TW200932561A - Rotating printhead maintenance facility with symmetrical chassis - Google Patents

Rotating printhead maintenance facility with symmetrical chassis Download PDF

Info

Publication number
TW200932561A
TW200932561A TW097116092A TW97116092A TW200932561A TW 200932561 A TW200932561 A TW 200932561A TW 097116092 A TW097116092 A TW 097116092A TW 97116092 A TW97116092 A TW 97116092A TW 200932561 A TW200932561 A TW 200932561A
Authority
TW
Taiwan
Prior art keywords
maintenance
print head
wiper
base
ink
Prior art date
Application number
TW097116092A
Other languages
Chinese (zh)
Inventor
Christopher Hibbard
Paul Ian Mackey
Makomo Tsubono
Kia Silverbrook
Original Assignee
Silverbrook Res Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silverbrook Res Pty Ltd filed Critical Silverbrook Res Pty Ltd
Publication of TW200932561A publication Critical patent/TW200932561A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/1752Mounting within the printer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/055Devices for absorbing or preventing back-pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/1721Collecting waste ink; Collectors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17553Outer structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/21Line printing

Abstract

A maintenance facility for an inkjet printer with a pagewidth printhead and a media path for feeding sheets of media substrate in a media feed direction. The pagewidth printhead has an elongate array of nozzles extending the printing width of the media substrate and the maintenance facility has an elongate chassis for mounting in the printer such that it can rotate about its longitudinal axis and a plurality of maintenance stations mounted to an exterior surface of the elongate chassis. The elongate chassis is symmetrical about at least one plane extending through the longitudinal axis.

Description

200932561 九、發明說明 【發明所屬之技術領域】 本發明關於印表機領域,特別是關於噴墨列印頭用的 維護設備。 【先前技術】 擦拭列印頭的噴嘴面是移除紙塵、墨水溢流、乾掉的 墨水、或其他污物的有效方法。但是難以擦拭頁寬列印頭 。雖然有具有噴嘴面擦拭器的頁寬印表機存在’但是擦拭 機構相對地慢且複雜。可買得到的現有頁寬列印頭’具有 在媒介饋給方向彼此隔開的數個列印頭積體電路。以單一 個擦拭器清潔全部的列印頭積體電路是不切實際的’所以 每一個列印頭積體電路被個別地擦拭。再者,複數個擦拭 器在媒介饋給方向的橫方向運動,此是爲了避免不同顏料 的噴嘴之間的顏料混合。每一顏料的各列噴嘴延伸經過列 印頭積體電路,各列印頭積體電路在媒介饋給方向的橫方 向。沿著整列的噴嘴擦拭,使得一噴嘴之墨水被不同顏色 之墨水污染的風險降到最低。但是當列印頭積體電路是長 形且沿著饋給方向的橫方向延伸時,擦拭器必須行經整個 長度,以清潔所有的噴嘴。有鑑於此,致動每一列印頭用 之複數分離的擦拭器的機構是複雜的,且該機構佔據相對 大的空間,並耗費每一維護循環期間相當多的時間。 擦拭頁寬列印頭相關的另一問題是:控制擦拭器和噴 嘴面之間的接觸力。橫向擦拭噴嘴面的大區段,減少了擦 -5- 200932561 拭整個列印頭所需的時間。但是當運動經過列印頭時,長 的擦拭表面必須維持平行於噴嘴面,以保持均勻的接觸力 。可瞭解的是,不均勻的擦拭力中,擦拭力太強的地方會 損害精細的噴嘴構造,而擦拭力太弱的地方難以適當地清 潔噴嘴面。可以製造具有底座的列印頭維護設備,該底座 精密地支撐軟維護站構造(擦拭器刮片、加蓋密封、和類 似者)。但是製造具有如此精細公差的底座構造,底座通 常需要涉及精密的金屬加工製造。此精密的工程有違低成 本高產量技術,該等低成本高產量技術有助於降低每一印 表機的單位成本。 【發明內容】 因此,本發明提供一種用於噴墨印表機的維護設備, 該噴墨印表機具有頁寬列印頭和用於在媒介饋給方向中饋 給片狀媒介基板的媒介路徑,該頁寬列印頭具有長形陣列 噴嘴,該陣列噴嘴在該媒介基板的列印寬度延伸,該維護 設備包含: 長形底座,供安裝在該印表機內,以致該長形底座能 繞其縱長軸線旋轉;和 複數維護站,安裝至該長形底座的外部表面;其中 該長形底座相對於延伸穿過該縱長軸線的至少一平面 呈對稱。 藉由將長形底座製造成具有穿過縱長軸線的對稱平面 ’所以可用射出成型技術生產長形底座。底座的對稱結構 -6 - 200932561 可防止因爲熱聚合物材料的不移至收縮而彎曲和變形。因 爲底座保持筆直的,所以擦拭器構件和噴嘴面之間的接觸 壓力足夠均一,以確保有效的清潔。應瞭解的是:聚合物 組件的射出成型,非常適合大量且低成本的生產。 底座也允許其他的維護站快速且連續地呈現至列印頭 ,所以整個維護系統快速地執行。申請人已發現,可在媒 介饋給方向擦拭噴嘴面以減少擦拭器行經的距離,且不會 造成顏料混合的問題。藉由在擦拭後立即發射噴嘴進入吸 墨器或集墨器,則在被污染的墨水能擴散進入墨水供給管 線以前,就射出任何被污染的墨水。此保持噴嘴內所含的 污染,或者只是腔室墨水噴射致動器。 較佳地,該長形底座相對於延伸穿過該縱長軸線的至 少二平面呈對稱。較佳地,該長形底座安裝在該印表機內 ,以致該長形底座的縱長軸線橫越該媒介饋給方向。較佳 地’該等維護站其中至少之一是用於擦拭該長形陣列噴嘴 的擦拭器構件。較佳地’該長形底座是由射出成型的聚合 物形成。在特別佳的形式中’該長形底座具有外部表面, 該外部表面具有安裝部位’建構該等部位以容置該複數維 護站其中任一者。較佳地,該等維護站之一較佳地,是用 於擦拭長形噴嘴陣列的擦拭器構件。較佳地,該長形底座 和該擦拭器構件,在該長形陣列噴嘴的長度延伸。在一些 實施例中’該等安裝部位是形成在該長形底座內的承座。 較佳地,該管狀底座具有容置在其中心凹穴內的多孔材料 。較佳地’該等承座的每一側具有至少一個廢棄墨水毛細 200932561 管,用於建立在該中心凹穴內的該多孔材料和安裝至該承 座的該維護站之間的流體連通。方便地,該等安裝該等安 裝構造和該等對應構造滑動進入嚙合。選擇性地,該等安 裝構造和該等對應構造扣合鎖固在一起。在一些形式中, 該等維護站可安裝至管狀底座的不同側面。 較佳地,該擦拭器構件安裝至管狀底座,以致該擦拭 器構件在平行於該媒介饋給方向的方向中,擦拭該長形陣 列噴嘴。在特別佳的形式中,該等維護站其中之一是具有 吸收性元件的吸墨器’用於容置被射出的墨水。較佳地, 該吸收性元件和容置在中心凹穴內的該多孔材料呈流體連 通。較佳地,該多孔材料是多孔硬聚合物。 較佳地,該頁寬列印頭具有複數列印頭積體電路,該 等列印頭積體電路的每一者在該媒介饋給方向的橫方向對 齊。藉由將列印頭積體電路安裝在穿過列印頭的單一線中 ,長形陣列的噴嘴在平行於媒介饋給方向的方向中,不會 延伸太遠。有鑑於此’所以減少了擦拭器構件穿過列印頭 的行程長度’而且使得擦拭作業更快’並且更容易控制在 噴嘴上的接觸壓力。(在媒介饋給方向中)狹窄的列印區 域關於控制噴嘴和媒介基板之間的間隔’具有其他重要的 好處。 在特別隹的實施例中’該擦拭器構件是由彈性材料形 成的複數擦拭器刮片’所以當擦拭該長形陣列噴嘴時,每 —刮片的遠端邊緣撓曲。較佳地’該等擦拭器刮片配置在 複數平行列中。在特別佳的形式中’該複數列的每一者具 -8- 200932561 有一系列的擦拭器刮片,該等擦拭器刮片在該饋給方向的 橫方向對齊,相鄰列中的該等擦拭器刮片沒有對準,所以 在該媒介饋給方向中彼此相對錯開地安裝。 在一些實施例中,該維護驅動裝置是可反轉的,所以 在維護循環期間,該擦拭器構件能在兩個方向中擦拭該長 形陣列噴嘴。較佳地,建構該維護驅動裝置以便以可變速 率轉動該管狀底座。在另一較佳形式中,建構該維護驅動 裝置以舉升較低的管狀底座。較佳地,該等維護站其中之 一是列印頭加蓋器。在此形式中,用於舉升及降低管狀底 座的驅動機構和轉動管狀底座的驅動機構彼此獨立的。 【實施方式】 印表機流體工學系統 圖1是圖2A和2B中所述之列印引擎所用之流體工 學的示意圖。如前所述,列印引擎具有噴墨印表機的主要 Q 機械構造。建構週邊構造(例如外殼、饋紙盤、紙收集盤 、、、等)’使其適合印表機(例如相片印表機、網路印 表機、或蘇活印表機)的特定列印要求。申請人揭露在共 同繫屬中的申請案USSN 11/688863 (我們的案號RRE 001 US )之相片印表機,是使用圖1之流體工學系統之噴 墨EP表機的例子。該共同繫屬中的申請案的內容於此倂入 作爲參考。USSN 1 1 /8727 1 9號案(我們的案號SBF 0 09US )中詳細描述該系統的作業和其個別組件,其內容 於此倂入作爲參考。 200932561 簡言之,印表機流體工學系統具有列印頭組合體2, 墨水罐4經由上游墨水管線8供給墨水至列印頭組合體2 。廢棄墨水經由下游墨水管線排至廢墨水罐1 8。爲了簡 化,所以只顯示單一墨水管線。實際上,列印頭具有多條 墨水管線供全彩列印。上游墨水管線8具有關閉閥1 0, 用於將列印頭組合體2選擇性地與泵1 2和/或墨水罐4隔 離。泵12用於主動塡注或溢滿(flood )列印頭組合體2 φ 。栗12也用於建立墨水罐4內的負壓。在列印期間,藉 由氣泡點規制器6維持負壓。 列印頭組合體2是液晶聚合物模組20,其支撐一系 列的列印頭積體電路3 0 ;以黏性晶粒附接薄膜(未示) 固定該等列印頭積體電路30。列印頭積體電路30具有陣 列的墨水噴射噴嘴,用於噴射墨水液滴至正在通過的媒介 基板22。噴嘴是以真實1600 dpi (亦即1600 npi的噴嘴 節距)或更大解析度列印的微電子機械構造。USSN ❹ 1l/246687(我們的案號MNN001US)中詳細地描述合適 列印頭積體電路3 0的製造和構造,其內容倂入於此作參 考。液晶聚合物模組20具有在入口 36和出口 38之間延 伸的主通道24。主通道24饋給一系列延伸至液晶聚合物 模組2 0下側的細通道2 8。細通道2 8經由晶粒附接薄膜 內之雷射切除孔而將墨水供給至列印頭積體電路3 〇。 在主通道24上方的是一系列未塡注的空氣凹穴26。 設計這些凹穴以在塡注列印頭期間侷限一袋的空氣。該等 空氣袋給予系統一些順應性,以吸收和阻尼墨水中的壓力 -10- 200932561 高點和液壓衝擊。印表機是具有大數目噴嘴快速地發射的 高速頁寬印表機。此印表機快速率地消耗墨水,且突然結 束列印工作或甚至只是一頁的結束,意涵朝向(和經過) 列印頭組合體2運動的一行墨水必須幾乎瞬間停止。如果 沒有空氣凹穴26提供的順應性,則墨水的動量會溢滿列 印頭積體電路30的噴嘴。再者,後續的「反射波」會產 生足以去除噴嘴塡注的強負壓。 ❹ 列印引擎 圖2A顯示使用列印匣2類型之列印引擎3。列印引 擎3是噴墨印表機的內部構造,所以其不包括任何外部殼 體、墨水罐、或媒介饋給和收集盤。使用者將閂1 26上升 或下降,以插入或移除列印頭匣2。列印引擎3和列印頭 匣2上的接點形成電性連接,且分別藉由承座120、入口 歧管48、和出口歧管50形成流體耦合。 Q 藉由主驅動輥186和排出饋給輥178,將媒介片體饋 給經過列印引擎。主驅動輥186被主驅動皮帶輪和編碼器 碟188所驅動。排出饋給輥178被排出驅動皮帶輪180所 驅動。藉由媒介饋給皮帶182,使排出驅動皮帶輪180和 主驅動皮帶輪188同步。媒介饋給馬達190經由輸入驅動 皮帶192供給動力給主驅動皮帶輪188。 主驅動皮帶輪188具有編碼器碟,驅動皮帶輪感測器 184讀取編碼器碟。驅動軸桿186、178之迴轉數和速率 的相關資料,被送至列印引擎控制器(PEC )。列印引擎 -11 - 200932561 控制器(未示)被安裝至主印刷電路板(PCB ) 1 94,且 是用於控制印表機作業的主要微處理器。 圖2B顯示已移除列印頭匣後的列印引擎3,以顯露 每一承座120中的孔122。每一孔122容置入口歧管和出 口歧管上的其中之一嘴52 (見圖5)。如上所述,墨水罐 具有任意位置和構造,但是簡單地連接至入口耦合器中承 座120後面處的中空嵌入口 124(見圖8)。在出口耦合 器後面處的嵌入口 124,連通至廢墨水罐18(見圖1)中 的廢棄墨水出口。 補強支承表面128被固定至列印引擎3的受壓金屬殻 體1 96。這些提供用於將列印頭匣設置在列印引擎內的參 考點。他們也被設置用於在安裝時對作用在匣2上的壓縮 負載,提供正相反的支承表面。當歧管嘴(下述)打開列 印引擎中的關閉閥(下述)時,流體耦合器120推抵著匣 之入口歧管和出口歧管。匣2上之閂126的壓力,也正相 反於支承表面128。設置支承表面128使其直接相反於匣 2中的壓縮負載,可降低匣內的彎曲和變形。最後,此幫 助噴嘴相對於媒介饋給路徑的經確定位。其亦保護匣內強 度較弱的機構免於損壞。 列印頭匣 圖3是完整的列印頭匣2的透視圖。列印頭匣2具有 頂模組44和可移除的保護罩42。頂模組44具有中央腹 板供構造性勁度,且用於提供具紋理的夾持表面58,以 -12- 200932561 在插入和移除期間操縱匣。在安裝於印表機內之前,保_ 罩42的底部保護列印頭積體電路(未示)和整列的接$ 。蓋體56 —體成形於底部,並覆蓋墨水入口和出口(見 圖5的5 4和5 2 )。 圖4顯示移除保護罩42的列印頭組合體2,以暴露 在底表面上的列印頭積體電路和在側表面上的整列接點 33。將保護罩丟至回收廢棄物、或將保護罩裝配到換下來 的列印頭匣,以包住殘留墨水的洩漏。圖5是列印頭組合 體2的局部分解透視圖。已移除頂罩以顯露入口歧管48 和出口歧管50,已移除入口圍板和出口圍板46、47以較 清楚地暴露五個入口嘴52和五個出口嘴54。入口和出口 歧管48、50形成每一個別入口及出口和液晶聚合物內主 通道(見圖6之24 )之間的流體連接。主通道延伸液晶 聚合物的長度,且主通道饋給在液晶聚合物模組下側上的 —系列細通道。一列空氣凹穴26形成在每一主通道24的 上方。如上關於圖1所述,藉由壓縮空氣凹穴26內的空 氣,而阻尼墨水中的衝擊波或壓力脈衝。 圖6是沒有入口或出口歧管或頂罩模組之列印頭組合 體的分解透視圖。每一種墨水顏料用的主通道24和其相 關的空氣凹穴26,分別形成在通道模組68和凹穴模組72 內。晶粒附接薄膜6 6黏複製通道模組6 8的底部。晶粒附 接薄膜66將列印頭積體電路3 0安裝至通道模組,使得通 道模組6 8下側上的細通道經由貫穿薄膜的小雷射切除孔 而和列印頭積體電路3 0呈流體連通。 -13- 200932561 因爲液晶聚合物的勁度及熱膨脹係數的原因,所以通 道模組68和頂罩模組72兩者都是由液晶聚合物所模製成 型,且液晶聚合物的熱膨脹係數和矽的熱膨脹係數緊密地 匹配。可瞭解的是’例如頁寬列印頭的相對長構造,應該 使列印頭積體電路30的矽基板和其支撐構造之間的任何 熱膨脹差異最小化。 ^ 列印頭維護轉盤 參考圖7,顯示剖面透視圖。該剖面是穿過圖2 A所 示的線7-7。列印頭匣2插入列印引擎3內,使得其出口 歧管50和嵌入口 124呈流體連通,該嵌入口 124引導至 印表機成品內之廢棄墨水罐(通常位於列印引擎的基座) 。液晶聚合物模組2 0支撐列印頭積體電路3 0緊鄰著延伸 穿過列印引擎的媒介饋給路徑22。 列印頭維護轉盤1 5 0和其相關的驅動機構,位在媒介 Q 饋給路徑22的相反側上。安裝列印頭維護轉盤1 50用於 繞著管狀驅動軸桿156旋轉,列印頭維護轉盤150也被建 構用於朝向和遠離列印頭積體電路30運動。藉由升高轉 盤150朝向印頭積體電路30,轉盤外部上的各種列印頭 維護站呈現至列印頭。維護轉盤150可旋轉地安裝在舉升 構造170上’其安裝至舉升構造軸桿156,所以其能相對 於列印引擎3的其餘構造樞轉。舉升構造170包括一對舉 升臂158 (只顯示一支舉升臂,另—支舉升臂設在舉升構 造軸桿156的相反端)。每一舉升臂158具有凸輪嚙合表 14 - 200932561 面168’例如低摩擦材料的輥或墊。凸輪(下文詳述)固 定至轉盤驅動軸桿160,用於以該軸桿160轉動。舉升臂 158被偏壓進入和轉盤舉升驅動軸桿16〇上的凸輪嚙合, 使得轉盤舉升馬達(下述)能藉由旋轉軸桿160而運動轉 盤朝向和遠離列印頭。 維護轉盤150繞管狀軸桿166的旋轉,是獨立於轉盤 舉升驅動。轉盤驅動軸桿166嚙合轉盤旋轉馬達(下述) Q ’使得無論其從列印頭縮回或朝向列印頭前進,其皆能被 轉動。當轉盤朝向列印頭前進時,擦拭器刮片162運動經 過媒介饋給路徑22,以擦拭列印頭積體電路30。當轉盤 150從列印頭撤回時,轉盤150可重複地轉動,使得擦拭 器刮片(wiper blade) 162 嚙合刮刀(doctor blade) 154 和清潔墊1 52。此也在下文詳細討論。 現在參考圖8,剖面7-7顯示在平面視圖中,以較清 楚地描述維護轉盤舉升驅動。轉盤舉升驅動軸桿160顯示 Q 呈轉動,使得舉升凸輪172藉由凸輪嚙合表面168將舉升 臂158向下推動。舉升軸桿160被轉盤舉升正齒輪174驅 動,該轉盤舉升正齒輪174依序被轉盤舉升蝸輪176驅動 。以鍵將蝸輪17固定至轉盤舉升馬達的輸出軸桿(下述 )。 隨著舉升臂158將舉升構造170向下拉,維護轉盤 150從列印頭積體電路30撤離。在此位置中,轉盤50旋 轉時,沒有維護站接觸列印頭積體電路30。但是轉盤會 帶動擦拭器刮片162接觸刮刀(doctorblade) 154和具吸 -15- 200932561 收性的清潔墊1 5 2。 刮刀(doctor blade) 刮刀154結合清潔墊152工作,以廣泛地清潔擦拭器 刮片1 62。清潔墊1 52從擦拭器刮片1 62的擦拭接觸面擦 拭紙塵和乾掉的墨水。但是小墨水珠和污物會形成刮片 162的尖端,該尖端不接觸清潔墊152的表面。 φ 爲了去除此墨水和塵,將刮刀1 5 4安裝在列印引擎3 內,以在刮片1 62擦拭過列印頭積體電路3 0以後但在接 觸清潔墊152以前,使刮刀154接觸刮片162。當擦拭器 刮片1 62接觸刮刀1 54時,擦拭器刮片1 62撓曲成弧形以 便通過。因爲擦拭器刮片162是彈性體材料,所以當其一 脫離刮刀154時,便彈回至其靜止的直形狀。快速地彈回 至其靜止的形狀,會從擦拭器刮片162 (特別是從尖端) 投射出塵和其他污物。 Q 普通的工作者會瞭解,當擦拭器刮片162接觸清潔墊 152時也會撓曲,且一旦擦拭器刮片162脫離墊時,也同 樣地會彈回至其靜止的形狀。但是刮刀154放射狀地安裝 成在轉盤150的中心軸桿166較接近而在清潔墊152處較 遠離。此配置使得當擦拭器刮片162通過時會更彎曲,且 當彈回至靜止的形狀時,給污物更多的動量。因爲清潔墊 1 5 2接觸前導刮片使拖在後面的刮片不當地擦過清潔墊 152,所以不可能將清潔墊152單純地運動至更靠近轉盤 軸桿166,以使擦拭器刮片162更彎曲。 -16- 200932561 清潔墊 清潔墊152是具吸收性的發泡體,其被形成爲對應於 擦拭器刮片162之圓形路徑的弧形。當以編織材料覆蓋墊 152,以在擦拭刮片時提供許多密集的聚集接觸點,使墊 152更有效率地清潔。因此,編織材料之線的尺寸應相對 地小,例如小於2丹尼(denier)。具有線尺寸約1丹尼 之微纖維材料的工作狀況特別佳。 清潔墊152延伸擦拭器刮片162的長度,擦拭器刮片 162也延伸頁寬列印頭的長度。頁寬清潔墊152同時清潔 擦拭器刮片的全部長度,其減少每一擦拭作業所需的時間 。再者,頁寬清潔墊的長度固有地提供大體積的吸收性材 料,用於保持相對大量的墨水。因爲有較大的吸收墨水能 力,所以較不須常常更換清潔墊152。 加蓋於列印頭 圖9顯示具有安裝至維護轉盤150之加蓋維護站198 的加蓋列印頭積體電路3 0的第一階段。當舉升凸輪1 7 2 向下推在舉升臂158上時,維護轉盤150從列印頭積體電 路30撤離。維護轉盤150連同維護編碼器碟204被旋轉 ,直到第一轉盤旋轉感測器200和第二轉盤旋轉感測器 202決定:列印頭加蓋器正面對列印頭積體電路3 0。 如圖1〇所示,舉升軸桿160轉動凸輪172,以致舉 升臂158向上運動,以使維護轉盤150向列印頭積體電路 -17- 200932561 30前進。加蓋器維護站198嚙合液晶聚合物模組2〇的下 側’以將列印頭積體電路3 0的噴嘴密封在相對潮濕的環 境中。普通的工作者會瞭解:此防止(至少延長)噴嘴免 於乾掉和阻塞。 去除列印頭的蓋 圖1 1顯示去除蓋以準備列印的列印頭積體電路3 0。 旋轉舉升軸桿160,以致舉升凸輪172將轉盤舉升臂158 向下推。加蓋維護站1 9 8運動離開液晶聚合物模組2 0, 以暴露列印頭積體電路3 0。 擦拭列印頭 圖12顯示正被擦拭器刮片162擦拭的列印頭積體電 路3 0。當加蓋站1 9 8被旋轉離開列印頭時,擦拭器構件 的刮片1 6 2接觸液晶聚合物模組2 0的下側。當轉盤1 5 0 Q 繼續旋轉時’擦拭器刮片被拉經過列印頭積體電路3 0的 噴嘴面,以擦掉任何紙塵、乾掉的墨水、或其他污物。擦 拭器刮片1 62由彈性體材料形成,所以當他們擦拭通過列 印頭積體電路時,其彈性地撓曲和彎曲。當每一擦拭器刮 片的尖端被彎曲時’每一刮片的側表面和噴嘴面形成擦拭 接觸。可瞭解的是:刮片的寬廣平坦側表面和噴嘴面有較 大的接觸,且更有效率地清除掉污物。 擦拭器刮片清理(清潔) -18- 200932561 圖13、14顯示正被清潔的擦拭器刮片162。如圖13 所示,在擦拭器刮片1 62擦拭列印頭積體電路3 0之後, 擦拭器刮片1 62立即被旋轉通過刮刀1 54。刮刀1 54的功 能在上文附標題「刮刀」中較詳細地討論。 在將擦拭器刮片162拖拉經過刮刀154以後,附著在 刮片的任何殘留塵和污物,被具吸收性的清潔墊152所移 除。此步驟顯示在圖14中。 U 在此過程期間,列印壓盤維護站206正好相對著列印 頭積體電路30。如果想要的話,藉由旋轉舉升凸輪172 能舉升轉盤,使得噴嘴能發射進入吸收性材料208。混合 在墨水噴嘴的任何顏料立即被淨化。鑽削進入管狀底座 1 66之側面的孔(未示),提供吸收性材料208和在轉盤 軸桿166之中心凹穴內的多孔材料210之間的流體連通。 被材料20 8所吸收之墨水,被拉入多孔材料210內且被多 孔材料210所保持。爲了使多孔材料210流乾,轉盤150 Q 可設有真空附接點(未示),以排掉廢棄墨水。 轉盤150帶著乾淨的擦拭器刮片繼續旋轉(見圖15 ),直到列印壓盤206再度位在列印頭積體電路30的對 面。然後如圖16所示,轉盤朝向列印頭積體電路30上升 ,以預備列印。沿著媒介饋給路徑22饋給媒介基板片體 並通過列印頭積體電路30。就滿版出血(full bleed ;列 印至媒介片體的極邊)列印而言,媒介基板能保持離開壓 盤206,以致其不會因墨水過度噴灑而弄髒。可瞭解的是 ,吸收性材料208設置在列印壓盤206的凹陷部份內,以 -19- 200932561 致任何過度噴灑的墨水(通常在紙兩側邊緣約1毫米)$ 保持離開可接觸媒介基板的表面。 在列印工作結束時或在印表機將進入待命模式之前’ 轉盤1 5 0在旋轉中從列印頭積體電路3 0撤離,以致列印 頭加蓋維護站198再度呈現至列印頭。如圖17所示’舉 升軸桿160轉動舉升凸輪158,以致舉升凸輪158將列印 頭加蓋維護站運動進入和液晶聚合物模組20的下側密封 列印頭維護轉盤 圖18、19、20、和21顯示隔離的維護轉盤。圖18 是顯示擦拭器刮片1 62和列印壓盤206透視圖。圖1 9是 顯示列印頭加蓋器1 9 8和擦拭器刮片1 62的透視圖。圖 20是顯示維護轉盤之零組件的分解圖。圖21是顯示完全 組合後之零組件的剖視圖。 維護轉盤具有四個列印頭維護站:列印壓盤206、擦 拭器構件162、和集墨器(spittoon)/吸墨器220。每一 維護站安裝至其自己的外部底座組件。外部底座組件安裝 在轉盤管狀軸桿166的周圍,且彼此相互嚙合以鎖固至軸 桿上。在管狀軸桿166的一端是轉盤編碼器碟204和轉盤 正齒輪212’轉盤正齒輪212被下述的轉盤旋轉馬達(未 示)所驅動。管狀軸桿被固定至正齒輪或隨同其旋轉。各 列印頭維護站藉由其穩固地壓縮夾在軸桿的外部,而隨同 管狀軸桿一起旋轉。 -20- 200932561 擦拭器刮片外部底座組件2 1 4是鋁擠製品(或其他合 適的合金),建構擦拭器刮片外部底座組件214以牢固地 固持擦拭器刮片162。類似地,其他的外部底座組件是金 屬擠製品,用於牢固地安裝個別維護站的較軟彈性體和/ 或吸收性多孔材料。用於列印壓盤2 1 6和列印頭加蓋器 1 98的外部底座組件,沿著每一縱向邊緣具有一系列相同 的鎖固耳部226。擦拭器構件外部底座組件2 1 4和集墨器/ 吸墨器外部底座組件218,具有互補的卡栓類型槽,用於 容置鎖固耳部226。每一卡栓槽具有鄰接耳部鎖固槽230 的耳部進出孔2 28。將鎖固耳部226插入鄰近外部底座組 件的耳部進出孔228,然後彼此相對地縱向滑動組件,以 將其鎖固至底座管狀軸桿166上。 爲了改善每一維護站和底座片軸桿166之間的摩擦和 鎖固嚙合,每一列印頭維護站設有一元件,該元件具有形 成在其一側上的弧形軸桿嚙合表面234。集墨器/吸墨器外 部底座組件218具有相對大的吸收性集墨器/吸墨器構件 220,其也具有形成在其內面上的弧形軸桿嚙合表面234 。同樣地,用於列印頭加蓋器1 9 8的外部底座組件和各擦 拭器刮片162的共通基座’具有弧形軸桿嚙合表面234。 一般的工作者會瞭解’使用相互鎖固構造將外部底座 夾持至內部底座,可使加工和組合時間降至最低’維持小 的公差用於精密地安裝維護站構造。在者’外部底座組件 可組合成不同的組態。能改變擦拭器刮片外部底座組件 2 1 4和集墨器/吸墨器底座組件2 1 8位置。類似地’列印頭 -21 - 200932561 加蓋器198和列印壓盤2 06可交換。以此方式,維護站可 以其安裝在特殊印表機內最佳的方式而組合。 射出成型聚合物轉盤底座 圖22至28顯示另一實施例的列印頭維護轉盤。這些 圖是只顯示轉盤和列印頭匣之下部分的示意剖面。應瞭解 的是,維護驅動系統需要簡單且直接的修飾,以適合於此 實施例的轉盤。 圖22顯示鄰近列印頭維護轉盤1 50之列印頭匣2的 液晶聚合物模組20,該轉盤150以列印壓盤206呈現至 列印頭積體電路3 0。爲了清楚起見,圖29隔離地顯示列 印壓盤206。在使用中,沿著媒介饋給路徑22饋給片狀 的媒介基板。在列印頭積體電路30的噴嘴和媒介饋給路 徑22之間的是列印間隙244。爲了維持列印品質,列印 頭積體電路的噴嘴面和媒介表面之間的間隙244,應儘可 能地靠近設計期間明定的公稱値。在市面上買得到的印表 機中,此間隙約爲2毫米。但是因爲列印技術再進步,所 以一些印表機具有約1毫米的列印間隙。 隨著數位攝影術的普受歡迎,對彩色影像之滿版出血 列印的需求愈來愈大。「滿版出血列印」是列印至媒介表 面的極邊緣。此經常造成一些「越界噴灑(或過度噴灑; over spray)」,其中被射出的墨水未噴中在媒介基板的 邊緣,而沉積在支撐列印壓盤上。然後,此越界噴灑的墨 水會弄髒在後續的片狀媒介上。 -22- 200932561 圖22所示的配置處理這兩個議題。液晶聚合物模組 20上的紙引導件23 8,界定列印期間的列印間隙244。但 是’列印壓盤206具有形成在其硬塑膠基座模組上的引導 表面246 °引導表面246引導片體的前緣朝向排出驅動輥 或其他驅動機件。因爲片狀媒介和列印壓盤206之間的最 小接觸’所以大幅減少滿版出血列印期間被越界噴灑之墨 水弄髒的可能性。再者,將液晶聚合物模組2 0上的紙引 導件23 8設置在緊鄰列印頭積體電路3〇處,準確地維持 噴嘴至媒介表面的間隙244。 在申請人之範圍中的一些印表機使用此技術以提供 0.7毫米的列印間隙244。但是藉由使鄰近列印頭積體電 路3 0之囊狀材料2 4 0的小珠變扁平,可減少上述間隙。 藉由安裝至液晶聚合物模組20外部的可撓印刷電路板 242,將電源和資料傳輸至列印頭積體電路30。可撓印刷 電路板2 42的接點,藉由一列導線架(未示)而電性地連 接至列印頭積體電路30的接點。爲了保護導線架,導線 架被包覆在稱爲囊狀物之環氧樹脂材料中。申請人已發展 出多種技術,用於使導線架的外型輪廓和覆蓋導線架之珠 狀囊狀物240變扁平。此允許進一步減少列印間隙244。 列印壓盤2 0 6具有凹陷或中心凹穴2 4 8,其正對著列 印頭積體電路30的噴嘴。任何越界噴灑的墨水,都會在 壓盤206的此區域內。遠離壓盤之其餘部分而在此區域形 成凹陷,確保媒介基板不會被溼的越界噴灑墨水弄髒。中 心凹穴248的表面和吸收性纖維元件250呈流體連通。纖 -23- 200932561 維性元件2 50和在底座23 6之中心內的多孔材料254,也 藉由毛細管252呈流體連通。越界噴灑的墨水被吸入纖維 兀件250內’且被毛細作用經由管252抽入多孔材料254 內。 圖2 3顯不轉盤1 5 0轉動’使得列印頭塡注站2 6 2呈 現至列印頭積體電路3 0。圖3 0顯示隔離的列印頭塡注站 272和其構造特徵。列印頭塡注站具有圍繞著塡注接觸墊 0 258的彈性體裙部256’其由多孔材料形成。彈性體裙部 和塡注接觸墊一起成型而與剛性聚合物基座2 6 〇 一起,剛 性聚合物基座260牢固地安裝至射出形型底座23 6。 當更換列印頭匣2時’其需要被塡注墨水。眾所週知 塡注過程是浪費的’因爲墨水通常被強迫穿過噴嘴,直到 整個列印頭構造已流放任何的氣泡爲止。當從延伸經過列 印頭之許多導管清除空氣的期間,已浪費非常大量的墨水 〇 © 訂_· 題’升筒維護轉盤150使得塡注接觸墊 258覆盖列印頭積體電路30的噴嘴。當在壓力下塡注噴 嘴陣列時,保持接觸墊258抵著噴嘴,大幅地減少流放經 過噴嘴之墨水量。多孔材料局部地阻擋噴嘴,以限制墨水 流。但是來自噴嘴之空氣流所受到的限制少很多,所以整 個塡注過程並沒有因爲多孔材料所產生的流動阻礙而延遲 。彈性體裙部2 5 6密封地抵注液晶聚合物模組2 2的下側 ’以擷取從接觸墊2 5 8下側流出的過量墨水。形成在剛性 聚合物基座260中的流動孔264,允許被墊258吸收的墨 -24 - 200932561 水和任何過量的墨水,流至吸收性纖維元件2 5 0 ( 壓盤206所用者相同)。如同列印壓盤206,纖 250內的墨水藉由毛細管252被抽入射出成形底座 的多孔材料2 5 4內。 藉由使用列印頭塡注站2 6 2,大幅地減少被浪 水量。如果沒有塡注站,則當塡注頁寬列印頭時, 顏料被浪費的墨水量通常約爲2毫升;如果有塡注 Q ,則每一種顏料被浪費的墨水量減少至約0.1毫升 塡注接觸墊258不須由多孔材料形成,反而可 繞裙部256相同的彈性材料形成。在此情況,接觸 需要具有特殊的表面粗糙度。嚙合列印頭積體電路 噴嘴面的表面,應爲2至4微米尺度的粗糙,但| 微米尺度的順暢和平順。此類型的表面粗糙度允許 噴嘴面和接觸墊之間逃脫,但是只有小量的墨水逃 圖24顯示維護轉盤150的擦拭站266呈現至 積體電路30。擦拭站獨立地顯示在圖31中。擦拭 也是共同模製的構造,其具有被支撐在硬塑膠基座 的軟彈性體擦拭刮片268。爲了擦拭列印頭積體f 的噴嘴面,轉盤底座23 6被升高然後旋轉,所以擦 片268擦過噴嘴面。通常旋轉轉盤底座236,使得 刮片268朝向囊狀小珠擦拭。如同在申請人之共同 之檔案編號RRE015US的申請案(倂入作交互參考 討論者,可設計囊狀小珠的輪廓用於幫助塵和污物 拭器刮片268的面上。但是如果證明在兩個方向中 和列印 維元件 23 6中 費的墨 每一種 站2 62 〇 由和圍 墊258 30之 I爲20 空氣從 脫。 列印頭 站266 270上 i路30 拭器刮 擦拭器 繫屬中 )中所 卡在擦 擦拭更 -25- 200932561 有效率,則可容易地將維護驅動裝置(未示)建構成用於 在兩個方向中轉動底座236。類似地,藉由改變旋轉的數 目,很容易改變擦拭經過列印頭積體電路3 0的次數。程 式設計維護驅動裝置,以執行每一擦拭作業。 在圖25中顯示維護轉盤150的列印頭加蓋器272呈 現至列印頭積體電路30。圖32獨立地顯示加蓋器,以較 清楚地例示其構造。加蓋器272具有由軟彈性體材料形成 φ 的周圍密封274。周圍密封274和其硬塑膠基座276共同 模製。在印表機閒置時,列印頭加蓋器272降低噴嘴乾掉 的速率。周圍密封274和液晶聚合物模組20下側之間的 密封不需完全地不透空氣,因爲加蓋器正被用於以吸力塡 注列印頭。事實上,硬塑膠基座276應包括空氣呼吸器孔 2 78,使得噴嘴不會因去除列印頭的蓋子時所造成的吸力 而溢滿氾濫。爲了蓋住列印頭,旋轉底座2 3 6直到列印頭 加蓋器272呈現至列印頭積體電路30。然後升高底座236 Q ,直到周圍密封274嚙合列印頭匣2。 圖26顯示包括擦拭器刮片清潔墊152。如同上文第 一實施例所述,清潔墊152安裝在印表機內,使得當維護 轉盤150旋轉時,擦拭器刮片268運動經過墊152的表面 。藉由設置清潔墊152的位置,使得底座23 6須從列印頭 積體電路30縮回,以允許擦拭器刮片268接觸清潔墊, 且以相對高速的速率轉動底座236,用以廣泛地清潔擦拭 器刮片268,而和列印頭積體電路30無任何損害性接觸 。再者’可用介面活性劑濕潤清潔墊1 52,以更容易從擦 -26- 200932561 拭器刮片表面移除污物。 圖27獨立地顯示射出成型底座236。底座相對於穿 過中心縱長軸線2 82而延伸的二平面呈對稱。此對稱是重 要的,因爲,如果沿著頁寬列印頭之長度而延伸的射出成 型底座23 6不對稱,則當其冷卻時,有變形和彎曲的傾向 。因爲具有對稱的剖面,所以當底座冷卻時,其收縮也是 對稱的。 φ 底座236具有形成在其外部表面的四個維護站安裝承 座276,該等承座276都相同,所以其能容至各種維護站 206、266、2 62、272其中任何一個。以此方式,各維護 站變成可互換的模組,且可改變各維護站呈現至列印頭的 順序,以適合不同的印表機。再者,如果修改各維護站本 身,則其標準承座確保維護站只須最少的設備更換便能容 易地倂入現有的生產線內。以黏劑將維護站固定在承座內 ,但是其他的方法(例如超音波點熔接或機械式相互嚙合 Q )也合適。 如圖28所示,模具設有四個滑塊278和一個中央芯 部288。每一滑塊278具有柱狀構造280以形成導管,該 導管將纖維芯墊連接至中心凹穴內的多孔材料219。用於 每一滑塊的拉引線是從底座236輻射狀地向外,而芯部 28 8是縱向地縮回(可瞭解的是,芯部不是精密的圓柱, 而是截頭圓錐,以提供需要的通氣)。聚合物組件的射出 成型非常適合於大量且低成本的生產。再者,底座的對稱 構造和均勻收縮維持良好的公差,以保持維護站平行於列 -27- 200932561 印頭積體電路而延伸。但是其他的製造技術也 壓縮聚合物粉末的衝擊波或類似者。再者,增 表面處理’可幫助墨水流至毛細管252,且終 座236內的多孔材料210。在一些印表機設計 座用於連接真空源,以從多孔材料2 1 0週期性 φ 五個維護站實施例 圖34顯示列印頭維護轉盤150的實施例 個不同的維護站:列印壓盤206、列印頭擦拭 印頭加蓋器272、塡注站262、和集墨器284。 (獨立地顯示在圖33)具有相對簡單的構造 2 84呈現平坦至列印頭,且具有孔(未示)供 塑膠基座內的纖維元件250呈流體連通。 五站維護轉盤150附加一個集墨器284, Q 機使用主要的墨水淨化當作維護系統的一部分 的四站轉盤,使用列印壓盤2 0 6和/或加蓋器 要的墨水淨化或「吐出循環(spitting cycle) 工作期間,於噴嘴面擦拭以後或當頁間吐出 spit)時,使用次要吐出循環,以保持噴嘴潮 果列印頭需要從去除塡注、嚴重的顏料混合、 嘴乾掉等情況回復,則可能需要主要的吐出 該情況已超出壓盤或加蓋器的能力。 集墨器284具有在其面2 86內的大孔或一 可能,例如 加親水性的 極地流至底 中,建構底 地排出墨水 ,其具有五 器266 、列 集墨器284 …-集墨器面 與保持在其 以允許印表 .。圖 22-25 272提供次 」。在列印 (inter-page 濕。但是如 大尺寸的噴 循環…-因爲 系列的保持 -28- 200932561 肋’以將纖維芯材料250保持在應塑膠基座內。 元件250保持非常開放於潛在的墨水密集噴灑。 250的一個面壓抵著毛細管252,以增加流至底j 中心凹穴內的多孔材料2 5 4。 五承座底座236是使用彼此成72度的五個 此成60度的六個滑塊而射出成型。類似地,具 個站的維護轉盤也可能。如果噴嘴面有聚集乾掉 向,則指單獨使用擦拭器仍難以移除。在這些情 表機可需要一個用於將墨水溶劑或其他清潔流體 嘴面上的站(未示)。然而,此能倂入或附加至 擦拭器變化例 圖35至46顯示擦拭器能採用的一系列不同 拭列印頭的噴嘴面試移除紙塵、溢出墨水、乾掉 其他污物的有效方式。一般的工作者會瞭解,可 的不同擦拭器構造,其中多數不適合用於任何特 機。功能性的效率(亦即清潔列印頭)必須權衡 、希望的作業壽命、尺寸及重量限制條件、和其 素。 單一接觸刮片 圖35顯示具有安裝在硬塑膠基座270內之 體刮片290的擦拭器維護站266,使得刮片垂直 給方向延伸。沿著噴嘴陣列之長度延伸的單一擦 此將纖維 纖維元件 g 23 6 之 滑塊或彼 有超過五 墨水的傾 況時,印 噴射至噴 集墨器。 構造。擦 墨水、或 能有無數 殊的印表 生產成本 他考量因 單一彈性 於媒介饋 拭器刮片 -29- 200932561 ’是具有低生產和組合成本的單純擦拭配置。有鑑於此, 單一刮片擦拭器適合於印表機和價格範圍的底端。較高的 生產量需要有效率的製造技術和印表機組件的簡易組裝。 此必須對單元的作業壽命、或擦拭器清潔列印頭的速率及 效率做一些妥協折衷。但是單一刮片設計是袖珍的,且如 果刮片不能一次橫越中有效率地清潔噴嘴表面,則維護驅 動裝置能簡單地重複擦拭作業,直到列印頭乾淨爲止。 〇 多個接觸刮片 圖36、43A、43B、和46顯示具有多個平行刮片的擦 拭器維護站266。在圖36中,兩個相同的平行刮片292 垂直於媒介饋給方向延伸。兩個刮片292分離地安裝至硬 塑膠基座270,以獨立地作業。在圖46中,各刮片並不 相同。第一和第二刮片(分別爲294和296 )具有不同寬 度(或不同的橫截面輪廓)和硬度計値(硬度和黏彈性) 〇 。可將每一刮片最佳化,以移除特殊類型的污物。但是各 刮片分離地安裝在硬塑膠基座270中,用於獨立地作業。 相對地,圖43 A和43B之多個刮片元件具有較小且較短 的刮片300,其全部安裝之共同的彈性體基座298,該彈 性體基座298固定至硬塑膠基座270。此爲大致更順應的 構造,其在每一擦拭中有相對大的表面積接觸噴嘴面。但 是細且軟的刮片比較大且較堅固的刮片磨耗損壞的速率更 快。 由於多個平行刮片擦過噴嘴面,所以擦拭器構件的單 -30- 200932561 一次橫越會聚集更多的塵和污物。雖然多刮片的設計比單 一刮片較不袖珍,但是每一擦拭作業較快且更有效率。因 此,在列印工作期間,在各頁之間能擦拭列印頭;且在列 印工作之前所執行的初期維護事項,在短時間內完成。 單一歪斜刮片 圖37顯示具有安裝在硬塑膠基座270之單一刮片 0 302的擦拭器維護站270,使得刮片302相對於擦拭方向 呈歪斜。可瞭解的是,擦拭方向垂直於塑膠基座270的縱 長延伸。 單一擦拭器刮片是具有低生產和組合成本的簡單擦拭 配置。再者,藉由將刮片安裝成歪斜於擦拭方向,則在擦 拭器構件橫越期間的任何時間,噴嘴面只和刮片的一個區 段接觸。由於只有一個區段接觸噴嘴面,所以刮片不會因 爲沿著其整個長度的不一致接觸壓力而弄皴或捲曲。此確 Q 保擦拭器刮片和全部的噴嘴面之間足夠的接觸壓力,且不 須精密地對齊刮片使其完全平行於噴嘴面。此允許寬鬆的 製造公差,以致可使用較大量的低成本生產技術。此必須 對增加擦拭器構件必須行經的距離以清潔列印頭做一些妥 協折衷。增加該距離因此每一擦拭作業所需的時間。但是 降低製造成本比這些潛在的缺點更重要。 獨立的接觸刮片 圖38顯示具有安裝在硬塑膠基座270內之二被分段 -31 - 200932561 的刮片304的擦拭器維護站266。每一個別的刮片區段 3 06組成安裝在硬塑膠基座270內的完整刮片3 04,用於 彼此相對地獨立運動。將每一刮片304中的個別刮片區段 306設置成相對於擦拭方向彼此不對齊。以此方式,因爲 位於兩刮片區段3 0 6之間的間隙內而未被第一刮片3 04擦 拭的噴嘴,會被第二刮片3 04內的刮片區段3 06擦拭。 以單一長刮片擦拭頁寬列印頭的噴嘴面會無效率。刮 片和噴嘴面之間不一致的接觸壓力,會造成刮片沿其長度 的某些區段彎曲或捲曲。在這些區段中的接觸壓力會不足 ,或者刮片和噴嘴面之間能沒有接觸。被分割成個別刮片 區段的擦拭器刮片,能解決此問題。每一區段能相對於其 相鄰區段而運動,所以接觸力的任何不一致性不會造成刮 片之其他區段的彎曲或捲曲。以此方式,接觸壓力被維持 在噴嘴面,且噴嘴面是乾淨的。 具有多個歪斜刮片的噴嘴面擦拭器 在圖39中,擦拭器維護站266具有安裝在硬塑膠基 座270內的一系列獨立刮片3 08,以致該等刮片傾斜於擦 拭方向。設置各刮片3 08使得每一刮片(相對於擦拭方向 )的橫向範圍(X)和其相鄰刮片的橫向範圍(Y)有一 些重疊(Z)。藉由將擦拭器刮片安裝成歪斜於擦拭方向 ,則在擦拭器構件橫越期間的任何時間,噴嘴面只和刮片 的一個區段接觸。由於只有一個區段接觸噴嘴面,所以刮 片不會因爲沿著其整個長度的不一致接觸壓力而弄皺或捲 -32- 200932561 曲。此確保擦拭器刮片和全部的噴嘴面之間足夠的接觸壓 力,且不須對齊刮片使其精密地平行於噴嘴面。此允許寬 鬆的製造公差,以致可使用較大量的低成本生產技術。單 一歪斜刮片可達到此目的,但是會增加擦拭器構件必須行 經的距離以清潔列印頭,因此增加每一擦拭作業所需的時 間。有鑑於此,本發明使用一系列相鄰的歪斜刮片,每一 個別刮片擦拭噴嘴陣列的對應部份。在某些應用中,多個 刮片比單一刮片涉及較高的製造成本,但是袖珍設計和較 快的作業比這些潛在的缺點更重要。 具有陣列墊的擦拭器 在圖40和44中,擦拭器維護站266使用陣列的接觸 墊3 1 0,而不是任何的刮片構造。個別墊3 1 2可爲個別安 裝進入硬塑膠基座270內之一組短圓柱彈性體材料、或類 似於常常使用於矽晶圓清潔用之格式的圓柱狀軟纖維刷。 如上所述,以單一長接觸表面擦拭頁寬列印頭的噴嘴表面 會無效率。擦拭表面和噴嘴面之間的不一致接觸壓力,會 使接觸壓力不足或不存在某些區域內。 使用已被分割成陣列310之個別接觸墊的擦拭表面, 允許每一墊相對於相鄰墊運動,所以不一致的接觸力會改 變其量,使每一墊個別地壓縮和變形。一個墊的相對高壓 縮,不須傳輸壓縮力致其相鄰的墊。以此方式,均勻的接 觸壓力被維持在噴嘴面,且更有效率地清潔噴嘴面。 -33- 200932561 正弦刮片 在圖41所示的擦拭維護站266中,單一刮片314安 裝進入硬塑膠基座270,使刮片跟隨正弦路徑。如前所述 ,以單一長接觸表面擦拭頁寬列印頭的噴嘴面會沒有效率 。擦拭表面和噴嘴面之間的不一致接觸壓力,會使接觸壓 力不足或不存在某些區域內。接觸壓力會變化的其中一個 理由是:擦拭器表面相對於噴嘴面的不準確運動。如果在 φ 擦拭作業期間的整個行程長度中,用於擦拭表面的支撐構 造不完全平行於噴嘴面,則低接觸壓力的區域可能無法適 當地被清潔。如同在歪斜安裝刮片的相關解釋,藉由將擦 拭器刮片的位置設置爲相對於饋給擦拭方向和列印頭噴嘴 面成傾斜,則可避免上述問題。以此方式,在擦拭作業的 任何時間,只有一部分的擦拭器刮片接觸噴嘴面。此外, 刮片和擦拭方向之間的小角度,改善了擦拭的清潔和效率 。當刮片呈傾斜地在噴嘴面上運動時,刮片和噴嘴面之間 Q 更多的接觸點,進行更佳的污物移除。此改善了不一致之 接觸壓力所造成的任何問題,但是於每一擦拭作業中,需 要擦拭器刮片行經更長的行程。如上所述,擦拭器表面相 對於噴嘴面的不準確運動,是不足之接觸壓力的來源。增 加擦拭器行程的長度,不利於袖珍設計。 使用具有鋸齒形(Z形)或正弦形的擦拭器刮片,以 傾斜於媒介饋給方向的多個擦拭器區段擦拭噴嘴面。此構 造也使得擦拭器構件相對於列印頭的行程長度,小得足以 保持準確和袖珍。 -34- 200932561 具有非線性接觸表面的單一刮片 圖42顯示的擦拭維護站266,其具有二 此成一角度且歪斜於擦拭方向地安裝在硬塑膠 。如前所述,以單一長接觸表面擦拭頁寬列印 ,會造成在某些區域內接觸壓力不足或不存在 對於擦拭方向和列印頭噴嘴面成角度,意指在 間的任何時間,只有一部分的擦拭器刮片接觸 使得接觸壓力更均勻,但是在每一擦拭作業中 片需要行經更長的行程。如上所述,擦拭器表 嘴面的不準確運動,是接觸壓力不足的來源。 行程的長度,只增加此不準確的風險。 藉由使用具有角形或彎曲形的擦拭表面, 於媒介饋給方向的擦拭器區段擦拭大部份的噴 減少擦拭器構件相對於列印頭的行程長度。一 會瞭解,接觸刮片可具有淺V形或U形。再 片318的前緣是兩直線區段(或U形刮片之 的交點,則申請人已發現刮片有較少的磨損, 嘴面接觸的初始點提供額外的支撐。 纖維墊 圖45顯示具有安裝至硬塑膠基座270之 的列印頭擦拭器維護站266。纖維墊320用於 特別有效。墊呈現許多和噴嘴面接觸的點,使 線性區段彼 基座270上 頭的噴嘴面 。使刮片相 擦拭作業期 噴嘴面。此 ,擦拭器刮 面相對於噴 增加擦拭器 使得以傾斜 嘴面,同時 般的工作者 者,如果刮 彎曲區段) 因爲對和噴 纖維墊320 擦拭噴嘴面 得纖維能機 -35- 200932561 械性嚙合固體污物’且藉由毛細作用將例如墨水溢流等流 體污物吸掉。但是’一旦纖維墊已清潔噴嘴面’則難以從 纖維墊移除污物。在很多次的擦拭作業以後’纖維塾裝滿 許多的污物,且不再有效率地清潔噴嘴面。但是就希望具 有短作業壽命的印表機或允許更換擦拭器的印表機而言, 纖維墊會提供最有效率的擦拭器。 Φ 組合式擦拭器維護站 可瞭解的是,藉由具有上述擦拭構造的組合,一些列 印頭設計會被最有效率地清潔。例如單一刮片組合一系列 歪斜刮片、或具有纖維墊在其間的一系列平行刮片。藉由 依據個別的優點和強度而選擇特定的擦拭構造,可推導出 組合式擦拭器維護站。 列印頭維護設施驅動系統 Q 圖47至50較詳細地顯示媒介饋給驅動裝置和列印頭 維護驅動裝置。圖48獨立地顯示列印頭維護轉盤150和 驅動系統。所顯示的維護轉盤150是以擦拭器刮片162呈 現至列印頭(未示)。圖4 8所示的透視圖顯露紙排出引 導件3 22引導至排出驅動輥178。在擦拭器刮片162的另 —側’顯示主驅動輥軸桿186從主驅動輥皮帶輪330延伸 。此皮帶輪被主驅動輥皮帶192驅動,主驅動輥皮帶19 嚙合媒介饋給馬達190。媒介饋給驅動皮帶182使主驅動 輥186和排出輥178的旋轉同步。 -36- 200932561 圖49的分解透視圖較詳細地顯示個別組件。特別是 此透視圖最佳地圖解已平衡的轉盤舉升機構。轉盤舉升驅 動軸桿160在兩個相同的轉盤舉升凸輪之間延伸。轉盤舉 升軸桿160的一端以鍵固定至轉盤舉升正齒輪174。正齒 輪174咬合蝸輪176,轉盤舉升馬達324驅動蝸輪176。 轉盤舉升旋轉感測器334提供回饋至列印引擎控制器(未 示),其能藉由凸輪1 72的角位移決定轉盤從列印頭的位 ❹ 移。 轉盤舉升凸輪172藉由凸輪嚙合輥168而接觸個別的 轉盤舉升臂158 (可瞭解的是,凸輪嚙合輥可爲低摩擦材 料的表面,例如高密度聚乙烯(HDPE ))。因爲各凸輪 172相同,且同樣安裝至轉盤舉升軸桿160,所以轉盤舉 升臂158的位移也相同。圖47是取自圖2A之線7-7的剖 視圖,且移除列印頭匣2和列印頭維護轉盤1 5 0。此圖提 供轉盤舉升正齒輪174、其鄰接的舉升凸輪172、和對應 Q 的轉盤舉升臂158的清楚視圖。因爲各舉升臂158和轉盤 150的中點等距離,所以當舉升和降下轉盤時’轉盤舉升 驅動完全地平衡和對稱。此用於保持各種類印頭維護站平 行於列印頭積體電路的縱長向。 轉盤旋轉驅動最佳地圖解在圖50之放大局部分解透 視圖。轉盤旋轉馬達326安裝至轉盤舉升構造170的側面 。步進馬達感測器328提供關於馬達326之速率和旋轉的 回饋至列印引擎控制器(PEC )。轉盤旋轉馬達326驅動 惰輪3 3 2,惰輪3 3 2驅動在轉盤舉升構造1 7 0之遮掩側上 -37- 200932561 的減速齒輪(未示)。減速齒輪咬合轉盤正齒輪212,以 鍵將轉盤正齒輪212安裝至轉盤底座以旋轉。 因爲轉盤旋轉和轉盤舉升是由分離的獨立驅動所控制 ,且每一驅動是由提供關於馬達速率和旋轉之回饋給列印 引擎控制器的步進馬達供給動力,所以印表機具有廣範圍 的維護程序供選擇。可用兩方向其中的任一方向和以可變 速率驅動轉盤旋轉馬達326,因此可在兩方向其中的任一 方向擦拭噴嘴面,且擦拭器刮片可在兩方向中抵著吸收性 墊1 52而被清潔。此會特別有用,如果紙塵和其他污物傳 到噴嘴面而和噴嘴面上的表面不規則性機械式地嚙合。在 相反方向的擦拭,常常會去除掉此等機械式地嚙合。當擦 拭器刮片1 62和噴嘴面進行接觸時降低擦拭器刮片1 62的 速率,然後當刮片脫離噴嘴面時才增加其速率,此方式也 有用。當擦拭器刮片和噴嘴面初始接觸時確實能減緩其速 率,然後在擦拭時才增加速率。 類似地,擦拭器刮片162運動通過刮刀154的速率可 比擦拭器刮片運動通過清潔墊152上方的速率更快。可在 兩方向且在其中任一方向以任何次數的迴轉擦拭擦拭器刮 片162。再者,各維護站呈現至列印頭的順序,可容易地 程式化於列印引擎控制器內,和/或留給使用者裁量。 此處僅以例子的方式描述本發明。一般的工作者可容 易地認知未脫離寬廣發明槪念之精神和範圍的許多變化和 修飾。 -38- 200932561 【圖式簡單說明】 現在藉由只當作例子的方式,並參考附圖,描述本發 明的較佳實施例,其中: 圖1是印表機流體工學系統的示意槪要視圖; 圖2A是安裝在印表機之列印引擎之本發明列印頭匣 的透視圖; 圖2B顯示沒有安裝列印頭匣的列印引擎,以暴露入 口和出口墨水耦合器; 圖3是本發明完整列印頭匣的透視圖; 圖4顯示圖3之列印頭匣,且已移除保護蓋; 圖5是圖3之列印頭匣內列印頭組合體的局部分解透 視圖; 圖6是沒有入口或出口其管或頂蓋模組之列印頭組合 體的分解透視圖; 圖7是取自圖2A之線7-7的列印引擎剖面透視圖; 圖8是取自圖2A之線7-7的列印引擎剖視圖,顯示 維護轉盤拉著擦拭器刮片通過刮刀; 圖9是顯示維護轉盤拉著擦拭器刮片通過吸收性清潔 墊以後的剖視圖; 圖1〇是顯示舉升維護轉盤以使加蓋器維護站蓋住列 印頭的剖視圖; 圖11是顯示降下維護轉盤以除去列印頭之蓋子的剖 視圖, 圖1 2是顯示擦拭器刮片擦拭列印頭之噴嘴面的剖視 -39- 200932561 圖, 圖13是顯示維護轉盤轉回其圖8所示之起始位置的 剖面視圖,其中擦拭器刮片已被拉過刮刀,以彈掉尖端區 域的污物; 圖14是顯示擦拭器刮片已被拉過吸收性清潔墊的剖 視圖; 圖15是顯示轉動維護轉盤以將列印頭加蓋器呈現至 U 列印頭的剖視圖; 圖1 6是顯示舉升維護轉盤以將列印壓盤呈現至列印 頭的剖視圖; 圖17是顯示舉升轉盤以使加蓋器密封列印頭積體電 路之方式的剖視圖; 圖1 8是隔離之維護轉盤的透視圖; 圖19是隔離之維護轉盤的另一透視圖,顯示轉盤驅 動正齒輪; Q 圖20是隔離之維護轉盤的分解透視圖; 圖2 1是經過轉盤長度之中間點的剖視圖; 圖22是第二實施例之維護轉盤的示意剖視圖,維護 轉盤呈現列印壓盤至列印頭; 圖23是第二實施例之維護轉盤的示意剖視圖,且列 印頭塡注站嚙合列印頭; 圖24是第二實施例之維護轉盤的示意剖視圖,且擦 拭器刮片嚙合列印頭·, 且集 圖25是第二實施例之維護轉盤的示意剖視圖, -40- 200932561 墨器呈現至列印頭; 圖26是第二實施例之維護轉盤的示意剖視圖,且當 擦拭器刮片在吸收性墊上被清潔時,列印壓盤呈現至列印 頭; 圖27是用在第二實施例之維護轉盤內之射出成型芯 部的剖視圖; 圖28是從第二實施例之維護轉盤的新部移除射出成 型模具的示意剖視圖; 圖2 9是隔離地顯示列印壓盤維護站的剖視圖; 圖3 0是隔離地顯示列印頭加蓋器維護站的剖視圖; 圖31是隔離地顯示擦拭器刮片維護站的剖視圖; 圖3 2是隔離地顯不列印頭填注站的剖視圖; 圖3 3是隔離地顯示吸墨站的剖視圖; 圖3 4是第三實施例維護轉盤的示意剖視圖; 圖35是第一實施例擦拭器構件的示意圖; 圖36是第二實施例擦拭器構件的示意圖; 圖37是第三實施例擦拭器構件的示意圖; 圖38是第四實施例擦拭器構件的示意圖; 圖39是第五實施例擦拭器構件的示意圖; 圖40是第六實施例擦拭器構件的示意圖; 圖41是第七實施例擦拭器構件的示意圖; 圖42是第八實施例擦拭器構件的示意圖; 圖43A和43B是第九實施例擦拭器構件的示意圖; 圖44是第十實施例擦拭器構件的示意圖; -41 - 200932561 圖45是第十一實施例擦拭器構件的示意圖; 圖46是第十二實施例擦拭器構件的示意圖; 圖47是列印引擎的剖面透視圖’且無列印匣供維護 轉盤用; 圖4 8是顯示列印引擎所用之獨立驅動組合體的透視 圖; 圖49是圖48所示獨立驅動組合體的分解透視圖;和 Q 圖5〇是圖49所示之分解透視圖左端的放大視圖。 【主要元件符號說明】 2 :列印頭組合體(列印頭匣) 3 :列印引擎 4 :墨水罐 6 :規制器 8 :上游墨水管線 〇 1 〇 ··關閉閥 12 :泵 1 6 :下游墨水管線 1 8 :廢墨水罐 20 :液晶聚合物模組 22:媒介基板(媒介饋給路徑) 24 :主通道 26 :凹穴 2 8 :細通道 -42- 200932561 3 0 :列印頭積體電路 3 3 :接點 36 :入口 38 :出口 42 :保護罩 44 :頂模組(頂罩) 4 6 :入口圍板 47 :出口圍板 4 8 :入口歧管 5 0 :出口歧管 52 :入口嘴 54 :出口嘴 56 :蓋體 5 8 :夾持表面 66 :晶粒附接薄膜 6 8 :通道模組 72 :凹穴模組 120 :承座(流體耦合器) 122 :孔 124 :嵌入口 126 :閂 1 2 8 :補強支承表面 1 5 0 :列印頭維護轉盤 152 :清潔墊 -43 200932561 1 5 4 :刮刀 156=管狀驅動軸桿(舉升構造軸桿) 158 :(凸輪)舉升臂 160:轉盤驅動軸桿(舉升軸桿) 162 :擦拭器刮片 1 66 :轉盤驅動軸桿(中心軸桿;管狀底座) 168:凸輪嚙合表面(輥) 170 :(轉盤)舉升構造 172 :(轉盤)舉升凸輪 174:轉盤舉升正齒輪 176 :轉盤舉升蝸輪 178 :排出饋給輥(驅動軸桿) 180 :排出驅動皮帶輪 182 :媒介饋給皮帶 184 :驅動皮帶輪感測器 186 :主驅動輥(軸桿) 188:編碼器碟(主驅動皮帶輪) 190 :媒介饋給馬達 192 :輸入驅動皮帶 194 :主印刷電路板 196 :受壓金屬殼體 1 98 :列印頭加蓋器(加蓋維護站) 200 :第一轉盤旋轉感測器 202 _·第二轉盤旋轉感測器 -44 - 200932561 2 04 :維護編碼器碟(轉盤編碼器碟) 206 :列印壓盤維護站 208 :吸收性材料 2 1 0 :多孔材料 2 1 2 :轉盤正齒輪 2 1 4 _·擦拭器刮片外部底座組件 2 1 8 :集污器/吸墨器外部底座組件 2 1 9 :多孔材料 220 :吸收性集墨器/吸墨器構件 226 :鎖固耳部 228 :孔 23 0 :耳鎖固槽 236 :底座 236:射出成型底座(轉盤底座) 23 8 :紙引導件 240 :囊狀物(材料) 242 :可撓印刷電路板 244 :列印間隙 246 :引導表面 248 :中心凹穴 2 5 0 :(吸收性)纖維元件 252 :毛細管 2 5 4 :多孔材料 256 :彈性體裙部 -45- 200932561 2 5 8 :塡注接觸墊 260 :基座 2 6 2 :列印頭塡注站 2 6 4 :流動孔 266 :擦拭站(擦拭器維護站) 268 :(彈性體)擦拭器刮片 270 :硬塑膠基座 272 :列印頭加蓋器 2 7 4 :周圍密封 276:硬塑膠基座(維護站安裝承座) 278:空氣呼吸器孔(滑塊) 2 8 0 :柱狀構造 2 8 2 :中心縱長軸線 284 :集墨器 286 :面 28 8 :中央芯部 290 :刮片 292 :刮片 294 :第一刮片 296 :第二刮片 2 9 8 :彈性體基座 3 00 :刮片 302 :刮片 3 04 :被分段的刮片 -46- 200932561 3 0 6 :刮片區段 3 0 8 :刮片 310 :接觸墊 3 1 2 :墊 3 1 4 :單一刮片 3 1 8 :刮片 3 20 :纖維墊 _ 322 :紙排出引導件 324 :轉盤舉升馬達 3 26 :轉盤旋轉馬達 328 :步進馬達感測器 3 3 0 :主驅動輥皮帶輪 3 3 2 :惰輪 3 34 :轉盤舉升旋轉感測器 ❹ -47-200932561 IX. DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to the field of printers, and more particularly to maintenance equipment for ink jet print heads. [Prior Art] Wiping the nozzle face of the print head is an effective method of removing paper dust, ink overflow, dried ink, or other contaminants. However, it is difficult to wipe the page wide print head. Although there is a page width printer with a nozzle face wiper, the wiping mechanism is relatively slow and complicated. The commercially available existing page wide printheads' have a plurality of printhead integrated circuits that are spaced apart from one another in the media feed direction. It is impractical to clean all of the print head integrated circuits with a single wiper so that each of the print head integrated circuits is individually wiped. Furthermore, a plurality of wipers move in the transverse direction of the media feed direction in order to avoid pigment mixing between nozzles of different pigments. The nozzles of each column of each pigment extend through the printhead integrated circuit, and the respective print head integrated circuits are in the lateral direction of the medium feed direction. Wiping along the entire array of nozzles minimizes the risk of ink in one nozzle being contaminated with ink of different colors. However, when the print head integrated circuit is elongated and extends in the lateral direction of the feed direction, the wiper must travel the entire length to clean all the nozzles. In view of this, the mechanism for actuating the plurality of separate wipers for each print head is complicated and the mechanism occupies a relatively large amount of space and consumes considerable time during each maintenance cycle. Another problem associated with wiping a page wide print head is to control the contact force between the wiper and the nozzle face. Wiping the large section of the nozzle face laterally reduces the time required to wipe the entire print head from -5 to 200932561. However, when moving past the print head, the long wiping surface must be maintained parallel to the nozzle face to maintain a uniform contact force. It can be understood that in the uneven wiping force, the place where the wiping force is too strong may impair the fine nozzle structure, and the place where the wiping force is too weak may be difficult to properly clean the nozzle face. A printhead maintenance apparatus having a base that precisely supports the soft maintenance station construction (wiper blade, cap seal, and the like) can be fabricated. However, to make a base construction with such fine tolerances, the base typically requires precision metal fabrication. This sophisticated engineering is a low-cost, high-volume technology that helps reduce the unit cost per printer. SUMMARY OF THE INVENTION Accordingly, the present invention provides a maintenance apparatus for an ink jet printer having a page width print head and a medium for feeding a sheet medium substrate in a medium feed direction Path, the page wide printhead having an elongated array of nozzles extending across the print width of the media substrate, the maintenance apparatus comprising: an elongated base for mounting within the printer such that the elongated base Rotating about its longitudinal axis; and a plurality of maintenance stations mounted to an outer surface of the elongate base; wherein the elongate base is symmetrical with respect to at least one plane extending through the elongate axis. The elongated base can be produced by injection molding techniques by fabricating the elongate base with a plane of symmetry through the longitudinal axis. Symmetrical construction of the base -6 - 200932561 Prevents bending and deformation of the thermal polymer material due to its inability to shrink. Because the base remains straight, the contact pressure between the wiper member and the nozzle face is sufficiently uniform to ensure effective cleaning. It should be understood that the injection molding of polymer components is well suited for large and low cost production. The base also allows other maintenance stations to be presented to the print head quickly and continuously, so the entire maintenance system executes quickly. Applicants have discovered that the nozzle face can be wiped in the direction of the media feed to reduce the distance traveled by the wiper without causing pigment mixing problems. By initiating the nozzle into the ink absorber or ink collector immediately after wiping, any contaminated ink is ejected before the contaminated ink can diffuse into the ink supply line. This keeps the contamination contained in the nozzle or just the chamber ink jet actuator. Preferably, the elongate base is symmetrical with respect to at least two planes extending through the elongate axis. Preferably, the elongate base is mounted within the printer such that the elongate axis of the elongate base traverses the media feed direction. Preferably, at least one of the maintenance stations is a wiper member for wiping the elongated array nozzle. Preferably, the elongate base is formed from an injection molded polymer. In a particularly preferred form, the elongate base has an outer surface having a mounting portion to construct the portions to accommodate any of the plurality of maintenance stations. Preferably, one of the maintenance stations is preferably a wiper member for wiping an array of elongated nozzles. Preferably, the elongate base and the wiper member extend over the length of the elongate array of nozzles. In some embodiments, the mounting locations are receptacles formed in the elongate base. Preferably, the tubular base has a porous material housed within its central recess. Preferably, each side of the seats has at least one waste ink capillary 200932561 tube for establishing fluid communication between the porous material within the central pocket and the maintenance station mounted to the socket. Conveniently, the mounting of the mounting structures and the corresponding structures slide into engagement. Optionally, the mounting structures and the corresponding constructions are snap-fitted together. In some forms, the maintenance stations can be mounted to different sides of the tubular base. Preferably, the wiper member is mounted to the tubular base such that the wiper member wipes the elongated array of nozzles in a direction parallel to the media feed direction. In a particularly preferred form, one of the maintenance stations is an ink absorber' having an absorbent element for receiving the ejected ink. Preferably, the absorbent element is in fluid communication with the porous material contained within the central pocket. Preferably, the porous material is a porous hard polymer. Preferably, the pagewidth printhead has a plurality of printhead integrated circuits, each of the printhead integrated circuits being aligned in a lateral direction of the media feed direction. By mounting the printhead integrated circuit in a single line through the printhead, the elongated array of nozzles does not extend too far in a direction parallel to the media feed direction. In view of this, the stroke length of the wiper member passing through the print head is reduced and the wiping operation is made faster' and the contact pressure on the nozzle is more easily controlled. The narrow print area (in the medium feed direction) has other important benefits with regard to controlling the spacing between the nozzle and the media substrate. In a particularly slim embodiment, the wiper member is a plurality of wiper blades formed of an elastomeric material so that when the elongated array nozzle is wiped, the distal edge of each blade is deflected. Preferably, the wiper blades are arranged in a plurality of parallel rows. In a particularly preferred form, 'each of the plurality of columns has a -8-200932561 having a series of wiper blades that are aligned in the transverse direction of the feed direction, such as in adjacent columns The wiper blades are not aligned, so they are mounted relative to each other in the medium feed direction. In some embodiments, the maintenance drive is reversible so that the wiper member can wipe the elongated array nozzle in both directions during a maintenance cycle. Preferably, the maintenance drive is constructed to rotate the tubular base at a variable speed. In another preferred form, the maintenance drive is constructed to lift the lower tubular base. Preferably, one of the maintenance stations is a print head capper. In this form, the drive mechanism for lifting and lowering the tubular base and the drive mechanism for rotating the tubular base are independent of each other. [Embodiment] Printer Fluid Engineering System Figure 1 is a schematic illustration of the fluid engineering used in the printing engine described in Figures 2A and 2B. As mentioned earlier, the print engine has the primary Q mechanical construction of an inkjet printer. Construct peripheral structures (such as housings, paper trays, paper trays, etc.) to make them suitable for printing on printers such as photo printers, network printers, or printers Claim. The applicant discloses a photo printer of USSN 11/688863 (our case number RRE 001 US) in the co-genus, which is an example of an ink jet EP machine using the fluid engineering system of Fig. 1. The contents of the application in this common genus are incorporated herein by reference. The operation of the system and its individual components are described in detail in USSN 1 1 /8727 1 9 (Our case number SBF 0 09US), the contents of which are incorporated herein by reference. 200932561 Briefly, the printer fluid engineering system has a printhead assembly 2 that supplies ink to the printhead assembly 2 via an upstream ink line 8. The waste ink is discharged to the waste ink tank 1 via the downstream ink line. For simplicity, only a single ink line is shown. In fact, the print head has multiple ink lines for full color printing. The upstream ink line 8 has a shut-off valve 10 for selectively isolating the print head assembly 2 from the pump 12 and/or the ink tank 4. The pump 12 is used to actively dispense or flood the print head assembly 2 φ . The pump 12 is also used to establish a negative pressure within the ink tank 4. The negative pressure is maintained by the bubble dot gauge 6 during printing. The print head assembly 2 is a liquid crystal polymer module 20 that supports a series of print head integrated circuits 30; the print head integrated circuits 30 are fixed by a viscous die attach film (not shown). . The print head integrated circuit 30 has an array of ink ejecting nozzles for ejecting ink droplets to the media substrate 22 being passed. The nozzle is a microelectromechanical construction printed at true 1600 dpi (ie 1600 npi nozzle pitch) or greater resolution. The fabrication and construction of a suitable print head integrated circuit 30 is described in detail in US Ser. No. 1/246, 1987 (O.S. Serial No. MNN 001 US), the disclosure of which is incorporated herein by reference. The liquid crystal polymer module 20 has a main channel 24 extending between the inlet 36 and the outlet 38. The main channel 24 feeds a series of thin channels 28 extending to the underside of the liquid crystal polymer module 20. The fine channel 2 8 supplies ink to the printhead integrated circuit 3 via the laser cut-out holes in the die attach film. Above the main passage 24 is a series of unfilled air pockets 26. These pockets are designed to confine a bag of air during the marking of the print head. These air bags give the system some compliance to absorb and damp the pressure in the ink -10- 200932561 high point and hydraulic shock. The printer is a high speed page wide printer with a large number of nozzles that emit quickly. This printer quickly consumes ink and abruptly ends the printing job or even the end of a page, meaning that a line of ink moving toward (and past) the print head assembly 2 must stop almost instantaneously. If there is no compliance provided by the air pocket 26, the momentum of the ink will overflow the nozzle of the printhead integrated circuit 30. Furthermore, the subsequent "reflected waves" produce a strong negative pressure sufficient to remove the nozzle. ❹ Print Engine Figure 2A shows the print engine 3 using the Print 匣2 type. The print engine 3 is the internal construction of the ink jet printer, so it does not include any outer casing, ink tank, or media feed and collection tray. The user raises or lowers the latch 1 26 to insert or remove the print head 匣2. The print engine 3 and the contacts on the print head 匣 2 form an electrical connection and are fluidly coupled by the yoke 120, the inlet manifold 48, and the outlet manifold 50, respectively. Q The media sheet is fed to the print engine by the main drive roller 186 and the discharge feed roller 178. The main drive roller 186 is driven by the main drive pulley and the encoder disc 188. The discharge feed roller 178 is driven by the discharge drive pulley 180. The discharge drive pulley 180 and the main drive pulley 188 are synchronized by the medium feed belt 182. The medium feed motor 190 supplies power to the main drive pulley 188 via the input drive belt 192. The main drive pulley 188 has an encoder disc and the drive pulley sensor 184 reads the encoder disc. Information on the number of revolutions and the speed of the drive shafts 186, 178 is sent to the print engine controller (PEC). Print Engine -11 - 200932561 The controller (not shown) is mounted to the main printed circuit board (PCB) 1 94 and is the primary microprocessor used to control printer operations. Figure 2B shows the print engine 3 after the print head has been removed to reveal the holes 122 in each of the sockets 120. Each of the apertures 122 houses one of the nozzles 52 on the inlet manifold and the outlet manifold (see Figure 5). As noted above, the ink tank has any position and configuration, but is simply attached to the hollow insertion opening 124 (see Figure 8) at the rear of the socket 120 in the inlet coupler. The insertion port 124 at the rear of the outlet coupler is connected to the waste ink outlet in the waste ink tank 18 (see Fig. 1). The reinforcing bearing surface 128 is secured to the pressurized metal casing 196 of the printing engine 3. These provide reference points for setting the print head 在 within the print engine. They are also designed to provide a positive bearing surface for the compressive load acting on the crucible 2 during installation. When the manifold nozzle (described below) opens the shutoff valve (described below) in the print engine, the fluid coupler 120 pushes against the inlet and outlet manifolds of the crucible. The pressure of the latch 126 on the cymbal 2 is also positively opposite the bearing surface 128. The support surface 128 is disposed such that it is directly opposite the compressive load in the crucible 2, reducing bending and deformation within the crucible. Finally, this assisted nozzle is positioned relative to the medium feed path. It also protects institutions with weaker internal strength from damage. Print Head 匣 Figure 3 is a perspective view of the complete print head 匣 2. The print head cartridge 2 has a top module 44 and a removable protective cover 42. The top module 44 has a central web for constructive stiffness and is used to provide a textured gripping surface 58 to manipulate the weir during insertion and removal by -12-200932561. Prior to installation in the printer, the bottom of the hood 42 protects the print head integrated circuit (not shown) and the entire column of $. The cover 56 is integrally formed at the bottom and covers the ink inlet and outlet (see 5 4 and 5 2 of Fig. 5). Figure 4 shows the printhead assembly 2 with the protective cover 42 removed to expose the printhead integrated circuit on the bottom surface and the entire array of contacts 33 on the side surfaces. Throw the protective cover to the recycling waste or assemble the protective cover to the replaced print head to cover the leakage of residual ink. Figure 5 is a partially exploded perspective view of the print head assembly 2. The top cover has been removed to reveal the inlet manifold 48 and the outlet manifold 50, and the inlet and outlet panels 46, 47 have been removed to more clearly expose the five inlet nozzles 52 and the five outlet nozzles 54. The inlet and outlet manifolds 48, 50 form a fluid connection between each individual inlet and outlet and the main channel within the liquid crystal polymer (see Figure 24). The main channel extends the length of the liquid crystal polymer and the main channel feeds a series of fine channels on the underside of the liquid crystal polymer module. An array of air pockets 26 are formed above each of the main passages 24. As described above with respect to Figure 1, the shock wave or pressure pulse in the ink is dampened by compressing air within the air pocket 26. Figure 6 is an exploded perspective view of the print head assembly without the inlet or outlet manifold or cap module. The primary channel 24 for each ink pigment and its associated air pockets 26 are formed in the channel module 68 and the pocket module 72, respectively. The die attach film 6 6 is bonded to the bottom of the channel module 68. The die attach film 66 mounts the print head integrated circuit 30 to the channel module such that the thin channel on the lower side of the channel module 68 passes through the small laser cut-out hole through the film and the print head integrated circuit 30 is in fluid communication. -13- 200932561 Because of the stiffness and thermal expansion coefficient of the liquid crystal polymer, both the channel module 68 and the top cover module 72 are molded by a liquid crystal polymer, and the thermal expansion coefficient of the liquid crystal polymer is The coefficient of thermal expansion of the crucible closely matches. It will be appreciated that the relatively long configuration of, e.g., a pagewidth printhead, should minimize any differences in thermal expansion between the tantalum substrate of the printhead integrated circuit 30 and its support structure. ^ Printhead Maintenance Dial Referring to Figure 7, a cross-sectional perspective view is shown. This profile is through line 7-7 shown in Figure 2A. The print head cartridge 2 is inserted into the print engine 3 such that its outlet manifold 50 is in fluid communication with the insertion port 124, which guides the waste ink canister into the finished product of the printer (usually located on the base of the print engine) ). The liquid crystal polymer module 20 supports the print head integrated circuit 30 in the immediate vicinity of the medium feed path 22 extending through the print engine. The printhead maintenance carousel 150 and its associated drive mechanism are located on opposite sides of the media Q feed path 22. The printhead maintenance carousel 150 is mounted for rotation about the tubular drive shaft 156, which is also configured to move toward and away from the printhead integrated circuit 30. By raising the dial 150 toward the print head circuit 30, various print head maintenance stations on the exterior of the turntable are presented to the print head. The maintenance carousel 150 is rotatably mounted on the lift configuration 170' which is mounted to the lift configuration shaft 156 so that it can pivot relative to the rest of the configuration of the print engine 3. The lift configuration 170 includes a pair of lift arms 158 (only one lift arm is shown and the other lift arm is disposed at the opposite end of the lift build shaft 156). Each lift arm 158 has a cam engaging table 14 - 200932561 face 168' such as a low friction material roll or pad. A cam (described in detail below) is secured to the turntable drive shaft 160 for rotation with the shaft 160. The lift arm 158 is biased into engagement with a cam on the turntable lift drive shaft 16 , such that the turntable lift motor (described below) can move the turn toward and away from the print head by rotating the shaft 160. The rotation of the maintenance turntable 150 about the tubular shaft 166 is driven independently of the turntable lift. The turntable drive shaft 166 engages the turntable rotary motor (described below) Q' so that it can be rotated regardless of whether it is retracted from the print head or toward the print head. When the turntable is advanced toward the print head, the wiper blade 162 is moved through the medium feed path 22 to wipe the print head integrated circuit 30. When the turntable 150 is withdrawn from the printhead, the turntable 150 is repeatedly rotated such that a wiper blade 162 engages the doctor blade 154 and the cleaning pad 152. This is also discussed in detail below. Referring now to Figure 8, sections 7-7 are shown in plan view to more clearly describe the maintenance dial lift drive. The turntable lift drive shaft 160 shows that Q is rotating such that the lift cam 172 pushes the lift arm 158 downward by the cam engagement surface 168. The lift shaft 160 is driven by a turn-up spur gear 174 which is sequentially driven by the turn-up worm gear 176. The worm gear 17 is fixed by a key to the output shaft of the turntable lift motor (described below). As the lift arm 158 pulls the lift configuration 170 down, the maintenance carousel 150 is withdrawn from the printhead integrated circuit 30. In this position, when the turntable 50 is rotated, no maintenance station contacts the print head integrated circuit 30. However, the turntable will bring the wiper blade 162 into contact with the doctor blade 154 and the cleaning pad 1 5 2 with suction -15-200932561. The doctor blade 154 works in conjunction with the cleaning pad 152 to extensively clean the wiper blade 1 62. The cleaning pad 1 52 wipes the paper dust and the dried ink from the wiping contact surface of the wiper blade 1 62. However, small ink beads and dirt can form the tip of the blade 162 that does not contact the surface of the cleaning pad 152. φ In order to remove the ink and dust, the doctor blade 54 is mounted in the printing engine 3 to contact the blade 154 after the blade 1 62 wipes the head integrated circuit 30 but before contacting the cleaning pad 152. The blade 162. When the wiper blade 1 62 contacts the blade 1 54 , the wiper blade 1 62 is flexed into an arc for passage. Because the wiper blade 162 is an elastomeric material, as soon as it is disengaged from the blade 154, it springs back to its stationary straight shape. Quickly bounces back to its still shape, projecting dust and other contaminants from the wiper blade 162 (especially from the tip). Q. Ordinary workers will understand that the wiper blade 162 will also flex when it contacts the cleaning pad 152, and will again bounce back to its resting shape once the wiper blade 162 is released from the pad. However, the doctor blade 154 is radially mounted closer to the center shaft 166 of the turntable 150 and further away from the cleaning pad 152. This configuration makes it more curved when the wiper blade 162 passes, and gives more momentum to the dirt when it bounces back to a stationary shape. Since the cleaning pad 15 2 contacts the leading blade so that the trailing blade is improperly wiped past the cleaning pad 152, it is impossible to simply move the cleaning pad 152 closer to the turntable shaft 166 to make the wiper blade 162 more bending. -16- 200932561 Cleaning pad The cleaning pad 152 is an absorbent foam which is formed in an arc shape corresponding to the circular path of the wiper blade 162. When the pad 152 is covered with a woven material to provide a plurality of dense gathered contact points when wiping the blade, the pad 152 is more efficiently cleaned. Therefore, the size of the thread of the woven material should be relatively small, for example less than 2 denier. Microfiber materials with a wire size of about 1 denier work particularly well. The cleaning pad 152 extends the length of the wiper blade 162 and the wiper blade 162 also extends the length of the page width printhead. The page width cleaning pad 152 simultaneously cleans the entire length of the wiper blade, which reduces the time required for each wiping operation. Moreover, the length of the page wide cleaning pad inherently provides a large volume of absorbent material for holding a relatively large amount of ink. Because of the greater ink absorption capacity, it is less necessary to replace the cleaning pad 152 frequently. Capping on the Print Head Figure 9 shows the first stage of the capped print head integrated circuit 30 having a capped maintenance station 198 mounted to the maintenance carousel 150. When the lift cam 1 7 2 is pushed down on the lift arm 158, the maintenance dial 150 is withdrawn from the print head integrated circuit 30. The maintenance carousel 150, along with the maintenance encoder disk 204, is rotated until the first carousel rotation sensor 200 and the second carousel rotation sensor 202 determine that the print head capper is facing the print head integrated circuit 30. As shown in Fig. 1A, the lift shaft 160 rotates the cam 172 such that the lift arm 158 moves upward to advance the maintenance dial 150 toward the print head integrated circuit -17-200932561 30. The capper maintenance station 198 engages the underside of the liquid crystal polymer module 2'' to seal the nozzles of the printhead integrated circuit 30 in a relatively humid environment. Ordinary workers will understand that this prevents (at least prolongs) the nozzle from being dry and blocked. Removing the Print Head Cover Figure 11 shows the print head integrated circuit 30 with the cover removed to prepare for printing. The lift shaft 160 is rotated such that the lift cam 172 pushes the turn arm lift arm 158 downward. The capping maintenance station 198 moves away from the liquid crystal polymer module 20 to expose the print head integrated circuit 30. Wiping the print head Fig. 12 shows the print head integrated circuit 30 being wiped by the wiper blade 162. When the capping station 198 is rotated away from the printhead, the wiper member 106 of the wiper member contacts the underside of the liquid crystal polymer module 20. When the turntable 1 500 continues to rotate, the wiper blade is pulled through the nozzle face of the printhead integrated circuit 30 to wipe off any paper dust, dry ink, or other contaminants. The wiper blades 1 62 are formed of an elastomeric material so that they flex elastically and flex as they wipe through the printhead integrated circuit. When the tip of each wiper blade is bent, the side surface of each blade forms a wiping contact with the nozzle face. It can be understood that the broad flat side surface of the blade has a large contact with the nozzle face and the dirt is removed more efficiently. Wiper blade cleaning (cleaning) -18- 200932561 Figures 13 and 14 show the wiper blade 162 being cleaned. As shown in FIG. 13, after the wiper blade 1 62 wipes the print head integrated circuit 30, the wiper blade 1 62 is immediately rotated through the doctor blade 1 54. The function of the blade 1 54 is discussed in more detail in the heading "Scraper" above. After the wiper blade 162 is pulled past the blade 154, any residual dust and dirt adhering to the blade is removed by the absorbent pad 152. This step is shown in Figure 14. U During this process, the print platen maintenance station 206 is just opposite the print head integrated circuit 30. If desired, the turntable can be lifted by rotating the lift cam 172 so that the nozzle can be launched into the absorbent material 208. Any pigment mixed in the ink nozzle is immediately purified. A hole (not shown) that is drilled into the side of the tubular base 166 provides fluid communication between the absorbent material 208 and the porous material 210 within the central pocket of the turntable shaft 166. The ink absorbed by the material 208 is drawn into the porous material 210 and held by the porous material 210. In order to allow the porous material 210 to drain, the turntable 150 Q may be provided with a vacuum attachment point (not shown) to drain the waste ink. The turntable 150 continues to rotate with a clean wiper blade (see Figure 15) until the print platen 206 is again positioned opposite the printhead integrated circuit 30. Then, as shown in Fig. 16, the turntable is raised toward the print head integrated circuit 30 to prepare for printing. The media substrate sheet is fed along the medium feed path 22 and passed through the print head integrated circuit 30. In the case of full bleed printing printed on the extreme side of the media sheet, the media substrate can remain away from the platen 206 so that it does not become soiled by excessive ink spray. It will be appreciated that the absorbent material 208 is disposed within the recessed portion of the print platen 206 to any excess spray of ink (usually about 1 mm on either side of the paper) from -19-200932561. The surface of the substrate. At the end of the printing job or before the printer will enter the standby mode, the turntable 150 is withdrawn from the printhead integrated circuit 30 during rotation so that the printhead capping maintenance station 198 is again rendered to the printhead . As shown in Fig. 17, the lifting shaft 160 rotates the lifting cam 158 so that the lifting cam 158 moves the printing head to the maintenance station and enters the lower side of the liquid crystal polymer module 20 to seal the print head maintenance dial. , 19, 20, and 21 show isolated maintenance dials. Figure 18 is a perspective view showing the wiper blade 162 and the print platen 206. Figure 19 is a perspective view showing the print head capper 198 and the wiper blade 162. Figure 20 is an exploded view showing the components of the maintenance carousel. Figure 21 is a cross-sectional view showing the components after the complete combination. The maintenance carousel has four printhead maintenance stations: a print platen 206, a wiper member 162, and a spreader/ink absorber 220. Each maintenance station is mounted to its own external base assembly. The outer base assembly is mounted about the turntable tubular shaft 166 and engages one another to lock onto the shaft. At one end of the tubular shaft 166 is a turntable encoder disk 204 and a turntable spur gear 212'. The turntable spur gear 212 is driven by a turntable rotary motor (not shown) as described below. The tubular shaft is fixed to or rotates with the spur gear. Each of the printhead maintenance stations rotates with the tubular shaft by virtue of its firm compression and clamping on the outside of the shaft. -20- 200932561 Wiper Blade External Base Assembly 2 1 4 is an aluminum extrusion (or other suitable alloy) that constructs the wiper blade outer base assembly 214 to securely hold the wiper blade 162. Similarly, other external base assemblies are metal extruded articles for securely mounting softer elastomers and/or absorbent porous materials of individual service stations. The outer base assembly for printing platen 2 16 and print head capper 1 98 has a series of identical locking ears 226 along each longitudinal edge. The wiper member outer base assembly 2 1 4 and the ink collector/ink extractor outer base assembly 218 have complementary latch-type slots for receiving the locking ears 226. Each of the card slot has an ear access opening 2 28 that abuts the ear lock slot 230. The locking ears 226 are inserted into the ear access holes 228 adjacent the outer base assembly and then longitudinally slid relative to each other to lock them to the base tubular shaft 166. In order to improve the friction and locking engagement between each of the maintenance stations and the base plate shaft 166, each of the printhead maintenance stations is provided with an element having an arcuate shaft engagement surface 234 formed on one side thereof. The ink collector/ink extractor outer base assembly 218 has a relatively large absorbent ink collector/ink extractor member 220 that also has an arcuate shaft engaging surface 234 formed on its inner face. Similarly, the common base assembly for the print head capper 198 and the common pedestal '' of each wiper blade 162 have a curved shaft engagement surface 234. The average worker will understand that 'using the interlocking construction to clamp the outer base to the inner base minimizes machining and assembly time' and maintains small tolerances for precision installation of the maintenance station configuration. The external base components can be combined into different configurations. Can change the wiper blade outer base assembly 2 1 4 and the ink collector/ink extractor base assembly 2 1 8 position. Similarly, the print head -21 - 200932561 capper 198 and the print platen 06 can be exchanged. In this way, the maintenance stations can be combined in the best way they are installed in a special printer. Injection Molding Polymer Turntable Base Figures 22 through 28 show a printhead maintenance carousel of another embodiment. These figures are schematic sections showing only the portion of the turntable and the print head. It will be appreciated that the maintenance drive system requires a simple and straightforward modification to accommodate the turntable of this embodiment. Figure 22 shows a liquid crystal polymer module 20 adjacent to the print head cartridge 2 of the printhead maintenance spindle 150, which is presented to the printhead integrated circuit 30 by the print platen 206. For the sake of clarity, Figure 29 shows the platen 206 in isolation. In use, a sheet of media substrate is fed along the media feed path 22. Between the nozzle of the print head integration circuit 30 and the medium feed path 22 is a print gap 244. In order to maintain print quality, the gap 244 between the nozzle face of the print head IC circuit and the media surface should be as close as possible to the nominal 値 defined during design. In commercially available printers, this gap is approximately 2 mm. However, because of the advancement of printing technology, some printers have a printing gap of about 1 mm. With the popularity of digital photography, the need for full-page bleeding printing of color images is growing. "Full Version Bleed Print" is the extreme edge printed to the media surface. This often results in some "over-spraying", in which the ejected ink is not sprayed on the edge of the media substrate and deposited on the support printing platen. Then, the ink that has been sprayed across the boundary will stain on the subsequent sheet medium. -22- 200932561 The configuration shown in Figure 22 deals with these two issues. A paper guide 23 8 on the liquid crystal polymer module 20 defines a printing gap 244 during printing. However, the print platen 206 has a guide surface 246 formed on its rigid plastic base module. The guide surface 246 guides the leading edge of the wafer toward the discharge drive roller or other drive mechanism. Because of the minimum contact between the sheet media and the print platen 206, the likelihood of soiling by ink that has been sprayed across the boundary during full-scale bleeding printing is greatly reduced. Further, the paper guiding member 23 8 on the liquid crystal polymer module 20 is disposed in close proximity to the print head integrated circuit 3, to accurately maintain the gap 244 between the nozzle and the medium surface. Some printers in the applicant's range use this technique to provide 0. 7 mm print gap 244. However, the above gap can be reduced by flattening the beads of the sac material 2404 adjacent to the print head integrated circuit 30. Power and data are transferred to the printhead integrated circuit 30 by a flexible printed circuit board 242 mounted to the outside of the liquid crystal polymer module 20. The contacts of the flexible printed circuit board 2 42 are electrically connected to the contacts of the printhead integrated circuit 30 by a series of lead frames (not shown). To protect the leadframe, the leadframe is wrapped in an epoxy material called a bladder. Applicants have developed a variety of techniques for flattening the outline of the leadframe and the beaded bladder 240 covering the leadframe. This allows the printing gap 244 to be further reduced. The print platen 206 has a recess or central recess 248 which faces the nozzle of the printhead integrated circuit 30. Any ink that is sprayed across the boundary will be in this area of the platen 206. A recess is formed in this area away from the rest of the platen, ensuring that the media substrate is not soiled by wet, cross-border spray ink. The surface of the central pocket 248 is in fluid communication with the absorbent fibrous element 250. The fiber -23-200932561 dimension element 2 50 and the porous material 254 in the center of the base 23 6 are also in fluid communication by the capillary 252. The ink that has been sprayed across the boundary is drawn into the fiber element 250 and is drawn into the porous material 254 via the tube 252 by capillary action. Fig. 2 shows the display of the turntable 1 50 rotation so that the print head station 2 6 2 is presented to the print head integrated circuit 30. Figure 30 shows the isolated printhead station 272 and its construction features. The printhead dispensing station has an elastomeric skirt 256' that surrounds the contact pad 0 258 and is formed of a porous material. The elastomeric skirt is formed with the injection contact pad and, together with the rigid polymer base 2 6 ,, the rigid polymer base 260 is securely mounted to the exit profile base 23 6 . When the print head 匣 2 is replaced, it needs to be inked. It is well known that the beating process is wasteful because the ink is usually forced through the nozzle until the entire print head configuration has drained any bubbles. A very large amount of ink has been wasted during the removal of air from the plurality of conduits extending through the printhead. The lift maintenance dial 150 causes the contact contact pads 258 to cover the nozzles of the printhead integrated circuit 30. When the nozzle array is inflated under pressure, the contact pad 258 is held against the nozzle, greatly reducing the amount of ink that flows through the nozzle. The porous material partially blocks the nozzle to limit the flow of ink. However, the air flow from the nozzle is subject to much less restriction, so the entire injection process is not delayed by the flow barrier created by the porous material. The elastomeric skirt 2 5 6 sealingly abuts the underside of the liquid crystal polymer module 2 2 to draw excess ink flowing from the underside of the contact pad 258. A flow aperture 264 formed in the rigid polymer base 260 allows the ink -24 - 200932561 water and any excess ink absorbed by the pad 258 to flow to the absorbent fibrous element 250 (the same applies to the pressure plate 206). As with the printing platen 206, the ink within the fiber 250 is drawn into the porous material 254 of the forming base by the capillary 252. By using the print head to note the station 2 6 2, the amount of water being drowned is greatly reduced. If there is no injection station, the amount of ink wasted by the pigment is usually about 2 ml when the page is widened; if there is a note Q, the amount of ink wasted by each pigment is reduced to about 0. The 1 ml immersion contact pad 258 does not have to be formed of a porous material, but instead can be formed from the same elastic material as the skirt 256. In this case, the contact needs to have a special surface roughness. Meshing the print head integrated circuit The surface of the nozzle face should be rough on a 2 to 4 micron scale, but | micron scale smooth and smooth. This type of surface roughness allows for escape between the nozzle face and the contact pad, but only a small amount of ink escapes the display of the wiper station 266 of the maintenance carousel 150 to the integrated circuit 30. The wiping station is shown separately in Figure 31. The wiping is also a co-molded construction having a soft elastomer wiping blade 268 supported on a hard plastic base. In order to wipe the nozzle face of the print head assembly f, the turntable base 23 6 is raised and then rotated, so that the wiper 268 is wiped over the nozzle face. The turntable base 236 is typically rotated such that the wiper blade 268 is wiped toward the bladder beads. As in the applicant's Common File No. RRE015US application (into the cross-referenced discussion, the contours of the capsule beads can be designed to aid the surface of the dust and dirt wiper blade 268. But if it is proven In both directions, the ink in the printing and printing element 23 6 is used for each type of station 2 62 〇 and the pad 258 30 I is 20 air from the strip. Print head station 266 270 on the i road 30 wiper wiper In the middle of the system, the wiper wipes more than -25, if the efficiency is good, the maintenance drive (not shown) can be easily constructed to rotate the base 236 in two directions. Similarly, by changing the number of rotations, it is easy to change the number of times of wiping through the print head integrated circuit 30. The program design maintains the drive to perform each wipe. The head capper 272 showing the maintenance dial 150 is shown in Fig. 25 to the print head integrated circuit 30. Figure 32 shows the capper independently to more clearly illustrate its construction. The capper 272 has a peripheral seal 274 formed of a soft elastomeric material. The surrounding seal 274 is co-molded with its hard plastic base 276. When the printer is idle, the printhead capper 272 reduces the rate at which the nozzles are dried. The seal between the perimeter seal 274 and the underside of the liquid crystal polymer module 20 need not be completely airtight because the capper is being used to draw the printhead with suction. In fact, the hard plastic base 276 should include an air respirator hole 2 78 so that the nozzle does not overflow with the suction caused by removing the cover of the print head. To cover the print head, the base 2 36 is rotated until the print head capper 272 is presented to the print head integrated circuit 30. The base 236 Q is then raised until the peripheral seal 274 engages the print head 匣2. Figure 26 shows a wiper blade cleaning pad 152 included. As described in the first embodiment above, the cleaning pad 152 is mounted within the printer such that as the maintenance dial 150 rotates, the wiper blade 268 moves past the surface of the pad 152. By providing the position of the cleaning pad 152, the base 23 must be retracted from the printhead integrated circuit 30 to allow the wiper blade 268 to contact the cleaning pad and to rotate the base 236 at a relatively high rate for a wide range of The wiper blade 268 is cleaned without any damaging contact with the printhead integrated circuit 30. Further, the cleaning pad 1 52 can be wetted with an surfactant to more easily remove dirt from the surface of the wiper blade. Figure 27 shows the injection molding base 236 independently. The base is symmetrical with respect to the two planes that extend through the central longitudinal axis 2 82 . This symmetry is important because if the injection molding base 23 extending along the length of the page width print head is asymmetrical, there is a tendency to deform and bend as it cools. Because of the symmetrical profile, the contraction is also symmetrical as the base cools. The φ base 236 has four maintenance station mounting brackets 276 formed on its outer surface, all of which are identical so that they can accommodate any of the various maintenance stations 206, 266, 2 62, 272. In this way, each maintenance station becomes an interchangeable module and the order in which each maintenance station is presented to the print head can be changed to suit different printers. Furthermore, if the maintenance stations themselves are modified, their standard seating ensures that the maintenance station can easily break into existing production lines with minimal equipment replacement. The maintenance station is fixed in the socket with an adhesive, but other methods (such as ultrasonic point welding or mechanical mutual engagement Q) are also suitable. As shown in Figure 28, the mold is provided with four sliders 278 and a central core 288. Each slider 278 has a cylindrical configuration 280 to form a conduit that connects the fiber core pad to the porous material 219 within the central pocket. The pull lead for each slider is radially outward from the base 236, while the core 28 8 is longitudinally retracted (it is understood that the core is not a precision cylinder, but a truncated cone to provide Required ventilation). Injection molding of polymer components is well suited for large and low cost production. Furthermore, the symmetrical construction and uniform shrinkage of the base maintains good tolerances to maintain the maintenance station extending parallel to the column -27-200932561 print head integrated circuit. However, other manufacturing techniques also compress shock waves or the like of polymer powders. Again, the enhanced surface treatment' can help the ink flow to the capillary 252 and the porous material 210 within the terminal 236. In some printer design stands for connecting a vacuum source to periodically φ from the porous material 2 1 0. Five maintenance station embodiments. Figure 34 shows an embodiment of the printhead maintenance carousel 150. Different maintenance stations: print pressure The disc 206, the print head wiper head capper 272, the picking station 262, and the ink collector 284. (Independently shown in Figure 33) has a relatively simple construction 2 84 that is flat to the printhead and has holes (not shown) for fluid communication of the fiber elements 250 within the plastic base. The five-station maintenance carousel 150 is equipped with an ink collector 284, which uses the main ink to purify the four-station turntable as part of the maintenance system, using the printing platen 2 0 6 and/or the capper to clean the ink or " Spitting cycle During work, after the nozzle face is wiped or when the spit is spit out between pages, a secondary discharge cycle is used to keep the nozzles from printing, removing the pigment, and mixing the mouth. If the situation is replied, it may be necessary to primarily discharge the ability to exceed the platen or capper. The ink collector 284 has a large hole in its face 286 or a possible, for example hydrophilic, polar flow to the bottom. In the construction of the bottom ground discharge ink, it has five 266, column ink collector 284 ... - ink collector face and is held in it to allow printing. . Figure 22-25 272 provides the second. Printed (inter-page wet. But as large-size spray cycle...-because the series maintains -28-200932561 ribs' to hold the fiber core material 250 in the plastic base. Component 250 remains very open to potential The ink is intensively sprayed. One face of the 250 is pressed against the capillary 252 to increase the flow of the porous material 2 5 4 into the central cavity of the bottom j. The five-seat base 236 is five degrees of 60 degrees using 72 degrees to each other. Six sliders are injection molded. Similarly, a maintenance dial with a station is also possible. If the nozzle faces are gathered and dried, it is still difficult to remove using the wiper alone. In these case machines, one can be used for Ink solvent or other station on the mouth of the cleaning fluid (not shown). However, this can be incorporated or attached to the wiper variant. Figures 35 to 46 show the nozzle interview shift for a range of different wipe heads that the wiper can use. In addition to paper dust, spilling ink, and effective means of drying away other contaminants, the average worker will understand that different wiper configurations are available, most of which are not suitable for any special machine. Functional efficiency (ie cleaning printing) It must be weighed, the desired operating life, size and weight constraints, and its properties. Single Contact Blade Figure 35 shows a wiper maintenance station 266 having a body blade 290 mounted within a hard plastic base 270 such that the blade Vertically extending in a direction. A single wipe extending along the length of the array of nozzles ejects the slider of the fiber-optic component g 23 6 or the ink of more than five inks to the spray collector. Or can there be countless special production costs of the printer. He considers the single elasticity of the medium-feeder wiper -29- 200932561' is a simple wiping configuration with low production and assembly costs. In view of this, a single wiper wiper is suitable for The bottom of the printer and price range. Higher throughput requires efficient manufacturing techniques and easy assembly of the printer components. This must be done for the unit's operating life, or the speed and efficiency of the wiper cleaning the print head. Some compromises are compromised. However, the single blade design is pocket-sized, and if the blade cannot clean the nozzle surface efficiently in one traverse, the maintenance drive can be simplified. The wiping operation is repeated until the print head is clean. 〇 A plurality of contact blade views 36, 43A, 43B, and 46 show a wiper maintenance station 266 having a plurality of parallel blades. In Figure 36, two identical The parallel blade 292 extends perpendicular to the media feed direction. The two blades 292 are separately mounted to the hard plastic base 270 for independent operation. In Fig. 46, the blades are not identical. The first and second scrapers The sheets (294 and 296, respectively) have different widths (or different cross-sectional profiles) and hardness gauges (hardness and viscoelasticity). Each blade can be optimized to remove a particular type of dirt. However, each of the blades is separately mounted in the hard plastic base 270 for independent operation. In contrast, the plurality of wiper elements of FIGS. 43A and 43B have smaller and shorter wipers 300 that are all mounted with a common elastomeric base 298 that is secured to the hard plastic base 270. . This is a substantially more compliant configuration that has a relatively large surface area in each wipe that contacts the nozzle face. However, a thin and soft blade has a larger and more robust blade that wears out at a faster rate. Since a plurality of parallel blades are wiped across the nozzle face, the single -30-200932561 of the wiper member collects more dust and dirt at a time. Although the design of multiple wipers is less compact than a single wiper, each wipe is faster and more efficient. Therefore, during the printing job, the print head can be wiped between pages; and the initial maintenance items performed before the print job are completed in a short time. Single Skew Scraper Figure 37 shows a wiper maintenance station 270 having a single wiper blade 0 302 mounted to a hard plastic base 270 such that the wiper blade 302 is skewed relative to the wiping direction. It will be appreciated that the wiping direction extends perpendicular to the length of the plastic base 270. A single wiper blade is a simple wipe configuration with low production and assembly costs. Further, by mounting the blade to be skewed in the wiping direction, the nozzle face is only in contact with one section of the blade at any time during the traverse of the wiper member. Since only one section contacts the nozzle face, the wiper does not become smashed or curled due to inconsistent contact pressure along its entire length. This ensures sufficient contact pressure between the wiper blade and the entire nozzle face without the need to precisely align the wiper so that it is completely parallel to the nozzle face. This allows for loose manufacturing tolerances so that larger quantities of low cost production techniques can be used. This must be a compromise between increasing the distance the wiper member must travel to clean the print head. Increase this distance and therefore the time required for each wipe job. But reducing manufacturing costs is more important than these potential shortcomings. Separate Contact Blade Figure 38 shows a wiper maintenance station 266 having a wiper blade 304 mounted in a hard plastic base 270 that is segmented -31 - 200932561. Each individual wiper segment 306 constitutes a complete wiper blade 310 mounted in a hard plastic base 270 for independent movement relative to one another. The individual blade segments 306 in each blade 304 are arranged to be out of alignment with respect to the wiping direction. In this manner, the nozzle that is not wiped by the first blade 340 in the gap between the two blade segments 306 is wiped by the blade segment 306 in the second blade 306. It is inefficient to wipe the nozzle face of the page wide print head with a single long wiper. Inconsistent contact pressure between the wiper blade and the nozzle face can cause the blade to bend or curl along certain sections of its length. The contact pressure in these sections may be insufficient or there may be no contact between the wiper and the nozzle face. A wiper blade that is divided into individual wiper segments can solve this problem. Each segment can move relative to its adjacent segment so that any inconsistency in contact forces does not cause bending or curling of other segments of the blade. In this way, the contact pressure is maintained on the nozzle face and the nozzle face is clean. Nozzle Face Wiper with Multiple Skew Blades In Figure 39, the wiper maintenance station 266 has a series of individual wipers 308 mounted within the hard plastic base 270 such that the wipers are inclined to the wiping direction. Each of the blades 308 is disposed such that the lateral extent (X) of each blade (relative to the wiping direction) and the lateral extent (Y) of its adjacent blade overlap (Z). By mounting the wiper blade to be skewed in the wiping direction, the nozzle face is only in contact with a section of the blade at any time during the traversal of the wiper member. Since only one section contacts the nozzle face, the wiper does not wrinkle or roll due to inconsistent contact pressure along its entire length -32-200932561. This ensures sufficient contact pressure between the wiper blade and the entire nozzle face without the need to align the wiper so that it is precisely parallel to the nozzle face. This allows for loose manufacturing tolerances so that larger quantities of low cost production techniques can be used. A single skewed blade achieves this, but increases the distance that the wiper member must travel to clean the printhead, thus increasing the time required for each wipe. In view of this, the present invention uses a series of adjacent skewed blades, each of which wipes a corresponding portion of the array of nozzles. In some applications, multiple wipers involve higher manufacturing costs than a single wiper, but pocket design and faster work are more important than these potential drawbacks. Wiper with Array Pad In Figures 40 and 44, the wiper maintenance station 266 uses the array of contact pads 310, rather than any blade configuration. The individual pads 3 1 2 can be individually mounted into a set of short cylindrical elastomeric materials in the hard plastic base 270, or a cylindrical soft fiber brush similar to that commonly used in the cleaning of wafers. As described above, it is inefficient to wipe the nozzle surface of the page wide print head with a single long contact surface. Inconsistent contact pressure between the wiping surface and the nozzle face can result in insufficient or no contact pressure in certain areas. The use of a wiping surface that has been divided into individual contact pads of array 310 allows each pad to move relative to the adjacent pad, so that inconsistent contact forces can change its amount, causing each pad to compress and deform individually. The relative high pressure of a pad does not require the transmission of compressive forces to cause adjacent pads. In this way, uniform contact pressure is maintained on the nozzle face and the nozzle face is more efficiently cleaned. -33- 200932561 Sinusoidal Scraper In the wiping maintenance station 266 shown in Figure 41, a single wiper blade 314 is mounted into the hard plastic base 270 such that the wiper follows the sinusoidal path. As previously mentioned, wiping the nozzle face of a page wide print head with a single long contact surface would be inefficient. Inconsistent contact pressure between the wiping surface and the nozzle face can result in insufficient or no contact pressure in certain areas. One of the reasons for the change in contact pressure is the inaccurate movement of the wiper surface relative to the nozzle face. If the support structure for the wiping surface is not completely parallel to the nozzle face throughout the stroke length during the φ wiping operation, the area of low contact pressure may not be properly cleaned. As explained in the obliquely mounted blade, the above problem can be avoided by setting the position of the wiper blade to be inclined with respect to the feed wiping direction and the print head nozzle face. In this way, only a portion of the wiper blade contacts the nozzle face at any time during the wiping operation. In addition, the small angle between the wiper and the wiping direction improves the cleaning and efficiency of the wipe. When the wiper moves obliquely over the nozzle face, more contact points between the wiper and the nozzle face for better dirt removal. This improves any problems caused by inconsistent contact pressures, but in each wiping operation, the wiper blade is required to travel a longer stroke. As noted above, inaccurate movement of the wiper surface relative to the nozzle face is a source of insufficient contact pressure. Increasing the length of the wiper stroke is not conducive to pocket design. A wiper blade having a zigzag (Z-shape) or a sinusoidal shape is used to wipe the nozzle face with a plurality of wiper segments inclined in the medium feed direction. This configuration also results in a stroke length of the wiper member relative to the printhead that is small enough to remain accurate and compact. -34- 200932561 Single wiper blade with non-linear contact surface Figure 42 shows a wiper maintenance station 266 that has two angles and is mounted on a hard plastic in an oblique direction to the wiping direction. As mentioned above, printing a page with a single long contact surface will result in insufficient or no contact pressure in some areas. For the wiping direction and the nozzle head surface angle, it means that at any time between, only A portion of the wiper blade contact makes the contact pressure more uniform, but the sheet needs to travel a longer stroke in each wiping operation. As noted above, inaccurate motion of the wiper face is a source of insufficient contact pressure. The length of the trip only increases the risk of this inaccuracy. By using a wiping surface having an angular or curved shape, the wiper section in the media feed direction wipes most of the spray to reduce the stroke length of the wiper member relative to the printhead. It will be appreciated that the contact blade can have a shallow V or U shape. The leading edge of the re-sheet 318 is the intersection of two straight sections (or U-shaped wipers, the Applicant has found that the wiper has less wear and the initial point of contact of the mouth provides additional support. Fiber Mat Figure 45 shows There is a printhead wiper maintenance station 266 mounted to the hard plastic base 270. The fiber mat 320 is particularly effective. The mat presents a number of points that are in contact with the nozzle face such that the linear section is on the nozzle face of the base 270. The wiper blade is wiped to wipe the nozzle face during the operation period. Thus, the wiper scraper surface is increased relative to the spray wiper so as to tilt the mouth face, while the worker likes to scrape the curved section) because the pair of spray fiber mats 320 wipe the nozzle The fiber energy machine -35-200932561 mechanically engages the solid dirt' and absorbs fluid contaminants such as ink overflow by capillary action. However, it is difficult to remove dirt from the fiber mat once the fiber mat has cleaned the nozzle face. After many wiping operations, the fiber bundle is filled with a lot of dirt and the nozzle face is no longer effectively cleaned. However, in the case of a printer with a short working life or a printer that allows the replacement of the wiper, the fiber mat provides the most efficient wiper. Φ Combined Wiper Maintenance Station It is understood that some print head designs are most efficiently cleaned by a combination of the above wipe configurations. For example, a single blade combines a series of skewed blades or a series of parallel blades with fiber mats therebetween. The combined wiper maintenance station can be derived by selecting a particular wiper structure based on individual strengths and strengths. Printhead Maintenance Facility Drive System Q Figures 47 through 50 show the media feed drive and printhead maintenance drive in more detail. Figure 48 shows the printhead maintenance carousel 150 and the drive system independently. The maintenance dial 150 is shown as being presented by a wiper blade 162 to a print head (not shown). The perspective view shown in Fig. 48 shows that the paper discharge guide 32 is guided to the discharge driving roller 178. On the other side of the wiper blade 162, the main drive roller shaft 186 is shown extending from the main drive roller pulley 330. This pulley is driven by a main drive roller belt 192 which engages the medium feed motor 190. The medium feed drive belt 182 synchronizes the rotation of the main drive roller 186 and the discharge roller 178. -36- 200932561 The exploded perspective view of Figure 49 shows the individual components in more detail. In particular, this perspective map best illustrates the balanced turntable lift mechanism. The turntable lift drive shaft 160 extends between two identical turntable lift cams. One end of the turntable lift shaft 160 is keyed to the turntable lift spur gear 174. The spur gear 174 engages the worm gear 176 and the turntable lift motor 324 drives the worm gear 176. The turntable lift rotation sensor 334 provides feedback to a print engine controller (not shown) that can determine the position of the turntable from the print head by the angular displacement of the cams 1 72. The turntable lift cam 172 contacts the individual turntable lift arms 158 by camming rollers 168 (it is understood that the cam engaging rolls can be surfaces of low friction materials, such as high density polyethylene (HDPE)). Since the cams 172 are identical and are also mounted to the turntable lift shaft 160, the displacement of the turntable lift arms 158 is also the same. Figure 47 is a cross-sectional view taken on line 7-7 of Figure 2A with the print head 匣 2 and the print head maintenance carousel 1 50 removed. This figure provides a clear view of the turntable lift spur gear 174, its adjacent lift cam 172, and the turntable lift arm 158 corresponding to Q. Because each lift arm 158 is equidistant from the midpoint of the turntable 150, the turntable lift drive is fully balanced and symmetrical when the turntable is raised and lowered. This is used to maintain the longitudinal direction of the various print head maintenance stations parallel to the print head integrated circuit. The best map solution for the rotary drive of the turntable is shown in the enlarged partial decomposition view of Fig. 50. A turntable rotary motor 326 is mounted to the side of the turntable lift configuration 170. Stepper motor sensor 328 provides feedback to the print engine controller (PEC) regarding the rate and rotation of motor 326. The turntable rotary motor 326 drives the idler gear 3 3 2, and the idler gear 3 3 2 drives a reduction gear (not shown) on the cover side of the turntable lift structure 170 - 37 - 200932561. The reduction gear engages the turntable spur gear 212 to mount the turntable spur gear 212 to the turntable base for rotation. Because the turntable rotation and turntable lift are controlled by separate independent drives, and each drive is powered by a stepper motor that provides feedback on the motor speed and rotation to the print engine controller, the printer has a wide range Maintenance procedures are available for selection. The turntable motor 326 can be driven in either of two directions and at a variable rate so that the nozzle face can be wiped in either direction, and the wiper blade can be placed against the absorbent pad in both directions. And being cleaned. This can be particularly useful if paper dust and other contaminants pass to the nozzle face and mechanically engage the surface irregularities on the nozzle face. Wiping in the opposite direction often removes such mechanical engagement. It is also useful to reduce the rate of the wiper blade 1 62 when the wiper blade 1 62 is in contact with the nozzle face and then increase the rate of the wiper blade as it exits the nozzle face. When the wiper blade and the nozzle face are initially in contact, it does slow down the rate and then increases the rate when wiping. Similarly, the rate at which the wiper blade 162 moves through the doctor blade 154 can be faster than the rate at which the wiper blade moves past the cleaning pad 152. The wiper blade 162 can be wiped in any direction in both directions and in any of the directions. Furthermore, the order in which the maintenance stations are presented to the print head can be easily programmed into the print engine controller and/or left to the user for discretion. The invention is described herein by way of example only. The average worker can easily recognize many changes and modifications that do not depart from the spirit and scope of the broad invention. BRIEF DESCRIPTION OF THE DRAWINGS [0009] A preferred embodiment of the present invention will now be described, by way of example only, with reference to the accompanying drawings in which FIG. Figure 2A is a perspective view of the print head cartridge of the present invention mounted on the printer of the printer; Figure 2B shows the print engine without the print head cartridge to expose the inlet and outlet ink couplers; Figure 4 is a perspective view of the print head of Figure 3; and Figure 5 is a partial exploded perspective view of the print head assembly of the print head of Figure 3; Figure 6 is an exploded perspective view of the print head assembly without the inlet or outlet of the tube or cap module; Figure 7 is a cross-sectional perspective view of the print engine taken from line 7-7 of Figure 2A; A cross-sectional view of the print engine taken from line 7-7 of Figure 2A, showing the maintenance dial pulling the wiper blade through the doctor blade; Figure 9 is a cross-sectional view showing the maintenance dial pulling the wiper blade through the absorbent pad; Figure 1 〇 is to display the lift maintenance dial so that the capper maintenance station covers the print head Figure 11 is a cross-sectional view showing the lowering of the maintenance dial to remove the cover of the print head, Figure 12 is a cross-sectional view showing the nozzle face of the wiper blade wiping the print head - 39- 200932561, and Figure 13 is a view showing the maintenance dial Turning back to its cross-sectional view of the starting position shown in Figure 8, where the wiper blade has been pulled through the blade to bounce off the dirt in the tip region; Figure 14 is a view showing the wiper blade has been pulled through the absorbent cleaning Figure 15 is a cross-sectional view showing the rotation of the maintenance dial to present the print head capper to the U print head; Figure 16 is a cross-sectional view showing the lift maintenance dial to present the print platen to the print head Figure 17 is a cross-sectional view showing the manner in which the lift dial is used to seal the print head integrated circuit of the capper; Figure 18 is a perspective view of the isolated maintenance turntable; Figure 19 is another perspective view of the isolated maintenance turntable, Figure 20 is an exploded perspective view of the isolated maintenance carousel; Figure 21 is a cross-sectional view through the intermediate point of the length of the carousel; Figure 22 is a schematic cross-sectional view of the maintenance carousel of the second embodiment, the maintenance carousel is presented Figure 23 is a schematic cross-sectional view of the maintenance turntable of the second embodiment, and the print head dispensing station engages the print head; Figure 24 is a schematic cross-sectional view of the maintenance turntable of the second embodiment, and the wiper The blade is engaged with the print head, and the set of FIG. 25 is a schematic cross-sectional view of the maintenance turntable of the second embodiment, -40-200932561 ink is presented to the print head; FIG. 26 is a schematic cross-sectional view of the maintenance turntable of the second embodiment, And when the wiper blade is cleaned on the absorbent pad, the print platen is presented to the print head; Figure 27 is a cross-sectional view of the injection molded core used in the maintenance carousel of the second embodiment; Figure 2 is a cross-sectional view showing the printing plate maintenance station in isolation; Figure 31 is a cross-sectional view showing the wiper blade maintenance station in isolation; Figure 3 is a cross-sectional view of the inkjet station in an isolated position; Figure 3 is a cross-sectional view showing the ink absorption station in isolation; Is the third embodiment maintenance dial Figure 35 is a schematic view of the wiper member of the first embodiment; Figure 36 is a schematic view of the wiper member of the second embodiment; Figure 37 is a schematic view of the wiper member of the third embodiment; Figure 38 is a wipe of the fourth embodiment Figure 39 is a schematic view of the wiper member of the fifth embodiment; Figure 40 is a schematic view of the wiper member of the sixth embodiment; Figure 41 is a schematic view of the wiper member of the seventh embodiment; Figure 43A and 43B are schematic views of the wiper member of the ninth embodiment; Figure 44 is a schematic view of the wiper member of the tenth embodiment; -41 - 200932561 Figure 45 is a wiper member of the eleventh embodiment Figure 46 is a schematic view of the wiper member of the twelfth embodiment; Figure 47 is a cross-sectional perspective view of the printing engine and is not printed for the maintenance turntable; Figure 4 is a stand-alone drive for the print engine Fig. 49 is an exploded perspective view of the independent drive assembly shown in Fig. 48; and Fig. 5A is an enlarged view of the left end of the exploded perspective view shown in Fig. 49. [Main component symbol description] 2 : Print head assembly (print head 匣) 3 : Print engine 4 : Ink tank 6 : Regulator 8 : Upstream ink line 〇 1 〇 · · Close valve 12 : Pump 1 6 : Downstream ink line 18: Waste ink tank 20: Liquid crystal polymer module 22: Media substrate (medium feed path) 24: Main channel 26: Pocket 2 8: Fine channel - 42- 200932561 3 0 : Print head product Body circuit 3 3 : contact 36 : inlet 38 : outlet 42 : protective cover 44 : top module (top cover ) 4 6 : inlet shroud 47 : outlet shroud 4 8 : inlet manifold 5 0 : outlet manifold 52 : inlet nozzle 54 : outlet nozzle 56 : cover body 5 8 : clamping surface 66 : die attach film 6 8 : channel module 72 : pocket module 120 : socket (fluid coupler) 122 : hole 124 : Inserting port 126: Latch 1 2 8 : Reinforcing bearing surface 1 5 0 : Print head maintenance turntable 152 : Cleaning pad - 43 200932561 1 5 4 : Scraper 156 = Tubular drive shaft (lifting structure shaft) 158 : (Cam Lifting arm 160: turntable drive shaft (lifting shaft) 162: wiper blade 1 66: turntable drive shaft (central shaft; tubular base) 168: cam engagement surface ( 170: (turntable) lifting structure 172: (turntable) lifting cam 174: turntable lifting spur gear 176: turntable lifting worm gear 178: discharge feed roller (drive shaft) 180: discharge drive pulley 182: medium feed Feed belt 184: drive pulley sensor 186: main drive roller (shaft) 188: encoder disc (main drive pulley) 190: medium feed motor 192: input drive belt 194: main printed circuit board 196: pressurized metal Housing 1 98: Print head capper (capped maintenance station) 200: First turntable rotation sensor 202 _·Second turntable rotation sensor -44 - 200932561 2 04 : Maintenance encoder disc (turntable code 206: Printed platen maintenance station 208: Absorbent material 2 1 0 : Porous material 2 1 2 : Turntable spur gear 2 1 4 _· Wiper blade external base assembly 2 1 8 : Collector / suction Ink holder external base assembly 2 1 9 : porous material 220 : absorbent ink collector / ink absorber member 226 : locking ear 228 : hole 23 0 : ear lock groove 236 : base 236 : injection molding base (turntable base 23 8 : paper guide 240 : bladder (material) 242 : flexible printed circuit board 244 : printing Gap 246: guiding surface 248: central pocket 2 50: (absorbent) fiber element 252: capillary 2 5 4 : porous material 256: elastomeric skirt -45- 200932561 2 5 8 : 接触 contact pad 260: base Seat 2 6 2 : Print head 塡 station 2 6 4 : Flow hole 266 : Wiping station (wiper maintenance station) 268 : (elastomer) wiper blade 270 : Hard plastic base 272 : Print head capping 2 7 4 : Surrounding seal 276: Hard plastic base (maintenance station mounting bracket) 278: Air breathing apparatus hole (slider) 2 8 0 : Columnar structure 2 8 2 : Center longitudinal axis 284: Ink collector 286: face 28 8 : central core 290 : blade 292 : blade 294 : first blade 296 : second blade 2 9 8 : elastomer base 3 00 : blade 302 : blade 3 04 : Segmented blade -46- 200932561 3 0 6 : Blade section 3 0 8 : Blade 310 : Contact pad 3 1 2 : Pad 3 1 4 : Single blade 3 1 8 : Blade 3 20 : Fiber pad _ 322 : paper discharge guide 324 : turntable lift motor 3 26 : turntable rotation motor 328 : stepper motor sensor 3 3 0 : main drive roller pulley 3 3 2 : idler 3 34 : turntable lift rotary sensor ❹ -47-

Claims (1)

200932561 十、申請專利範圍 1. 一種用於噴墨印表機的維護設備,該噴墨印表機具 有頁寬列印頭和用於在媒介饋給方向中饋給片狀媒介基板 的媒介路徑,該頁寬列印頭具有長形陣列噴嘴,該陣列噴 嘴在該媒介基板的列印寬度延伸,該維護設備包含: 長形底座,供安裝在該印表機內,以致該長形底座能 繞其縱長軸線旋轉;和 D 複數維護站,安裝至該長形底座的外部表面;其中 該長形底座相對於延伸穿過該縱長軸線的至少一平面 呈對稱。 2·如申請專利範圍第1項所述用於噴墨印表機的維護 設備,其中該長形底座相對於延伸穿過該縱長軸線的至少 二平面呈對稱。 3. 如申請專利範圍第2項所述用於噴墨印表機的維護 設備’其中該長形底座安裝在該印表機內,以致該長形底 p 座的縱長軸線橫越該媒介饋給方向。 4. 如申請專利範圍第1項所述用於噴墨印表機的維護 設備’其中該等維護站其中至少之一是用於擦拭該長形陣 列噴嘴的擦拭器構件。 5. 如申請專利範圍第1項所述用於噴墨印表機的維護 設備’其中該長形底座是由射出成型的聚合物形成。 6. 如申請專利範圍第1項所述用於噴墨印表機的維護 設備’其中該長形底座具有外部表面,該外部表面具有安 裝部位’建構該等部位以容置該複數維護站其中任一者。 -48- 200932561 7 ·如申請專利範圍第4項所述用於噴墨印表機的維護 設備,其中該長形底座和該擦拭器構件,在該長形陣列噴 嘴的長度延伸。 8. 如申請專利範圍第6項所述用於噴墨印表機的維護 設備,其中該等安裝部位是形成在該長形底座內的承座。 9. 如申請專利範圍第8項所述用於噴墨印表機的維護 設備,其中該底座是管狀的且具有容置在其中心凹穴內的 多孔材料。 10. 如申請專利範圍第9項所述用於噴墨印表機的維 護設備,其中該等承座的每一者具有至少一個廢棄墨水毛 細管,用於建立在該中心凹穴內的該多孔材料和安裝至該 承座的該維護站之間的流體連通。 1 1 .如申請專利範圍第1項所述用於噴墨印表機的維 護設備,其中在該底座上的該等安裝部位嚙合在該維護站 上的對應結構’建構該等安裝部位和該等對應結構以滑動 而嚙合。 1 2 ·如申請專利範圍第1 1項所述用於噴墨印表機的維 護設備’其中該等維護站能安裝至該管狀底座之該等安裝 部位中的任一者。 1 3 .如申請專利範圍第9項所述用於噴墨印表機的維 護設備’其中該擦拭器構件安裝至該管狀底座,以致該擦 拭器構件在平行於該媒介饋給方向的方向中,擦拭該長形 陣列噴嘴。 1 4.如申請專利範圍第1項所述用於噴墨印表機的維 -49- 200932561 護設備’其中該等維護站其中之—是具有吸收性元件的吸 墨器’用於容置被射出的墨水。 1 5 .如申請專利範圍第1 4項所述用於噴墨印表機的維 護設備’其中該吸收性元件和容置在該中心凹穴內的該多 孔材料呈流體連通。 1 6 .如申請專利範圍第1 5項所述用於噴墨印表機的維 護設備,其中該多孔材料是多孔硬聚合物。 17·如申請專利範圍第1項所述用於噴墨印表機的維 護設備’其中該頁寬列印頭具有複數列印頭積體電路,該 等列印頭積體電路的每一者在該媒介饋給方向的橫方向對 齊。 18·如申請專利範圍第4項所述用於噴墨印表機的維 護設備’其中該擦拭器構件是由彈性材料形成的複數擦拭 器刮片,所以當擦拭該長形陣列噴嘴時,每一刮片的遠端 邊緣撓曲。 1 9 .如申請專利範圍第丨8項所述用於噴墨印表機的維 護設備’其中該擦拭器刮片配置在複數平行列中。 20.如申請專利範圍第1項所述用於噴墨印表機的維 護設備,其中維護驅動裝置是可反轉的,所以該擦拭器構 件能在兩個方向中擦拭該長形陣列噴嘴。 -50-200932561 X. Patent application scope 1. A maintenance device for an inkjet printer having a page width print head and a medium path for feeding a sheet medium substrate in a medium feed direction The page wide print head has an elongated array nozzle extending in a printing width of the media substrate, the maintenance device comprising: an elongated base for mounting in the printer so that the elongated base can Rotating about its longitudinal axis; and D plurality of maintenance stations mounted to the outer surface of the elongate base; wherein the elongate base is symmetrical with respect to at least one plane extending through the elongate axis. 2. The maintenance apparatus for an ink jet printer according to claim 1, wherein the elongate base is symmetrical with respect to at least two planes extending through the longitudinal axis. 3. The maintenance device for an ink jet printer according to item 2 of the patent application, wherein the elongated base is mounted in the printer such that the longitudinal axis of the elongated bottom p seat traverses the medium Feed direction. 4. The maintenance apparatus for an ink jet printer as claimed in claim 1, wherein at least one of the maintenance stations is a wiper member for wiping the elongated array nozzle. 5. The maintenance apparatus for an ink jet printer as described in claim 1, wherein the elongated base is formed of an injection molded polymer. 6. The maintenance device for an ink jet printer according to claim 1, wherein the elongated base has an outer surface, the outer surface having a mounting portion constituting the portions to accommodate the plurality of maintenance stations Either. The maintenance apparatus for an ink jet printer according to the fourth aspect of the invention, wherein the elongated base and the wiper member extend over the length of the elongated array nozzle. 8. The maintenance apparatus for an ink jet printer according to claim 6, wherein the mounting locations are sockets formed in the elongated base. 9. The maintenance apparatus for an ink jet printer according to claim 8, wherein the base is tubular and has a porous material housed in a central pocket thereof. 10. The maintenance apparatus for an inkjet printer according to claim 9, wherein each of the sockets has at least one waste ink capillary for establishing the porous in the central pocket The fluid communication between the material and the maintenance station mounted to the shoe. 1 1 . The maintenance device for an inkjet printer according to claim 1, wherein the mounting portion on the base engages a corresponding structure on the maintenance station to construct the mounting portion and the The corresponding structure is engaged by sliding. 1 2 - A maintenance device for an ink jet printer as described in claim 11 wherein the maintenance stations can be mounted to any of the mounting locations of the tubular base. A maintenance device for an ink jet printer according to claim 9 wherein the wiper member is mounted to the tubular base such that the wiper member is in a direction parallel to the medium feed direction , wipe the elongated array nozzle. 1 4. The U.S.-49-200932561 protective device for an ink jet printer as described in claim 1 of the patent application, wherein the maintenance stations therein are an ink absorber having an absorbing member for accommodating The ink that was shot. A maintenance device for an ink jet printer as described in claim 14 wherein the absorbent member is in fluid communication with the porous material received in the central pocket. A maintenance device for an ink jet printer as described in claim 15 wherein the porous material is a porous hard polymer. 17. The maintenance device for an ink jet printer according to claim 1, wherein the page wide print head has a plurality of print head integrated circuits, each of the print head integrated circuits Aligned in the horizontal direction of the medium feed direction. 18. The maintenance device for an ink jet printer as described in claim 4, wherein the wiper member is a plurality of wiper blades formed of an elastic material, so when the long array nozzle is wiped, each The distal edge of a blade is deflected. A maintenance device for an ink jet printer as described in claim 8 wherein the wiper blade is disposed in a plurality of parallel rows. 20. The maintenance apparatus for an ink jet printer according to claim 1, wherein the maintenance drive is reversible, so the wiper member can wipe the elongated array nozzle in two directions. -50-
TW097116092A 2008-01-16 2008-05-01 Rotating printhead maintenance facility with symmetrical chassis TW200932561A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/AU2008/000045 WO2009089567A1 (en) 2008-01-16 2008-01-16 Printhead cartridge with two fluid couplings

Publications (1)

Publication Number Publication Date
TW200932561A true TW200932561A (en) 2009-08-01

Family

ID=40884982

Family Applications (25)

Application Number Title Priority Date Filing Date
TW097116089A TW200932563A (en) 2008-01-16 2008-05-01 Printhead nozzle wiper and doctor blade for ink removal
TW097116091A TW200932543A (en) 2008-01-16 2008-05-01 Rotating printhead maintenance facility with tubular chassis
TW097116096A TW200932546A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with nozzle face wiper having multiple skew blades
TW097116103A TW200932550A (en) 2008-01-16 2008-05-01 Printhead wiping protocol for inkjet printer
TW097116104A TW200932539A (en) 2008-01-16 2008-05-01 Printhead cartridge priming protocol
TW097116095A TW200932545A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with nozzle face wiper having multiple contact blades
TW097116113A TW200932541A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with inner and outer chassis
TW097116099A TW200932548A (en) 2008-01-16 2008-05-01 Printhead nozzle face wiper blade with multiple, inclined contact sections
TW097116088A TW200932562A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with nozzle wiper movable parallel to media feed direction
TW097116098A TW200932547A (en) 2008-01-16 2008-05-01 Printhead nozzle face wiper with array of pads
TW097116114A TW200932553A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with pagewidth absorbent element
TW097116092A TW200932561A (en) 2008-01-16 2008-05-01 Rotating printhead maintenance facility with symmetrical chassis
TW097116108A TW200932551A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with multiple independent drives
TW097116090A TW200932542A (en) 2008-01-16 2008-05-01 Printhead maintenance facilty with elongate nozzle face wiper
TW097116100A TW200932549A (en) 2008-01-16 2008-05-01 Printhead nozzle face wiper with fibrous pad
TW097116110A TW200932565A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with variable speed wiper element
TW097116112A TW200932540A (en) 2008-01-16 2008-05-01 Printhead cartridge with no paper path obstructions
TW097116101A TWI480174B (en) 2008-01-16 2008-05-01 Printhead cartridge with two fluid couplings
TW097116111A TWI453126B (en) 2008-01-16 2008-05-01 Printer with zero insertion force printhead cartridge
TW097116106A TW200932557A (en) 2008-01-16 2008-05-01 Printer with fluidically coupled printhead cartridge
TW097116094A TW200932544A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with nozzle face wiper having independent contact blades
TW097116093A TW200932535A (en) 2008-01-16 2008-05-01 Printer with paper guide on the printhead and pagewidth platen rotated into position
TW097116107A TW200932564A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with balanced lift mechanism
TW097116109A TW200932552A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with bi-directional wiper member
TW097116129A TW200932554A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with interchangeable stations

Family Applications Before (11)

Application Number Title Priority Date Filing Date
TW097116089A TW200932563A (en) 2008-01-16 2008-05-01 Printhead nozzle wiper and doctor blade for ink removal
TW097116091A TW200932543A (en) 2008-01-16 2008-05-01 Rotating printhead maintenance facility with tubular chassis
TW097116096A TW200932546A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with nozzle face wiper having multiple skew blades
TW097116103A TW200932550A (en) 2008-01-16 2008-05-01 Printhead wiping protocol for inkjet printer
TW097116104A TW200932539A (en) 2008-01-16 2008-05-01 Printhead cartridge priming protocol
TW097116095A TW200932545A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with nozzle face wiper having multiple contact blades
TW097116113A TW200932541A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with inner and outer chassis
TW097116099A TW200932548A (en) 2008-01-16 2008-05-01 Printhead nozzle face wiper blade with multiple, inclined contact sections
TW097116088A TW200932562A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with nozzle wiper movable parallel to media feed direction
TW097116098A TW200932547A (en) 2008-01-16 2008-05-01 Printhead nozzle face wiper with array of pads
TW097116114A TW200932553A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with pagewidth absorbent element

Family Applications After (13)

Application Number Title Priority Date Filing Date
TW097116108A TW200932551A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with multiple independent drives
TW097116090A TW200932542A (en) 2008-01-16 2008-05-01 Printhead maintenance facilty with elongate nozzle face wiper
TW097116100A TW200932549A (en) 2008-01-16 2008-05-01 Printhead nozzle face wiper with fibrous pad
TW097116110A TW200932565A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with variable speed wiper element
TW097116112A TW200932540A (en) 2008-01-16 2008-05-01 Printhead cartridge with no paper path obstructions
TW097116101A TWI480174B (en) 2008-01-16 2008-05-01 Printhead cartridge with two fluid couplings
TW097116111A TWI453126B (en) 2008-01-16 2008-05-01 Printer with zero insertion force printhead cartridge
TW097116106A TW200932557A (en) 2008-01-16 2008-05-01 Printer with fluidically coupled printhead cartridge
TW097116094A TW200932544A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with nozzle face wiper having independent contact blades
TW097116093A TW200932535A (en) 2008-01-16 2008-05-01 Printer with paper guide on the printhead and pagewidth platen rotated into position
TW097116107A TW200932564A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with balanced lift mechanism
TW097116109A TW200932552A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with bi-directional wiper member
TW097116129A TW200932554A (en) 2008-01-16 2008-05-01 Printhead maintenance facility with interchangeable stations

Country Status (4)

Country Link
EP (2) EP2543514B1 (en)
DK (1) DK2237960T3 (en)
TW (25) TW200932563A (en)
WO (1) WO2009089567A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201019684D0 (en) * 2010-11-19 2011-01-05 Domino Printing Sciences Plc Improvements in or relating to inkjet printers
GB2498690A (en) * 2010-11-19 2013-07-24 Domino Printing Sciences Plc Improvements in or relating to inkjet printers
EP2678162B8 (en) 2011-02-25 2019-06-19 Hewlett-Packard Development Company, L.P. Printing system and related method
TWI556983B (en) * 2013-09-26 2016-11-11 研能科技股份有限公司 Jet-printing unit interchangeable between inkjet printing device and page-width array printing device
US9205680B2 (en) 2014-01-16 2015-12-08 Memjet Technology Ltd. Printer having regenerative intermediary drive
US10035348B2 (en) 2014-06-03 2018-07-31 Hewlett-Packard Development Company, L.P. Spittoon beam system and printer with a spittoon beam system
SG11201703753UA (en) 2014-11-19 2017-06-29 Memjet Technology Ltd Inkjet nozzle device having improved lifetime
TWI687987B (en) 2015-02-17 2020-03-11 愛爾蘭商滿捷特科技公司 Process for filling etched holes
TWI715755B (en) 2016-05-02 2021-01-11 愛爾蘭商滿捷特科技公司 Monochrome inkjet printhead configured for high-speed printing
AU2018215862B2 (en) 2017-02-02 2020-05-21 Memjet Technology Limited Roller feed mechanism for printer having multiple printheads
TW201838829A (en) 2017-02-06 2018-11-01 愛爾蘭商滿捷特科技公司 Inkjet printhead for full color pagewide printing
JP7079268B2 (en) 2017-05-12 2022-06-01 メムジェット テクノロジー リミテッド Mist extraction system for inkjet printers
TW201924950A (en) 2017-11-27 2019-07-01 愛爾蘭商滿捷特科技公司 Process for forming inkjet nozzle chambers
WO2019211070A1 (en) 2018-05-03 2019-11-07 Memjet Technology Limited Inkjet printhead with encapsulant-retaining features
WO2020237118A2 (en) * 2019-05-23 2020-11-26 General Electric Company Wiper arrays for use in additive manufacturing apparatuses
TW202114873A (en) 2019-06-03 2021-04-16 愛爾蘭商滿捷特科技公司 Process for handling mems wafers
WO2021047868A1 (en) 2019-09-13 2021-03-18 Memjet Technology Limited Printhead module having through-slots for supplying power and data
JP2022113927A (en) * 2021-01-26 2022-08-05 セイコーエプソン株式会社 Three-dimensional molding apparatus and method of manufacturing three-dimensional molded article
JP2024511553A (en) 2021-01-29 2024-03-14 メムジェット テクノロジー リミテッド Thermal bending actuator with improved lifespan
WO2022268427A1 (en) 2021-06-23 2022-12-29 Memjet Technology Limited Thermal regulation in long inkjet printhead

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5771052A (en) * 1994-03-21 1998-06-23 Spectra, Inc. Single pass ink jet printer with offset ink jet modules
US5852459A (en) * 1994-10-31 1998-12-22 Hewlett-Packard Company Printer using print cartridge with internal pressure regulator
US6652078B2 (en) * 2000-05-23 2003-11-25 Silverbrook Research Pty Ltd Ink supply arrangement for a printer
AUPS047802A0 (en) * 2002-02-13 2002-03-07 Silverbrook Research Pty. Ltd. Methods and systems (AP69)
US7097291B2 (en) * 2004-01-21 2006-08-29 Silverbrook Research Pty Ltd Inkjet printer cartridge with ink refill port having multiple ink couplings
US7448734B2 (en) * 2004-01-21 2008-11-11 Silverbrook Research Pty Ltd Inkjet printer cartridge with pagewidth printhead
KR100644646B1 (en) * 2004-11-09 2006-11-15 삼성전자주식회사 Inkjet image forming apparatus
JP4744243B2 (en) * 2005-08-31 2011-08-10 富士フイルム株式会社 Ink tank, ink jet recording apparatus, and ink filling method and apparatus
JP4774894B2 (en) * 2005-09-29 2011-09-14 コニカミノルタホールディングス株式会社 Line head and inkjet printing apparatus
US7465045B2 (en) * 2005-12-05 2008-12-16 Silverbrook Research Pty Ltd Printer with ink cartridge for engaging printhead cartridge and printer body
US7475976B2 (en) * 2006-03-03 2009-01-13 Silverbrook Research Pty Ltd Printhead with elongate array of nozzles and distributed pulse dampers

Also Published As

Publication number Publication date
EP2543514A3 (en) 2013-10-30
TW200932538A (en) 2009-08-01
TW200932547A (en) 2009-08-01
TW200932548A (en) 2009-08-01
TW200932554A (en) 2009-08-01
TW200932565A (en) 2009-08-01
TW200932557A (en) 2009-08-01
TW200932539A (en) 2009-08-01
TW200932541A (en) 2009-08-01
TW200932562A (en) 2009-08-01
TW200932564A (en) 2009-08-01
EP2237960B1 (en) 2012-09-26
TW200932546A (en) 2009-08-01
TW200932552A (en) 2009-08-01
TW200932535A (en) 2009-08-01
TW200932551A (en) 2009-08-01
TW200932542A (en) 2009-08-01
EP2543514B1 (en) 2015-05-06
TW200932553A (en) 2009-08-01
EP2237960A4 (en) 2011-01-05
TW200932537A (en) 2009-08-01
TW200932540A (en) 2009-08-01
TWI480174B (en) 2015-04-11
EP2543514A2 (en) 2013-01-09
TWI453126B (en) 2014-09-21
TW200932543A (en) 2009-08-01
TW200932550A (en) 2009-08-01
TW200932563A (en) 2009-08-01
TW200932549A (en) 2009-08-01
TW200932544A (en) 2009-08-01
TW200932545A (en) 2009-08-01
EP2237960A1 (en) 2010-10-13
DK2237960T3 (en) 2013-01-14
WO2009089567A1 (en) 2009-07-23

Similar Documents

Publication Publication Date Title
TW200932561A (en) Rotating printhead maintenance facility with symmetrical chassis
US7758152B2 (en) Printhead nozzle wiper and doctor blade for ink removal
US20090179975A1 (en) Printhead cartridge with two fluid couplings
US7857438B2 (en) Printhead cartridge priming protocol
US20130021408A1 (en) Method of minimizing ink consumption during printhead priming
US8277027B2 (en) Printer with fluidically coupled printhead cartridge
US8277026B2 (en) Printhead cartridge insertion protocol
US7819500B2 (en) Printhead maintenance facility with bi-directional wiper member
US7771002B2 (en) Printhead maintenance facility with inner and outer chassis
US20090179957A1 (en) Printhead maintenance facility with pagewidth absorbent element
US7771007B2 (en) Printhead maintenance facility with multiple independent drives
US20090179961A1 (en) Printhead maintenance facility with variable speed wiper element
US7766451B2 (en) Printhead maintenance facility with balanced lift mechanism