TW200931479A - Metal halide lamps - Google Patents

Metal halide lamps Download PDF

Info

Publication number
TW200931479A
TW200931479A TW097133355A TW97133355A TW200931479A TW 200931479 A TW200931479 A TW 200931479A TW 097133355 A TW097133355 A TW 097133355A TW 97133355 A TW97133355 A TW 97133355A TW 200931479 A TW200931479 A TW 200931479A
Authority
TW
Taiwan
Prior art keywords
metal halide
lamp
halide lamp
gas
discharge
Prior art date
Application number
TW097133355A
Other languages
Chinese (zh)
Inventor
Akihiko Tauchi
Atsushi Fujioka
Chikako Ichimura
Original Assignee
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007227496A external-priority patent/JP2009059645A/en
Priority claimed from JP2007233034A external-priority patent/JP2009064725A/en
Priority claimed from JP2007246079A external-priority patent/JP2009076396A/en
Application filed by Harison Toshiba Lighting Corp filed Critical Harison Toshiba Lighting Corp
Publication of TW200931479A publication Critical patent/TW200931479A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/125Selection of substances for gas fillings; Specified operating pressure or temperature having an halogenide as principal component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/16Selection of substances for gas fillings; Specified operating pressure or temperature having helium, argon, neon, krypton, or xenon as the principle constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent
    • H01J61/20Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent mercury vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/56One or more circuit elements structurally associated with the lamp

Landscapes

  • Discharge Lamp (AREA)

Abstract

The invention provides a metal halide lamp which illuminates agglomeratively. The rare gas, guide groove and thallium iodide are sealed in the metal halide lamp (1) as the electric discharge medium; electric discharge electrodes (3), (4) are disposed at two ends of a luminescent tube (2) along the axial direction, with the luminescence length of not less than 800mm, it is characterized in that the amount of guide groove Mh (mg/cc) and amount of thallium iodide guide groove Mt (mg/cc) are respectively ranged in 0.3mg/cc < Mh < 5.0mg/cc and 0.006mg/cc < Mt < 0.048mg/cc.

Description

200931479 九、發明說明 【發明所屬之技術領域】 本發明是關於一種金屬鹵化物燈者。 【先前技術】 在氣密的發光管內作爲放電媒體封入稀有氣體,水銀 及碘化鉈,而在發光管的管軸方向的兩端設置放電用電極 的金屬鹵化物燈,是可發生在365 nm左右具有高發光強 度的紫外線發光之故,因而作爲使用於紫外線硬化塗料的 硬化,或是對於近年來市場用途高的功能性高分子薄膜的 光反應等的光源爲有用者。作爲此種用途的一種,在作爲 液晶顯示裝置的面板的製造用的光源的用途上,對應於面 板尺寸的擴大,被要求燈發光長的增大。 可是,在這種金屬鹵化物燈中,封入媒體的水銀與構 成燈管的石英會反應而會黑化燈管內面,藉此有縮短燈的 壽命的趨勢。但是,在作爲封入媒體包含碘化鉈時,則鉈 離子滞留在管壁附近,防止水銀其他金屬離子的石英管壁 的再耦合之故,因而具有可謀求燈的長壽命化的優點。 然而,這種包含碘化鉈的金屬鹵化物燈,是在點燈中 發生水銀與碘化鉈的發光會分離,發生所謂分離發光現象 ,而有無法得到在燈的軸方向的均勻的燈發光的缺點。該 分離發光現象是尤其在燈長度變長會更顯著。 又若燈長度變長,則放電中的電弧無法沿著管軸被維 持在直線狀,也有對於軸發生彎曲的所謂發生電弧擺動的 -5- 200931479 缺點問題。若發生這種電弧擺動,則接近於管壁的電弧局 部性地過熱熔融燈管’藉著在管壁產生孔,而成爲縮短燈 壽命的結果。 專利文獻1:日本特開平06-275234號公報 【發明內容】 本發明是鑑於上述的技術性課題所創作者,提供可防 止分離發光,且可進行長壽命又穩定的放電的長狀的金屬 鹵化物燈作爲目的。 本發明的一種金屬鹵化物燈,係在氣密的發光管內作 爲放電媒體封入稀有氣體,水銀及碘化鉈,而在上述發光 管的管軸方向的兩端設置放電用電極,且發光長爲 800mm以上的金屬鹵化物燈,其特徵爲: 將上述水銀(Hg)的封入量 Mh(mg/cc),上述碘化鉈 (T1I)的封入量Mt(mg/CC),分別選定在下述的範圍 0.3mg/cc&lt;Mh&lt;5.0mg/cc 0.006mg/cc&lt;Mt&lt;0.048mg/cc 內者。 又,上述本發明的金屬鹵化物燈中,將上述發光管的 內徑作爲Dmm,而將上述封入氣體壓作爲Ptorr時,則將 P及D之値,滿足下式 75&lt;PxD&lt;2125 的方式加以選定,爲其特徵者。 依照本發明,提供可防止分離發光,沿著管軸以均勻 -6- 200931479 的發光分佈維持的放電,且不會降低依水銀的黑化的信賴 性,長壽命又長狀的金屬鹵化物燈。 又,依照本發明,可提供可防止電弧擺動,長壽命又 可維持穩定的放電的長狀的金屬鹵化物燈. 【實施方式】 (實施形態1) 以下,依據圖式詳述本發明的第1實施形態。第1圖 是表示本發明的1實施形態的金屬鹵化物燈1。該金屬鹵 化物燈1是在具有紫外線透射性的石英製發光管2的內部 兩端,配置例如鎢、鎳、鉬、鉬等耐火性金屬,或是不鏽 鋼、鈦等的金屬製電極3,4,而在外部分別設置燈座5, 6的構造。 表示該金屬鹵化物燈1的規格的例子,燈發光長是 1000mm,內徑是25mm,所施加的燈電壓是1275V,燈電 流値是13.5A。又,封入氣體是將氬作爲稀有氣體成分, 對此添加碘化銳〇.〇32mg/cc,添加水銀1.68mg/cc。稀有 氣體的氣體壓P(t〇r〇是250t〇rr。 水銀的封入量 Mh(mg/cc)及碘化銳的封入量 Mt(mg/cc),是分別選定在 0.3mg/cc&lt;Mh&lt;5.0mg/cc,及 0.006mg/cc&lt;Mt&lt;0.048mg/cc 的範圍內。 本發明者,是將水銀及碘化鉈的封入量予以變化而把 燈進行動作俾進行觀察分離發光的發生的實驗的結果,水 銀及碘化鉈的封入量爲位於這些的範圍內時,則確認未發 200931479 生分離發光。 (實施例) 以下,將本發明適用於1 0種類的試製品的實施例加 以說明。 表1是表示將針對於10種類的試製品①〜⑩的各個 的水銀(Hg)及碘化鉈(T1I)的封入量予以變化時的組成比者 [表1] 試製燈規格 試製品號碼 Hg 量(mg/cc) Tll(mg/cc) ① 1.04 0.048 ② 1.04 0.096 ③ 1.68 0.032 ④ 1.68 0.048 ⑤ 1.68 〇 096 ⑥ 1.04 0.024 ⑦ 1.04 0 012 ⑧ 1.68 0.024 ⑨ _0012_ ⑩ —__L68______ 1.04 ---- 0.006 ® @〜⑬是實施例,而試製品 同表中的試製品③ ①②④⑤是比較例。 作時的電性特性與分離 又’表2是表示各試製品的動 發光的有無的表。 ~8&gt; 200931479 [表2] 電性特性與分離發光的有無 試製品號碼 分離發光的有無 燈電壓(V) 燈電流(A) 燈電力(kW) ① X 1455 15.8 21.6 ② X 1496 15.4 21.6 ③ 〇 1979 11.4 21.6 ④ X 2040 11.1 21.6 ⑤ X 2086 10.9 21.6 ⑥ 〇 1455 15.9 21.6 ⑦ 〇 1425 16.1 21.6 ⑧ 〇 1950 11.8 21.6 ⑨ 〇 1902 12.1 21.6 ⑩ 〇 1405 16.4 21.6 又,第2(a)圖至第2(g)圖是表示在試製號碼③,⑤, ⑥〜⑩的分光分佈的圖表。這些的圖表是表示各試製品燈 的左右電極部的分光分佈的圖表。此些圖表中,比較例的 一種試製號碼⑤的分光分佈,是表示左右不相同的分光分 佈,而表示產生分離發光。對於此,本發明的實施例的試 製號碼③,⑥〜⑩的分光分佈是表不左右同一的分光分佈 ’而表示未產生分離發光。 由此些的實驗結果,將稀有氣體、水銀及碘化鉈包含作 爲放電媒體,在發光長800mm以上的金屬鹵化物燈中,水銀 的封入量Mh(mg/cc),及碘化銳的封入量Mt(mg/cc),是分別 被選定在 0.3mg/cc&lt;Mh&lt;5.0mg/cc,0.006mg/cc&lt;Mt&lt;0.048mg/cc 的 範圍內,藉此,確認可抑制習知無法避免的分離發光現象 -9- 200931479 (實施形態2) 以下,針對於本發明的第2實施形態加以說明。 在該實施形態中,檢討放電媒體全體的封入量與分離 發光現象及電弧擺動之關係的結果’在與發光管2的內徑 D(mm)之關係’僅封入充滿 75&lt;PxD&lt;2125(以帕斯卡 (PASCAL)換算 75xl33.320&lt;PxD&lt;2125xl33.320)的範圔的 量。例如,內徑 D = 15mm時,則稀有氣體的封入壓 P = 5torr(約667Pa)以上,內徑D = 35mm時,則作爲稀有氣 體的封入壓 P = 60torr(約 8000Pa)以下較佳。又,內徑 D = 25mm時,作爲稀有氣體的封入壓P=l〇torr(約1 332Pa) 確認較適合。 稀有氣體的封入量較少時,則水銀的黑化顯著地發生 而信賴性變低,惟將PxD作成75以上,可封入稀有氣體 一直到不會有黑化的影響的程度爲止,而可維持該點上的 信賴性。又,可將水銀與碘化鉈的擴散作成容易,不會產 生電弧擺動,而可穩定地維持燈的發光。另一方面,將稀 有氣體的封入量增大至PxD超過2125爲止,則燈的起動 •再起動特性惡化,又,成爲顯著地出現分離發光。所以 ,將稀有氣體,其氣體壓P與燈管徑D成爲75&lt;Ρχ D&lt;2 1 2 5的範圍的方式予以調整,不會有依黑化的信賴性 的降低’不會發生分離發光,而在起動.再起動特性上也 可得優異的金屬鹵化物燈。 -10- 200931479 以下,表示決定PxD的最適當範圍之際的實驗結果 [實施例1] [表3]200931479 IX. Description of the Invention [Technical Field of the Invention] The present invention relates to a metal halide lamp. [Prior Art] A metal halide lamp in which a discharge gas is sealed as a discharge medium, mercury and cesium iodide in a gas-tight arc tube, and discharge electrodes are provided at both ends of the arc tube in the tube axis direction may occur in 365. Since ultraviolet light having high luminescence intensity is around nm, it is useful as a light source used for curing of an ultraviolet curable coating or a photoreaction of a functional polymer film which has high market use in recent years. As one of such applications, in the use of a light source for manufacturing a panel of a liquid crystal display device, it is required to increase the light emission length in accordance with the enlargement of the panel size. However, in such a metal halide lamp, the mercury enclosed in the medium reacts with the quartz constituting the tube to blacken the inner surface of the tube, thereby shortening the life of the lamp. However, when cerium iodide is contained as the sealing medium, cerium ions are retained in the vicinity of the tube wall, and the re-coupling of the quartz tube wall of other metal ions of mercury is prevented, so that the life of the lamp can be extended. However, such a metal halide lamp containing cesium iodide is separated from the luminescence of mercury and cesium iodide in the lighting, so that a so-called separation luminescence phenomenon occurs, and a uniform lamp luminescence in the axial direction of the lamp cannot be obtained. Shortcomings. This separation luminescence phenomenon is more pronounced especially when the length of the lamp becomes longer. Further, if the length of the lamp is long, the arc during discharge cannot be maintained linearly along the tube axis, and there is a problem of the so-called arc swing which causes bending of the shaft. When such an arc swing occurs, the arc close to the wall of the tube partially overheats the molten lamp tube, and as a result of shortening the life of the lamp, a hole is formed in the pipe wall. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned technical problems, and provides a long metal halide which can prevent separation and emit light and can perform long-life and stable discharge. The object light is for the purpose. A metal halide lamp according to the present invention is characterized in that a rare gas, mercury and cesium iodide are sealed as a discharge medium in an airtight light-emitting tube, and discharge electrodes are provided at both ends of the light-emitting tube in the tube axis direction, and the light emission is long. The metal halide lamp of 800 mm or more is characterized in that the sealing amount Mh (mg/cc) of the mercury (Hg) and the sealing amount Mt (mg/CC) of the cerium iodide (T1I) are selected as follows. The range is 0.3 mg/cc &lt; Mh &lt; 5.0 mg / cc 0.006 mg / cc &lt; Mt &lt; 0.048 mg / cc. Further, in the metal halide lamp of the present invention, when the inner diameter of the arc tube is Dmm and the pressure of the sealed gas is Ptorr, the relationship between P and D satisfies the following formula 75 &lt; PxD &lt; 2125 Selected as a feature. According to the present invention, there is provided a metal halide lamp which can prevent separation light emission, maintains a discharge of uniform -6-200931479 light distribution along a tube axis, and does not reduce the reliability of blackening depending on mercury, and has a long life and a long shape. . Moreover, according to the present invention, it is possible to provide a long metal halide lamp which can prevent arc oscillation and maintain a stable discharge over a long life. [Embodiment 1] Hereinafter, the present invention will be described in detail based on the drawings. 1 embodiment. Fig. 1 is a view showing a metal halide lamp 1 according to an embodiment of the present invention. The metal halide lamp 1 is provided with a flame-resistant metal such as tungsten, nickel, molybdenum or molybdenum, or a metal electrode 3 such as stainless steel or titanium, at both ends of the quartz light-emitting tube 2 having ultraviolet transmittance. The configuration of the lamp holders 5, 6 is separately provided on the outside. An example of the specification of the metal halide lamp 1 is that the lamp emits light of 1000 mm, the inner diameter is 25 mm, the applied lamp voltage is 1275 V, and the lamp current is 13.5 A. Further, the enclosed gas was obtained by using argon as a rare gas component, and iodine ruthenium ruthenium (32 mg/cc) was added thereto, and mercury was added at 1.68 mg/cc. The gas pressure P of the rare gas (t〇r〇 is 250t〇rr. The amount of mercury enclosed in Mh (mg/cc) and the amount of blocked iodide Mt (mg/cc) are respectively selected at 0.3mg/cc&lt;Mh&lt;lt; In the range of 5.0 mg/cc, and 0.006 mg/cc &lt; Mt &lt; 0.048 mg/cc. The present inventors changed the amount of encapsulation of mercury and cesium iodide to operate the lamp, and observed the occurrence of separation luminescence. As a result of the experiment, when the amount of mercury and cesium iodide enclosed was within the range of these, it was confirmed that 200931479 was not separated and emitted. (Examples) Hereinafter, the present invention is applied to an example of a sample of 10 types. Table 1 shows the composition ratio when the amount of mercury (Hg) and cesium iodide (T1I) enclosed in each of the 10 types of prototypes 1 to 10 is changed. [Table 1] Trial lamp specifications Product number Hg Amount (mg/cc) Tll(mg/cc) 1 1.04 0.048 2 1.04 0.096 3 1.68 0.032 4 1.68 0.048 5 1.68 〇096 6 1.04 0.024 7 1.04 0 012 8 1.68 0.024 9 _0012_ 10 —__L68______ 1.04 --- - 0.006 ® @~13 is an example, and the prototype is tested in the same table. The product 3 1245 is a comparative example. The electrical characteristics and separation at the time of the process are shown in Table 2. Table 2 is a table showing the presence or absence of the kinetic light of each sample product. ~8&gt; 200931479 [Table 2] Electrical properties and the presence or absence of the separation luminescence Number separation light with or without lamp voltage (V) Lamp current (A) Lamp power (kW) 1 X 1455 15.8 21.6 2 X 1496 15.4 21.6 3 〇1979 11.4 21.6 4 X 2040 11.1 21.6 5 X 2086 10.9 21.6 6 〇1455 15.9 21.6 7 〇1425 16.1 21.6 8 〇1950 11.8 21.6 9 〇1902 12.1 21.6 10 〇1405 16.4 21.6 Again, pictures 2(a) to 2(g) show the spectral distribution at trial numbers 3, 5, 6~10 These graphs are graphs showing the spectral distribution of the left and right electrode portions of each of the prototype lamps. In these graphs, the spectral distribution of a trial number 5 of the comparative example is a spectral distribution indicating that the left and right are different, and the generation is indicated. In this case, the spectral distribution of the trial numbers 3, 6 to 10 of the embodiment of the present invention is such that the same spectral distribution is not shown, and the separation light emission is not generated. As a result of these experiments, rare gas, mercury, and cesium iodide are contained as a discharge medium, and in the metal halide lamp having a light emission length of 800 mm or more, the amount of mercury enclosed in Mh (mg/cc), and the iodine sharp encapsulation The amount Mt (mg/cc) was selected in the range of 0.3 mg/cc &lt; Mh &lt; 5.0 mg / cc, 0.006 mg / cc &lt; Mt &lt; 0.048 mg / cc, respectively, whereby it was confirmed that inhibition can be prevented. Separation luminescence phenomenon -9-200931479 (Embodiment 2) Hereinafter, a second embodiment of the present invention will be described. In this embodiment, the result of checking the relationship between the amount of encapsulation of the entire discharge medium and the separation illuminating phenomenon and the arc oscillating 'in relation to the inner diameter D (mm) of the arc tube 2' is only filled with 75 &lt; PxD &lt; 2125 (in terms of Pascal (PASCAL) converts the amount of 75xl33.320&lt;PxD&lt;2125xl33.320). For example, when the inner diameter D = 15 mm, the sealing pressure of the rare gas is P = 5 torr (about 667 Pa) or more, and when the inner diameter D is 35 mm, the sealing pressure of the rare gas is preferably P = 60 torr (about 8000 Pa) or less. Further, when the inner diameter D = 25 mm, it is preferable to confirm the sealing pressure P = l 〇 torr (about 1 332 Pa) as a rare gas. When the amount of the rare gas to be enclosed is small, the blackening of the mercury is remarkably generated and the reliability is lowered. However, the PxD is made 75 or more, and the rare gas can be sealed until the degree of blackening is not maintained. Trust at this point. Further, it is easy to diffuse mercury and cesium iodide, and arc sway is not generated, and the light emission of the lamp can be stably maintained. On the other hand, when the amount of entrapment of the rare gas is increased until PxD exceeds 2,125, the start/restart characteristics of the lamp are deteriorated, and the separation luminescence is remarkably exhibited. Therefore, the rare gas is adjusted so that the gas pressure P and the tube diameter D become 75 &lt; Ρχ D &lt; 2 1 2 5 , and there is no reduction in the reliability of blackening, and separation light emission does not occur. Excellent metal halide lamps are also available in the starting and restarting characteristics. -10- 200931479 The following shows the experimental results when determining the most appropriate range of PxD [Example 1] [Table 3]

燈長:850mm燈內徑:25mm燈電流113.5A燈電壓:1130V 碘化鉈0.032mg/cc,水銀1.68mg/cc 封入氣體種類:氬 PxD 62.5 125 250 750 1000 1500 2000 2250 稀有氣體(torr) 2.5 5 10 30 40 60 80 90 分離發光有無 〇 〇 〇 〇 〇 〇 〇 Δ 起動·再起動 〇 〇 〇 〇 〇 〇 〇 Δ 信賴性(黑化) Δ 〇 〇 〇 〇 〇 〇 〇 評價 NG OK OK OK OK OK OK NG Ο 在實施例1中如上表所示地,針對於燈長8 5 0mm, 燈內徑 25mm的金屬鹵化物燈,將氬氣體封入成爲 2.5torr(約 3 3 3Pa)、5torr(約 667Pa) &gt; lOtorr(約 1 3 3 3Pa)、 30torr(約 4000Pa)、40torr(約 5328Pa)、60torr(約 8000Pa) 、80torr(約 1 0656Pa)、90torr(約 1 1 98 8Pa)的各個氣體壓 ,而進行發光試驗。 作爲該結果,在PxD(mmxtorr)爲62.5的金屬鹵化物 燈時,顯著地出現黑化而判定爲信賴性低者。又,在P X D(mmXt0rr)爲2250時雖未認出黑化,惟產生分離發光, 又,起動•再起動的動作特性也惡化,燈特性整體上被判 定爲不良者。 -11 - 200931479 對於這些,在PxD(mmxtorr)爲125〜2000的各金屬 鹵化物燈時,沒有分離發光,起動•再起動的動作特性也 良好,可確認表示沒有看到黑化的良好的燈特性。 [實施例2] [表4] 燈長:1 000mm燈內徑:25mm燈電流13.5A燈電壓:1 1 330V 碘化蛇〇.〇32mg/cc,水銀1.68mg/cc 封入氣體種類:氬Lamp length: 850mm lamp inner diameter: 25mm lamp current 113.5A lamp voltage: 1130V cesium iodide 0.032mg/cc, mercury 1.68mg/cc Sealed gas type: argon PxD 62.5 125 250 750 1000 1500 2000 2250 Rare gas (torr) 2.5 5 10 30 40 60 80 90 Separation and illuminance with or without 〇〇〇〇〇〇〇 Δ Start·Restart 〇〇〇〇〇〇〇Δ Reliability (blackening) Δ 〇〇〇〇〇〇〇Evaluation NG OK OK OK OK OK OK NG Ο In the first embodiment, as shown in the above table, for a metal halide lamp having a lamp length of 850 mm and a lamp inner diameter of 25 mm, argon gas was sealed to 2.5 torr (about 3 3 3 Pa) and 5 torr (about 667Pa) &gt; lOtorr (about 1 3 3 3Pa), 30torr (about 4000Pa), 40torr (about 5328Pa), 60torr (about 8000Pa), 80torr (about 1 0656Pa), 90torr (about 1 1 98 8Pa) of each gas pressure And the luminescence test was performed. As a result, when the PxD (mmxtorr) was a metal halide lamp of 62.5, blackening was remarkably observed, and it was judged that the reliability was low. In addition, when P X D (mmXt0rr) is 2250, blackening is not recognized, but separation light emission is generated, and the operational characteristics of starting and restarting are also deteriorated, and the lamp characteristics are generally determined to be defective. -11 - 200931479 In the case of each metal halide lamp with a PxD (mmxtorr) of 125 to 2000, there is no separation and light emission, and the operation characteristics of starting and restarting are also good, and it is confirmed that a good lamp indicating no blackening is observed characteristic. [Example 2] [Table 4] Lamp length: 1 000 mm lamp inner diameter: 25 mm lamp current 13.5 A lamp voltage: 1 1 330 V iodized snake 〇. 〇 32 mg/cc, mercury 1.68 mg/cc Sealed gas type: argon

PxD 62.5 125 250 750 1000 1500 2000 2250 稀有氣體(torr) 2.5 5 10 30 40 60 80 90 分離發光有無 〇 〇 〇 〇 〇 〇 〇 Δ 起動·再起動 〇 〇 〇 〇 〇 〇 △ X 信賴性(黑化) Δ 〇 〇 〇 〇 〇 〇 〇 評價 NG OK OX OK OK OK OK NGPxD 62.5 125 250 750 1000 1500 2000 2250 Rare gas (torr) 2.5 5 10 30 40 60 80 90 Separation and luminescence with or without 〇〇〇〇〇〇〇 Δ Start/restart 〇〇〇〇〇〇 △ X Reliability (blackening) ) Δ 〇〇〇〇〇〇〇 evaluation NG OK OX OK OK OK OK NG

在實施例2中如上表所示地,針對於燈長1 000mm, 燈內徑 25mm的金屬鹵化物燈,將氬氣體封入成爲 2.5torr(約 3 3 3Pa)、5torr(約 667Pa)、lOtorr(約 1 33 3Pa)、 30torr(約 4000Pa)、40torr(約 5 328Pa)、60torr(約 8000Pa) 、80torr(約 1 〇656Pa)、90torr(約 1 1 98 8Pa)的各個氣體壓 ,而進行發光試驗。 作爲該結果,在PxD(mmxtorr)爲62.5的金屬鹵化物 燈時,顯著地出現黑化而判定爲信賴性低者。又,在Px D(mmxt〇rr)爲2250時雖未認出黑化,惟產生分離發光, 又,起動•再起動的動作特性也顯著地惡化,燈特性整體 -12- 200931479 上被判定爲不良者。 對於這些,在PxD(mmxtorr)爲125〜1500的各金屬 鹵化物燈時,沒有分離發光,起動•再起動的動作特性也 良好,可確認表示沒有看到黑化的良好的燈特性。還有, 在PxD(mmxtorr)爲2000的金屬鹵化物燈時,雖在起動· 再起動特性上被認出稍降低,惟未產生分離發光,又也未 被認出黑化之故,因而燈特性整體上被判定爲良好者。In the second embodiment, as shown in the above table, for a metal halide lamp having a lamp length of 1 000 mm and a lamp inner diameter of 25 mm, argon gas was sealed to 2.5 torr (about 3 3 3 Pa), 5 torr (about 667 Pa), and 10 torr ( Luminescence test was carried out at various gas pressures of about 1 33 3 Pa), 30 torr (about 4000 Pa), 40 torr (about 5 328 Pa), 60 torr (about 8000 Pa), 80 torr (about 1 〇 656 Pa), and 90 torr (about 1 1 98 8 Pa). . As a result, when the PxD (mmxtorr) was a metal halide lamp of 62.5, blackening was remarkably observed, and it was judged that the reliability was low. In addition, when Px D (mmxt〇rr) is 2250, blackening is not recognized, but separation light is generated, and the operating characteristics of starting and restarting are remarkably deteriorated, and the lamp characteristics are determined as follows in the overall -12-200931479. Bad person. In the case of the metal halide lamps having a PxD (mmxtorr) of 125 to 1,500, there was no separation and light emission, and the operation characteristics of starting and restarting were also good, and it was confirmed that good lamp characteristics were not observed. In addition, in the case of a metal halide lamp having a PxD (mmxtorr) of 2000, although it is recognized that the start-and-restart characteristics are slightly lowered, no separation light is generated, and blackening is not recognized. The characteristics are judged to be good as a whole.

[實施例3] [表5] 燈長:1 1 000mm燈內徑:25mm燈電流13.5A燈電壓:1 33 0V 碑化銳〇.〇32mg/cc,水銀1.6 8mg/cc封入氣體種類:氣[Example 3] [Table 5] Lamp length: 1 1 000 mm lamp inner diameter: 25 mm lamp current 13.5 A lamp voltage: 1 33 0V Bethray sharp 〇 〇 32 mg / cc, mercury 1.6 8 mg / cc enclosed gas type: gas

PxD 625 125 250 750 1000 1500 2000 2250 稀有氣體(torr) 2.5 5 10 30 40 60 80 90 分離發光有無 〇 〇 〇 〇 〇 〇 〇 Δ 起動·再起動 〇 〇 〇 〇 〇 〇 Δ X 信賴性(黑化) Δ 〇 〇 〇 〇 〇 〇 〇 評價 NG OK OK OK OK OK OK NGPxD 625 125 250 750 1000 1500 2000 2250 Rare gas (torr) 2.5 5 10 30 40 60 80 90 Separation luminescence with or without 〇〇〇〇〇〇〇 Δ Start·restart 〇〇〇〇〇〇Δ X Reliability (blackening) ) Δ 〇〇〇〇〇〇〇 Evaluation NG OK OK OK OK OK OK NG

在實施例3中如上表所示地,針對於燈長1000mm, 燈內徑 25mm的金屬鹵化物燈’將氙氣體封入成爲 2.5torr(約 3 3 3Pa)、5torr(約 667Pa)、lOtorr(約 1 33 3Pa)、 30torr(約 4000Pa)、40torr(約 5 328Pa)、60torr(約 8000Pa) 、80torr(約 1 0656Pa)、90torr(約 1 1 988Pa)的各個氣體壓 ,而進行發光試驗。 -13- 200931479 作爲該結果,在PxD(mmxtorr)爲62.5的金屬鹵化物 燈時’顯著地出現黑化而判定爲信賴性低者。又,在Px D(mmxt〇rr)爲2250時雖未認出黑化,惟產生分離發光, 又’起動•再起動的動作特性也顯著地惡化,燈特性整體 上被判定爲不良者》 對於這些,在PxD(mmxtorr)爲 125〜1 500的各金屬 鹵化物燈時,沒有分離發光,起動•再起動的動作特性也 良好’可確認表示沒有看到黑化的良好的燈特性。還有, 在PxD(mmxtorr)爲2000的金屬鹵化物燈時,雖在起動· 再起動特性上被認出稍降低,惟未產生分離發光,又也未 被認出黑化之故,因而燈特性整體上被判定爲良好者。 [實施例4] [表6] 燈長:1 800mm燈內徑=25mm燈電流13、5A燈電壓:2400V 碘化銘〇.〇32mg/cc,水銀1.6 8mg/cc封入氣體種類:—In the third embodiment, as shown in the above table, for a metal halide lamp having a lamp length of 1000 mm and a lamp inner diameter of 25 mm, the helium gas is sealed into 2.5 torr (about 3 3 3 Pa), 5 torr (about 667 Pa), and lOtorr (about The luminescence test was carried out for each gas pressure of 1 33 3 Pa), 30 torr (about 4000 Pa), 40 torr (about 5 328 Pa), 60 torr (about 8000 Pa), 80 torr (about 10656 Pa), and 90 torr (about 11 988 Pa). -13-200931479 As a result, when the PxD (mmxtorr) was a metal halide lamp of 62.5, blackening was remarkably observed, and it was judged that the reliability was low. In addition, when Px D (mmxt〇rr) is 2250, blackening is not recognized, but separation light is generated, and the operation characteristics of 'starting and restarting are remarkably deteriorated, and the lamp characteristics are judged to be bad as a whole. In the case of each metal halide lamp having a PxD (mmxtorr) of 125 to 1 500, there is no separation and light emission, and the operation characteristics of starting and restarting are also good. It is confirmed that good lamp characteristics without blackening are observed. In addition, in the case of a metal halide lamp having a PxD (mmxtorr) of 2000, although it is recognized that the start-and-restart characteristics are slightly lowered, no separation light is generated, and blackening is not recognized. The characteristics are judged to be good as a whole. [Example 4] [Table 6] Lamp length: 1 800 mm lamp inner diameter = 25 mm lamp current 13, 5 A lamp voltage: 2400 V Iodized 〇 〇 〇 32 mg / cc, mercury 1.6 8 mg / cc enclosed gas type: -

PxD 625 125 250 750 1000 1875 2125 2250 稀有氣體(torr) 25 5 10 30 40 75 85 90 分離發光有無 〇 〇 〇 〇 〇 〇 Δ Δ 起動·再起動 〇 〇 〇 〇 〇 〇 Δ Δ 信賴性(黑化) △ 〇 〇 〇 〇 〇 〇 〇 評價 NG OK OK OK OK OK OK NGPxD 625 125 250 750 1000 1875 2125 2250 Rare gas (torr) 25 5 10 30 40 75 85 90 Separation and luminescence with or without 〇〇〇〇〇〇 Δ Start·Restart 〇〇〇〇〇〇Δ Δ Reliability (blackening) ) △ 〇〇〇〇〇〇〇 Evaluation NG OK OK OK OK OK OK NG

在實施例4中如上表所示地,針對於燈長1 8 0 0 m m, 燈內徑 25mm的金屬鹵化物燈,將氬氣體封入成爲 -14- 200931479 2.5torr(約 333Pa)、5torr(約 667Pa)、lOtorr(約 1 33 3Pa)、 30torr(約 4000Pa) 、 40torr(約 5328Pa) 、 75torr(約 lOOOOPa)、85torr(約 1 1 3326Pa)、90torr(約 1 1 988Pa)的各 個氣體壓,而進行發光試驗。 作爲該結果,在PxD(mmxtorr)爲62.5的金屬鹵化物 燈時,顯著地出現黑化而判定爲信賴性低者。又,在Ρχ D(mmxt〇rr)爲2250時雖未認出黑化,惟產生分離發光, 又,起動•再起動的動作特性也顯著地惡化,燈特性整體 上被判定爲不良者。 對於這些,在 PxD(mmxtorr)爲 125〜1875的各金屬 鹵化物燈時,沒有分離發光,起動•再起動的動作特性也 良好’可確認表示沒有看到黑化的良好的燈特性。還有, 在PxD(mmxtorr)爲2125的金屬鹵化物燈時,雖在起動· 再起動特性上被認出稍降低,惟未產生分離發光,又也未 被認出黑化之故,因而燈特性整體上被判定爲良好者。 [實施例5] [表7] 燈長:2000mm燈內徑125mm燈電流13.5 A燈電壓:2660V 碘化鉈0.032mg/cc,水銀1.68mg/cc封入氣體種類:氬In the fourth embodiment, as shown in the above table, for a metal halide lamp having a lamp length of 180 mm and a lamp inner diameter of 25 mm, the argon gas was sealed to be -14-200931479 2.5 torr (about 333 Pa), 5 torr (about 667Pa), lOtorr (about 1 33 3Pa), 30torr (about 4000Pa), 40torr (about 5328Pa), 75torr (about lOOOOPa), 85torr (about 1 1 3326Pa), 90torr (about 11 988Pa), and A luminescence test was performed. As a result, when the PxD (mmxtorr) was a metal halide lamp of 62.5, blackening was remarkably observed, and it was judged that the reliability was low. In addition, when Ρχ D (mmxt 〇rr) is 2250, blackening is not recognized, but separation light emission is generated, and the operation characteristics of starting and restarting are remarkably deteriorated, and the lamp characteristics are judged to be bad as a whole. In the case of the respective metal halide lamps having a PxD (mmxtorr) of 125 to 1875, there is no separation light emission, and the operation characteristics of starting and restarting are also good. It is confirmed that good lamp characteristics of blackening are not observed. In addition, in the case of a metal halide lamp having a PxD (mmxtorr) of 2125, although it is recognized that the start-and-restart characteristics are slightly lowered, no separation light is generated, and blackening is not recognized. The characteristics are judged to be good as a whole. [Example 5] [Table 7] Lamp length: 2000 mm lamp inner diameter 125 mm lamp current 13.5 A lamp voltage: 2660 V cesium iodide 0.032 mg/cc, mercury 1.68 mg/cc enclosed gas type: argon

PxD 625 125 250 750 1000 1875 2125 2250 稀有氣體(torr) 25 5 10 30 40 75 85 90 分離發光有無 〇 〇 〇 〇 〇 〇 〇 Δ 起動·再起動 〇 〇 〇 〇 〇 〇 △ Δ 信賴性(黑化) Δ 〇 〇 〇 〇 〇 〇 〇 評價 NG OK OK OK OK OK OK NG -15- 200931479 在實施例5中如上表所示地,針對於燈長2000mm, 燈內徑 25 mm的金屬鹵化物燈,將氬氣體封入成爲 2.5torr(約 3 3 3Pa)、5torr(約 667Pa)、lOtorr(約 1 3 3 3 Pa)、 30torr(約 40〇〇pa)、40torr(約 532 8Pa)、75torr(約 lOOOOPa)、85torr(約 1 1 3 32Pa)、90torr(約 1 1 988Pa)的各 個氣體壓,而進行發光試驗。 作爲該結果,在PxD(mmxtorr)爲62.5的金屬鹵化物 燈時,顯著地出現黑化而判定爲信賴性低者。又,在Px D(mmxt〇r〇爲2250時雖未認出黑化,惟產生分離發光, 又,起動•再起動的動作特性也顯著地惡化,燈特性整體 上被判定爲不良者。 對於這些,在 PxD(mmxtorr)爲 125〜1 875的各金屬 鹵化物燈時,沒有分離發光,起動•再起動的動作特性也 良好,可確認表示沒有看到黑化的良好的燈特性。還有, 在PxD(mmxtorr)爲2125的金屬鹵化物燈時,雖在起動· 再起動特性上被認出稍降低,惟未產生分離發光,又也未 被認出黑化之故,因而燈特性整體上被判定爲良好者。 (實施形態2) 以下,針對於本發明的第2實施形態加以說明。在該 實施形態中’提供可將800mm以上的發光長的金屬鹵化 物燈不會產生電弧擺動而穩定進行點燈的放電燈,點燈裝置 -16- 200931479 如在上述的第1實施形態加以說明,在氣密 內作爲放電媒體封入稀有氣體,水銀與鐵及碘化 電用電極設置於發光管的管軸方向的兩端的金屬 ,是藉著包含鐵而在350nm〜40 0nm近旁可具有 度的紫外線發光之故,因而作爲使用於紫外線硬 硬化,或是用以對於近年來市場用途高的功能性 膜的光反應的光源有用者。 然而,此種金屬鹵化物燈,是在點燈中有水 鉈的發光分離,或是藉由燈長而容易產生電弧擺 點。 該電弧擺動是放電中的電弧不會筆直而對於 成爲彎彎曲曲的狀態的現象。若發生該電弧擺動 壓會變動,又藉著發光管溫度的上升,在發光管 光管發生膨脹等的不方便。 作爲電弧擺動的發生要因眾知有音響共鳴。 電源電壓的頻率發生週期性輸入的增減從電弧朝 生著依電漿(水銀蒸汽)所致的粗密波(輸入增加 而減少時爲粗。同時地,對於進行波至燈管壁, 反射回流發生反射波。藉由該兩個波進行干涉, 分佈在時間上不會變化的駐波。若發生這種駐波 燈管內的壓力的不均句會把電弧狀態作成不穩定 電弧擺動(彎曲)。 在本實施形態中,在氣密的發光管內作爲放 入稀有氣體,水銀及碘化鉈,而在上述發光管的 的發光管 鉈,將放 鹵化物燈 高發光強 化塗料的 高分子薄 銀與碘化 動的問題 燈軸方向 ,則燈電 產生在發 燈是藉著 燈管壁發 時爲密, 而在管壁 發生壓力 ,則使得 ,而發生 電媒體封 管軸方向 -17- 200931479 的兩端設置放電用電極的對於發光長800mm以上的金屬 鹵化物燈,對於該燈的放電用電極。藉由電子穩定器饋電 矩形波電壓,電流,藉此,可將時間軸的輸入電壓,電流 的變動作成均勻,而可穩定地維持燈的發光。 以下,使用第2圖詳細地說明本實施形態的放電燈。 紫外線(UV)放電燈52是金屬鹵化物燈,在具有紫外線透 射性的石英製的發光管520的內部,例如配置有鎢、鉬、 @ 鉈等的耐火性金屬或是不鏽鋼,鈦等的金屬製電極521, 522,而外部分別設有燈座523,524,表示於金屬鹵化物 燈52的規定的一例子,爲外管徑27.5mm,管厚1.5mm, 發光長 1 000mm,燈電壓 1 100V,燈電流値 11.0A。又, 在本發明中,發光管520的發光長L爲可採用L2 800mm 者。 在發光管520的內部,封入氬(Ar)氣體壓lOTorr(約 1 3.3 322Pa)的稀有氣體,以水銀l.68mg/cc以下,碘化鉈 ❹ (Tll)0.01mg/cc以下。碘化蛇是在波長 352nm,365nm, 378nm附近,尤其是在波長352nm,378nm附近具有很大 的發光峰値。 在銳(T1)是在 352nm,365nm,378nm的波長領域內 具有強亮線光譜,而具有減少水銀的發光強度的效果,所 以’抑制3 13nm的水銀發光,並可將相對性地增加340〜 4 OOnm的波長領域的發光的紫外線。因此,當將本實施形 態的金屬鹵化物燈52在液晶面板製造中,利用在照射紫 外線而聚合紫外線反應材料俾將配向膜形成於玻璃板上的 -18- 200931479 過程,則可減低對於液晶面板的特性有很大影響的波長 域3 40nm以下的紫外線照射。 本實施形態的放電燈點燈裝置的點燈電路54,是 交流電源541及將該交流電源541的電壓電流作成穩定 矩形波而施加於金屬齒化物燈52的兩端電極521,522 電子穩定器542所構成。亦即,將金屬鹵化物燈52的 端管座523,5 24分子裝在饋電側燈座531,532,而從 子穩定器542饋電於該饋電側燈座531,532,而進行 燈金屬齒化物燈5 2。 將電子穩定器5 42的詳細構成表示於第4圖。電子 定器542是具備:對於交流電流541的電源輸入端子 ,抑制湧浪電壓的輸入濾波器62,整流交流的全波整 器63,對於整流電流的低頻濾波器64,直流-直流變 成所定電壓的直流的DC/DC換流器65,切換極性的極 切換器66,對於輸出電流的輸出濾波器67,以及點引 68,燈連接用的輸出端子HV1,HV2連接於點引器68 又,具備冷卻風扇69。另一方,爲了電子控制電子穩 器542,具備:控制用電源71,DC/DC換流器65,極 切換器66,用以控制冷卻風扇69的類比控制電路72, 電腦控制電路73,操作面板電路74。又,微電腦控制 路73是與輸出入訊號用連接器75相連接。 在本實施形態的放電燈點燈裝置,在該電子穩定 5 42將交流電源541的交流變換成所定頻率的矩形波電 ,矩形波電流而饋電於金屬鹵化物燈52的兩端的放電 領 由 的 的 兩 電 點 穩 61 流 換 性 器 〇 定 性 微 電 器 壓 用 -19- 200931479 電極5 2 1,5 22俾將此予以放電點燈。 依照本實施形態的放電燈點燈裝置,如上述地以電子 穩定器542將矩形波電壓,電流饋電於發光長800mm以 上的金屬鹵化物燈52,就可將時間軸的輸入電壓,電流 的變動作成均句,而可穩定地維持金屬齒化物燈52的發 光。 (實施例1) 對於將氬(Ar)氣體壓 lOTorr(約 1 3.3 322Pa)的稀有氣 體,水銀1.68mg/cc,換化館(Tll)0.012mg/cc封入在外管 徑φ 27.5mm,管厚1.5mm,發光長800mm的發光管內部 的金屬鹵化物燈,在電子穩定器施加頻率1〇 0Hz的矩形波 電壓,電流進行點燈,惟可維持沒有電弧擺動的穩定的點 燈。第5(a)圖是表示起動時無負荷燈電壓波形,而第5(b) 圖是表示剛點燈後的燈電流波形。又,第5圖是表示點燈 中的燈電流波形,藉此可知點燈中得到穩定的燈電流。 (比較例1) 與實施例1同樣地,對於外管徑 27.5mm,管厚 1.5mm,發光長800mm的發光管的內部封入Hg,Fe,Sn ,Hgl2,Ar氣體壓lOTorr(約1 3.3 322Pa)的金屬鹵化物燈 ,在抗流線圏穩定器施加頻率50Hz的正弦波電壓,電流 進行點燈,惟發生電弧擺動,無法得到穩定的點燈。 -20- 200931479 (實施例2) 對於將氬(Ar)氣體壓lOTorr (約13.3322Pa)的稀有氣 體,水銀1.68mg/cc,碘化鉈(Tll)0.032mg/cc封入在外管 徑φ 27.5mm,管厚l_6mm,發光長1300mm的發光管內部 的金屬鹵化物燈,在電子穩定器施加頻率10 0Hz的矩形波 電壓,電流進行點燈,惟可維持沒有電弧擺動的穩定的點 燈。第6圖是表示點燈中的燈電流波形,藉此可知點燈中 得到穩定的燈電流。 (比較例2) 對於與實施例2同樣的金屬鹵化物燈,在抗流線圈穩 定器施加頻率50Hz的正弦波電壓,電流進行點燈,惟發 生電弧擺動,無法得到穩定的點燈。 (實施形態3) φ 以下針對於本發明的第3實施形態加以說明。該實施 形態,是有關於使用在可照射300nm〜330nm波長的光的 紫外線照射裝置的金屬鹵化物燈者。 在上述的各實施形態的金屬鹵化物燈中,可照射的光 波長爲340nm〜40〇nm附近,無法以其他波長進行照射。 然而,在液晶面板等的製造中,也使用藉由更短的短波長 的3 00nm〜3 3 0nm波長的紫外線使之硬化的功能性薄膜等 的樹脂之故,因而也被要求有效率地且穩定地發光該領域 的光的長狀金屬鹵化物燈。 -21 - 200931479 在入。 。 , 封上 圖 求’以 成 要又 C 。構 種,g/c明的 此中mg說燈 於燈 〇 以物 對物0.加化 , 化入態鹵 中鹵封形屬 燈屬種施金 物金一實的 化的少本態 鹵鉈至明形 屬化中說施 金碘鋅來實 的與,式本 態銀鈷圖示 形水,照表 施有鉍參圖 實入, , 8 該封錳下第 在被,以在 少銦 至有 表示著金屬鹵化物燈10,及稀有氣體11,及氣密容器12 ,及電極13、14,及引入線15。 在紫外線透射性的石英所構成的單重管的氣密容器 12使用鎢所構成的一對電極13,14,而在該氣密容器12 的內部空間封入例如氬氣體封入作爲稀有氣體11。 在該構成的金屬鹵化物燈10中,在至少封入有水銀 與碘化鉈的金屬鹵化物燈,其特徵爲:放電管的內徑D 爲 D S 30mm左右,且每一單位長度的輸入(W/cm)爲 60W/cm以上,又,穩定點燈時的電位傾度D(V/cm),爲 以 9&lt;D&lt;3 0進行點燈時,則銦,錳,鉍的各個封入量 M(mg/cc)爲 M2 0.01mg/cc。 具體上,將金屬鹵化物燈10例如作爲外管徑27.5mm ,管厚1.5mm,發光長1000mm,並將該金屬齒化物燈10 的燈電壓作爲1275V,燈電流値作爲13.5A,又分別封入 銦,锰,鉍 0.02mg/cc。藉此,可實現波長爲 300nm〜 3 30nm的發光,且可實現在金屬鹵化物燈1〇的長度軸方 向不會發生分光或照度的偏差(分離發光)的金屬鹵化物燈 〇 又,針對於封入在金屬鹵化物燈10的氣密容器12的 -22- 200931479 內部空間的物質,針對於各個物質的發光時的波長參照第 9圖至第16圖加以說明。在這些的第9圖至第16圖中, 在縱軸將亮度(強度)以%顯示,而在橫軸表示光的波長 (nm) 〇 首先,在第9圖表示將鈷(Co)封入在金屬鹵化物燈 10的內部空間的情形,其發光時的波長分佈。鈷的情形 ,是約在3 00nm〜3 3 0nm附近存在著波長的峰値,可確認 @ 該波長的發光。 又,在第10圖表示將銦(In)封入在金屬鹵化物燈1〇 的內部空間的情形,其發光時的波長分佈。銦的情形,也 是與鈷同樣地在約300nm〜330nm的範圍出現峰値。 又,在第1 1圖表示將鉍(Bi)封入在金屬鹵化物燈1〇 的內部空間的情形,其發光時的波長分佈。鉍的情形,也 是與鈷或銦同樣在3 00nm〜3 3 0nm附近存在著波長的峰値 ,可確認該波長的發光。 Q 又,在第12圖表示將鋅(Zn)封入在金屬鹵化物燈1〇 的內部空間的情形,其發光時的波長分佈。鋅的情形在約 300nm〜330nm的範圍具有峰値。 又,在第13圖表示將錳(Μη)封入在金屬幽化物燈1〇 的內部空間的情形,其發光時的波長分佈。錳的情形在約 270 nm〜330 nm的波長範圍具有峰値。 又,表示鈷(Co)、銦(In)、鉍(Bi)、鋅(Zn)、錳(Μη) 的各個發光時的波長特性,惟其他在鈦(Ti)、銻(Sb)、矽 (Si)的發光時,也在3 00nm〜3 3 0nm的波長具有峰値的可 -23- 200931479 能性。 以下,將習知的鐵金屬鹵化物燈與本發明的金屬鹵化 物燈,以各個發光時的波長分佈加以比較的圖表表示於第 1 4圖及第1 5圖。 首先,在第14圖是表示重疊依習知的鐵(Fe)的金屬 鹵化物燈的發光時的波長分佈特性,及已在第9圖與第 10圖分別表示鈷(Co)與銦(In)的波長的分佈特性。圖中的 粗寬度實線爲鐵(F e) *而中寬度實線爲表不姑(C 〇) ^又細 寬度實線表示銦(In)。 在該第14圖,依鐵的波長的峰値是存在於大約 3 60nm〜370nm。對於此,可知鈷與銦都在3 0 0 nm〜3 3 0 nm 的範圍的波長。同樣地,與鐵相比較,鉍與鋅都在300nm 〜3 3 0nm的範圍在發光波長表示峰値。又,在第16圖中 ,與鐵相比較,錳在300nm〜330nm的範圍內表示發光波 長的峰値。 如此地,在本發明的金屬鹵化物燈中,配合銦、錳、 鉍、鋅、鈷的任一經以選擇而封入時,將各該情形的各物 質的封入量作爲〇.〇1 mg/cc以上,就可抑制在長度方向容 易發生的分離發光,而且有效率地可放射3 00nm〜3 3 0nm 的發光。 又,較佳爲依水銀量的比率,惟此些物質的封入量總 計是〇 . 1 m g / c c以下較佳。又,在金屬鹵化物燈分別封入 0.3mg/cc以上姻、鐘、鉍時,則藉由水銀與銦、猛、鉍的 各個擴散效率降低,會發生發光分離。藉此,在長度方向 -24 - 200931479 發生發光分離,無法滿足燈性能,惟作爲總計封入 0.1 mg/cc以下的封入量,就可使得金屬鹵化物燈的發光特 性穩定而得到300nm〜330nm的波長的發光。因此,可適 用在例如在習知的波長上無法適用的功能性薄膜的製程的 燈照射。 依照以上所說明的本發明的第3實施形態,可提供可 照射300nm〜3 3 0nm的波長的光的金屬鹵化物燈。 〇 【圖式簡單說明】 第1圖是表示本發明的第1實施形態的金屬鹵化物燈 的前視圖。 第2(a)圖至第2(g)圖是表示本發明的第1實施形態的 金屬鹵化物燈的分光分佈的圖表。 第3圖是表示本發明的第2實施形態的放電燈及點燈 裝置的全體構成的方塊圖。 Q 第4圖是表示圖示於第3圖的電子穩定器的構成的方 塊圖。 第5 (a)圖是表示第2實施形態的放電燈的起動時無負 荷燈電壓波形圖,第5(b)圖是表示相同剛點燈後的燈電流 波形圖。 第6圖是表示本發明的第2實施形態的點燈中的燈電 流波形圖。 第7圖是表示本發明的第2實施形態的點燈中的燈電 流波形圖。 -25- 200931479 第8圖是表示本發明的第3實施形態的金屬鹵化物燈 的構成圖。 第9圖是表示用以說明本發明的第3實施形態的金屬 鹵化物燈的鈷的發光波長分佈的圖表。 ' 第10圖是表示本發明的第3實施形態的金屬鹵化物 燈的銦的發光波長分佈的圖表。 第11圖是表示本發明的第3實施形態的金屬鹵化物 &amp; 燈的鉍的發光波長分佈的圖表。 第12圖是表示本發明的第3實施形態的金屬鹵化物 燈的鋅的發光波長分佈的圖表。 第13圖是表示本發明的第3實施形態的金屬鹵化物 燈的錳的發光波長分佈的圖表。 第14圖是表示用以比較本發明的第3實施形態的金 屬鹵化物燈的鐵,鋁,銦的發光波長分佈的圖表。 第15圖是表示用以比較本發明的第3實施形態的金 0 屬鹵化物燈的鐵,鉍,錳的發光波長分佈的圖表。 第16圖是表示用以比較本發明的第3實施形態的金 屬鹵化物燈的鐵,錳的發光波長分佈的圖表。 【主要元件符號說明】 1 :金屬鹵化物燈 2 :發光管 3,4 :電極 5,6 :燈座 -26- 200931479 1 〇 :金屬鹵化物燈 1 1 :稀有氣體 1 2 :氣密容器 1 3,1 4 :電極 15 :引入線 5 2 :金屬鹵化物燈 5 20 :發光管 521, 522 :電極 523, 524 :燈座 5 4 :點燈電路 541 :交流電源 542 :電子穩定器PxD 625 125 250 750 1000 1875 2125 2250 Rare gas (torr) 25 5 10 30 40 75 85 90 Separation and luminescence with or without 〇〇〇〇〇〇〇 Δ Start·Restart 〇〇〇〇〇〇 Δ Δ Reliability (blackening) Δ 〇〇〇〇〇〇〇 evaluation NG OK OK OK OK OK OK NG -15- 200931479 In the fifth embodiment, as shown in the above table, for a metal halide lamp having a lamp length of 2000 mm and a lamp inner diameter of 25 mm, The argon gas is sealed into 2.5 torr (about 3 3 3 Pa), 5 torr (about 667 Pa), lOtorr (about 1 3 3 3 Pa), 30 torr (about 40 〇〇pa), 40 torr (about 532 8 Pa), 75 torr (about 1000 Pa) The luminescence test was carried out for each gas pressure of 85 torr (about 1 1 3 32 Pa) and 90 torr (about 11 988 Pa). As a result, when the PxD (mmxtorr) was a metal halide lamp of 62.5, blackening was remarkably observed, and it was judged that the reliability was low. In addition, when Px D (mmxt〇r〇 is 2250), blackening is not recognized, but separation light emission is generated, and the operation characteristics of starting and restarting are remarkably deteriorated, and the lamp characteristics are judged to be bad as a whole. When the metal halide lamps of the PxD (mmxtorr) are 125 to 1 875, there is no separation and light emission, and the operation characteristics of starting and restarting are also good, and it is confirmed that good lamp characteristics are not observed. In the case of a metal halide lamp having a PxD (mmxtorr) of 2125, the starting and restarting characteristics are slightly lower, but no separation light is generated, and blackening is not recognized. Therefore, the lamp characteristics are overall. (Embodiment 2) Hereinafter, a second embodiment of the present invention will be described. In the embodiment, a metal halide lamp capable of emitting light of 800 mm or longer is not provided with an arc swing. A discharge lamp that is stably turned on, and a lighting device-16-200931479. As described in the first embodiment, a rare gas is sealed as a discharge medium in an airtight state, and mercury and iron and an iodine electric electrode are disposed in the hair. The metal at both ends in the tube axis direction of the light pipe is ultraviolet light-emitting with a degree of 350 nm to 40 nm near the iron, and thus is used for ultraviolet hardening or for use in recent years. The functional film is useful for the light source of the photoreaction. However, such a metal halide lamp has a luminescent separation of water in the lighting, or an arc pendulum is easily generated by the length of the lamp. The arc in the discharge does not become straight and is in a state of being bent and bent. If the arc swing pressure fluctuates, and the temperature of the arc tube rises, it is inconvenient to expand the light pipe of the arc tube. The occurrence of the oscillation is due to the sound resonance of the public. The frequency of the power supply voltage is increased or decreased by the periodic input from the arc toward the coarse wave caused by the plasma (mercury vapor) (the input is increased and the thickness is reduced. Meanwhile, for the Waves are applied to the wall of the lamp, and reflected waves are reflected by the reflow. By the interference of the two waves, distributed waves that do not change in time are distributed. The unevenness of the internal pressure causes the arc state to be an unstable arc swing (bending). In the present embodiment, a rare gas, mercury, and cesium iodide are placed in the airtight light-emitting tube, and the light-emitting tube is placed in the light-emitting tube. The light-emitting tube 铊, which will discharge the halide light, the high-light-enhanced coating, the polymer, the thin silver, and the iodine, the problem of the lamp axis, and the lamp is generated when the lamp is made by the wall of the lamp, and When a pressure occurs on the tube wall, a metal halide lamp having a discharge length of 800 mm or more is provided at both ends of the dielectric tube sealing axis direction -17-200931479, and an electrode for discharge of the lamp is used. The stabilizer feeds the rectangular wave voltage and current, whereby the input voltage of the time axis and the current can be changed to be uniform, and the illumination of the lamp can be stably maintained. Hereinafter, the discharge lamp of this embodiment will be described in detail using Fig. 2 . The ultraviolet (UV) discharge lamp 52 is a metal halide lamp. For example, a flame-resistant metal such as tungsten, molybdenum or @铊, or a metal such as titanium or titanium is disposed inside the quartz light-emitting tube 520 having ultraviolet transmittance. Electrodes 521, 522 are provided, and lamp holders 523, 524 are respectively provided on the outside, and are shown as an example of the metal halide lamp 52. The outer diameter is 27.5 mm, the tube thickness is 1.5 mm, the luminous length is 1 000 mm, and the lamp voltage is 1 100V, lamp current 値 11.0A. Further, in the present invention, the luminous length L of the arc tube 520 is such that L2 800 mm can be used. Inside the arc tube 520, a rare gas having an argon (Ar) gas pressure of 10 Torr (about 13.3 322 Pa) is sealed, and mercury is at least 1.68 mg/cc, and cesium iodide (T11) is 0.01 mg/cc or less. Iodine snakes have large luminescence peaks at wavelengths of 352 nm, 365 nm, and 378 nm, especially around 352 nm and 378 nm. In sharp (T1), it has a strong bright line spectrum in the wavelength range of 352 nm, 365 nm, and 378 nm, and has the effect of reducing the luminous intensity of mercury, so 'suppresses the mercury emission of 3 13 nm, and can increase the relative increase by 340~ Luminous ultraviolet light in the wavelength range of 4 OOnm. Therefore, when the metal halide lamp 52 of the present embodiment is used in the production of a liquid crystal panel, the process of forming an alignment film on a glass plate by irradiating ultraviolet rays to polymerize the ultraviolet ray-reactive material, the process of -18-200931479 can be reduced. The characteristics of the wavelength domain 3 are greatly affected by ultraviolet radiation below 40 nm. The lighting circuit 54 of the discharge lamp lighting device of the present embodiment is an alternating current power source 541 and a voltage-current of the alternating current power source 541 is applied to the both ends of the metal toothed lamp 52. 542 constitutes. That is, the end sockets 523, 5 24 of the metal halide lamp 52 are mounted on the feed side lamp holders 531, 532, and the substabilizers 542 are fed to the feed side lamp holders 531, 532. Lamp metal toothed lamp 5 2. The detailed configuration of the electronic stabilizer 5 42 is shown in Fig. 4. The electronic constant device 542 is provided with an input filter 62 for suppressing the surge voltage with respect to the power supply input terminal of the alternating current 541, and a full-wave rectifier 63 for rectifying the alternating current. For the low-frequency filter 64 of the rectified current, the direct current-direct current becomes a predetermined voltage. a direct current DC/DC converter 65, a polarity switching pole switch 66, an output filter 67 for output current, and a tap 68, and output terminals HV1 and HV2 for lamp connection are connected to the dot puller 68. A cooling fan 69 is provided. On the other hand, in order to electronically control the electronic stabilizer 542, a control power source 71, a DC/DC converter 65, a pole switch 66, an analog control circuit 72 for controlling the cooling fan 69, a computer control circuit 73, and an operation panel are provided. Circuit 74. Further, the microcomputer control circuit 73 is connected to the input/output signal connector 75. In the discharge lamp lighting device of the present embodiment, the alternating current of the alternating current power source 541 is converted into a rectangular wave electric power of a predetermined frequency, and a rectangular wave current is fed to the discharge ends of the metal halide lamp 52. The two electrical points are stable. The current is stable. The current is reduced by -19- 200931479. The electrodes are 5 2 1,5 22 俾, and this is discharged. According to the discharge lamp lighting device of the present embodiment, the rectangular wave voltage and the current are fed by the electronic stabilizer 542 to the metal halide lamp 52 having an emission length of 800 mm or more, and the input voltage and current of the time axis can be obtained. The action is changed to a uniform sentence, and the light emission of the metal toothed lamp 52 can be stably maintained. (Example 1) For a rare gas in which an argon (Ar) gas was pressed at 10 Torr (about 13.3 322 Pa), mercury was 1.68 mg/cc, and the Twisting Chamber (Tll) 0.012 mg/cc was sealed in an outer diameter φ 27.5 mm, and the tube thickness was 1.5mm, a metal halide lamp inside the arc tube with a length of 800mm, a rectangular wave voltage of 1〇0Hz is applied to the electronic stabilizer, and the current is turned on, but a stable lighting without arc swing can be maintained. Fig. 5(a) is a diagram showing the no-load lamp voltage waveform at the time of starting, and Fig. 5(b) is a diagram showing the lamp current waveform immediately after the lighting. Further, Fig. 5 is a view showing a lamp current waveform in the lighting, whereby it is understood that a stable lamp current is obtained in the lighting. (Comparative Example 1) In the same manner as in Example 1, the inside of the arc tube having an outer diameter of 27.5 mm, a tube thickness of 1.5 mm, and an emission length of 800 mm was sealed with Hg, Fe, Sn, Hgl2, and Ar gas pressure of 10 Torr (about 13.3 322 Pa). The metal halide lamp is applied with a sine wave voltage of a frequency of 50 Hz in the anti-flow line 圏 stabilizer, and the current is turned on, but an arc swing occurs, and stable lighting cannot be obtained. -20- 200931479 (Example 2) For a rare gas in which an argon (Ar) gas is pressed at 10 Torr (about 13.3322 Pa), mercury is 1.68 mg/cc, and cesium iodide (T11) is 0.032 mg/cc, which is enclosed in an outer diameter φ 27.5 mm. The metal halide lamp inside the arc tube with a tube thickness of l_6mm and a length of 1300mm is applied with a rectangular wave voltage of a frequency of 10 Hz in the electronic stabilizer, and the current is turned on, but a stable lighting without arc swing can be maintained. Fig. 6 is a view showing the waveform of the lamp current in the lighting, whereby it is understood that a stable lamp current is obtained in the lighting. (Comparative Example 2) In the same metal halide lamp as in Example 2, a sinusoidal voltage having a frequency of 50 Hz was applied to the choke coil stabilizer, and the current was turned on, but an arc swing occurred, and stable lighting could not be obtained. (Embodiment 3) φ Hereinafter, a third embodiment of the present invention will be described. This embodiment is a metal halide lamp used in an ultraviolet irradiation device that can illuminate light having a wavelength of 300 nm to 330 nm. In the metal halide lamp of each of the above embodiments, the wavelength of the light that can be irradiated is in the vicinity of 340 nm to 40 〇 nm, and the irradiation cannot be performed at other wavelengths. However, in the production of a liquid crystal panel or the like, a resin such as a functional film which is cured by ultraviolet rays having a short wavelength of 300 nm to 300 nm is used, and therefore it is required to be efficiently and efficiently. A long metal halide lamp that steadily illuminates light in the field. -21 - 200931479 On. . , seal the picture and ask for it to be C. In the case of g/c, the medium in the g/c is said to be in the lamp 〇 〇 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 In the form of the genus of the genus, the ginseng iodine and zinc are used to form the water, and the silver-cobalt graphic water of the present state is applied according to the table, and the Mn ginseng is applied in the table. The metal halide lamp 10, and the rare gas 11, and the hermetic container 12, and the electrodes 13, 14 and the inlet 15 are shown. In the hermetic container 12 of a single tube composed of ultraviolet-transmitting quartz, a pair of electrodes 13 and 14 made of tungsten are used, and an argon gas is sealed in the internal space of the hermetic container 12 as a rare gas 11. In the metal halide lamp 10 of this configuration, a metal halide lamp in which at least mercury and cesium iodide are sealed is characterized in that the inner diameter D of the discharge tube is about 30 mm, and the input per unit length (W) /cm) is 60 W/cm or more, and the potential inclination D (V/cm) at the time of stable lighting is the sealing amount M of indium, manganese, and bismuth when lighting is performed at 9 &lt; D &lt; Mg/cc) is M2 0.01 mg/cc. Specifically, the metal halide lamp 10 is, for example, an outer tube diameter of 27.5 mm, a tube thickness of 1.5 mm, and an emission length of 1000 mm, and the lamp voltage of the metal toothed lamp 10 is 1275 V, and the lamp current 値 is 13.5 A, and is sealed separately. Indium, manganese, 铋 0.02 mg / cc. Thereby, it is possible to realize light emission having a wavelength of 300 nm to 3 30 nm, and it is possible to realize a metal halide lamp which does not cause spectroscopic or illuminance deviation (separated light emission) in the longitudinal axis direction of the metal halide lamp 1 〇 The substance enclosed in the inner space of -22-200931479 of the hermetic container 12 of the metal halide lamp 10 is described with reference to Figs. 9 to 16 for the wavelength of light emission of each substance. In the ninth to sixteenth drawings, the luminance (intensity) is shown in % on the vertical axis and the wavelength (nm) of light on the horizontal axis. First, in Fig. 9, cobalt (Co) is enclosed in In the case of the internal space of the metal halide lamp 10, the wavelength distribution at the time of light emission. In the case of cobalt, there is a peak of a wavelength around 300 nm to 3 30 nm, and it is confirmed that the wavelength is luminescence. Further, Fig. 10 shows a wavelength distribution in the case where indium (In) is sealed in the internal space of the metal halide lamp 1? In the case of indium, peaks are also present in the range of about 300 nm to 330 nm in the same manner as cobalt. Further, Fig. 1 shows a case where the bismuth (Bi) is sealed in the internal space of the metal halide lamp 1 ,, and the wavelength distribution at the time of light emission. In the case of ruthenium, the peak of the wavelength is present in the vicinity of 300 nm to 3 30 nm similarly to cobalt or indium, and the light emission at this wavelength can be confirmed. Q. In Fig. 12, the case where zinc (Zn) is sealed in the internal space of the metal halide lamp 1 ,, the wavelength distribution at the time of light emission. The case of zinc has a peak in the range of about 300 nm to 330 nm. Further, Fig. 13 is a view showing a case where manganese (?n) is sealed in the internal space of the metal sinus lamp 1?, and the wavelength distribution at the time of light emission. The case of manganese has a peak in the wavelength range of about 270 nm to 330 nm. Further, the wavelength characteristics of each of cobalt (Co), indium (In), bismuth (Bi), zinc (Zn), and manganese (Mn) are shown, but other things are titanium (Ti), antimony (Sb), and antimony ( When illuminating Si), it also has a peak 可-23-200931479 at a wavelength of 300 nm to 3 30 nm. Hereinafter, a graph in which a conventional iron metal halide lamp and a metal halide lamp of the present invention are compared in a wavelength distribution at the time of each light emission is shown in Figs. 4 and 15 . First, Fig. 14 is a view showing wavelength distribution characteristics when light is emitted by a conventional metal halide lamp of iron (Fe), and has shown cobalt (Co) and indium (In, respectively) in Figs. 9 and 10, respectively. The distribution characteristics of the wavelength. In the figure, the solid line of the thick width is iron (F e) * and the solid line of the middle width is the table (C 〇) ^ and the thin line indicates the indium (In). In Fig. 14, the peak of the wavelength of iron is present at about 3 60 nm to 370 nm. For this, it can be seen that both cobalt and indium have wavelengths in the range of 300 nm to 3 30 nm. Similarly, both yttrium and zinc have peaks at the emission wavelength in the range of 300 nm to 3 30 nm compared with iron. Further, in Fig. 16, manganese has a peak of luminescence wavelength in the range of 300 nm to 330 nm as compared with iron. In the metal halide lamp of the present invention, when any one of indium, manganese, lanthanum, zinc, and cobalt is selectively encapsulated, the amount of each substance in each case is taken as 〇.〇1 mg/cc. As described above, it is possible to suppress separation light emission which is likely to occur in the longitudinal direction, and to efficiently emit light of 300 to 3300 nm. Further, it is preferably a ratio of the amount of mercury, but the total amount of the substances to be enclosed is preferably 〇 1 m g / c c or less. Further, when the metal halide lamp is sealed with 0.3 mg/cc or more, respectively, when the temperature is lowered, the diffusion efficiency of each of mercury, indium, lanthanum, and cerium is lowered, and luminescence separation occurs. Therefore, the light-emitting separation occurs in the length direction -24 - 200931479, and the lamp performance cannot be satisfied. However, as a total amount of the sealing amount of 0.1 mg/cc or less, the light-emitting characteristics of the metal halide lamp can be stabilized to obtain a wavelength of 300 nm to 330 nm. Luminous. Therefore, it is possible to apply lamp illumination of a process such as a functional film which is not applicable at a conventional wavelength. According to the third embodiment of the present invention described above, it is possible to provide a metal halide lamp which can illuminate light having a wavelength of 300 nm to 300 nm. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a front view showing a metal halide lamp according to a first embodiment of the present invention. Fig. 2(a) to Fig. 2(g) are graphs showing the spectral distribution of the metal halide lamp according to the first embodiment of the present invention. Fig. 3 is a block diagram showing the overall configuration of a discharge lamp and a lighting device according to a second embodiment of the present invention. Q Fig. 4 is a block diagram showing the configuration of the electronic stabilizer shown in Fig. 3. Fig. 5(a) is a waveform diagram showing the no-charge lamp voltage at the time of starting the discharge lamp of the second embodiment, and Fig. 5(b) is a diagram showing the waveform of the lamp current after the same lighting. Fig. 6 is a view showing a lamp current waveform in the lighting of the second embodiment of the present invention. Fig. 7 is a view showing a lamp current waveform in the lighting of the second embodiment of the present invention. -25-200931479 Fig. 8 is a view showing the configuration of a metal halide lamp according to a third embodiment of the present invention. Fig. 9 is a graph showing the emission wavelength distribution of cobalt in the metal halide lamp of the third embodiment of the present invention. Fig. 10 is a graph showing the emission wavelength distribution of indium of the metal halide lamp of the third embodiment of the present invention. Fig. 11 is a graph showing the emission wavelength distribution of ruthenium of the metal halide &amp; lamp of the third embodiment of the present invention. Figure 12 is a graph showing the emission wavelength distribution of zinc in the metal halide lamp of the third embodiment of the present invention. Figure 13 is a graph showing the emission wavelength distribution of manganese in the metal halide lamp of the third embodiment of the present invention. Figure 14 is a graph showing the emission wavelength distribution of iron, aluminum, and indium for comparison of the metal halide lamp of the third embodiment of the present invention. Fig. 15 is a graph showing an emission wavelength distribution of iron, lanthanum and manganese for comparing a gold halide lamp according to a third embodiment of the present invention. Fig. 16 is a graph showing an emission wavelength distribution of iron and manganese for comparing a metal halide lamp according to a third embodiment of the present invention. [Description of main components] 1 : Metal halide lamp 2 : Illuminated tube 3, 4 : Electrode 5, 6 : Lamp holder -26- 200931479 1 〇: Metal halide lamp 1 1 : Rare gas 1 2 : Hermetic container 1 3,1 4 : Electrode 15 : Lead-in wire 5 2 : Metal halide lamp 5 20 : Light-emitting tube 521, 522: Electrode 523, 524: Lamp holder 5 4: Lighting circuit 541: AC power supply 542: Electronic stabilizer

Claims (1)

200931479 十、申請專利範圍 l一種金屬鹵化物燈,係在氣密的發光管內作爲放電 媒體封入稀有氣體,水銀及碘化蛇,而在上述發光管的管 軸方向的兩端設置放電用電極,且發光長爲80〇mm以上 的金屬鹵化物燈,其特徵爲: 將上述水銀的封入量Mh(mg/cc),上述碘化鉈的封入 量Mt(mg/CC),分別選定在下述的範圍 ❹ 0.3mg/cc&lt;Mh&lt;5.0mg/cc 0.006mg/cc&lt;Mt&lt;0.048mg/cc 內者。 2·如申請專利範圍第1項所述的金屬鹵化物燈,其中 將上述發光管的內徑作爲Dmm,而將上述封入氣體 壓作爲Ptorr時,則將P及D之値,滿足下式 75&lt;PxD&lt;2125 〇 的方式加以選定。 3 .如申請專利範圍第1項所述的金屬鹵化物燈,其中 ,上述稀有氣體是氬氣體或是氙氣體。 4.如申請專利範圍第2項所述的金屬鹵化物燈,其中 ,上述稀有氣體是氣體或是氣氣體。 5 .如申請專利範圍第1項所述的金屬鹵化物燈,其中 ,作爲上述放電媒體,再封入銦、錳、鉍、鈷、鋅中的至 少1種爲0.01mg/cc以上。 6.—種放電燈點燈裝置,其特徵爲: -28- 200931479200931479 X. Patent Application Scope A metal halide lamp is provided with a discharge gas in a gas-tight light-emitting tube as a discharge medium, a mercury gas and an iodized snake, and a discharge electrode is disposed at both ends of the light-emitting tube in the tube axis direction. The metal halide lamp having a light emission length of 80 〇mm or more is characterized in that the sealing amount Mh (mg/cc) of the mercury and the sealing amount Mt (mg/CC) of the cerium iodide are selected as follows. The range is 0.3 mg/cc &lt; Mh &lt; 5.0 mg / cc 0.006 mg / cc &lt; Mt &lt; 0.048 mg / cc. 2. The metal halide lamp according to claim 1, wherein the inner diameter of the arc tube is Dmm, and when the sealed gas pressure is Ptorr, P and D are satisfied, and the following formula 75 &lt;; PxD &lt; 2125 〇 way to choose. 3. The metal halide lamp of claim 1, wherein the rare gas is argon gas or helium gas. 4. The metal halide lamp of claim 2, wherein the rare gas is a gas or a gas. The metal halide lamp according to the first aspect of the invention, wherein at least one of indium, manganese, lanthanum, cobalt and zinc is further encapsulated in the discharge medium to be 0.01 mg/cc or more. 6. A discharge lamp lighting device, characterized in that: -28- 200931479 具備:在氣密的發光管內作爲放電媒體封入稀有氣體 ,水銀及碘化鉈,而在上述發光管的管軸方向的兩端設置 放電用電極的發光長8 0 0mm以上的金屬鹵化物燈,及將 矩形波電壓,電流饋電至上述金屬鹵化物燈的上述放電用 電極的電子穩定器。 -29-A metal halide lamp having a discharge length of 800 mm or more in which discharge electrodes are provided at both ends in the tube axis direction of the arc tube in a gas-tight light-emitting tube, in which a rare gas, mercury, and cesium iodide are sealed as a discharge medium. And an electronic stabilizer that feeds a rectangular wave voltage and current to the discharge electrode of the metal halide lamp. -29-
TW097133355A 2007-09-03 2008-08-29 Metal halide lamps TW200931479A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007227496A JP2009059645A (en) 2007-09-03 2007-09-03 Discharge lamp lighting device
JP2007233034A JP2009064725A (en) 2007-09-07 2007-09-07 Metal halide lamp
JP2007246079A JP2009076396A (en) 2007-09-21 2007-09-21 Metal halide lamp

Publications (1)

Publication Number Publication Date
TW200931479A true TW200931479A (en) 2009-07-16

Family

ID=40693181

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097133355A TW200931479A (en) 2007-09-03 2008-08-29 Metal halide lamps

Country Status (2)

Country Link
KR (1) KR20090024082A (en)
TW (1) TW200931479A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI471895B (en) * 2012-07-27 2015-02-01 Iwasaki Electric Co Ltd Long arc metal halide lamp
TWI809171B (en) * 2018-12-27 2023-07-21 日商東芝照明技術股份有限公司 Metal halide lamp and ultraviolet irradiation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI471895B (en) * 2012-07-27 2015-02-01 Iwasaki Electric Co Ltd Long arc metal halide lamp
TWI809171B (en) * 2018-12-27 2023-07-21 日商東芝照明技術股份有限公司 Metal halide lamp and ultraviolet irradiation device

Also Published As

Publication number Publication date
KR20090024082A (en) 2009-03-06

Similar Documents

Publication Publication Date Title
JP5438996B2 (en) Mercury-free metal halide high-pressure discharge lamp
TW554376B (en) Low-pressure gas discharge lamp
CN1489177A (en) Optical source deivce
WO2010100935A1 (en) Vehicle discharge lamp, vehicle discharge lamp device, lighting circuit combined type vehicle discharge lamp device, and lighting circuit
JP2011134696A (en) Vehicle discharge lamp, vehicle discharge lamp device, lighting circuit combined type vehicle discharge lamp device, and lighting circuit
KR20100002216A (en) Starting aid for hid lamp
US7573203B2 (en) Mercury-free high-pressure discharge lamp and luminaire using the same
TW200931479A (en) Metal halide lamps
JPWO2003030211A1 (en) Metal halide lamp, metal halide lamp lighting device, and automotive headlamp device
CN1717142A (en) High pressure discharge lamp lighting apparatus
JP2009059645A (en) Discharge lamp lighting device
US6806648B2 (en) Light source device and liquid crystal display device
TWI359437B (en)
JP2009266574A (en) Ultraviolet discharge lamp
US8102107B2 (en) Light-emitting devices having excited sulfur medium by inductively-coupled electrons
US7417377B2 (en) Blended light lamp
JP2006294548A (en) Cold cathode fluorescent lamp
WO2011143134A2 (en) Improved fluorescent flat panel lamp for increased lumen output
JPH03250549A (en) Metal vapor electric discharge lamp
JP5304425B2 (en) UV radiation discharge lamp
JP4815585B2 (en) Fluorescent light source
JP2003223868A (en) Light source device and liquid crystal display device
TW201234412A (en) Metal halogen lamps and lighting device of metal halogen lamps
JPH1050251A (en) Fluorescent lamp, fluorescent lamp device, and lighting system
JP2004095378A (en) Dielectric barrier discharge type low-pressure discharge lamp