子注入層與該導電金屬層之間。因此,有 利的係該反射層係該陰極系統之一整體式部分。 根據如技術方案6中定義的該裝置之一實施例,該反射 層係多層’其包括一選自由Cr、Ni、Au及Cu組成之群 的金屬或金屬氧化物。藉由利用此等材料實現該反射層, 可獲取該裝置在該通電及斷電狀態下外觀之寬色彩範圍。 根據如技術方案7中定義的該裝置之一實施例,該反射 層係一選自由TiN、ZrN、CrxN及ZrCxNy組成之群的化合 物藉由利用此等材料實現該反射層,可獲取該裝置在該 通電及斷電狀態下外觀之寬色彩範圍。 根據如技術方案8中定義的該裝置之一實施例,該裝置 135031.doc 200933948 進一步包括一薄膜封裳多層_),其係配置在該第二透 明導電層與該反射層之間。薄媒封裝保護該等聚合物材料 免父潮濕與空氣之害並延長該裝置之壽命。 根據如技術方案9中定義的該裝置之一實施例,第一及 第二色彩為相同色彩。該反射層將提高來自該裝置之反射 •《之效率。當使該第一色彩與該第二色彩為相同色彩時, •該通電狀態下的色彩強度被提高。 根據如技術方案10中定義的該裝置之一實施例,該反射 ® ㈣經®案化。因此,在該斷電狀態下,-彩色圖案化反 射係從裝置獲取。該圖案化可經實施使得該裝置具有高度 反射的區域及具有至少極低反射率之區域。該圖案化亦可 用以提供具有不同色彩之反射區域,其容許形成迷人圖案 及來自該裝置之光學效果。 根據如技術方案丨丨中定義的該裝置之一實施例,該反射 層為擴散性。藉由具有一高度反射且同時為擴散性的層, p 來自該裝置的光不僅被增加,而且被更額外地擴散。這造 成該裝置中不均勻缺陷之低可見性。 此外,根據如技術方案12定義之本發明之一第二態樣, 提供有一種用於製造一彩色有機電子裝置之方法,其包括 以下步驟: -提供一具有—第一透明導電層之透明基板, -提供複數個有機層, -提供一頂層,其包括一第二導電層及一反射層。 該裝置具有一藉由該裝置接收一來自一外部源之預定電 135031.doc 200933948 壓而定義的m電狀態,&-藉由該裝置未接收一來自一外 部源之電壓而定義的斷電狀態。此外,該複數個有機層之 至少-層為光電活性。該反射層具有一第一色彩,其導致 該裝置在該斷電狀態下具有_該第一色彩之外觀。因此, 提供-種用於形成-色彩改良的有機電子裝置之有利及簡 單的方法。 根據如技術方案!3定義之方法之一實施例,該光電活性 層在-光伏打模式中吸收光’其係有利於製造具有一彩色 外觀的如太陽能電池的應用。 根據如技術方案14定義之方法之一實施例,該光電活性 層在一通電狀態下發射古—贫_ 赞射有第一色彩之光,其係有利於製 造在該通電狀態及該斷電狀態下具有一彩色外觀的如有機 發光二極體裝置的應用。 根據如技術方案15定義之方法之-實施例,該提供該頂 層之步驟包括首先提供該第二導電層,該第二層為一透明 電層且其_人提供該反射層。這容許當施加有利的反射 層時使用多種技術及材料。 牛根據如技術方案1哎義之方法之-實施例,該方法進一 徙括步驟為在提供該反射層之步驟之前提供 :,其將改良保護該等有機層免受潮漁及空氣之害= 尚該裝置之壽命。 捉 據如技術方案17定義之方法之—實施例,提供—薄膜 二:步驟係藉由施加—無機/無機多層堆疊體而完成。 如技術方案18定義之方法之一實施例,提供—薄膜 135031.doc -12· 200933948 封裝之步驟係藉由施加一無機/有機多層堆疊體而完成。 根據如技術方案19定義之方法之一實施例,提供該頂層 之步驟包括以下步驟: •提供一電子注入層; -提供該反射層;及 _提供一導電金屬層。 根據如技術方案20定義之方法之一實施例,該反射層係 藉由將金屬合金濺鍍至一多層中而提供,其中該等金屬係 選自由Cr、Ni、Au及Cu組成之群,其容許實現該反射層 之許多不同色彩。 根據如技術方案21定義之方法之一實施例,該反射層係 藉由選自由TiN、ZrN、CrxN及ZrCxNy組成之群的化合物之 反應性電漿沈積而提供,其容許實現該反射層之許多不同 色彩。 根據如技術方案22定義之方法之一實施例’該反射層係 藉由利用來自方疋轉塗佈 '印刷、層整及模造之群的方法 之一者而施加。 根據如技術方案23定義之方法之一實施例,該反射層材 料係一疏水性溶膠_凝膠塗層。 /根據如技術方案24定義之方法之一實施例,該第一色彩 係藉由將有機或無機顏料整合在該溶膠-凝膠塗層中而提 供在該反射層中。 根據如技術方案25定義之方法之一實施例’提供該反射 層之步驟進一步句;te· ® jfe. 7巴括圖案化該反射層。 135031.doc -13- 200933948 本發明之此等及其他態樣、特點及優點將可見於並參考 下文描述的該等實施例予以闞明。 【實施方式】 本發明提出透明有機電子裝置,其包括至少一諸如有機 發光二極體裝置、OLED、及太陽能電池之光電活性有機 層,該等裝置具有一反射層。因此該等〇LED去除在一底 部發射組態中垂直於該OLED平面之方向上的大多數光, 且同樣地’周遭光在相對方向上進入該裝置。雖然本發明 之主要原理如用於一太陽能電池一樣亦適用於一光伏打模 式中的該有機電子裝置,但在下文中,本發明之該等原理 將主要藉由參考一 OLED予以描述。 圖2繪示一根據本發明之彩色有機電子裝置之一實施 例,其將在下文中被稱為一彩色OLED 200。該彩色0LED 裝置200包括一透明基板1〇〇 ,其係由(例如)一玻璃或聚合 物製成,該基板1〇〇上提供有一第一透明導電層110。下文 稱為陽極110的該第一透明導電層係一濺鍍的IT0薄層。該 透明陽極110上配置有複數個有機層,其中一者係發光器 120,下文將被提及之該等層形成一發光層12〇。 此外,下文稱為陰極130之一第二導電層係配置於該發 光層120上。該陰極130可由多層適當材料層組成以形成一 陰極系統。該陰極130為透明且係由(例如)LiF/A1/Ag組 成。一反射層140係配置於該陰極丨3〇上。該反射層14〇為 高度反射且係經配置以具有一第一色彩。 在通電狀態下’該發光層12〇發射一第二色彩之光。該 13503l.doc •14· 200933948 發射光與正常周遭光比較為強且即使一些周遭光及亦有發 射光係在該反射層140中反射,經由該透明陽極no及該透 明基板100從該發光層120輸出的直接光係具有較大強度, 且大體上佔優勢的係該第二色彩,亦即從該發光層12〇發 射之光的色彩。 在斷電狀態下’無光從該發光層12〇發射。因此,僅周 遭光進入該裝置200。當該周遭光係在該發射層14〇中反射 ❹200933948 IX. Description of the Invention: [Technical Field] The present invention relates to the field of organic electronic devices, and more particularly to a color organic electronic device having a color appearance in both an energized state and a power-off state. And a corresponding method for manufacturing such a device. [Prior Art] An organic electronic device generally includes a plurality of organic layers disposed between two transparent electrodes, at least one of which is photoelectrically active, such as luminescent or photovoltaic. An illuminating layer is capable of illuminating in an illuminating mode as an organic material that receives a response in response to a voltage. A photovoltaic layer generates a current and/or voltage when it receives and absorbs light in a photovoltaic mode. Therefore, a voltage across the electrodes is applied in the photovoltaic mode, which causes light to be emitted from the light-emitting organic layer, and the light on the device causes a current and/or voltage to be generated in the photovoltaic mode. On the electrodes. Organic electronic devices utilizing this illumination mode are generally known as organic light emitting diodes (OLEDs). The organic electronic device that is well known in the photovoltaic mode is a solar cell. 〇Led is primarily described below, but the configuration of such devices described herein below is also beneficial for producing solar cells. Organic light-emitting diodes (OLEDs) are commonly used in backlighting and display applications. As depicted in Figure 1, the ruthenium LED typically includes a plurality of organic molecules based on small molecules and/or polymers. The functionality of each layer itself is optimized. In the basic OLED structure, the organic layers 120, which also include a light-emitting layer, are stacked between the two electrodes 11A and 13B. The anode 11 is transparent and 135031.doc 200933948 (for example) is composed of indium tin oxide (yttrium oxide) on a transparent substrate 100. Figure 1 shows a) - bottom emission configuration and b) - prior art in a double-sided transmission configuration. LED gamma 〇 For a bottom-emitting OLED, the cathode 130 is typically made of, for example, Ba or LiF and a thick The aluminum layer (the latter can also be used in solar installations). In this case, the cathode 130 is opaque and the primary light output from the device passes through the substrate 100 (and, likewise, the primary input to ambient light to the device also enters via the substrate 1). The double-sided emitting 〇 LED 2 绘 shown in Figure lb) has a transparent cathode 13 〇. Therefore, the light is output from the device via the substrate 1 and via the transparent cathode. The material of the cathode 130 is, for example, LiF/A1/Ag. Depending on the obstacle, the OLED device has a transparent dielectric layer 135 having a high refractive index such as ZnSe or ZnS for enhancement of the optical transmission and thus enhancement of the light output. When focusing on the appearance of a bottom emission 〇Led 1〇 in its energized state, that is, when a voltage system is applied to the electrodes, the 〇LED uniformly diffuses the light source, and in a power-off state, The germanium LED is mainly refractive due to its non-transparent upper electrode, that is, the cathode 13 turns. In some prior art solutions, the cathode is more or less reflective, which helps to enhance the brightness of the device's emission in its energized state. The color of the representative OLED (and a solar cell) in the de-energized state is primarily imparted by the combination of the color of the organic material and the more or less reflective cathode. W〇 2005015640 illusion reveals a 〇led with a high reflectivity cathode, which additionally gives the OLED a mirror-like appearance in a power-off state. 135031.doc 200933948 Furthermore, other solutions have been proposed in the prior art to improve the appearance of the OLED'. These solutions involve adding layers to the basic structure. These additional layers are usually composed of a light fixture, a front diffuser or a polarizer. In such prior art solutions, the light emitted in the luminescent layer can be adversely affected. For example, when a polarizer is added to give the color appearance of the color, up to 40% of the intensity of the emitted light is absorbed in the polarizer. European Patent Application No. EP 1 256 990 discloses an OLED in which the structure of the 〇LED is formed by an additional intermediate layer. In the basic OLED structure, a thin intermediate layer is provided between a transparent cathode and an additional reflective layer on the thin intermediate layer. The thin intermediate layer is configured to reduce the amount of ambient light reflected in the reflective layer such that a higher display contrast is achieved due to reduced reflection of ambient light from the reflective layer. SUMMARY OF THE INVENTION The object of the present invention is to provide an organic electronic device that alleviates the disadvantages of the prior art mentioned above. This object is achieved by the I-color organic electronic device of the present invention as defined in the independent technical solutions 1 and 12 and a corresponding method for manufacturing a color organic electronic device. The present invention is based on the understanding that by adding a highly reflective color layer to the organic electronic device. The color appearance of the organic electronic device is achieved by the reflection of the emitted light in the energized state and the reflection of the surrounding light in the light-emitting mode. Therefore, according to an aspect of the present invention, there is provided a color organic electronic device 135031.doc 200933948, which comprises a transparent substrate having a first transparent conductive layer, a plurality of organic layers, and at least one of the organic layers is photoelectrically active. . The plurality of organic layers are disposed on the first transparent conductive layer. The device further includes a second conductive layer disposed on the plurality of organic layers, and a reflective layer disposed in combination with the second conductive layer. The reflective layer has a first color which results in the device having a first color appearance in a powered down condition. An energized state is defined by the device receiving a predetermined voltage from an external source, and the power-off state is defined by the device not receiving an electrical voltage from an external source. Thus, achieving an opto-electronic activity and powering down has a means of reflecting the reflective color layer of ambient light in a de-energized state. Thus, the device has a fascinating appearance in the power down state. This is favored in many applications, for example, when an opto-active device is integrated in a mosaic environment, the device must exhibit the same color as the mosaic in its de-energized state. According to an embodiment of the apparatus as defined in claim 2, the plurality of organic layers further comprises at least a layer that absorbs light in the photovoltaic mode. Thus, the principles of the present invention further provide a fascinating color appearance of an organic electronic device utilizing a photovoltaic mode. By appropriately selecting the reflective layer, the devices can be designed to suit the environment in which they are placed, such as a roof or wall. According to an embodiment of the apparatus as defined in claim 3, the photoactive layer emits light having a second color in the energized state. Therefore, a color organic light emitting diode device (〇LED) is provided, which has a color appearance due to the color reflective layer in the power-off state and which emits in the electrical state of the pass 135031.doc -9-200933948 Light having a second color. This is advantageous when the device is integrated into an environment in which the device should be conditioned or provide a decorative appearance. Furthermore, the light provided by the photoactive device in the de-energized state and the energized state is decoupled so that changes in the electroluminescence of the xenon LED are not perceived. According to an embodiment of the apparatus as defined in claim 4, the second conductive layer is transparent and the reflective layer is disposed above the second transparent conductive layer. Therefore, it is easy to apply the reflective layer to the 〇LEd because, by way of example, the reflective layer can be increased in a molding process. In addition, the reflective layer provides two additional encapsulation layers for protecting the OLED device from mechanical damage. According to an embodiment of the device as defined in claim 5, the second conductive layer comprises an electron injection layer and a conductive metal layer, and wherein the reflective layer is disposed between the electron injection layer and the conductive metal layer . Therefore, it is advantageous for the reflective layer to be an integral part of the cathode system. According to an embodiment of the apparatus as defined in claim 6, the reflective layer is a plurality of layers which comprise a metal or metal oxide selected from the group consisting of Cr, Ni, Au and Cu. By implementing the reflective layer using such materials, a wide range of colors of the device in the energized and de-energized state can be obtained. According to an embodiment of the apparatus as defined in claim 7, the reflective layer is a compound selected from the group consisting of TiN, ZrN, CrxN, and ZrCxNy, and the reflective layer is realized by using the materials. The wide color range of appearance in this energized and de-energized state. According to an embodiment of the apparatus as defined in claim 8, the apparatus 135031.doc 200933948 further includes a film sealing layer _) disposed between the second transparent conductive layer and the reflective layer. The thin media package protects the polymeric material from the effects of moisture and air and prolongs the life of the device. According to an embodiment of the apparatus as defined in claim 9, the first and second colors are the same color. This reflective layer will increase the efficiency of reflection from the device. When the first color and the second color are made the same color, the color intensity in the energized state is increased. According to an embodiment of the apparatus as defined in claim 10, the reflection ® (4) is treated. Therefore, in this power-off state, the -color patterned reflection system is acquired from the device. The patterning can be implemented such that the device has highly reflective regions and regions having at least very low reflectivity. The patterning can also be used to provide reflective areas of different colors that allow for the formation of fascinating patterns and optical effects from the device. According to an embodiment of the device as defined in the technical solution, the reflective layer is diffusive. By having a highly reflective and simultaneously diffusive layer, p light from the device is not only increased, but is also more diffused. This results in low visibility of uneven defects in the device. Further, according to a second aspect of the present invention as defined in claim 12, there is provided a method for fabricating a color organic electronic device comprising the steps of: - providing a transparent substrate having a first transparent conductive layer Providing a plurality of organic layers, providing a top layer comprising a second conductive layer and a reflective layer. The device has an m-electric state defined by the device receiving a predetermined electrical voltage from an external source, 135031.doc 200933948, &- a power-off defined by the device not receiving a voltage from an external source status. Further, at least a layer of the plurality of organic layers is photoelectrically active. The reflective layer has a first color that causes the device to have an appearance of the first color in the powered down state. Accordingly, an advantageous and simple method for forming an organic electronic device for color improvement is provided. According to one embodiment of the method as defined in the technical solution! 3, the photovoltaically active layer absorbs light in the - photovoltaic mode, which is advantageous for the manufacture of applications such as solar cells having a colored appearance. According to an embodiment of the method as defined in claim 14, the photoelectrically active layer emits an ancient-poor light with a first color in an energized state, which is advantageous for manufacturing the power-on state and the power-off state. An application such as an organic light emitting diode device having a colored appearance. According to an embodiment of the method as defined in claim 15, the step of providing the top layer comprises first providing the second conductive layer, the second layer being a transparent layer and the person providing the reflective layer. This allows for the use of a variety of techniques and materials when applying a favorable reflective layer. According to the method of the method of claim 1, the method further comprises the step of providing the reflective layer before the step of providing the reflective layer: it will improve the protection of the organic layer from moisture, fish and air = The life of the device. Capture the method as defined in claim 17 - Example, providing - film 2: The step is accomplished by applying an inorganic/inorganic multilayer stack. As an embodiment of the method defined in claim 18, the step of providing a film 135031.doc -12. 200933948 is accomplished by applying an inorganic/organic multilayer stack. According to one embodiment of the method as defined in claim 19, the step of providing the top layer comprises the steps of: • providing an electron injecting layer; providing the reflective layer; and providing a conductive metal layer. According to one embodiment of the method as defined in claim 20, the reflective layer is provided by sputtering a metal alloy into a plurality of layers selected from the group consisting of Cr, Ni, Au, and Cu. It allows for many different colors of the reflective layer to be achieved. According to one embodiment of the method as defined in claim 21, the reflective layer is provided by reactive plasma deposition of a compound selected from the group consisting of TiN, ZrN, CrxN and ZrCxNy, which allows for the realization of many of the reflective layers Different colors. According to one embodiment of the method as defined in claim 22, the reflective layer is applied by one of the methods of applying a group of printing, layering and molding from a square twist coating. According to one embodiment of the method as defined in claim 23, the reflective layer material is a hydrophobic sol-gel coating. / According to one embodiment of the method as defined in claim 24, the first color is provided in the reflective layer by incorporating an organic or inorganic pigment into the sol-gel coating. The step of providing the reflective layer according to one embodiment of the method as defined in claim 25 is further recited; te· ® jfe. 7B is patterned to pattern the reflective layer. These and other aspects, features, and advantages of the present invention will be apparent from and elucidated with reference to the embodiments described herein. [Embodiment] The present invention proposes a transparent organic electronic device comprising at least one electro-optically active organic layer such as an organic light-emitting diode device, an OLED, and a solar cell, the devices having a reflective layer. The germanium LEDs thus remove most of the light in a direction perpendicular to the plane of the OLED in a bottom emission configuration, and likewise the ambient light enters the device in the opposite direction. Although the main principles of the present invention are also applicable to a ceramic electronic device as in a solar cell, in the following, the principles of the present invention will be primarily described by reference to an OLED. 2 illustrates an embodiment of a color organic electronic device in accordance with the present invention, which will hereinafter be referred to as a color OLED 200. The color OLED device 200 includes a transparent substrate 1A made of, for example, a glass or a polymer having a first transparent conductive layer 110 disposed thereon. The first transparent conductive layer, hereinafter referred to as anode 110, is a sputtered IOT thin layer. The transparent anode 110 is provided with a plurality of organic layers, one of which is an illuminator 120, which layers will be referred to hereinafter to form a luminescent layer 12A. Further, a second conductive layer, hereinafter referred to as a cathode 130, is disposed on the light-emitting layer 120. The cathode 130 can be composed of a plurality of layers of suitable materials to form a cathode system. The cathode 130 is transparent and consists of, for example, LiF/A1/Ag. A reflective layer 140 is disposed on the cathode 丨3〇. The reflective layer 14 is highly reflective and configured to have a first color. In the energized state, the luminescent layer 12 emits a second color of light. The 13503l.doc •14·200933948 emitted light is stronger than the normal ambient light and even if some of the ambient light and the emitted light are reflected in the reflective layer 140, the transparent layer 100 and the transparent substrate 100 are emitted from the light emitting layer. The direct light system of the 120 output has a greater intensity, and is generally dominant in the second color, i.e., the color of the light emitted from the luminescent layer 12 。. In the power-off state, no light is emitted from the light-emitting layer 12A. Therefore, only ambient light enters the device 200. When the ambient light system is reflected in the emission layer 14〇

時’該反射層140之色彩佔反射的多數且該裝置呈現為具 有該第一色彩。因此實現一根據本發明之彩色有機發光二 極體裝置200,該裝置在通電狀態及斷電狀態下皆為彩 色0 在一替代實施例中,該第一色彩,亦即該反射層之色彩 係經設定以匹配該第二色彩,亦即從該發光層12〇發射之 光的色彩。這將給予一改良的色彩強度至從通電狀態下的 該裝置2GG輸出的光,其提供該裝置2⑽在斷電狀態下的相 同色彩外觀。 在上述兩個實施例中,亦即當具有彼此不同的第一及第 二色彩時及當具有匹配的第—及第二色彩時,發射向該陰 極的光係被完全反射回使得經由該陽極離開該裝置的光之 強度與不具有一反射層進行比較係提高30%。 根據本發明之一實施例,該複數個有機層120包括一在 一光伏打模式中吸收光的有機層。纟此組態中,該裝置 2〇〇係用於如太陽能電池之應用。通電狀態通常係不用於 此等應用亦即其等在斷電狀態下工作。因此,僅周遭光 135031.doc 200933948 進入該裝置200。當該周遭光係在該反射層14〇中反射時, 該反射層140之色彩佔反射的多數且該裝置呈現為具有該 第一色彩。因此實現一根據本發明之彩色有機光伏打裝置 200,其在斷電狀態下為彩色。 現參考圖3,在該彩色有機電子裝置3〇〇之一實施例中, 一額外薄膜封裝層(TFE) 150係配置在該透明陰極13〇與該 反射層140間。該TFE多層150之目的係密封該裝置並保護 該有機層120中的材料免受潮濕與空氣之害。 在一實施例中,該TFE多層150係經配置具有兩種經堆 疊的無機材料。在一替代實施例中,該TFE多層i 5〇係經配 置以具有經堆疊的一無機材料及一有機材料。如上描述之 該薄膜封裝中使用的該等無機材料之一些實例係氮化矽及 氧化矽。該有機材料較佳為一特殊應用聚合物。 在如圖4中描繪的該彩色有機電子裝置4〇〇之一實施例 中,該裝置400包括一透明基板1〇〇、一配置在該透明基板 100上的藉由一 ITO薄層組成的透明陽極丨丨〇、一配置在該 透明陽極110上方的經堆疊的有機層12〇及在該發光層ι2〇 上的一第二導電層、及一反射層14〇。該第二導電層係由 一電子注入層130a及一導電金屬層13〇b組成。該反射層 140係配置在該電子注入層13〇a及該導電金屬層13〇b間。 在此例證性的實施例中,該電子注入層13〇a係實施為一 Ba層’且該導電金屬層係一 1〇〇 nrn厚的八丨層。該反射層 140係被配置成為—多層。該多層包括一金屬及一對應的 金屬氧化物’該金屬係選自由Cr、Ni、Au及Cu組成之 135031.doc -16 - 200933948 群。或者’該反射層140係一選自由TiN、ZrN、CrxN及 ZrCxNy組成之群的化合物。 在該彩色有機電子裝置200、300、400之一實施例中, 該面度反射色彩層140為擴散性以便提供光之反射’其為 平滑且有助於提供來自該彩色有機電子裝置200、300、 400之彩色均勻反射。 在一替代實施例中’該反射層140係經圖案化。當該反 射層140係經配置使得該彩色有機電子裝置2〇〇、3〇〇、4〇〇 之分區係藉由該反射層予以覆蓋,同時具有成一所選圖案 之並非由該反射層覆蓋的分區時,能實現一具有從該裝置 200、300、400在該斷電狀態下反射的圖案之迷人外觀。 本發明之一第二態樣提供一種用於製造一彩色有機電子 裝置之方法。圖5中繪示該方法,其中該方法之替代實施 例之步驟係藉由方塊及經由該流程圖的流徑予以表示。在 下文中呈現用於製造一 OLED之方法之一實例。起於步驟 5 00’提供一透明基板1〇〇,其上濺鍍有一薄(1〇〇 nm)膜 ITO之第一透明導電層。若須要,該ITO層可藉由習知的 圖案化技術予以圖案化。在步驟5 1 〇中,提供複數個有機 發光層120。該複數個發光層120包括至少一光電活性層。 當製造一 OLED裝置時’該光電活性層材料在該通電狀態 下發光。當製造一太陽能電池時,該光電活性層材料吸收 光並生成一電流或一電壓。在此實例中,該等有機層係藉 由習知的OLED技術予以形成,其等係在先前技術,自然 (Nature) 1990,347,第 539 頁;APL 1987,51,第 913 頁; 135031.doc 17 200933948The color of the reflective layer 140 occupies a majority of the reflection and the device appears to have the first color. Therefore, a color organic light-emitting diode device 200 according to the present invention is realized, which is colored in both the energized state and the power-off state. In an alternative embodiment, the first color, that is, the color of the reflective layer It is set to match the color of the second color, that is, the light emitted from the light emitting layer 12A. This will give an improved color intensity to the light output from the device 2GG in the energized state, which provides the same color appearance of the device 2 (10) in the de-energized state. In the above two embodiments, that is, when having first and second colors different from each other and when having matching first and second colors, the light system emitted to the cathode is completely reflected back through the anode The intensity of the light leaving the device is increased by 30% compared to the absence of a reflective layer. In accordance with an embodiment of the invention, the plurality of organic layers 120 includes an organic layer that absorbs light in a photovoltaic mode. In this configuration, the device is used for applications such as solar cells. The power-on state is usually not used for these applications, that is, they operate in a power-off state. Therefore, only the ambient light 135031.doc 200933948 enters the device 200. When the ambient light system is reflected in the reflective layer 14A, the color of the reflective layer 140 occupies a majority of the reflection and the device appears to have the first color. Thus, a color organic photovoltaic device 200 according to the present invention is realized which is colored in a power-off state. Referring now to Figure 3, in one embodiment of the color organic electronic device 3, an additional thin film encapsulation layer (TFE) 150 is disposed between the transparent cathode 13 and the reflective layer 140. The purpose of the TFE multilayer 150 is to seal the device and protect the material in the organic layer 120 from moisture and air. In one embodiment, the TFE multilayer 150 is configured to have two stacked inorganic materials. In an alternate embodiment, the TFE multilayer i 5 is configured to have an inorganic material and an organic material stacked. Some examples of such inorganic materials used in the film package as described above are tantalum nitride and ruthenium oxide. The organic material is preferably a special application polymer. In one embodiment of the color organic electronic device 4 as depicted in FIG. 4, the device 400 includes a transparent substrate 1 and a transparent layer of ITO disposed on the transparent substrate 100. An anode layer, a stacked organic layer 12 disposed above the transparent anode 110, a second conductive layer on the light-emitting layer ι2, and a reflective layer 14〇. The second conductive layer is composed of an electron injection layer 130a and a conductive metal layer 13B. The reflective layer 140 is disposed between the electron injecting layer 13A and the conductive metal layer 13b. In this illustrative embodiment, the electron injecting layer 13A is implemented as a Ba layer' and the conductive metal layer is a tantalum layer having a thickness of 1 〇〇 nrn. The reflective layer 140 is configured to be a plurality of layers. The multilayer comprises a metal and a corresponding metal oxide. The metal is selected from the group consisting of Cr, Ni, Au and Cu 135031.doc -16 - 200933948. Alternatively, the reflective layer 140 is a compound selected from the group consisting of TiN, ZrN, CrxN, and ZrCxNy. In one embodiment of the color organic electronic device 200, 300, 400, the facet reflective color layer 140 is diffusive to provide reflection of light 'which is smooth and helps provide color from the color organic electronic device 200, 300. , 400 color uniform reflection. In an alternate embodiment, the reflective layer 140 is patterned. When the reflective layer 140 is configured such that the partitions of the color organic electronic devices 2, 3, and 4 are covered by the reflective layer, and have a selected pattern that is not covered by the reflective layer. In the case of partitioning, a fascinating appearance with a pattern reflected from the device 200, 300, 400 in the power-off state can be achieved. A second aspect of the present invention provides a method for fabricating a color organic electronic device. The method is illustrated in Figure 5, wherein the steps of an alternate embodiment of the method are represented by blocks and flow paths through the flow chart. An example of a method for fabricating an OLED is presented below. Starting from step 5 00', a transparent substrate 1 is provided on which a first transparent conductive layer of thin (1 〇〇 nm) film ITO is sputtered. If desired, the ITO layer can be patterned by conventional patterning techniques. In step 5 1 , a plurality of organic light-emitting layers 120 are provided. The plurality of luminescent layers 120 includes at least one optoelectronically active layer. When an OLED device is fabricated, the photoactive layer material emits light in the energized state. When a solar cell is fabricated, the photovoltaically active layer material absorbs light and generates a current or a voltage. In this example, the organic layers are formed by conventional OLED techniques, such as in the prior art, Nature 1990, 347, p. 539; APL 1987, 51, p. 913; 135031. Doc 17 200933948

Adv. Mat· 2000,12,17,第1249頁中描述,且本文將不進一 步討論。在以下步驟中,形成一包括一第二導電層及 一反射層140之頂層。該方法之一些替代實施例係在下文 中予以討論: 在步驟520中,一第二導電層13〇首先係提供在該等有機 層120上。該第二導電層13〇係藉由施加極薄的 層予以提供,使得以實現一透明陰極,該方法接著持續至 步驟523,其中一反射層14〇係形成於該第二導電層13〇 上。在此例證性的非限制性實例中,該反射層14〇具有白 色,亦即該第一色彩為白色,且其係經由將一前驅物疏水 性溶膠-凝膠旋轉塗佈在該第二導電層i 3 〇上而獲得。該溶 膠-凝膠材料包含金紅石(rutile)相(n=2 7)形式的Ti〇2,其 係經由一溶膠-凝膠製程嵌入一 Si〇2基體(matdx)中。該溶 膠-凝膠製程係在受控之處理條件下發生。該製程係在室 溫下進行,其確保該裝置200之完整性。用於基於溶膠-凝 膠之材料之烘乾溫度對於一 0LED而言通常為過高,但這 不是用於此應用中使用的該溶膠-凝膠之情況。 該所得溶膠-凝膠塗層包含二氧化鈦奈米微粒並提供一 來自所獲得的該反射層140之高擴散反射。在圖6 a)中,繪 出獲得的溶膠-凝膠塗層140之所量測的反射率與波長之 比。如可見’該塗層之反射率對於所有可見波長的光為 四。因此該塗層提供一白光反射。此外,該反射層14〇之 反射率係藉由改變該層厚度而可控。 該方法之一實施例進一步提供一種在該反射層14〇中提 135031.doc -18· 200933948 供色彩之方法,其係藉由將有機或無機顏料、或有機與無 機顏料之組合整合在以上描述的該溶膠-凝膠塗層中。整 合在該溶膝凝膠基體中的顏色反射具有某—色彩的光並 吸收其他色彩的光。這促使作為光之波長的函數的反射率 之L改在圖6b)中,繪出當一種紅顏料被整合至該溶膠 凝膠塗層中時,該獲得的溶膠-凝膠塗層14〇之所量測的反 射率與波長之比。 在該方法之替代實施例中,且與所使用的材料相關該 反射層140係藉由其他施加方式予以獲得,例如一薄片材 料之層疊、印刷或模造。 在一替代實施例中,其中施加該第二導電層13〇之步驟 520之後接著為步驟52卜在步驟521中,一薄膜封裝(tfe) 150係在獲得一反射層14〇之步驟之前被提供。該 係藉由提供一多層堆疊體而提供,亦即替代提供複數個材 料溥膜。該多層堆疊體係藉由施加一例如包括氮化矽及氧 化石夕之無機/無機多層堆疊體而配置。在一替代實施例 中’該多層堆疊體係藉由施加一例如包括氮化矽及與一適 當的有機材料結合的氧化矽之無機/有機多層堆疊體而配 置。 〇人慮及該方法之另一實施例’該實施例中,步驟5 1 〇 之後’亦即已提供該等有機發光層120之後,該方法持續 至步驟530。在步驟530中,提供一電子注入層13〇a,亦即 —陰極。在步驟532中,該反射層140係提供在該電子注入 層130a上,且該方法係持續至步驟533,其中在該反射層 135031.doc 19 200933948 140上提供一導電金屬層130b。該陰極130a例如包括Ba, 而該導電金屬層130b係一 100 nm厚的金屬Ai層或任何其他 適當的金屬,例如Ag或Au。 該反射層140係藉由將金屬合金濺鍍至一多層内而提 供。該多層之成分係經設計以提供一所需色彩,其係藉由 在一適當的多廣中混合金屬及其他合金層而完成。該等金 屬係選自由Cr、Ni、Au及Cu組成之群。 在該方法之一替代實施例中,TiN之反應性電漿沈積係 ® 用以提供具有一反射層140之裝置。用於藉由反應性電漿 沈積形成一具有一所需色彩的反射層140之其他適當的化 合物係 ZrN、CrxN及 ZrCxNy » 在如上描述之根據本發明之該方法的替代實施例中,進 一步的步驟522及531係分別併入該方法流程中。步驟522 及531皆包括該反射層140之圖案化。在圖7中,繪示一圖 案化反射層140之俯視圖。該圖案化係藉由利用先前技術 圖案化技術予以實施,例如遮光罩或微影術。當圖案化該 ❹ 反射層140時’反射區域之位置142可以一有利的方式被選 擇以生成一所需圖案。圖案化區域上的該反射材料之複數 個色彩可用以形成欲在該裝置之斷電狀態中顯示的所需圖 - 案。該等圖案可經形成為其等間無實體連接,且仍進一步 保持透明的區域141。 以上已描述該有機電子裝置之實施例及用於製造一根據 本發明之有機電子裝置之對應的方法。此等應僅被視為非 限制性實例。如一熟習此項技術者所瞭解,許多修改及替 135031.doc •20- 200933948 代實施例可在本發明之範圍内。 ▲因此,如藉由以上的該等實施例所解釋,一在該通電狀 態及該斷電狀態中皆為彩色的有機電子裝置係藉由將一彩 色反射層增加至該有機電子裝置結構申而提供。該反射層 係由一便利的製造方法予以提供。 應注意’關於此申請案之目的,且特定言之係關於附屬 請求項,熟習此項技術者本質上將顯而易見㈣「包括」 不排除其他元件或步驟,用詞「一 ❹ /邱用j 」或「一個」不排除為 複數。 【圖式簡單說明】 圖1 a)及b)綠示先前技術有機電子裝置組態之橫截面圖。 圖2繪示-根據本發明之彩色有機電子裝置之一實施例 的橫戴面圖。 置之一實施例 圖3繪示一根據本發明之彩色有機電子裝 的橫截面圖。It is described in Adv. Mat. 2000, 12, 17, page 1249 and will not be discussed further herein. In the following steps, a top layer including a second conductive layer and a reflective layer 140 is formed. Some alternative embodiments of the method are discussed below: In step 520, a second conductive layer 13 is first provided on the organic layers 120. The second conductive layer 13 is provided by applying an extremely thin layer to achieve a transparent cathode. The method then continues to step 523, in which a reflective layer 14 is formed on the second conductive layer 13 . In this illustrative, non-limiting example, the reflective layer 14 is white, that is, the first color is white, and is spin coated on the second conductive via a precursor hydrophobic sol-gel. Layer i 3 is obtained on the raft. The sol-gel material comprises Ti 〇 2 in the form of a rutile phase (n = 27) which is embedded in a Si 〇 2 matrix (matdx) via a sol-gel process. The sol-gel process occurs under controlled processing conditions. The process is carried out at room temperature, which ensures the integrity of the device 200. The drying temperature for sol-gel based materials is typically too high for a 0 LED, but this is not the case for the sol-gel used in this application. The resulting sol-gel coating comprises titanium dioxide nanoparticles and provides a high diffusion reflection from the resulting reflective layer 140. In Fig. 6 a), the measured reflectance to wavelength ratio of the obtained sol-gel coating 140 is plotted. As can be seen, the reflectivity of the coating is four for all visible wavelengths of light. The coating therefore provides a white light reflection. Moreover, the reflectivity of the reflective layer 14 is controllable by varying the thickness of the layer. An embodiment of the method further provides a method for providing color in the reflective layer 14 135 135031.doc -18· 200933948 by integrating an organic or inorganic pigment, or a combination of organic and inorganic pigments, as described above. The sol-gel coating. The color integrated in the matrix of the dissolved knee gel reflects light of a certain color and absorbs light of other colors. This promotes the L of the reflectance as a function of the wavelength of light in Figure 6b), depicting the sol-gel coating obtained when a red pigment is incorporated into the sol-gel coating. The measured reflectance to wavelength ratio. In an alternative embodiment of the method, and in connection with the materials used, the reflective layer 140 is obtained by other means of application, such as lamination, printing or molding of a sheet of material. In an alternate embodiment, the step 520 of applying the second conductive layer 13 is followed by the step 52. In step 521, a thin film package (tfe) 150 is provided prior to the step of obtaining a reflective layer 14 . This is provided by providing a multilayer stack, i.e., instead providing a plurality of material ruthenium films. The multilayer stack system is configured by applying an inorganic/inorganic multilayer stack comprising, for example, tantalum nitride and oxidized oxide. In an alternate embodiment, the multilayer stack system is configured by applying an inorganic/organic multilayer stack comprising, for example, tantalum nitride and yttria combined with a suitable organic material. Another embodiment of the method is contemplated by the latter. In this embodiment, after step 5 1 ’, i.e., after the organic light-emitting layers 120 have been provided, the method continues to step 530. In step 530, an electron injecting layer 13a, that is, a cathode, is provided. In step 532, the reflective layer 140 is provided on the electron injecting layer 130a, and the method continues to step 533, wherein a conductive metal layer 130b is provided on the reflective layer 135031.doc 19 200933948 140. The cathode 130a includes, for example, Ba, and the conductive metal layer 130b is a 100 nm thick metal Ai layer or any other suitable metal such as Ag or Au. The reflective layer 140 is provided by sputtering a metal alloy into a plurality of layers. The multi-layered components are designed to provide a desired color by mixing the metal and other alloy layers in a suitable mixture. The metals are selected from the group consisting of Cr, Ni, Au, and Cu. In an alternate embodiment of the method, a reactive plasma deposition system of TiN is used to provide a device having a reflective layer 140. Other suitable compounds for forming a reflective layer 140 having a desired color by reactive plasma deposition, ZrN, CrxN and ZrCxNy » In an alternative embodiment of the method according to the invention as described above, further Steps 522 and 531 are respectively incorporated into the method flow. Both steps 522 and 531 include patterning of the reflective layer 140. In Fig. 7, a top view of a patterned reflective layer 140 is shown. The patterning is performed by utilizing prior art patterning techniques, such as hood or lithography. The position 142 of the reflective region when patterned the reflective layer 140 can be selected in an advantageous manner to produce a desired pattern. The plurality of colors of the reflective material on the patterned area can be used to form the desired pattern to be displayed in the power down state of the device. The patterns may be formed into regions 141 that are otherwise physically connected and still remain transparent. Embodiments of the organic electronic device and corresponding methods for fabricating an organic electronic device according to the present invention have been described above. These should be considered only as non-limiting examples. As will be appreciated by those skilled in the art, many modifications and alternative embodiments are possible within the scope of the invention. ▲ Therefore, as explained by the above embodiments, an organic electronic device that is colored in both the energized state and the powered off state is added to the organic electronic device structure by adding a colored reflective layer. provide. The reflective layer is provided by a convenient manufacturing method. It should be noted that 'with regard to the purpose of this application, and the specific terms are related to the sub-requests, those skilled in the art will be apparent in nature. (4) "Include" does not exclude other components or steps, the word "一❹ /邱用j" Or "one" is not excluded as plural. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 a) and b) green cross-sectional views of prior art organic electronic device configurations. 2 is a cross-sectional view of an embodiment of a color organic electronic device in accordance with the present invention. One embodiment of the invention Fig. 3 is a cross-sectional view showing a color organic electronic device in accordance with the present invention.

圖4繪示一根據本發明之彩色有機電子裝 的橫截面圖。 置之一實施例 圖5描繪一種用於製造一根據本發明之彩色有機電子裝 置之方法的主要步驟之替代實施例之示意圖。 圖6 a)及b)顯示作為施加於兩個根據本發明之實施例中 的該彩色反射層之光的波長之函數的反射率。 · 圖7繪示一根據本發明之實施例中的—圖案化反射層。 【主要元件符號說明】Figure 4 is a cross-sectional view of a color organic electronic device in accordance with the present invention. One Embodiment FIG. 5 depicts a schematic diagram of an alternate embodiment of the main steps of a method for fabricating a color organic electronic device in accordance with the present invention. Figures 6 a) and b) show the reflectance as a function of the wavelength of light applied to the two colored reflective layers in accordance with an embodiment of the present invention. Figure 7 illustrates a patterned reflective layer in accordance with an embodiment of the present invention. [Main component symbol description]

10 底部發射OLED 135031.doc 21 20093394810 bottom emission OLED 135031.doc 21 200933948

20 雙側發射OLED 100 透明基板 no 陽極 120 發光層 130 陰極 130a 電子注入層 130b 導電金屬層 135 透明介電層 140 反射層 141 透明的區域 142 反射區域之位置 150 薄膜封裝層 200 彩色有機電子裝置 300 彩色有機電子裝置 400 彩色有機電子裝置 500 步驟 510 步驟 520 步驟 521 步驟 522 步驟 523 步驟 530 步驟 531 步驟 532 步驟 533 步驟 135031,doc 22-20 double-sided emitting OLED 100 transparent substrate no anode 120 light emitting layer 130 cathode 130a electron injecting layer 130b conductive metal layer 135 transparent dielectric layer 140 reflective layer 141 transparent region 142 position of reflective region 150 thin film encapsulation layer 200 color organic electronic device 300 Color Organic Electronic Device 400 Color Organic Electronic Device 500 Step 510 Step 520 Step 521 Step 522 Step 523 Step 530 Step 531 Step 532 Step 533 Step 135031, doc 22-

Claims (1)

200933948 十、申請專利範圍: 1. 一種彩色有機電子裝置,其包括: -一透明基板(100),其具有一第一透明導電層(11〇); -複數個有機層(120) ’其等中至少—右 有機層為光電活 性’且其中該複數個有機層係配置在該第,泰叩 #次罘一透明導電層 之上; -一第二導電層(130),其係配置在該複數個有機層上 方;及 •一反射層(140),其係經配置與該第二導電層結合; 其中該反射層具有一第一色彩,其導致該裝置在一斷電 狀態下具有該第一色彩之一外觀,且其中一通電狀態係 藉由該裝置接收一來自一外部源之預定電壓而定義且 該斷電狀態係藉由該裝置未接收來自一外部源之一電壓 而定義。 2.如請求項1之彩色有機電子裝置,其中該光電活性層在 一光伏打模式中吸收光。 3,如請求項1之彩色有機電子裝置’其中該光電活性層在 該通電狀態下發射具有一第二色彩的光。 4. 如請求項1至3中任一項之彩色有機電子裝置,其中該第 二導電層為透明且該反射層係被配置在該第二透明導電 層上方。 5. 如請求項1至3中任一項之彩色有機電子裝置,其中該第 二導電層包括一電子注入層(13〇a)及一導電金屬層 (13 0b)’且其中該反射層(14〇)係配置在該電子注入層與 135031.doc 200933948 該導電金屬層之間。 6·如請求項5之彩 層,甘& 有機電子裝置,其中該反射層係一多 赝,其包括一選自一 ^ 或金屬氧化物。一由〇、Ni、八^及^组成之群的金屬 7·如請求項5之彩色古 ώ ± 有機電子裝置,其中該反射層係一選 自一由 TiN、ZrN、「 0 , ± ^犷以及ZrCxNy組成之群的化合物。 8. 如請求項4之彩色 有機電子裝置,其進一步包括一薄膜 封裝多層(TFE)(i5〇、,甘&200933948 X. Patent application scope: 1. A color organic electronic device comprising: - a transparent substrate (100) having a first transparent conductive layer (11 〇); - a plurality of organic layers (120) ' At least the right organic layer is photoelectrically active and wherein the plurality of organic layers are disposed on the first, the second conductive layer (130); a second conductive layer (130) disposed in the a plurality of organic layers; and a reflective layer (140) configured to be coupled to the second conductive layer; wherein the reflective layer has a first color that causes the device to have the first state in a power-off state One color appearance, and one of the power states is defined by the device receiving a predetermined voltage from an external source and the power down state is defined by the device not receiving a voltage from an external source. 2. The color organic electronic device of claim 1, wherein the photoactive layer absorbs light in a photovoltaic mode. 3. The color organic electronic device of claim 1, wherein the photoactive layer emits light having a second color in the energized state. 4. The color organic electronic device of any of claims 1 to 3, wherein the second conductive layer is transparent and the reflective layer is disposed over the second transparent conductive layer. 5. The color organic electronic device of any one of claims 1 to 3, wherein the second conductive layer comprises an electron injection layer (13〇a) and a conductive metal layer (130b) and wherein the reflective layer ( 14〇) is disposed between the electron injecting layer and the conductive metal layer of 135031.doc 200933948. 6. The color layer of claim 5, the & organic electronic device, wherein the reflective layer is a plurality of layers comprising one selected from the group consisting of a metal oxide. A metal consisting of a group of 〇, Ni, 八, and ^. 7. The color ώ 有机 organic electronic device of claim 5, wherein the reflective layer is selected from the group consisting of TiN, ZrN, "0, ±^犷And a compound of the group consisting of ZrCxNy. 8. The color organic electronic device of claim 4, further comprising a thin film encapsulation multilayer (TFE) (i5〇, 甘& Ο ^ 八〇υ),其係配置在該第二透明導電層與 該反射層之間。 、 9. 如π求項3之彩色有機電子裝置,其中該第一及第二色 彩為相同色彩。 10. 如請求項2或3之彩色有機電子裝置,其中該反射層係經 圖案化。 11. 如明求項2或3之彩色有機電子裝置,其中該反射層為擴 散性。 12. —種用於製造一彩色有機電子裝置之方法,其包括以下 步驟: -提供一具有一第一透明導電層(500)之透明基板; •提供複數個有機層(510); -提供一頂層,其包括一第二導電層(520)及一反射層 (523); 其中該裝置具有一藉由該裝置接收一來自一外部源之預 定電壓而定義的通電狀態,及一藉由該裝置未接收一來 自一外部源之電壓而定義的斷電狀態,其中該複數個有 135031.doc 200933948 機層之至少一層為光電活性,且其中該反射層具有一第 一色彩’其導致該裝置在該斷電狀態下具有該第—色彩 之一外觀。 / 13.如請求項12之方法,其中該光電活性層在一光伏打根 中吸收光。 用求項12之方法,其中該光電活性層在該通電狀態下 發射具有一第二色彩之光。 丨5·如請求項13或14之方法,其中該提供該頂層之步驟包括 ® 首先提供該第二導電層,該第二層為一透明導電層,且 其次提供該反射層。 16. 如請求項15之方法,其進一步包括一步驟為在該提供該 反射層之步驟之前提供一薄膜封裝(521)。 17. 如請求項16之方法,其中該提供一薄膜封裝之步驟係藉 由施加一無機/無機多層堆疊體而完成。 18. 如請求項16之方法,其中該提供一薄臈封裝之步驟係藉 & 由施加一無機/有機多層堆疊體而完成。 19. 如請求項13或14之方法,其中該提供該頂層之步驟包括 以下步驟: • -提供一電子注入層(530); -提供該反射層(532);及 •提供一導電金屬層(533)。 20. 如請求項19之方法,其中該反射層係藉由將金屬合金濺 鑛至一多層中而提供,其中該等金屬係選自—由〇、 Ni、Au及Cu組成之群。 135031.doc 200933948 21. 如請求項19之方法’其中該反射層係藉由選自一由 TiN、ZirN、(:):>^及乙1'(:>{]^組成之群的化合物之反應性電 漿沈積而提供。 22. 如請求項12之方法’其中該反射層係藉由利用一來自旋 轉塗佈、印刷、層疊及模造之一群的方法之一者而施 加。 , 23.如凊求項22之方法’其中該反射層材料係一疏水性溶膠_ 凝膠塗層。 〇 24.如請求項23之方法’其中該第一色彩係藉由將有機或無 機顏料整合在該溶膠-凝膠塗層中而提供在該反射層中。 25.如凊求項12之方法其中該提供該反射層之步驟進一步 包括圖案化該反射層(522、531)。 ❷ 135031.docΟ ^ gossip) is disposed between the second transparent conductive layer and the reflective layer. 9. The color organic electronic device of claim 3, wherein the first and second colors are the same color. 10. The color organic electronic device of claim 2 or 3, wherein the reflective layer is patterned. 11. The color organic electronic device of claim 2 or 3, wherein the reflective layer is diffusive. 12. A method for fabricating a color organic electronic device, comprising the steps of: - providing a transparent substrate having a first transparent conductive layer (500); providing a plurality of organic layers (510); a top layer comprising a second conductive layer (520) and a reflective layer (523); wherein the device has an energized state defined by the device receiving a predetermined voltage from an external source, and a device Not receiving a power-off state defined by a voltage from an external source, wherein the plurality of layers of the 135031.doc 200933948 machine layer are photoelectrically active, and wherein the reflective layer has a first color 'which causes the device to The power-off state has an appearance of the first color. The method of claim 12, wherein the photovoltaically active layer absorbs light in a photovoltaic root. The method of claim 12, wherein the photoactive layer emits light having a second color in the energized state. The method of claim 13 or 14, wherein the step of providing the top layer comprises: first providing the second conductive layer, the second layer being a transparent conductive layer, and second providing the reflective layer. 16. The method of claim 15, further comprising the step of providing a thin film encapsulation (521) prior to the step of providing the reflective layer. 17. The method of claim 16, wherein the step of providing a thin film encapsulation is accomplished by applying an inorganic/inorganic multilayer stack. 18. The method of claim 16, wherein the step of providing a thin tantalum package is performed by applying an inorganic/organic multilayer stack. 19. The method of claim 13 or 14, wherein the step of providing the top layer comprises the steps of: • providing an electron injection layer (530); providing the reflective layer (532); and providing a conductive metal layer ( 533). 20. The method of claim 19, wherein the reflective layer is provided by sputtering a metal alloy into a plurality of layers selected from the group consisting of ruthenium, Ni, Au, and Cu. 135031.doc 200933948 21. The method of claim 19, wherein the reflective layer is selected from the group consisting of TiN, ZirN, (:):>^, and B1' (:>{]^ 22. Provided by reactive plasma deposition of a compound. 22. The method of claim 12 wherein the reflective layer is applied by utilizing one of a method from a group of spin coating, printing, laminating, and molding. The method of claim 22, wherein the reflective layer material is a hydrophobic sol-gel coating. 〇 24. The method of claim 23, wherein the first color is integrated by an organic or inorganic pigment The sol-gel coating is provided in the reflective layer. 25. The method of claim 12, wherein the step of providing the reflective layer further comprises patterning the reflective layer (522, 531). 135 135031.doc
TW097140172A 2007-10-23 2008-10-20 A colored organic electronic device TW200933948A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07119033 2007-10-23

Publications (1)

Publication Number Publication Date
TW200933948A true TW200933948A (en) 2009-08-01

Family

ID=40456845

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097140172A TW200933948A (en) 2007-10-23 2008-10-20 A colored organic electronic device

Country Status (2)

Country Link
TW (1) TW200933948A (en)
WO (1) WO2009053890A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004239A (en) * 2010-06-15 2012-01-05 Fujifilm Corp Organic thin-film solar cell
CN103151468B (en) * 2013-03-07 2015-08-19 深圳市华星光电技术有限公司 A kind of Organic Light Emitting Diode and preparation method thereof, display unit
DE102013105229A1 (en) 2013-05-22 2014-11-27 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an optoelectronic component
DE102013106944A1 (en) 2013-07-02 2015-01-08 Osram Oled Gmbh An optoelectronic component device, method for producing an optoelectronic component device and method for operating an optoelectronic component device
DE102014107556A1 (en) * 2014-05-28 2015-12-03 Osram Gmbh Transparent organic light emitting device and light emitting device with a transparent organic light emitting device
DE102014119541A1 (en) 2014-12-23 2016-06-23 Osram Oled Gmbh Method for operating a light-emitting assembly
JP2016195175A (en) * 2015-03-31 2016-11-17 株式会社東芝 Photovoltaic module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6597110B1 (en) * 1999-05-13 2003-07-22 The University Of Southern California Titanium nitride anode for use in organic light emitting devices
JP2002216976A (en) * 2001-01-15 2002-08-02 Sony Corp Light emitting element and its manufacturing method
US6891330B2 (en) * 2002-03-29 2005-05-10 General Electric Company Mechanically flexible organic electroluminescent device with directional light emission
TWI220240B (en) * 2003-09-30 2004-08-11 Au Optronics Corp Full-color organic electroluminescent device (OLED) display and method of fabricating the same

Also Published As

Publication number Publication date
WO2009053890A3 (en) 2009-07-30
WO2009053890A2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
TWI524566B (en) Lighting means, illuminating device, optical display, emergency illuminating device, interior illuminating device for cars, furniture, building material, vitrification, display, accommodate furniture
TWI476741B (en) Color tunable illumination source and method for controlled illumination
JP6220870B2 (en) ORGANIC LIGHT EMITTING DIODE (OLED) ELEMENT LAMINATE, ITS MANUFACTURING METHOD, AND ORGANIC LIGHT EMITTING DIODE (OLED) ELEMENT HAVING THE SAME
EP1431656B1 (en) Luminaire for light extraction from a flat light source
TW200933948A (en) A colored organic electronic device
CN100555709C (en) The organic luminescent device and the manufacture method thereof that comprise dielectric capping layers
KR101399259B1 (en) Lighting device
US20170005235A1 (en) Light emitting diode, photodiode, displays, and method for forming the same
KR101773087B1 (en) Organic light-emitting display device employing black matrix-containing neutral density film
TW200832304A (en) Color tunable OLED illumination display and method for controlled display illumination
TW200945645A (en) Hidden organic optoelectronic devices
TWI314025B (en) Method for fabricating active illumination apparatus
TW201108848A (en) Light guiding structure
TW201208171A (en) Utilizing gradient refractive index films for light extraction and distribution control in OLED
CN1610471A (en) Electroluminescence display device
TW200917889A (en) Opto-electronic component
KR101676681B1 (en) Optoelectronic component, method for producing an optoelectronic component, device for separating a room, and piece of furniture
TW201031246A (en) OLED device with adjustable color appearance
TWI252716B (en) Organic LED with brightness enhancer
TW200408301A (en) Electroluminescent device with improved light output
WO2014136723A1 (en) Organic electroluminescent element and method for manufacturing same
WO2015004876A1 (en) Organic electroluminescent element and lighting device
JP2004014385A (en) Organic electroluminescent element
CN109964154A (en) The light-diffusing films of extraction performance with enhancing
KR102103516B1 (en) Structure for extracting light and organic electroluminescent lighting device