TW200930822A - Lead-free, free-machining brass having excellent castability - Google Patents

Lead-free, free-machining brass having excellent castability Download PDF

Info

Publication number
TW200930822A
TW200930822A TW097147832A TW97147832A TW200930822A TW 200930822 A TW200930822 A TW 200930822A TW 097147832 A TW097147832 A TW 097147832A TW 97147832 A TW97147832 A TW 97147832A TW 200930822 A TW200930822 A TW 200930822A
Authority
TW
Taiwan
Prior art keywords
less
phase
brass
content
amount
Prior art date
Application number
TW097147832A
Other languages
Chinese (zh)
Other versions
TWI452153B (en
Inventor
Toru Uchida
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2008/050145 external-priority patent/WO2009047919A1/en
Application filed by Toto Ltd filed Critical Toto Ltd
Publication of TW200930822A publication Critical patent/TW200930822A/en
Application granted granted Critical
Publication of TWI452153B publication Critical patent/TWI452153B/en

Links

Abstract

Disclosed is a brass which contains no lead (Pb), and which is excellent in cutting properties, castability, mechanical properties and others. Specifically disclosed is a brass comprising Cu at a content of 55 to 75 wt% (inclusive), Bi at a content of 0.3 to 4.0 wt% (inclusive), and B and Si at such contents that, when the contents of B and Si are represented by y wt% and x wt%, respectively, then y and x fulfill the relationship represented by the following formulae: 0=x=2.0, 0=y=0.3 and y > -0.15x+0.015ab [wherein a is a numeral number of 0.2, 0.85 or 1 when the content of Bi falls within the following range: 0.3=Bi < 0.75 wt%, 0.75=Bi < 1.5 wt% or 1.5=Bi=4.0 wt%, respectively; and b is a numeral number of 1 when the apparent Zn content is not less than 37 wt% and less than 41 wt%, and a numeral number of 0.75 when the apparent Zn content is 41 to 45 wt% (inclusive)], with the remainder being substantially Zn and unavoidable impurities. The brass has excellent castability, cutting properties, mechanical properties and others.

Description

200930822 九、發明說明 【發明所屬之技術領域】 本發明係關於一種不含鉛的黃銅,即無鉛黃銅,尤其 是關於一種因不含鉛而特別適合使用於水龍頭零件等的具 有優異的鑄造性、切削性及機械特性等的鑄造用黃銅。 【先前技術】 水龍頭零件通常以黃銅或青銅爲材料來製造,爲了提 昇其切削性在黃銅中添加2〜3wt%,青銅中添加4〜6wt %左右的鉛(Pb )。然而近年來開始擔心Pb對人體、環 境等的影響,各國積極開展對於Pb的限制做法。例如, 在美國加利福尼亞州,從2010年1月開始,使水龍頭的 Pb含量在0.25wt%以下的限制將開始生效。而且,據聞 針對Pb的溶出量將來也會限制至5ppm左右。在美國以 外的國家,該限制做法也很顯著,也要求開發出可對應於 上述Pb含量或Pb溶出量的限制的材料。 在日本特開平7-3 10133號公報(專利文獻1 )中, 由於鉍(Bi )在黃銅中顯示出與Pb類似的特性,所以提 出了添加Bi來取代Pb的黃銅。而且,在日本特開 2005-290475號公報(專利文獻2 )中,公開了在添加了 Bi的這一類黃銅中,爲了改善其切削性而添加蹦(B)、 鎳(Ni)等。另外,在日本特開2001-59123號公報(專 利文獻3)中,公開了在添加了 Bi的這一類黃銅中,藉 由添加鐵(Fe)而能夠使結晶更細化的見解。但是,上述 -4- 200930822 現有技術所公開的這一類黃銅,在其鑄造性,尤其是鑄造 時的破裂方面仍然存有改善的餘地。因此,可以說依然存 在著對於不含Pb,且具有優異的鑄造性、切削性及機械 特性等的黃銅的需求。 ' 專利文獻1 :日本特開平7-310133號公報 * 專利文獻2:日本特開2005-290475號公報 專利文獻3:日本特開2001-59123號公報 ❹ 【發明內容】 - 本發明人等獲得了一種新的見解就是:在藉由添加 • Bi來取代Pb的黃銅中,以規定的關係量來添加B及Si, 即能夠獲得可有效地防止鑄造破裂,並且具有優異的切削 性、機械特性及耐腐蝕性等的黃銅。而且,獲得了 一種新 的見解就是:通常爲了改善黃銅的特性而添加的Ni、A1 、Sn等添加元素對於鑄造破裂會產生影響,針對於該影 Q 響係可藉由以規定的關係量來添加B及Si就能夠防止鑄 造破裂。本發明是基於上述見解而開發完成的。 ' 從而,本發明的目的是提供一種不含Pb且具有優異 • 的鑄造性、切削性及機械特性等的黃銅。 另外,本發明所揭示的黃銅的特徵爲:結晶組織爲α +泠相的比例在8 5 %以上, 含Cu在55wt%以上75wt%以下, 含Bi在0.3wt%以上4.0wt%以下, 含B及Si分別爲ywt%及xwt%時,是符合下列關係 200930822 的量, OS 2.0、OS yS 0.3 及 y&gt; ·0·15χ + 0.015ab (此處,a 在 Bi 爲 0.3SBi&lt;0.75wt%、0.75; 1.5wt%、1.5SBiS4.0wt% 時,分別爲 0.2、0.85 及 ' b在表觀的Zn含量爲37%以上且小於41%時: • 爲41%以上45%以下時爲0.75), 另外,其餘部分實質上由Zn和不可避免的雜j 0 成的。 【實施方式】 [定義] 在本發明中,所謂“不可避免的雜質”只要是事 做特別說明的話,就是指小於o.iwt%的量的元素。 ,雖然 Sb、P、As、Mg、Se、Te、Fe、Co、Zr、Cr 包含於不可避免的雜質,但是其含量在本說明書中容 ❹ 加入分別另行規定的量。該不可避免的雜質的量以 0.05wt% 爲宜。 , [α 相· /3 相] 本發明所揭示的黃銅爲:α相和Θ相的合計比 85 %以上,在90 %以上爲宜。藉由成爲以α相和泠 主體的結晶組織,能夠實現具有良好鑄造性的黃銅。 ,本發明係以避免初晶α相的樹枝狀結晶爲宜。另外 本發明中,α相和yS相的合計比例以結晶斷面中的面200930822 IX. INSTRUCTIONS OF THE INVENTION [Technical Field] The present invention relates to a lead-free brass, that is, a lead-free brass, and particularly relates to an excellent casting which is particularly suitable for use in a faucet part or the like because it does not contain lead. Casting brass for properties, machinability and mechanical properties. [Prior Art] The faucet parts are usually made of brass or bronze. In order to improve the machinability, 2 to 3 wt% is added to the brass, and 4 to 6 wt% of lead (Pb) is added to the bronze. However, in recent years, attention has been paid to the impact of Pb on the human body, the environment, etc., and countries have actively carried out restrictions on Pb. For example, in California, starting from January 2010, the restriction that the Pb content of the faucet is below 0.25 wt% will come into effect. Moreover, it is reported that the amount of elution for Pb will be limited to about 5 ppm in the future. This limitation is also significant in countries outside the United States, and it is also required to develop materials that can correspond to the above Pb content or the amount of Pb elution. In Japanese Laid-Open Patent Publication No. Hei 7-3 10133 (Patent Document 1), since bismuth (Bi) exhibits characteristics similar to those of Pb in brass, it has been proposed to add Bi instead of Pb. Further, in Japanese Patent Publication No. 2005-290475 (Patent Document 2), it is disclosed that bismuth (B), nickel (Ni) or the like is added in order to improve the machinability of such a type of brass to which Bi is added. In Japanese Patent Laid-Open Publication No. 2001-59123 (Patent Document 3), it is disclosed that the addition of iron (Fe) in the type of brass to which Bi is added can make the crystal finer. However, the brass of this type disclosed in the prior art -4-200930822 still has room for improvement in its castability, especially in the case of casting. Therefore, it can be said that there is still a demand for brass which does not contain Pb and which has excellent castability, machinability and mechanical properties. [Patent Document 1] Japanese Unexamined Patent Publication No. Hei No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. 2001-59. A new insight is that in the brass in which Pb is replaced by adding Bi, B and Si are added in a predetermined relationship, that is, the casting crack can be effectively prevented, and the machinability and mechanical properties are excellent. And brass such as corrosion resistance. Moreover, a new insight is obtained: the addition of elements such as Ni, A1, Sn, etc., which are usually added to improve the properties of the brass, have an effect on the casting rupture, and the Q-ring system can be used in a prescribed relationship. Adding B and Si can prevent casting cracking. The present invention has been developed based on the above findings. Therefore, an object of the present invention is to provide a brass which does not contain Pb and which has excellent castability, machinability, mechanical properties and the like. In addition, the brass disclosed in the present invention is characterized in that the ratio of the crystal structure to the α + 泠 phase is 85 % or more, the Cu content is 55 wt% or more and 75 wt % or less, and the Bi content is 0.3 wt% or more and 4.0 wt % or less. When B and Si are ywt% and xwt%, respectively, the amount is in accordance with the following relationship 200930822, OS 2.0, OS yS 0.3 and y&gt; ·0·15χ + 0.015ab (here, a is 0.3SBi&lt;0.75wt in Bi %, 0.75; 1.5wt%, 1.5SBiS4.0wt%, respectively 0.2, 0.85 and 'b when the apparent Zn content is 37% or more and less than 41%: • 0.75 or more and 45% or less is 0.75 In addition, the remainder is substantially composed of Zn and the unavoidable impurity j 0 . [Embodiment] [Definition] In the present invention, the term "inevitable impurities" means an element having an amount smaller than o.iwt% as long as it is specifically described. Although Sb, P, As, Mg, Se, Te, Fe, Co, Zr, and Cr are contained in unavoidable impurities, the contents thereof are separately added in the specification. The amount of the unavoidable impurities is preferably 0.05% by weight. [α phase · /3 phase] The brass disclosed in the present invention has a total ratio of the α phase to the Θ phase of 85 % or more, and preferably 90% or more. By having a crystal structure of the α phase and the ruthenium main body, it is possible to realize brass having good castability. The present invention is preferably to avoid dendritic crystals of the primary crystal α phase. Further, in the present invention, the total ratio of the α phase and the yS phase is the face in the crystal cross section.

Bi &lt; 1 ; ;1, 所組 :先未 但是 及Ti 1午添 小於 例在 相爲 而且 ,在 積比 -6- 200930822 爲基準,例如:對於由光學顯微鏡拍攝的結晶組織照片進 行圖像處理,來求出α相和θ相的合計面積比例。 [Bi] 本發明所揭示的黃銅含Bi在〇.3wt%以上4.0wt%以 ' 下的範圍內。由於Bi在黃銅中顯示出與Pb類似的特性, 所以可取代Pb賦予與其相同的切削性。在本發明中,爲 ❹ 了獲得良好的切削性,Bi爲0.3wt%以上。另一方面,如 果Bi過量,則存在著產生Bi凝聚的傾向,由於該凝聚的 部分可能會成爲鑄造破裂的起點,所以其上限爲4.0 wt % 。根據本發明的較佳實施方式,Bi的較佳下限値在0.5 wt %以上’如果考慮切削性,則以1 .Owt%尤佳,而且較佳 上限値在3.0wt%以下,以2.0wt%以下尤佳。 另外,根據本發明,即使完全不含有Pb也可實現良 好的切削性。最好是完全不含有Pb,即使假設含有,也 © 僅限於其作爲不可避免的雜質存在其中。具體爲,考慮到 人體及環境爲0.5 wt%以下,〇.1 wt%以下更佳。 • [B 及 Si] 在本發明中’ B可促進結晶(尤其初晶々相)的細化 ’結果Bi細小分散’能夠有效地防止鑄造時的破裂。而 且’ Sl固熔在沒相中,推測其具有可緩和成爲鑄造破裂 的起點的Bi與相的界面的破斷的作用。而且,本發明 所揭τκ的黃銅因該細化的結果,對於機械特性也表現出良 -7- 200930822 好的性能。 本發明所揭示的黃銅含有B及Si。其量以B及Si分 別爲ywt%及xwt%換算時,是符合〇SyS〇.3及〇$x客 2·〇,且y&gt;-0.15x+0.015ab的關係的量。此處,根據上 述的Bi的添加量及後述的表觀的Zn含量,恰當的B及 Si的含量會改變,因此,係數a及b表示其修正係數。具 體爲,係數a隨著Bi的量變化,在Bi爲 〇 〇.75wt%、〇.75SBi&lt;1.5wt%、1.5SBiS4.0wt% 時,分 別爲0.2、0.85及1。而且,係數b隨著表觀的Zn的釁變 化,在表觀的Zn含量爲37%以上且小於41%時爲1,爲 以上45%以下時則爲0.75。根據本發明的較佳實施 方式’ y及X是在0SyS0.03及0SXS1.8的範圍爲宣’ 在 O^ySO.Ol 及 0SxS1.5 的範圍,且符合 y&gt;-0.l5x + 〇.〇15ab的關係的量尤佳。雖然爲了實現使結晶細化的# 果需要添加上述下限値的B,但是添加過量的B可能會導 ^ 致合金延展性惡化,因此,其上限爲〇.3Wt%以下,以 . 0.03wt%爲宜,以o.oiwt%以下較佳。 而且,B與Fe、Cr等將會形成金屬間化合物,而形 成麻點,在鑄造後的成形品的表面加工時可能會產生問題 。從而在表面要求平滑性時,以減小B的添加量及/或減 小Fe、Cr等的含量爲宜,具體爲,B在0.005wt%以下’ 〇.〇〇3wt%以下尤佳,Fe、Cr等以少於O.lwt%爲宜。 而且,Si係如後所述,根據Guillet所提倡的Zn當 量爲10,表觀的Zn含量增加,結晶組織中可能會晶析出 -8- 200930822 r相或/c相运樣的異相。於是,根據本發明的其弓 施方式’ Si的添加量爲2.0wt%以下,上限爲1 下爲宜。 在本說明書中’表觀的Zn含量係意味著根據 所提倡的下列的數式算出的量。該數式係基於Zn ' 添加元素顯示出與Zn的添加具有相同的傾向之g 〇 ❾ 表觀的 Zn 含量(%) = [(B + tq)/(A + B + tq)]xl〇〇 式中,A = Cuwt%,B = Znwt%,t是添加元素白 量,q意味著添加元素的添加量wt %。另外,名 Zn 當量爲,Si=10 、 Al=6 、 Sn=2 、 Pb=l 、 Fe=0.9 、 、Ni = -1.3。Bi的Zn當量還沒有明確地規定,在才 中,參考文獻之後以0.6進行計算。而且,由於薛 的元素,其添加量微小,對Zn當量的値的影響也 Φ 所以爲“ 1”。 [Cu、Zn及其他成分] 本發明所揭示的黃銅含有銅(Cu) 55wt%以 %以下。如果Cu高於上述範圍,則可能會因發2 相的樹枝狀結晶所引起的裂紋。而且,如果Cu 1 範圍,則雖然很難受到α相的影響’但是可能會P 黃銅的性能。根據本發明的較佳實施方式’ Cu 6 58wt%爲宜,上限爲70wt%爲宜。 3 —種實 5wt% 以 Guillet 以外的 ΐ種想法 'Zn當 元素的 Μη=0.5 說明書 此以外 很小, 1 7 5 wt 初晶α 於上述 低作爲 下限爲 200930822 另外,如果能夠使表觀的Zn含量爲37〜45 %,將結 晶相調節爲α +沒相的比例在85 %以上,則也能以上述 範圍的上限部分來利用Cu量,因此,Cu量的上限變多。 本發明所揭示的黃銅爲,由上述成分所組成的部分以 外的其餘部分實質上係由鋅(Zn )所組成。 * 本發明所揭示的黃銅爲了改進黃銅的特性,可以含有 各種添加成分。而且,雖然在本發明中並不排除不可避免 U 的雜質的存在,但是還是使它們儘量減少爲宜。 根據本發明的一種實施方式,爲了提昇強度、耐腐蝕 性等,可添加Ni。爲了更有效地獲得因Ni的添加所引起 的強度、耐腐鈾性的提昇’添加Ni0.3wt%以上爲宜,另 一方面,從鑄造破裂的觀點出發,避免過量的Ni爲宜, 其上限係以2 · 0 wt %以下爲宜。 而且,根據本發明的較佳實施方式,Ni的添加量和 與其對應的B及Si的量如下所示,可分爲各種情況。 φ 含B及Si分別爲ywt%及xwt%時,是符合下列關係 的量, 0.1 S Ni &lt; 〇·3 wt% 時’ • (1) 〇.〇5abSxS0.75ab 時,0&lt;y$〇.3 (2) 〇.75ab &lt; x S 2.0 時,0 S y 各 0.3 0· 3 S Ni &lt; 1 -〇wt% 時, (1) 0.05abSxS0.2ab 時,-0.15x+〇.〇3ab&lt;yg〇.3 (2) 0.2ab&lt;xS0.75ab 時,〇&lt;yg〇.3 (3) 0.75ab&lt;xS1.75ab 時,y ^ 0.3 -10- 200930822 (4) 1.75ab &lt; x ^ 2.0 時 ’ 0 · 0 0 4 x - 0.0 0 7 ( 2 - ab ) &lt; y ^ 0.3 1 ·0 S Ni 刍 2.0wt% 時, (1) 0.05abSxS〇.2ab 時 ’ 〇.〇2ab&lt;yS0.3 (2) 0.2ab&lt;xS0.3ab 時 ’ -0.05x+ 0.03 ab&lt;yS0_3 (3) 0.3ab&lt;xS0_5ab 時,〇.〇15ab&lt;yS0.3Bi &lt;1;;1, group: first and not Ti 1 and less than the case in the phase, and in the product ratio -6-200930822 as the benchmark, for example: for the photomicrograph taken by the optical microscope image The process is performed to obtain the total area ratio of the α phase and the θ phase. [Bi] The brass disclosed in the present invention contains Bi in an amount of from 0.3% by weight to 4.0% by weight. Since Bi exhibits similar characteristics to Pb in brass, Pb can be imparted with the same machinability instead of Pb. In the present invention, Bi is 0.3% by weight or more in order to obtain good machinability. On the other hand, if Bi is excessive, there is a tendency to cause Bi agglomeration, and since the agglomerated portion may become a starting point of casting cracking, the upper limit is 4.0 wt%. According to a preferred embodiment of the present invention, the preferred lower limit of Bi is more than 0.5 wt%. 'If the machinability is considered, it is preferably 1.0% by weight, and the upper limit is preferably 3.0% by weight or less, and 2.0% by weight. The following is especially good. Further, according to the present invention, good machinability can be achieved even if Pb is not contained at all. It is preferable to have no Pb at all, and even if it is assumed to be contained, it is only limited to it as an inevitable impurity. Specifically, considering that the human body and the environment are 0.5 wt% or less, 〇.1 wt% or less is more preferable. • [B and Si] In the present invention, 'B promotes refinement of crystals (especially, primary crystal phase). As a result, Bi fine dispersion can effectively prevent cracking during casting. Further, 'Sl solid-melt is in the absence phase, and it is presumed that it has a function of alleviating the breakage of the interface between Bi and the phase which is the starting point of the casting fracture. Further, the brass of τκ disclosed in the present invention exhibits good performance for good mechanical properties as a result of the refinement. The brass disclosed in the present invention contains B and Si. When the amount of B and Si is ywt% and xwt%, respectively, the amount is in accordance with the relationship between 〇SyS〇.3 and 〇$x2, and y&gt;-0.15x+0.015ab. Here, the appropriate amounts of B and Si change depending on the amount of Bi added and the apparent Zn content described later. Therefore, the coefficients a and b indicate the correction coefficients. Specifically, the coefficient a varies with the amount of Bi, and is 0.2, 0.85, and 1 when Bi is 〇 〇 75.5%, 〇.75SBi &lt; 1.5 wt%, and 1.5 SBiS 4.0 wt%. Further, the coefficient b changes with the apparent Zn enthalpy, and is 1 when the apparent Zn content is 37% or more and less than 41%, and 0.75 when it is 45% or more. According to a preferred embodiment of the present invention, y and X are in the range of 0SyS0.03 and 0SXS1.8, and are in the range of O^ySO.Ol and 0SxS1.5, and conform to y&gt;-0.l5x + 〇. The amount of 〇15ab relationship is particularly good. Although it is necessary to add B of the above lower limit 为了 in order to achieve the refinement of the crystal, the addition of an excessive amount of B may cause deterioration of the ductility of the alloy. Therefore, the upper limit is 〇.3 Wt% or less, and 0.03 wt% is Preferably, it is preferably o.oiwt% or less. Further, B and Fe, Cr, and the like will form an intermetallic compound, and a pitting will be formed, which may cause problems in the surface processing of the molded article after casting. Therefore, when the surface is required to have smoothness, it is preferable to reduce the amount of addition of B and/or to reduce the content of Fe, Cr, etc., specifically, B is 0.005 wt% or less, preferably 〇〇. 〇〇 3 wt% or less, Fe. And Cr is preferably less than 0.1% by weight. Further, as described later, according to Guillet, the Zn content is 10, and the apparent Zn content is increased, and a hetero phase of -8-200930822 r phase or /c phase transport may be crystallized in the crystal structure. Therefore, the amount of Si added in accordance with the present invention is 2.0 wt% or less, and the upper limit is preferably 1. In the present specification, the apparent Zn content means an amount calculated according to the following formula. This formula is based on the Zn 'addition element which shows the same tendency as the addition of Zn g 〇❾ Apparent Zn content (%) = [(B + tq) / (A + B + tq)] xl〇〇 In the formula, A = Cuwt%, B = Znwt%, t is the amount of added element white, and q means the added amount of the added element wt%. Further, the name Zn equivalent is Si = 10, Al = 6, Sn = 2, Pb = 1, Fe = 0.9, and Ni = -1.3. The Zn equivalent of Bi has not been clearly defined, and in the case of the reference, the calculation is carried out at 0.6. Further, since the element of Xue is small in addition amount, the influence on 値 of Zn equivalent is also Φ, so it is "1". [Cu, Zn and other components] The brass disclosed in the present invention contains copper (Cu) of 55 wt% or less. If Cu is above the above range, cracks may occur due to the dendritic crystals of the two phases. Moreover, if the range of Cu 1 is difficult to be affected by the α phase, the performance of P brass may be obtained. According to a preferred embodiment of the present invention, Cu 6 is preferably 58% by weight, and the upper limit is preferably 70% by weight. 3 - kind of 5wt%, the idea of Zn other than Guillet 'Zn when the element's Μ = 0.5 specification is very small, 1 7 5 wt primary crystal α at the above lower limit is 200930822 In addition, if the apparent Zn can be made When the content is adjusted to 37 to 45% and the ratio of the crystal phase to the α + no phase is 85% or more, the amount of Cu can be utilized in the upper limit portion of the above range. Therefore, the upper limit of the amount of Cu is increased. The brass disclosed in the present invention is such that the remainder of the portion composed of the above components is substantially composed of zinc (Zn). * The brass disclosed in the present invention may contain various added components in order to improve the characteristics of the brass. Moreover, although the presence of impurities which are unavoidable U is not excluded in the present invention, it is preferable to minimize them. According to an embodiment of the present invention, Ni may be added for the purpose of improving strength, corrosion resistance and the like. In order to more effectively obtain the strength and the resistance to uranium resistance caused by the addition of Ni, it is preferable to add Ni 0.3% by weight or more. On the other hand, from the viewpoint of casting cracking, it is preferable to avoid excessive Ni. It is preferably 2 · 0 wt % or less. Further, according to a preferred embodiment of the present invention, the amount of addition of Ni and the amounts of B and Si corresponding thereto are as follows, and can be classified into various cases. φ When B and Si are ywt% and xwt%, respectively, the amount is in the following relationship, 0.1 S Ni &lt; 〇·3 wt% when • • (1) 〇.〇5abSxS0.75ab, 0 &lt;y$〇 .3 (2) 〇.75ab &lt; x S 2.0, 0 S y each 0.3 0· 3 S Ni &lt; 1 -〇wt%, (1) 0.05abSxS0.2ab, -0.15x+〇.〇3ab&lt ;yg〇.3 (2) 0.2ab&lt;xS0.75ab, 〇&lt;yg〇.3 (3) 0.75ab&lt;xS1.75ab, y ^ 0.3 -10- 200930822 (4) 1.75ab &lt; x ^ 2.0 when ' 0 · 0 0 4 x - 0.0 0 7 ( 2 - ab ) &lt; y ^ 0.3 1 · 0 S Ni 刍 2.0wt%, (1) 0.05abSxS〇.2ab when '〇.〇2ab&lt;yS0 .3 (2) 0.2ab&lt;xS0.3ab when '-0.05x+ 0.03 ab&lt;yS0_3 (3) 0.3ab&lt;xS0_5ab, 〇.〇15ab&lt;yS0.3

(4) 〇.5ab&lt; l.Oab 時 ’ -〇·〇26χ + 0.028ab〈 yS O 0.3 (5) 1.0ab&lt;xSl_5ab 時 ’ 〇.〇llx-〇.〇〇9(2-ab) &lt;y S 0.3 (6) 1.5ab&lt;xS2.0 時 ’ 〇-〇〇75ab&lt;yS0.3 (此處 ’ a 在 Bi 爲 0.3‘Bi&lt;〇.75wt%、0.75SBi&lt;1.5wt %、1.5SBiS4_0wt% 時,分別爲 〇·2、0.85 及 1’ b在表觀的Zn含量爲37%以上且小於41%時爲1’ 舄41%以上45%以下時爲〇_75)。 ^ 而且,根據本發明的更佳實施方式,Ni的添加量和 • 與其對應的B及Si的量如下所示’可分爲各種情況。 含b及si分別爲ywt%及xwt%時’是符合下列關係 的量, 0.1 $ Ni &lt; 0.3 wt% 時’ (1) 0.05ab$xS〇.3ab 時 ’ 0_001abSyS0.3 (2) 0 3ab&lt;x$〇-5ab 時 ’ ·0·00375χ+0·002125αΙ)^ V S 0.3 (3) 0 5ab&lt; 〇.75ab 時,-0.001x + 〇-〇〇〇75ab$ y 11 - 200930822 ^ 0.3 (4) 0.75ab &lt; x S 2.0 時,0 S y S 0.3 0_3 S Ni &lt; 1 .Owt% 時, (1) 0.05abSxS0.22ab 時,-0.1 3 75x+ 0.03 1 25abS 0.3 (2) 0.22ab &lt; x ^ 0.3 ab B#,O.OOlab^ 0.3(4) 〇.5ab&lt; l.Oab when '-〇·〇26χ + 0.028ab< yS O 0.3 (5) 1.0ab&lt;xSl_5ab when '〇.〇llx-〇.〇〇9(2-ab) &lt; y S 0.3 (6) 1.5ab&lt;xS2.0' 〇-〇〇75ab&lt;yS0.3 (here, 'a is 0.3' Bi&lt;〇.75wt%, 0.75SBi&lt;1.5wt%, 1.5SBiS4_0wt% in Bi In the case of 〇·2, 0.85, and 1'b, when the apparent Zn content is 37% or more and less than 41%, it is '_75 when it is 1' 舄 41% or more and 45% or less. Further, according to a more preferred embodiment of the present invention, the amount of addition of Ni and the amount of B and Si corresponding thereto are as follows. When b and si are ywt% and xwt%, respectively, the amount is in the following relationship, 0.1 $ Ni &lt; 0.3 wt% when '(1) 0.05ab$xS〇.3ab' 0_001abSyS0.3 (2) 0 3ab&lt ;x$〇-5ab when '·0·00375χ+0·002125αΙ)^ VS 0.3 (3) 0 5ab&lt; 〇.75ab, -0.001x + 〇-〇〇〇75ab$ y 11 - 200930822 ^ 0.3 (4 0.75ab &lt; x S 2.0, 0 S y S 0.3 0_3 S Ni &lt; 1 .Owt%, (1) 0.05abSxS0.22ab, -0.1 3 75x+ 0.03 1 25abS 0.3 (2) 0.22ab &lt; x ^ 0.3 ab B#, O.OOlab^ 0.3

(3) 0.3ab &lt; x ^ 0.5ab 時,-0.003 75x+ 0·002 1 25 abS(3) 0.3ab &lt; x ^ 0.5ab, -0.003 75x+ 0·002 1 25 abS

(4) 0.5ab &lt; x ^ 0.75ab 時,-O.OOlx + 0.00075ab ^ y ^ 0.3 (5) 0.75ab&lt;xS1.75ab 時,0SyS0.3 (6) 1 ,75ab &lt; x ^ 2.0 時,0.006x-0.0105 ( 2-ab) ^ y ^ 0.3 1 ·〇 S Ni S 2.0wt% 時,(4) When 0.5ab &lt; x ^ 0.75ab, -O.OOlx + 0.00075ab ^ y ^ 0.3 (5) 0.75ab&lt;xS1.75ab, 0SyS0.3 (6) 1 ,75ab &lt; x ^ 2.0 , 0.006x-0.0105 ( 2-ab) ^ y ^ 0.3 1 ·〇S Ni S 2.0wt%,

(1) 0.05ab S x S 0.2ab 時,0_0225ab S y S 0.3 ❹ (2) 0.2ab &lt; x ^ 0.3ab 時,-0.0 5 x + 0.0 3 2 5 ab S y S 0.3(1) When 0.05ab S x S 0.2ab, 0_0225ab S y S 0.3 ❹ (2) 0.2ab &lt; x ^ 0.3ab, -0.0 5 x + 0.0 3 2 5 ab S y S 0.3

(3) 0.3ab&lt;xS0.5ab 時,0.0175abSyS0_3 ' (4) 0.5ab &lt; x S 1 .Oab 時,-0.029x + 0.032ab S y S 0.3 (5 ) 1.0ab&lt; 1.5ab 時,0.0165x-0.0135 ( 2 - ab ) ^ y ^ 0.3 (6) 1.5ab&lt;xS2.0 時,0.01125abSyS0.3 (在前述內容中,X、y、a及b與前述內容同義。) -12- 200930822 而且’根據本發明的其它實施方式,爲了提昇流動性 、表面性狀等’可添加入A1。爲了更有效地獲得因添加 A1所引起流動性、表面性狀等的提昇,是以添加A1 〇.3 wt %以上爲宜’另一方面,從鑄造破裂的觀點出發,避免過 量的A1爲宜,其上限係以2.〇wt%以下爲宜。 而且’根據本發明的較佳實施方式,A1的添加量和 與其對應的B、Si的量如下所示,可分爲各種情況。 Q 含B及Si分別爲ywt%及xwt%時,是符合下列關係 的量, 〇_l$Al&lt;0.3wt% 時, (1) 0^y^0.3' 0^x^2.0' y &gt; - 0.1 5 x + 0.0 1 5 ab 0.3 S A1 &lt; 1 .Owt% 時, (1) OSxSO.lab 時,-0_15x+0.015ab&lt;yS0.3 (2) O.lab &lt; xS 1.5ab 時,0&lt;yS0.3 (3) 1 .5ab &lt; x ^ 2.0 時,0.0〇2x-0_003 ( 2-ab) &lt;y$ 〇 0.3 1 ·0 S A1 S 2.0wt% 時, (1) 0.05abS xS 0.3ab 時,〇.〇〇4ab &lt; y $ 0.3 ' (2 ) 0.3 ab &lt; x S 0· 5ab 時,-〇·〇 1 x + 〇.〇〇7ab &lt; y S 0.3 (3 ) 0.5ab &lt; x ^ 1 .Oab 時,-〇.〇〇4x+ 0.004ab&lt;y$ 0.3 (4) 1.0ab&lt;xSl_5ab 時,〇_〇〇lx-〇_〇〇l(2-ab) &lt;y ^ 0.3 (5) 1.5ab&lt;xS2.0 時,0 · 0 0 0 5 ab &lt; y S 0 · 3 -13- 200930822 (此處,a 在 Bi 爲 0.3^Bi&lt;〇.75wt%、0.75SBi&lt;1.5wt %、1.5SBi$4.0wt% 時,分別爲 0.2、0.85 及 1, b在表觀的Zn含量爲3 7%以上且小於41%時爲1, 爲41 %以上45%以下時爲0.75 ) 。 根據本發明的更佳實施方式,A1的添加量和與其對 應的B及Si的量如下所示,可分爲各種情況。 含B及Si分別爲ywt%及xwt%時,是符合下列關係 〇 的量, 〇. 1 ^ Al &lt; 0.3wt% 時, (1) 0^y^0.3' 0^x^2.0' y ^ -0.1 4x + 0.0 1 7 5 ab 0.3 g A1 &lt; 1 .Owt% 時, (1) OSxS 0.1178 ab 時,-0·14χ + 0.0175 ab 各 yS 0.3 (2) 0.1 1 78ab &lt; x S 0.3ab 時,O.OOlab^ 0.3 (3) 0.3ab &lt; x ^ 〇.5ab 時,-0.00375x + 0.002 1 25ab ^ 0.3 〇 (4) 0.5ab &lt; X S 1.5ab 時,0.00025ab 各 y $ 0.3 (5) 1 ,5ab &lt; x ^ 2.0 時,0.0 0 2 5 x - 0.0 0 3 5 ( 2-ab ) ^ y ^ 0.3 • 1 .〇 客 A1 S 2.0wt% 時, (1) 0.05ab S x S 0.3ab 時,0.0 0 5 7 5 ab $ y 彡 〇 . 3 (2) 0.3ab&lt;x‘〇.5ab 時,-0.0 1 3 75x+ 0.009 875 abS 0.3 (3) 0.5ab &lt; x ^ 1 .Oab 時,-0.0055x+ 0.00575ab^ y ^ 0.3 -14- 200930822 (4) 1 .Oab &lt; x ^ 1 .5ab 時 &gt; 0.0 0 1 x - 〇 . 〇 〇 〇 7 5 ( 2-ab ) ^ y ^ 0.3 (5) 1.5ab&lt;x 彡 2.0 時,0.00075ab 彡 yS0.3 (在前述內容中,X、y、a及b與前述內容同義。) 另外’根據本發明的其它實施方式,雖然爲了提昇耐 ' 腐蝕性可添加Sn,但是,在本發明所揭示的黃銅中,Sn 也可能會使鑄造破裂容易發生。爲了更有效地獲得因Sn φ 的添加所引起的耐腐蝕性的提昇,是以添加SnO. 3 wt %以 上爲宜’另一方面,過量的Sn可能會引起鑄造破裂,其 上限係以3.0 wt %以下爲宜。 而且’根據本發明的較佳實施方式,Sn的添加量和 與其對應的B、Si的量如下所示,可分爲各種情況。 含B及Si分別爲ywt%及xwt%時,是符合下列關係 的量, 〇· 1 S Sn &lt; 〇.3wt% 時, Q ( &quot; 〇SxS〇」25ab 時,-〇_i6x+0.02ab&lt;yS0.3 (2) 0.125ab〈xS〇.4ab 時,0&lt;yS〇.3 (3) 0.4ab&lt;xS2.〇 時,〇syS〇.3 ’ 〇.3SSn&lt;1.5wt% 時, (1) 0SxS0.25ab 時,-〇 〇8x+〇.〇2ab&lt;yS0.3 (2) 0_25ab &lt; x‘ 1.25ab 時,0 &lt; y S 〇·3 (3) 1.25ab &lt; x S 1.75ab 時,0 S y S 〇·3 (4) 1.75ab&lt; 2.〇 時,〇.〇〇2χ-〇·〇〇35 ( 2-ab) &lt; y ^ 0.3 -15- 200930822 1 . 5 S Sn S 3 .Owt% 時, (1) OSxSO.lab 時,0.025ab&lt;y$0.3 (2) 0.1ab &lt; x ^ 〇.3ab 時,-0·105x+ 0_03 5 5ab&lt; yg 0.3 (3) 〇.3ab&lt;x$〇.5ab 時,0.004ab&lt;y$0_3 (4) 0.5 ab &lt; x $ 1 . 〇 ab 時,0 · 0 0 7x + 0.0 0 0 5 ab &lt; y $ 0.3 ◎ ( 5) 1 .Oab &lt; x ^ 2.0 時,0 · 0 4 5 x - 0.0 3 7 5 ( 2-ab ) &lt; y ^ 0.3 (此處,a 在 Bi 爲 〇.3SBi&lt;0.75wt%、〇.75SBi&lt;1.5wt %、1.5SBi 客 4.0wt% 時,分別爲 0.2、0.85 及 1, b在表觀的Zn含量爲37%以上且小於41%時爲1, 爲41%以上45%以下時爲0.75) 。 而且,根據本發明的更佳的實施方式,Sn的添加量 和與其對應的B及Si的量如下所示,可分爲各種情況。 Q 含B及Si分別爲ywt%及xwt%時,是符合下列關係 的量, 0.1SSn&lt;0.3wt% 時, - (1) 0 ^ X ^ 0.1 246ab 時,-0.1 925x + 〇 · 025 ab ‘ y € 0.3 (2 ) 〇.1246ab&lt; xS 0.3ab 時 ’ 0 · 0 0 1 ab $ y S 〇 · 3 (3) 0.3ab&lt;xS〇.4ab 時,-0.01x+〇.〇〇4abSy$〇·3 (4) 0.4ab&lt;xS2.0 時,0SyS0.3 〇.3$Sn&lt;1.5wt% 時, -16- 200930822 (1) OSxSO.lab 時,-0.1375x+ 0.025ab$yS0.3 (2) 0.1ab&lt;xS 0.286ab 時,-0.05 5x+ 0.0 1 675ab‘y ^ 0.3 (3 ) 0.28 6ab &lt; x S 0.3ab 時,0 · 0 0 1 ab S y S 0 · 3 (4) 0.3ab &lt; x ^ 0.5ab 時,-0 · 0 0 3 7 5 x + 0 · 0 0 2 1 2 5 ab S 0.3 (5) 0.5ab&lt;xS1.0ab 時,0.00025ab ^ y ^ 0.3(3) 0.3ab&lt;xS0.5ab, 0.0175abSyS0_3 ' (4) 0.5ab &lt; x S 1 .Oab, -0.029x + 0.032ab S y S 0.3 (5 ) 1.0ab&lt; 1.5ab, 0.0165x -0.0135 ( 2 - ab ) ^ y ^ 0.3 (6) 1.5ab&lt;xS2.0, 0.01125abSyS0.3 (In the foregoing, X, y, a, and b are synonymous with the foregoing.) -12- 200930822 'According to other embodiments of the present invention, A1 may be added for the purpose of improving fluidity, surface properties, and the like. In order to more effectively obtain the improvement of fluidity, surface properties, etc. caused by the addition of A1, it is preferable to add A1 〇.3 wt% or more. On the other hand, from the viewpoint of casting cracking, it is preferable to avoid excessive A1. The upper limit is preferably 2. 〇 wt% or less. Further, according to a preferred embodiment of the present invention, the amount of addition of A1 and the amount of B and Si corresponding thereto are as follows, and can be classified into various cases. Q When B and Si are ywt% and xwt%, respectively, the amount is in accordance with the following relationship, 〇_l$Al&lt;0.3wt%, (1) 0^y^0.3' 0^x^2.0' y &gt; - 0.1 5 x + 0.0 1 5 ab 0.3 S A1 &lt; 1 .Owt%, (1) OSxSO.lab, -0_15x+0.015ab&lt;yS0.3 (2) O.lab &lt; xS 1.5ab 0&lt;yS0.3 (3) 1 .5ab &lt; x ^ 2.0, 0.0〇2x-0_003 ( 2-ab) &lt;y$ 〇0.3 1 ·0 S A1 S 2.0wt%, (1) 0.05abS When xS 0.3ab, 〇.〇〇4ab &lt; y $ 0.3 ' (2 ) 0.3 ab &lt; x S 0· 5ab, -〇·〇1 x + 〇.〇〇7ab &lt; y S 0.3 (3 ) 0.5ab &lt; x ^ 1 .Oab, -〇.〇〇4x+ 0.004ab&lt;y$ 0.3 (4) 1.0ab&lt;xSl_5ab, 〇_〇〇lx-〇_〇〇l(2-ab) &lt; y ^ 0.3 (5) 1.5ab&lt;xS2.0, 0 · 0 0 0 5 ab &lt; y S 0 · 3 -13- 200930822 (here, a is 0.3^Bi&lt;〇.75wt%, 0.75 in Bi When SBi &lt; 1.5 wt % and 1.5 SBi $ 4.0 wt%, respectively, 0.2, 0.85 and 1, b are 1 when the apparent Zn content is 3 7% or more and less than 41%, and 41% or more and 45% or less. 0.75). According to a still further preferred embodiment of the present invention, the amount of addition of A1 and the amounts of B and Si corresponding thereto are as follows, and can be classified into various cases. When B and Si are respectively ywt% and xwt%, the amount is 符合. 1 ^ Al &lt; 0.3wt%, (1) 0^y^0.3' 0^x^2.0' y ^ -0.1 4x + 0.0 1 7 5 ab 0.3 g A1 &lt; 1 .Owt%, (1) OSxS 0.1178 ab, -0·14χ + 0.0175 ab each yS 0.3 (2) 0.1 1 78ab &lt; x S 0.3ab When O.OOlab^ 0.3 (3) 0.3ab &lt; x ^ 〇.5ab, -0.00375x + 0.002 1 25ab ^ 0.3 〇(4) 0.5ab &lt; XS 1.5ab, 0.00025ab each y $ 0.3 ( 5) 1 , 5ab &lt; x ^ 2.0, 0.0 0 2 5 x - 0.0 0 3 5 ( 2-ab ) ^ y ^ 0.3 • 1 . When the guest A1 S 2.0wt%, (1) 0.05ab S x When S 0.3ab, 0.0 0 5 7 5 ab $ y 彡〇. 3 (2) 0.3ab&lt;x'〇.5ab, -0.0 1 3 75x+ 0.009 875 abS 0.3 (3) 0.5ab &lt; x ^ 1 . Oab, -0.0055x+ 0.00575ab^ y ^ 0.3 -14- 200930822 (4) 1 .Oab &lt; x ^ 1 .5ab &gt; 0.0 0 1 x - 〇. 〇〇〇7 5 ( 2-ab ) ^ y ^ 0.3 (5) 1.5ab&lt;x 彡2.0, 0.00075ab 彡yS0.3 (In the foregoing, X, y, a, and b are synonymous with the foregoing.) Further, according to other embodiments of the present invention, In order to improve the resistance to corrosion Plus Sn, but the present invention is disclosed in brass, Sn may cause casting cracking easily occurs. In order to more effectively obtain the improvement of corrosion resistance caused by the addition of Sn φ, it is preferable to add SnO. 3 wt% or more. On the other hand, excessive amount of Sn may cause casting cracking, and the upper limit is 3.0 wt. % below is appropriate. Further, according to a preferred embodiment of the present invention, the amount of addition of Sn and the amount of B and Si corresponding thereto are as follows, and can be classified into various cases. When B and Si are respectively ywt% and xwt%, the amount is in the following relationship: 〇· 1 S Sn &lt; 〇.3wt%, Q ( &quot; 〇SxS〇"25ab, -〇_i6x+0.02 Ab&lt;yS0.3 (2) 0.125ab<xS〇.4ab, when 00&lt;yS〇.3 (3) 0.4ab&lt;xS2.〇, 〇syS〇.3 ' 〇.3SSn&lt;1.5wt%, ( 1) When 0SxS0.25ab, -〇〇8x+〇.〇2ab&lt;yS0.3 (2) 0_25ab &lt; x' 1.25ab, 0 &lt; y S 〇·3 (3) 1.25ab &lt; x S 1.75ab 0 S y S 〇·3 (4) 1.75ab&lt; 2.〇,〇.〇〇2χ-〇·〇〇35 ( 2-ab) &lt; y ^ 0.3 -15- 200930822 1 . 5 S Sn S 3 .Owt%, (1) OSxSO.lab, 0.025ab&lt;y$0.3 (2) 0.1ab &lt; x ^ 〇.3ab, -0·105x+ 0_03 5 5ab&lt; yg 0.3 (3) 〇.3ab&lt ;x$〇.5ab, 0.004ab&lt;y$0_3 (4) 0.5 ab &lt; x $ 1 . 〇ab, 0 · 0 0 7x + 0.0 0 0 5 ab &lt; y $ 0.3 ◎ ( 5) 1 .Oab &lt; x ^ 2.0, 0 · 0 4 5 x - 0.0 3 7 5 ( 2-ab ) &lt; y ^ 0.3 (here, a is Bi in Bi.3SBi &lt; 0.75wt%, 〇.75SBi&lt; 1.5wt%, 1.5SBi, 4.0wt%, respectively, 0.2, 0.85 and 1, b in the apparent Zn content of 37 When the ratio is more than 41% and is less than 41%, it is 1 and when it is 41% or more and 45% or less, it is 0.75). Further, according to a more preferred embodiment of the present invention, the amount of addition of Sn and the amount of B and Si corresponding thereto are as follows. It can be divided into various cases. Q When B and Si are ywt% and xwt%, respectively, the amount is in the following relationship, 0.1SSn &lt;0.3wt%, - (1) 0 ^ X ^ 0.1 246ab, -0.1 925x + 〇· 025 ab ' y € 0.3 (2 ) 〇.1246ab&lt; xS 0.3ab when ' 0 · 0 0 1 ab $ y S 〇· 3 (3) 0.3ab&lt;xS〇.4ab, -0.01x+〇 .〇〇4abSy$〇·3 (4) 0.4ab&lt;xS2.0, 0SyS0.3 〇.3$Sn&lt;1.5wt%, -16- 200930822 (1) OSxSO.lab, -0.1375x+ 0.025ab $yS0.3 (2) 0.1ab&lt;xS 0.286ab, -0.05 5x+ 0.0 1 675ab'y ^ 0.3 (3 ) 0.28 6ab &lt; x S 0.3ab, 0 · 0 0 1 ab S y S 0 · 3 (4) 0.3ab &lt; x ^ 0.5ab, -0 · 0 0 3 7 5 x + 0 · 0 0 2 1 2 5 ab S 0.3 (5) 0.5ab&lt;xS1.0ab, 0.00025ab ^ y ^ 0.3

(6) 1.0ab&lt; 1.25ab 時,-0.001x+ 0.00 1 25ab^ y ^ 0.3 (7) 1 .25ab &lt; x S 1.75ab 時,y ^ 0.3 (8) 1,75ab &lt; x ^ 2.0 時,0.003x-0.00525 ( 2-ab ) ^ 0.3 1 .5 S Sn S 3 .Owt% 時, (1) OSxSO.lab 時,0.0275ab$y$0.3(6) 1.0ab&lt; 1.25ab, -0.001x+ 0.00 1 25ab^ y ^ 0.3 (7) 1 .25ab &lt; x S 1.75ab, y ^ 0.3 (8) 1,75ab &lt; x ^ 2.0 0.003x-0.00525 ( 2-ab ) ^ 0.3 1 .5 S Sn S 3 .Owt%, (1) OS275SO.lab, 0.0275ab$y$0.3

(2) 0.1 ab &lt; x ^ 0.2ab 時,-0.075x+ 0.035abSyS 〇 0.3(2) 0.1 ab &lt; x ^ 0.2ab, -0.075x+ 0.035abSyS 〇 0.3

(3) 0.2ab&lt; 0.3ab 時,-0.1425x+ 0.0485abSyS 0.3 (4) 0.3ab &lt; x S 0.5ab 時,0.00575ab S y S 0.3 (5) 0.5ab&lt; l.Oab 時,0.011x + 0.00025ab$ 0.3 (6) 1 .Oab &lt; x ^ 1.25 時,0.0 7 5 x - 0.0 6 3 7 5 ( 2 -ab ) ^ y ^ 0.3 (在前述內容中,X、y、a及b與前述內容同義。) -17- 200930822 另外’當Ni、Al、Sn共存時,根據共存的元素的各 自的添加量,在全部都符合如上所述的規定範圍的範圍內 進行設定即可。亦即,根據本發明的其它實施方式,係提 供一種黃銅, 結晶組織爲α相和A相的合計比例在8 5 %以上, ' 含Cu在55wt%以上75wt%以下, 含Bi在〇.3wt%以上4.0wt%以下,還有, ❹ B及Si , 以及從由O.lwt%以上2.0wt%以下的Ni、O.lwt%以 上2.0wt%以下的A1及O.lwt%以上3.0wt%以下的Sn所 構成的群中所選擇的至少兩種成分, 其餘部分實質上由Zn和不可避免的雜質所組成的, 其特徵在於= B及Si的量分別爲yWt%及xwt%時,同時符合對應 於由所述Ni、A1及Sn所構成的群中的至少兩種元素的各 〇 自的量的本案的申請專利範圍的請求項2〜10中所規定的 至少兩個關係式。 在本發明所揭示的黃銅中,爲了提昇強度而添加Μη • 時,會產生Μη和Si的金屬間化合物而消耗Si,因此, 可能會發生鑄造破裂。不利用Μη時,爲了抑制對於鑄造 破裂性的影響,使其上限爲小於0.3 wt %。另一方面,在 有效地利用因添加Μη所引起的強度提昇的情況下,則只 要充分提昇Si的添加量即可。亦即,添加Μη爲0.3wt% 以上時,藉由符合上述的規定範圍且0.7&lt;Si$2.0wt%, -18- 200930822 可抑制添加Μη所引起的對於鑄造破裂性的影響。另外, 過量添加Μη會增加金屬間化合物的量,使切削性降低, 因此,其上限爲4.0wt%。 在本發明所揭示的黃銅中,也可以根據不同目的選擇 添加元素來添加其它成分,例如:藉由微量的添加有益於 _ 提昇耐腐蝕性的S b、P等,微量的添加作爲細化劑,可改 善鑄造破裂,可提昇強度的Fe等。上述成分根據其添加 0 量’可能會對鑄造性產生影響,但是藉由調節B和Si, 能夠抑制該影響。亦即,在發生鑄造破裂的這一類黃銅中 ’藉由在上述的範圍內進一步增加B量,或相反地進一步 增加Si量,或者增加兩者,能夠抑制該影響。 根據本發明的較佳實施方式,本發明的黃銅亦可含有 從 Sb、P、As、Mg、Se、Te、Fe、Co、Zr、Cr 及 Ti 所成 的群組中所選出的一種以上的元素,含量爲0.01〜2wt% 爲宜。根據本發明的另一種較佳實施方式,爲了提昇耐腐 〇 蝕性’亦可含有從Sb、P、As及Mg所成的群組中所選出 的一種以上的元素,其適宜的含量,Sb、P及As係爲 0.2wt%以下,Mg係爲lwt%以下。又,根據本發明的另 ' 一種較佳實施方式,爲了提昇切削性,亦可含有Se或Te 爲Iwt%以下。根據本發明的另一種較佳實施方式,爲了 提昇強度’亦可含有從Fe、Co、Zr、Cr及Ti所成的群組 中所選出的一種以上的元素,其適宜的含量,Fe和Co係 爲lwt%以下,其他元素則爲〇.5wt%以下。 -19- 200930822 [用途] 本發明所揭示的黃銅不含Pb,另一方面,其鑄造性 、切削性及機械特性具有與含Pb的黃銅同樣或者更好的 性能,因此,非常適合使用於水龍頭零件材料。具體爲: 適合使用於作爲水龍頭零件、排水零件及閥等的材料。 [製造方法] 以本發明所揭示的黃銅爲材料的成形品,因其良好的 鑄造性,無論是利用金屬鑄模鑄造或砂模鑄造都能進行製 造,但是在金屬鑄模鑄造中更能獲得其良好的鑄造性的效 果。而且,本發明所揭示的黃銅因其切削性也很好,鑄造 後也可進行切削加工。而且,本發明所揭示的黃銅也可作 爲連續鑄造後擠壓成形的切削用棒料或锻造用棒料,還可 作爲藉由拉伸成形的線材。 〇 [實施例] 根據以下的實施例更加詳細地說明本發明,但是本胃 明並不偈限於這些實施例。 [評價試驗] 以下的實施例中的各評價試驗的詳細內容如下所示。 (1 )鑄造破裂性試驗 利用兩端約束式試驗法對於鑄造破裂性進行了評價。 -20- 200930822 使用的金屬鑄模1的形狀如第1圖所示。第1圖中,在中 央部設置隔熱材料2,使中央部的冷卻速度比兩端約束部 3更慢’而且約束兩端距離(2L)爲1 00mm,隔熱材料長 度(21 )爲 7 0mm。 試驗是使約束部3被急速冷卻且兩端被約束,在該狀 ' 態下進一步使中央部開始凝固,利用所產生的凝固收縮應 力’藉由調査:在成爲最終凝固部的試驗片中央部是否有 ^ 產生破裂來進行的。 結果沒有破裂時判定爲◎,雖然產生局部破裂但是沒 有達到斷裂時判定爲〇,產生破裂並斷裂時判定爲X。 (2 )切削性試驗 利用金屬鑄模鑄造製作直徑35mm、長度100mm的鑄 塊,對外徑部進行車削加工來評價切削性。具體爲,切削 性係藉由針對黃銅鑄件3種(JIS CAC203 )的切削阻力指 ❹ 數來進行評價。切削條件爲,周速爲80〜175m/min,進 給量爲 0.07〜0.14mm/rev·,進刀量爲 0.25〜1mm,切削 ' 阻力指數係藉由下述數式進行計算。 * 切削阻力指數(%) = CAC203的切削阻力/ 試驗件的切削阻力χίοο 其結果,切削阻力指數爲70 %以上判定爲◎’ 5 0 % 以上且小於7 0 %判定爲〇’小於5 0 %判定爲X。 -21 - 200930822 (3 )機械特性試驗 利用金屬鑄模鑄造製作直徑35mm、長度100mm的鑄 塊,機械加工成JIS Z 220 1 1 4A號試驗片並進行拉伸試驗 。亦即,測定0.2%耐力、拉伸強度及斷裂伸長,以0.2 %耐力爲l〇〇N/mm2以上、拉伸強度爲245N/mm2以上及 斷裂伸長爲20%以上作爲判定基準。符合全部3個項目 時判定爲◎,符合2個項目時判定爲〇,僅符合1個項目 以下時判定爲X。 (4 )耐腐蝕性試驗 先製得利用金屬鑄模鑄造製作的直徑3 5mm、長度 10 0mm的鑄塊,將其作爲試驗片,以日本伸銅協會技術 標準JBMA T-303-2007爲標準進行了試驗。 最大侵蝕深度在15〇μιη以下判定爲◎,超過15〇 /zm在300//m以下判定爲〇’超過300&quot;m判疋爲X。 (5 )結晶相比例的測定 對於由光學顯微鏡拍攝的結晶組織照片進行圖像處S ,求出α相及Θ相的面積比例。 例1〜5 1 5 : 鑄造了在下述表中所記載的組成分的黃銅。亦即’以 電解Cu、電解Ζη、電解Bi、電解Pb、電解Sn、Cu-30% Ni母合金、電解A卜Cu-15%Si母合金、Cu-2%B母合金 -22- 200930822 、Cu-30%Mn 母合金、Cu-10%Cr 母合金、Cu-15%P 母合 金及Cu-10% Fe母合金等爲原料,藉由高頻熔解爐在進行 成分調節的同時也進行熔解,首先,在兩端約束試驗金屬 鑄模中進行鑄造並評價了鑄造破裂性。 接下來,在圓筒形金屬鑄模中進行鑄造以製作直徑 35mm、長度100mm的鑄塊,以鑄塊爲試樣進行了切削性 及機械特性、耐腐蝕性的評價、結晶相比例的測定。 f) 將其評價結果顯示於下列表中。 [表1] Μο· Cu Ζη Β ί Pb S 1 Β A I S η Ν i 鋅 當量 mm 破裂 切削性 機械 特性 1 60.60 38.10 1-0 0 0 0 0 0 0 39.2 X &amp; 2 60.20 37.80 2.0 0 0 0 0 0 0 39.3 X Ο Ο 3 59. eo 37.20 3.0 0 0 0 0 0 0 39.5 X ρ ο 4 61.00 37.00 0 2.0 0 0 0 0 0 39.0 θ ρ ο [表2](3) 0.2ab&lt; 0.3ab, -0.1425x+ 0.0485abSyS 0.3 (4) 0.3ab &lt; x S 0.5ab, 0.00575ab S y S 0.3 (5) 0.5ab&lt; l.Oab, 0.011x + 0.00025 Ab$ 0.3 (6) 1 .Oab &lt; x ^ 1.25, 0.0 7 5 x - 0.0 6 3 7 5 ( 2 -ab ) ^ y ^ 0.3 (In the foregoing, X, y, a and b are as described above -17- 200930822 In addition, when Ni, Al, and Sn coexist, it is sufficient to set them according to the respective addition amounts of the elements that coexist, in a range that satisfies the predetermined range as described above. That is, according to other embodiments of the present invention, a brass is provided, wherein the crystal structure has a total ratio of the α phase and the A phase of more than 85 %, and the Cu content is 55 wt% or more and 75 wt% or less, and the Bi is contained in the crucible. 3 wt% or more and 4.0 wt% or less, and further, ❹ B and Si, and from 0.1% by weight or more of 2.0% by weight or less of Ni, 0.1% by weight or more and 2.0% by weight or less of A1 and 0.1% by weight or more and 3.0% by weight. At least two components selected from the group consisting of Sn below %, the remainder consisting essentially of Zn and unavoidable impurities, characterized in that = B and Si are respectively yWt% and xwt%, At the same time, at least two relational expressions specified in claims 2 to 10 of the patent application scope of the present application corresponding to the respective amounts of at least two elements of the group consisting of the Ni, A1, and Sn are satisfied. In the brass disclosed in the present invention, when Μη is added to increase the strength, an intermetallic compound of Μη and Si is generated to consume Si, and therefore, casting cracking may occur. When Μη is not used, the upper limit is made less than 0.3 wt% in order to suppress the influence on the casting fracture property. On the other hand, in the case of effectively utilizing the strength increase due to the addition of Μη, it is only necessary to sufficiently increase the amount of addition of Si. That is, when the addition of Μη is 0.3% by weight or more, the influence on the casting fracture property caused by the addition of Μη can be suppressed by satisfying the above-specified range and 0.7 &lt;Si$2.0 wt%, -18-200930822. Further, excessive addition of Μη increases the amount of the intermetallic compound and lowers the machinability, so the upper limit is 4.0% by weight. In the brass disclosed in the present invention, it is also possible to select additional elements according to different purposes to add other components, for example, Sb, P, etc., which are beneficial to _ to improve corrosion resistance by a small amount of addition, and a trace amount of addition as a refinement The agent can improve the casting crack, and can improve the strength of Fe and the like. The addition of the above component to the amount of 0 may have an effect on the castability, but by adjusting B and Si, the influence can be suppressed. That is, in the type of brass in which casting cracking occurs, the influence can be suppressed by further increasing the amount of B within the above range, or conversely increasing the amount of Si further, or both. According to a preferred embodiment of the present invention, the brass of the present invention may further contain one or more selected from the group consisting of Sb, P, As, Mg, Se, Te, Fe, Co, Zr, Cr, and Ti. The content of the element is preferably 0.01 to 2% by weight. According to another preferred embodiment of the present invention, in order to improve corrosion resistance and corrosion resistance, one or more elements selected from the group consisting of Sb, P, As, and Mg may be contained, and the suitable content thereof, Sb The P and As are 0.2% by weight or less, and the Mg is 1% by weight or less. Further, according to another preferred embodiment of the present invention, Se or Te may be contained in an amount of 1 wt% or less in order to improve machinability. According to another preferred embodiment of the present invention, in order to improve the strength, one or more elements selected from the group consisting of Fe, Co, Zr, Cr and Ti may be contained, and the suitable content thereof, Fe and Co The ratio is below 1 wt%, and the other elements are below 5% by weight. -19- 200930822 [Use] The brass disclosed in the present invention does not contain Pb, and on the other hand, its castability, machinability and mechanical properties have the same or better performance as those of Pb-containing brass, and therefore, it is very suitable for use. For faucet parts materials. Specifically: It is suitable for use as a faucet part, a drain part, a valve, etc. [Manufacturing Method] The molded article made of the brass disclosed in the present invention can be produced by metal casting or sand casting because of its good castability, but it is more preferable in metal casting. Good castability. Further, the brass disclosed in the present invention is also excellent in machinability, and can be subjected to cutting after casting. Further, the brass disclosed in the present invention can also be used as a cutting bar or a forging bar which is extruded after continuous casting, and can also be used as a wire formed by drawing. [Examples] The present invention will be described in more detail based on the following examples, but the present invention is not limited to these examples. [Evaluation Test] The details of each evaluation test in the following examples are as follows. (1) Casting cracking test The casting cracking property was evaluated by the two-end restraint test method. -20- 200930822 The shape of the metal mold 1 used is as shown in Fig. 1. In Fig. 1, the heat insulating material 2 is provided at the center portion so that the cooling rate at the center portion is slower than the both end restraining portions 3, and the distance between the ends (2L) is 100 mm, and the length of the heat insulating material (21) is 7. 0mm. In the test, the restraining portion 3 was rapidly cooled and both ends were restrained, and in the state of the state, the central portion was further solidified, and the resulting solidification shrinkage stress was used to investigate: at the center of the test piece which became the final solidified portion. Whether or not there is a crack to proceed. As a result, it was judged as ◎ when there was no rupture, and it was judged to be 〇 when a partial rupture occurred but did not reach the fracture, and was judged to be X when the rupture occurred and was broken. (2) Machinability test An ingot having a diameter of 35 mm and a length of 100 mm was produced by metal casting, and the outer diameter portion was subjected to turning processing to evaluate the machinability. Specifically, the machinability was evaluated by the number of cutting resistance fingers of three types of brass castings (JIS CAC203). The cutting conditions were a peripheral speed of 80 to 175 m/min, a feed amount of 0.07 to 0.14 mm/rev, and a feed amount of 0.25 to 1 mm, and the cutting resistance index was calculated by the following formula. * Cutting resistance index (%) = cutting resistance of CAC203 / cutting resistance of test piece χίοο As a result, the cutting resistance index is 70% or more and is judged as ◎' 50% or more and less than 70%. The judgment is 〇' less than 50%. It is judged as X. -21 - 200930822 (3) Mechanical property test An ingot of 35 mm in diameter and 100 mm in length was cast by metal casting, and machined into a test piece of JIS Z 220 1 1 4A and subjected to a tensile test. That is, 0.2% proof stress, tensile strength, and elongation at break were measured, and 0.2% proof stress was l〇〇N/mm2 or more, tensile strength was 245 N/mm2 or more, and elongation at break was 20% or more. When all three items are met, it is judged as ◎, and when it is two items, it is judged as 〇, and only one item is selected. (4) Corrosion resistance test An ingot with a diameter of 35 mm and a length of 100 mm, which was cast by metal mold casting, was prepared as a test piece, and was carried out according to the technical standard JBMA T-303-2007 of the Japan Copper Association. test. The maximum erosion depth is judged to be ◎ below 15 〇 μηη, and more than 15 〇 /zm is determined to be 〇' exceeds 300 &quot; m is 300 or less. (5) Measurement of Crystallization Comparative Example The image S was obtained from the photograph of the crystal structure photographed by the optical microscope, and the area ratio of the α phase and the Θ phase was determined. Examples 1 to 5 1 5 : Brass having the composition components described in the following tables were cast. That is, 'electrolytic Cu, electrolytic Ζη, electrolytic Bi, electrolytic Pb, electrolytic Sn, Cu-30% Ni master alloy, electrolytic Ab Cu-15%Si master alloy, Cu-2%B master alloy-22- 200930822, Cu-30%Mn master alloy, Cu-10%Cr master alloy, Cu-15%P master alloy and Cu-10% Fe master alloy are used as raw materials, and are also melted by composition adjustment while high-frequency melting furnace First, casting was carried out in a test metal mold at both ends of the test and the foundry fracture was evaluated. Next, casting was carried out in a cylindrical metal mold to prepare an ingot having a diameter of 35 mm and a length of 100 mm, and the ingot, the mechanical properties, the corrosion resistance, and the crystallization ratio were measured using the ingot as a sample. f) Display the results of the evaluation in the table below. [Table 1] Μο· Cu Ζη Β ί Pb S 1 Β AIS η Ν i Zinc equivalent mm Cracking machinability mechanical characteristics 1 60.60 38.10 1-0 0 0 0 0 0 0 39.2 X &amp; 2 60.20 37.80 2.0 0 0 0 0 0 0 39.3 X Ο Ο 3 59. eo 37.20 3.0 0 0 0 0 0 0 39.5 X ρ ο 4 61.00 37.00 0 2.0 0 0 0 0 0 39.0 θ ρ ο [Table 2]

Cu 丨 Ζη j Βΐ SI B A 1 8n N i 鋅 筲量 鋳逭 轉 切削性 機械I m 相比率 α β 相比* α+jS ΠΊ Κ^ΙΚΠϋΙ 2.00 OLOQ75 2.00 0.05 37.4 κ Ο P ϋ 14 Β3 η 2.6 1.50 i,〇〇 TToT 318 6 $ 0 6毒 24 ύ 7 25.49 2.0 1.40 αοο?5 1t99 !·拽 4αο Ρ 9 9 is 33 S7 8 IIHOl 3),ii 2.0 i,〇〇 itW 41.2 $ ψ Ο 岛 ή 0 37.19 2.0 0.60 aoiso TjiT aol 〇l〇5 42.9 9 φ φ 44 Μ 10 |S5r0Q| ΑΖ.9Ί 2.0 0 άόΜο 0 0.05 rwi 4iS 〇 _ι_ _Ω_ 31 ίϊ 98 [表3]Cu 丨Ζη j Βΐ SI BA 1 8n N i Zinc 筲 鋳逭 切削 切削 切削 切削 切削 切削 切削 ΙΚΠϋΙ ΙΚΠϋΙ 00 00 2.00 OLOQ75 2.00 0.05 37.4 κ Ο P ϋ 14 Β3 η 2.6 1.50 i,〇〇TToT 318 6 $ 0 6毒24 ύ 7 25.49 2.0 1.40 αοο?5 1t99 !·拽4αο Ρ 9 9 is 33 S7 8 IIHOl 3),ii 2.0 i,〇〇itW 41.2 $ ψ Ο Islandή 0 37.19 2.0 0.60 aoiso TjiT aol 〇l〇5 42.9 9 φ φ 44 Μ 10 |S5r0Q| ΑΖ.9Ί 2.0 0 άόΜο 0 0.05 rwi 4iS 〇_ι_ _Ω_ 31 ϊ 98 [Table 3]

No. ΤΓ 1Γ 131No. ΤΓ 1Γ 131

Β 1 ΤΓΒ 1 ΤΓ

Cu ΈΤ00Γ36: 62*00Cu ΈΤ00Γ36: 62*00

S 0.S0 0.50 Β 0.S0 0,0050 0.50 ΙΟ,ΙΟΟΟΤ A I S n N 1 鋅 當量 篇造 破裂 切削性 機械 特性 0 0.05 0.05 40.4 Ο ρ 0 0.05 0.05 40.4 d _a_ 9 0 0.05 0.05 40.4 θ 0 D.05 0.05 40.4 ❹ θ Ο SExaEsaEnn β Ο ο 3 X ο -23- 200930822 [表4]S 0.S0 0.50 Β 0.S0 0,0050 0.50 ΙΟ,ΙΟΟΟΤ AIS n N 1 Zinc equivalent rupture cutting mechanical properties 0 0.05 0.05 40.4 Ο ρ 0 0.05 0.05 40.4 d _a_ 9 0 0.05 0.05 40.4 θ 0 D. 05 0.05 40.4 ❹ θ Ο SExaEsaEnn β Ο ο 3 X ο -23- 200930822 [Table 4]

No. Cu Zn B i SI Θ At S n N i 鋅| 當置i 鏞造 破裂 切削性 機械 特性 ΤΓ 59.80 39. €0 0.50 0 0 0 0.05 0.05 40.0 X p © IT 59.80 39.60 0.50 0 ΠίΓϊΤΤϊ] Ιι&lt;·:ιΐ[·! 0 0.05 0.05 40.0 X ο ir 59.80 39.60 0.50 0 0 0.05 0.05 40.0 θ ο &amp; 20 59.80 39.59 0.50 0 0.0075 0 0.05 0.05 40.0 Ο ο ρ 21 59.80 39.59 0.50 0 0.0150 0 0.05 0.05 40.0 e ο &amp; 22 59.90 39.48 0.50 0.02 0 0 0.05 0.05 40.0 X ο &amp; 23 60.10 39.25 0.50 0.05 0 0 O.OS 0.05 40.0 θ ο &amp; 24 «0.40 38.90 6^50 0.10 0 0 0.05 0.05 40.0 ο ο 〇 25 €0.50 38.34 0.S0 0.10 0.0075 0 0.30 0.05 40.0 d ο &amp; 26 €0.50 30.54 0.50 0.10 0.0150 0 0.30 O.OS 40.0 d ο Θ 27 60.90 38.30 0.50 0.20 0 0 0.05 0.05 40.0 d ς&gt; 9 23 60.90 3S.29 0.50 0.20 0.0075 0 0.05 0.05 40.0 θ ο &amp; 29 60.90 38.29 0.50 0.20 0.0150 0 0.0S 0.05 40.0 Q ο 夺 30 61.50 37.60 0.50 0.30 0 0 O.OS 0.05 40.0 p ο 9 31 €1.50 37.59 0.50 0.30 0.0075 0 0.05 0.05 40.0 Ο ο θ 32 61.50 37.59 0.50 0.30 άόϊϊό 0 0.0S 0.05 40.0 9 ο 33 59.70 39.19 1.00 0 0.0075 0 0-05 a〇5 40.0 X Θ β 34 59.70 39.19 1.00 0 0.0110 0 0.05 0.05 40.0 X d ❾ 35 59.70 39,19 1.00 0 0.0125 0 0.05 a 〇5 40.0 X φ 36 59.70 39. Id 1.00 0 0.0150 0 0.05 0.05 40.0 Θ θ 37 59.70 39· 18 1.00 0 0.0200 0 0.05 0,05 40.0 p θ θ 38 S9.70 39.17 1.00 0 0.0300 0 0.0S 0.05 40,0 Ο Ο &amp; 39 16Ο.ΟΟ 38.85 t.oo 0.05 0 0 0.05 0.05 40.0 X 9 40 60.00 38.83 1.00 0.07 0 0 0.05 0.05 40.1 X φ 〇 41 60.30 38.50 1.00 0.10 0 0 0.05 0.05 40.0 &amp; e &amp; 42 60.30 38.49 1.00 0.10 0.0075 0 0.05 0.05 40.0 9 β &amp; 43 60.30 38.49 1.00 0.10 0.015ύ 0 0.05 0.05 40.0 &amp; ❺ ❺ 44 60.80 37.90 1.00 0.20 0 0 0.05 0.05 40.0 e β 45 60. SO 37.的 1.00 0.20 0.0075 0 0.05 O.OS 40.0 ο ❺ Θ 4$ 60.80 37.89 1.00 0.20 0.0150 0 0.05 0.05 40.0 &amp; 47 61.30 ! 37.30 1.00 0.30 0 0 0.05 0.05 40.0 a © ΘNo. Cu Zn B i SI Θ At S n N i Zinc | When i 镛 rupture machinability ΤΓ 59.80 39. €0 0.50 0 0 0 0.05 0.05 40.0 X p © IT 59.80 39.60 0.50 0 ΠίΓϊΤΤϊ] Ιι&lt; ·: ΐ ΐ [·! 0 0.05 0.05 40.0 X ο ir 59.80 39.60 0.50 0 0 0.05 0.05 40.0 θ ο &amp; 20 59.80 39.59 0.50 0 0.0075 0 0.05 0.05 40.0 Ο ο ρ 21 59.80 39.59 0.50 0 0.0150 0 0.05 0.05 40.0 e ο &amp; 22 59.90 39.48 0.50 0.02 0 0 0.05 0.05 40.0 X ο &amp; 23 60.10 39.25 0.50 0.05 0 0 O.OS 0.05 40.0 θ ο &amp; 24 «0.40 38.90 6^50 0.10 0 0 0.05 0.05 40.0 ο ο 〇25 € 0.50 38.34 0.S0 0.10 0.0075 0 0.30 0.05 40.0 d ο &amp; 26 €0.50 30.54 0.50 0.10 0.0150 0 0.30 O.OS 40.0 d ο Θ 27 60.90 38.30 0.50 0.20 0 0 0.05 0.05 40.0 d ς&gt; 9 23 60.90 3S.29 0.50 0.20 0.0075 0 0.05 0.05 40.0 θ ο &amp; 29 60.90 38.29 0.50 0.20 0.0150 0 0.0S 0.05 40.0 Q ο 夺 30 61.50 37.60 0.50 0.30 0 0 O.OS 0.05 40.0 p ο 9 31 €1.50 37.59 0.50 0.30 0.0075 0 0.05 40.0 Ο ο θ 32 61.50 37.59 0.50 0.30 άόϊϊ ό 0 0.0S 0.05 40.0 9 ο 33 59.70 39.19 1.00 0 0.0075 0 0-05 a〇5 40.0 X Θ β 34 59.70 39.19 1.00 0 0.0110 0 0.05 0.05 40.0 X d ❾ 35 59.70 39,19 1.00 0 0.0125 0 0.05 a 〇 5 40.0 X φ 36 59.70 39. Id 1.00 0 0.0150 0 0.05 0.05 40.0 Θ θ 37 59.70 39· 18 1.00 0 0.0200 0 0.05 0,05 40.0 p θ θ 38 S9.70 39.17 1.00 0 0.0300 0 0.0S 0.05 40,0 Ο amp &amp; 39 16Ο.ΟΟ 38.85 t.oo 0.05 0 0 0.05 0.05 40.0 X 9 40 60.00 38.83 1.00 0.07 0 0 0.05 0.05 40.1 X φ 〇41 60.30 38.50 1.00 0.10 0 0 0.05 0.05 40.0 &amp; e &amp; 42 60.30 38.49 1.00 0.10 0.0075 0 0.05 0.05 40.0 9 β &amp; 43 60.30 38.49 1.00 0.10 0.015ύ 0 0.05 0.05 40.0 &amp; ❺ ❺ 44 60.80 37.90 1.00 0.20 0 0 0.05 0.05 40.0 e β 45 60. SO 37. of 1.00 0.20 0.0075 0 0.05 O.OS 40.0 ο ❺ Θ 4$ 60.80 37.89 1.00 0.20 0.0150 0 0.05 0.05 40.0 &amp; 47 61.30 ! 37.30 1.00 0.30 0 0 0.05 0.05 40.0 a © Θ

❹ -24- 200930822 [表5]❹ -24- 200930822 [Table 5]

Ho. Cu Zn Β 1 S i Β A 1 S η Ν i 鋅 當量 鑄造 破裂 切削性 機械 特性 4B 61.30 37.29 1.00 0.30 0.0075 0 0.05 0.05 40.0 Q 夺 相 61.30 37,29 1.00 0.30 0.0150 0 0.05 0.05 40.0 ❺ &amp; 0 50 59.50 38.39 2,00 0 0.0075 0 0,05 〇,〇5 40.0 X 9 Θ 51 59.50 38.39 2.00 0 0.0150 0 0.(6 0.05 40.0 X 9 〇 52 59.50 38.38 2.00 0 0-0200 0 0.05 0.05 40.0 θ 〇 53 59.50 38.38 2.00 0 0 0.05 0.05 40.0 〇 e ύ 54 59.50 38.37 2.00 0 0 0.05 0.05 40.0 Q p θ 55 60.00 37.8Q 2.00 0.10 0 0 0.05 0.05 40.0 X 9 ρ 56 60.00 37.79 2.00 αιο 0.0075 0 0.05 0.05 40.0 0 θ 57 60.00 37.79 2.00 0.10 0.0150 0 0.05 0.0S 4Q.0 e 夺 58 60.30 37.45 2.00 0.1S 0 0 0.05 0.05 40.0 〇 夺 59 60.60 37,10 2.00 0.20 0 0 0.05 0.05 40.0 e Θ 60 60.60 37.» 2.00 0.20 0.0075 0 0.05 0.05 40-0 Θ Θ &amp; 句 60. SO 37.09 2.00 0.20 0.0150 0 0.05 O.OS 40.0 Q β Q 62 61.10 36.50 2.00 0.30 0 0 0.05 0.05 40.0 Q Θ 9 63 61.10 36.50 2.00 0.30 0.0010 0 0.05 0.Q5 40.0 Θ Θ 〇 64 61.10 36.50 2.00 0.30 0.0020 0 0.05 0.05 40.0 〇 〇 〇 65 61.10 36.50 Ζ.00 0.30 0.0040 0 0.05 0.05 40.0 d 争 〇 66 61·10 36.49 2.00 0.30 0.0075 0 0.05 0.05 40.0 Q e 67 61.10 36.49 2.00 0.30 0.0150 0 0.05 0.05 40.0 夺 Θ e 68 61.10 3β.47 2.00 0.30 0.0300 0 0.05 0,05 40.0 Θ Θ ο 69 €2.20 35,20 2.00 0.50 0 0 0.05 0,05 40.0 ί 〇 θ &amp; 70 €4.90 &quot;32.00 2.0Q 1.00 0 0 0.05 0.05 40.0 〇 β &amp; 71 67.60 2B.B0 2.00 1.50 0 0 0.05 0.05 40 Θ 0 72 70.30 25.60 2.00 ΖΟΟ 0 0 0.05 6.05 40.0 〇 〇 ο 73 59.20 1 37.69 3.00 Ο 0.0075 0 0.05 0.05 40.0 X Q 74 59.20 3.00 0 ΓϊΙΓΤΜιΙ 0 0.05 0.05 40.0 X ❺ θ 75 59.20 3.00 0 0 0.05 0.05 40.0 Φ 〇 @ 76 59.20 37.67 3.00 0 0.0300 0 0.05 0.05 40.0 Θ θ 77 59.80 37.00 3.00 0.10 0 0 0.05 0.05 40.0 X -25- 200930822 [表6]Ho. Cu Zn Β 1 S i Β A 1 S η Ν i Zinc equivalent casting cracking machinability 4B 61.30 37.29 1.00 0.30 0.0075 0 0.05 0.05 40.0 Q Phase capture 61.30 37,29 1.00 0.30 0.0150 0 0.05 0.05 40.0 ❺ &amp; 0 50 59.50 38.39 2,00 0 0.0075 0 0,05 〇,〇5 40.0 X 9 Θ 51 59.50 38.39 2.00 0 0.0150 0 0.(6 0.05 40.0 X 9 〇52 59.50 38.38 2.00 0 0-0200 0 0.05 0.05 40.0 θ 〇53 59.50 38.38 2.00 0 0 0.05 0.05 40.0 〇e ύ 54 59.50 38.37 2.00 0 0 0.05 0.05 40.0 Q p θ 55 60.00 37.8Q 2.00 0.10 0 0 0.05 0.05 40.0 X 9 ρ 56 60.00 37.79 2.00 αιο 0.0075 0 0.05 0.05 40.0 0 θ 57 60.00 37.79 2.00 0.10 0.0150 0 0.05 0.0S 4Q.0 e Capture 58 60.30 37.45 2.00 0.1S 0 0 0.05 0.05 40.0 Capture 59 60.60 37,10 2.00 0.20 0 0 0.05 0.05 40.0 e Θ 60 60.60 37.» 2.00 0.20 0.0075 0 0.05 0.05 40-0 Θ Θ &amp; Sentence 60. SO 37.09 2.00 0.20 0.0150 0 0.05 O.OS 40.0 Q β Q 62 61.10 36.50 2.00 0.30 0 0 0.05 0.05 40.0 Q Θ 9 63 61.10 36.50 2.00 0.30 0.0010 0 0.05 0 .Q5 40.0 Θ Θ 〇64 61.10 36.50 2.00 0.30 0.0020 0 0.05 0.05 40.0 〇〇〇65 61.10 36.50 Ζ.00 0.30 0.0040 0 0.05 0.05 40.0 d 〇 66 61·10 36.49 2.00 0.30 0.0075 0 0.05 0.05 40.0 Q e 67 61.10 36.49 2.00 0.30 0.0150 0 0.05 0.05 40.0 68 61.10 3β.47 2.00 0.30 0.0300 0 0.05 0,05 40.0 Θ Θ ο 69 €2.20 35,20 2.00 0.50 0 0 0.05 0,05 40.0 ί 〇θ &amp; 70 €4.90 &quot;32.00 2.0Q 1.00 0 0 0.05 40.0 〇β &amp; 71 67.60 2B.B0 2.00 1.50 0 0 0.05 0.05 40 Θ 0 72 70.30 25.60 2.00 ΖΟΟ 0 0 0.05 6.05 40.0 〇〇ο 73 59.20 1 37.69 3.00 Ο 0.0075 0 0.05 0.05 40.0 XQ 74 59.20 3.00 0 ΓϊΙΓΤΜιΙ 0 0.05 0.05 40.0 X ❺ θ 75 59.20 3.00 0 0 0.05 0.05 40.0 Φ 〇@ 76 59.20 37.67 3.00 0 0.0300 0 0.05 0.05 40.0 Θ θ 77 59.80 37.00 3.00 0.10 0 0 0.05 0.05 40.0 X -25- 200930822 [Table 6]

Cu Ζπ B i Si B A 1 Sn N i 鋅 當置 篇造 破裂 切削性 機械 特性 78 59.80 36.99 3.00 0.10 0.0075 0 0.05 0.05 40.0 9 79 59.8Q 36.99 3.00 0.10 0.0150 0 ~άοΓ 0.05 40.0 夺 9 p 80 60.10 36.65 3.00 0.15 0 0 α坜 0.05 40.0 1 Θ 9 ρ 81 60.30 36.40 3.00 &amp;20 0 0 0.05 0.05 40.0 ! θ ❼ 82 巾11_1丨[.來FI 3.00 0.20 0.0075 0 0.05 0.05 40.0 ❺ 夺 9 83 3.00 0.20 0.0150 0 0.05 0.05 40.0 e &amp; 〇 84 ιπη&gt;ι 35.70 3.00 0.30 0 0 0.05 0.0S 40.0 Q ! &amp; 〇 85 ΚΟΙΜ 35.69 100 0.30 0.0075 0 O.QS 0-05 40.0 ❺ p d 86 60.90 35.69 3· 00 0.30 0.0150 0 0.05 0.05 40.0 e 9 87 59.00 36. β9 4.00 0 0.0075 0 0.05 0.05 40.0 X 9 ❶ 88 59.00 36.8S 4.00 0 0.0150 0 0,05 0.05 40.0 X [Θ 89 5». 00 36.88 4.00 0 0.0200 0 0.06 0.05 40.0 &amp; 〇 ΓΤ&quot; 90 59.00 3β.87 4.00 0 0.0300 0 0.05 0.05 40.0 夺 0 91 69.50 36.30 4.00 0.f0 0 0 0.05 a. os 40.0 X φ 9 92 59.50 36.29 4.00 0.10 0.0075 0 a. 〇5 0.05 40.0 Q 〇 〇 93 59.50 36.2d 4.00 0.10 0.0150 0 0.05 0.05 40.0 0 θ 94 59.80 35.95 4,00 0.15 0 1 0 0.05 0.05 40.0 ❽ θ 〇 95 60.10 Fflm 4.00 0.20 ❶ 0 0.05 0.05 40.0 ® θ 〇 96 6Q.10 loo 0.20 0.0075 1 0 0.05 0.05 40.0 丨Θ θ 97 60.10 KMm 4.00 0.20 0.0150 0 0.05 0.05 40.0 Θ ❺ 0 98 60.60 n-wn 4.00 0.30 0 ! 0 nor 0.05 40.0 &amp; Θ 99 ί?ί_]ΐ:ί·Ιΐ^)^_ΐ·ΙΙΒΜ1ί·ΐ1ί·【0ΐ·:·73·!Μϊ1Ιϊ]^ΐρΗΙίΗ1·7Ο 3 9 EED 19 | $ ΘCu Ζπ B i Si BA 1 Sn N i Zinc-making rupture machinability 78 59.80 36.99 3.00 0.10 0.0075 0 0.05 0.05 40.0 9 79 59.8Q 36.99 3.00 0.10 0.0150 0 ~άοΓ 0.05 40.0 夺 9 p 80 60.10 36.65 3.00 0.15 0 0 α坜0.05 40.0 1 Θ 9 ρ 81 60.30 36.40 3.00 &amp;20 0 0 0.05 0.05 40.0 ! θ ❼ 82 towel 11_1丨[.来FI 3.00 0.20 0.0075 0 0.05 0.05 40.0 夺 夺 9 83 3.00 0.20 0.0150 0 0.05 0.05 40.0 e &amp; 〇84 ιπη&gt;ι 35.70 3.00 0.30 0 0 0.05 0.0S 40.0 Q ! &amp; 〇85 ΚΟΙΜ 35.69 100 0.30 0.0075 0 O.QS 0-05 40.0 ❺ pd 86 60.90 35.69 3· 00 0.30 0.0150 0 0.05 0.05 40.0 e 9 87 59.00 36. β9 4.00 0 0.0075 0 0.05 0.05 40.0 X 9 ❶ 88 59.00 36.8S 4.00 0 0.0150 0 0,05 0.05 40.0 X [Θ 89 5». 00 36.88 4.00 0 0.0200 0 0.06 0.05 40.0 &amp;〇ΓΤ&quot; 90 59.00 3β.87 4.00 0 0.0300 0 0.05 0.05 40.0 win 0 91 69.50 36.30 4.00 0.f0 0 0 0.05 a. os 40.0 X φ 9 92 59.50 36.29 4.00 0.10 0.0075 0 a. 〇5 0.05 40.0 Q 〇〇 93 59.50 36.2d 4.00 0.10 0.0150 0 0.05 0.0 5 40.0 0 θ 94 59.80 35.95 4,00 0.15 0 1 0 0.05 0.05 40.0 ❽ θ 〇95 60.10 Fflm 4.00 0.20 ❶ 0 0.05 0.05 40.0 ® θ 〇96 6Q.10 loo 0.20 0.0075 1 0 0.05 0.05 40.0 丨Θ θ 97 60.10 KMm 4.00 0.20 0.0150 0 0.05 0.05 40.0 Θ ❺ 0 98 60.60 n-wn 4.00 0.30 0 ! 0 nor 0.05 40.0 &amp; Θ 99 ί?ί_]ΐ:ί·Ιΐ^)^_ΐ·ΙΙΒΜ1ί·ΐ1ί·【0ΐ·: ·73·!Μϊ1Ιϊ]^ΐρΗΙίΗ1·7Ο 3 9 EED 19 | $ Θ

[表7][Table 7]

No. Cu Zn B i Si 1 B A 1 Sn N i 鋅 當置 篇造 破裂 切削性 機械 特性 Tor 65.00 32.57 2.0 0.30 1 0.0300 0 0.05 0.0S 36.2 X 6 Θ m m I·乂 101 tx·:·】 33.57 2.0 0.30 0.0300 0 0.05 0.05 37.2 Q &amp; 34. S7 2.0 0.30 0.0300 0 0.05 a 〇5 38.1 ρ Q 0 104 61.00 36.57 2.0 0.30 0.0300 0 0.05 0.05 40.1 ο 105 59.00 38.57 2.0 0.30 0.0300 0 0.05 0.05 42.1 9 &amp; 106 58.00 39.57 2.0 0.30 0.0300 0 0.05 0.05 43.0 夺 0 ο 107 56.00 41.57 2.0 0.30 a〇3〇o 0 0.05 o.os 45.0 &amp; § ο 108 61.50 36.39 2.00 0 0.0075 0 0.05 0.05 38.0 X 0 ❹ 109 61.50 35.39 2.00 0 0.0150 0 0.05 0.05 38.0 X $ 110 61.50 36.38 2.00 0 0,0200 0 0.05 0.05 38.0 Q Q 111 61.S0 36.38 2.00 0 6.O2S0 0 0.05 0.05 38.0 〇 令 112 61.50 36.37 ^00 0 0.0300 0 0.05 0.05 39.0 〇 d 〇 113 62.00 3S.80 2.00 0.10 0 0 0.05 0.05 38.0 X θ 9 m 62.00 3 占.79 2.00 0.10 0.0075 0 0.05 D.0S 38.0 &amp; 9 &amp; 115 62.00 35.79 2.00 0.10 0.0150 0 0.05 05 38.0 〇 116 62.30 35.45 2.00 0.15 0 0 0.05 0.05 38.0 〇 3 ο 117 62.抑 35.10 2.00 0.») 0 0 0.05 0.05 38.0 Θ ο 118 62.60 35.09 2.00 0.20 0.0075 0 0.05 0.05 38.0 $ 〇 ❹ 1t9 62.60 魟铋 2.00 0.20 0.0150 0 0.05 0.05 38.0 &amp; 〇 Θ 120 57.50 40.39 2.00 D 0.0075 0 0.05 0.坶 42.0 X 0 d 121 57.50 40.39 2-00 0 a οι io 0 0.05 0.05 42.0 X 〇 Ο 122 57.50 40.39 2.00 0 0,0125 0 0,05 0.05 42.0 9 9 123 57.50 40.39 2.00 0 0.0150 0 0.05 0.05 42.0 〇 〇 ο 124 57.50 40.38 loo 0 0.0200 0 0.05 0.05 42.0 $ θ ο 125 57.50 40.37 2.00 0 0.0300 0 0.05 o.os 42.0 θ 〇 ρ 126 I 57.80 IcH 2.00 0.05 0 0 0.05 0.05 42.0 X ο ο 127 57.90 2.00 0.07 0 0 6.05 0.05 42.0 X Ο ο 128 58.00 30.80 2.00 0.10 0 0 0.05 0.05 42.0 ❺ ο e 129 58.00 39.79 2.00 0.10 0.007S 0 0.05 0.05 42.0 〇 9 9 130 58.00 1 39.7$ 2.00 0.10 0.0150 0 0.05 0.05 42.0 ❹ ο 131 S8.50 39,20 2.00 0.20 0 0 0.05 0.05 42.0 〇 ο d -26- [表8]No. Cu Zn B i Si 1 BA 1 Sn N i Zinc-making rupture machinability Mechanical properties Tor 65.00 32.57 2.0 0.30 1 0.0300 0 0.05 0.0S 36.2 X 6 Θ mm I·乂101 tx·:·] 33.57 2.0 0.30 0.0300 0 0.05 0.05 37.2 Q &amp; 34. S7 2.0 0.30 0.0300 0 0.05 a 〇5 38.1 ρ Q 0 104 61.00 36.57 2.0 0.30 0.0300 0 0.05 0.05 40.1 ο 105 59.00 38.57 2.0 0.30 0.0300 0 0.05 0.05 42.1 9 &amp; 106 58.00 39.57 2.0 0.30 0.0300 0 0.05 0.05 43.0 Win 0 ο 107 56.00 41.57 2.0 0.30 a〇3〇o 0 0.05 o.os 45.0 &amp; § ο 108 61.50 36.39 2.00 0 0.0075 0 0.05 0.05 38.0 X 0 ❹ 109 61.50 35.39 2.00 0 0.0150 0 0.05 0.05 38.0 X $ 110 61.50 36.38 2.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 62.00 3S.80 2.00 0.10 0 0 0.05 0.05 38.0 X θ 9 m 62.00 3 %.79 2.00 0.10 0.0075 0 0.05 D.0S 38.0 &amp; 9 &amp; 115 62.00 35.79 2.00 0.10 0.0150 0 0.05 05 38.0 〇116 62.30 35.45 2.00 0.15 0 0 0.05 0.05 38.0 3 ο 117 62. 35.10 2.00 0.») 0 0 0.05 0.05 38.0 Θ ο 118 62.60 35.09 2.00 0.20 0.0075 0 0.05 0.05 38.0 $ 〇❹ 1t9 62.60 魟铋2.00 0.20 0.0150 0 0.05 0.05 38.0 &amp; 〇Θ 120 57.50 40.39 2.00 D 0.0075 0 0.05 0. 坶 42.0 X 0 d 121 57.50 40.39 2-00 0 a οι io 0 0.05 0.05 42.0 X 〇Ο 122 57.50 40.39 2.00 0 0,0125 0 0,05 0.05 42.0 9 9 123 57.50 40.39 2.00 0 0.0150 0 0.05 0.05 42.0 〇〇ο 124 57.50 40.38 loo 0 0.0200 0 0.05 0.05 42.0 $ θ ο 125 57.50 40.37 2.00 0 0.0300 0 0.05 o.os 42.0 θ 〇ρ 126 I 57.80 IcH 2.00 0.05 0 0 0.05 0.05 42.0 X ο ο 127 57.90 2.00 0.07 0 0 6.05 0.05 42.0 X Ο ο 128 58.00 30.80 2.00 0.10 0 0 0.05 0.05 42.0 ❺ ο e 129 58.00 39.79 2.00 0.10 0.007S 0 0.05 0.05 42.0 〇9 9 130 58.00 1 39.7$ 2.00 0.10 0.0150 0 0.05 42.0 ❹ ο 131 S8.50 39,20 2.00 0.20 0 0 0.05 0.05 42.0 〇ο d -26- [Table 8]

No. C u 2n B i Si B A 1 Sn -. N i 鋅丨 當量 鑄造 破裂 切削性 機械 特性 132 58.50 39.19 2.00 0.20 0.0075 0 0.05 0.05 42.0 Ο ❺ Θ 133 134 135 136 AH Z.00 0.20 0.0150 0 0.05 0.05 42.0 9 Θ I刚 2.00 0 0.0075 0 0.05 0.05 44.0 X 夺 Θ 14*1*1 42.39 2.00 0 0.0110 0 a 〇5 0.05 44.0 X θ Q 42.39 2.00 0 0.0125 0 0.05 0.05 44.0 &amp; &amp; 137 55.50 42.39 2.00 0 0.0150 0 0.05 0.05 44.0 ο &amp; 9 138 55.50 42.3S 2.00 0 0.0200 0 0.05 0.05 44.0 9 &amp; β 139 55.50 42.37 2.00 0 0.0300 0 0.05 0.0S 44.0 Ο &amp; 0 140 55.80 4^05 2.00 0.05 0 0 0.05 0.05 44.0 X 令 9 141 55.90 41.93 2.00 0.07 0 0 0.05 0.05 44.0 X Θ β 142 56.00 41.60 2.00 α. io 0 0 0-05 0.05 44.0 &amp; ο 143 56.00 41.79 2.00 0.10 0.0075 0 0.05 0.05 44.0 Ο &amp; ά 144 56.00 41.79 2.00 0.10 0.0150 0 0.05 0.05 44.0 Ο Θ ο 145 56. SO 41.20 2.00 0.20 0 0 O.OS 0.05 44.0 &amp; &amp; @ 146 56. SO 41.19 2.00 0.20 t,霣,:〇rH [•刪.】 0 0.05 0.05 44.0 Q 6 0 147 56.50 41.19 2.00 0.20 0 0.05 1 0.0S 44.0 Q &amp; ο [表9]No. C u 2n B i Si BA 1 Sn -. N i Zinc antimony equivalent casting fracture machinability 132 58.50 39.19 2.00 0.20 0.0075 0 0.05 0.05 42.0 Ο ❺ 133 133 134 135 136 AH Z.00 0.20 0.0150 0 0.05 42.0 9 Θ I just 2.00 0 0.0075 0 0.05 0.05 44.0 X Θ 14*1*1 42.39 2.00 0 0.0110 0 a 〇5 0.05 44.0 X θ Q 42.39 2.00 0 0.0125 0 0.05 0.05 44.0 &amp;&amp; 137 55.50 42.39 2.00 0 0.0150 0 0.05 0.05 44.0 ο &amp; 9 138 55.50 42.3S 2.00 0 0.0200 0 0.05 0.05 44.0 9 &amp; β 139 55.50 42.37 2.00 0 0.0300 0 0.05 0.0S 44.0 Ο &amp; 0 140 55.80 4^05 2.00 0.05 0 0 0.05 44.0 X 令 9 141 55.90 41.93 2.00 0.07 0 0 0.05 0.05 44.0 X Θ β 142 56.00 41.60 2.00 α. io 0 0 0-05 0.05 44.0 &amp; ο 143 56.00 41.79 2.00 0.10 0.0075 0 0.05 0.05 44.0 Ο &amp; ά 144 56.00 41.79 2.00 0.10 0.0150 0 0.05 0.05 44.0 Ο Θ ο 145 56. SO 41.20 2.00 0.20 0 0 O.OS 0.05 44.0 &amp;&amp; @ 146 56. SO 41.19 2.00 0.20 t,霣,:〇rH [•除.] 0 0.05 0.05 44.0 Q 6 0 147 56.50 41.19 2.00 0.20 0 0.05 1 0.0S 44.0 Q &amp; ο [Table 9]

Cu Ζη B i 1 S i B A 1 S n N i 鋅 當置 鏟造 破裂 切削性 機械 特性 W 59.80 3λ 99 I 2.00 0 0.0075 0.10 0.05 0.05 40.0 X ◎ 149 150 2.00 0 IWTRil [*伽1 0.10 0.05 a 〇5 40.0 X © 2.00 0 0.10 0.05 0.05 40.0 ◎ © © W 37.97 2.00 0 0.0300 0.10 0.05 0.05 40.0 ◎ @ © Τ52 ΙίΛΜ 37.40 2.00 0.10 0 0.10 0.05 0.05 40.0 X © @ 153 60.30 37.39 2.00 0.10 0.0075 0.10 0.05 0.05 40.0 @ © ◎ 雨 60.30 37.39 2.00 0.10 0.0150 0.10 0.0S 0.05 40.0 ◎ ◎ 155 60.60 37.05 2· 00 0.(5 0 0.10 0.05 0.05 40.0 ◎ ◎ ◎ Μ 60.90 36.70 zoo 0.20 0 0.10 0.05 0.05 40.0 @ 157 60.90 36.69 2.00 0.20 0.0075 0.10 0.05 0.05 40.0 ◎ ◎ 158 60.90 36.69 2.00 0.20 0.0150 0.10 0.05 0.05 40.0 © 159 61.40 36.10 2.00 0.30 0 0.10 0.05 0.05 40.0 @ @ 160 61.40 36. t0 2.00 0.30 0.0040 0.10 0.05 0·05 40.0 © Θ © 161 61.40 36.09 2.00 0.30 0.0075 0.10 0.05 0.05 40.0 © 162 61.40 36.09 2· 00 0.30 0.0150 0.10 0.0S 0.05 40.0 © @ 163 62.50 34.80 zoo 0.50 0 0.10 0.05 0.05 40.0 3 ◎ 164 65.20 31.60 2.00 1.00 0 0.10 0.05 0.05 40.0 © © © 165 67.90 28.40 2,00 1.50 0 0.10 O.OS 0.05 40.0 ◎ © © 166 70.60 25.20 2.00 2.00 0 0.10 0.05 O.OS 40.0 φ © o («7 60.40 37.19 2.00 0 0.0075 0,30 0,05 0.05 40.0 X ◎ 168 60.40 37.19 2.00 0 0.0150 0.30 0.05 O.OS 40.0 X © ® 169 60.40 37.18 2.00 0 0.0200 0.30 0.05 0.05 40.0 @ © @ 170 60.40 37.17 2.00 0 0.0300 0.30 0.05 0.05 40.0 © ◎ @ 171 60.90 36.60 2.00 0-10 0 0.30 0.05 0.05 40.0 X © ◎ 172 60.90 36.59 2.00 0.10 0.0075 0.30 O.OS O.OS 40.0 © &amp; 173 60.90 3β. 59 2.00 0.10 0.0150 0.30 0.05 0.05 40.0 © ◎ 174 61.50 35.90 2.00 0.20 0 0.30 0.05 0.05 40. a X ◎ ◎ 175 61.50 35.89 2,00 0.20 0.0075 0.30 0.05 0.05 40.0 @ p ◎ 176 61.50 35. &amp;9 2.00 0.20 0.0t50 0.30 0.05 0.05 40.0 © @ 177 62.00 35.30 2.00 0.30 0 0.30 0.05 0.05 40.0 X © © 17Β 2.00 0.30 RRiRi] 0.30 0-05 0.05 40.0 ◎ I ◎ © 179 卞属·]·1 »挪,1 2.00 0.30 0.30 0.05 0.05 40.0 ◎ © -27- [表 10]Cu Ζη B i 1 S i BA 1 S n N i Zinc when the shovel is broken and machinable mechanical properties W 59.80 3λ 99 I 2.00 0 0.0075 0.10 0.05 0.05 40.0 X ◎ 149 150 2.00 0 IWTRil [* gamma 1 0.10 0.05 a 〇 5 40.0 X © 2.00 0 0.10 0.05 0.05 40.0 ◎ © © W 37.97 2.00 0 0.0300 0.10 0.05 0.05 40.0 ◎ @ © Τ52 ΙίΛΜ 37.40 2.00 0.10 0 0.10 0.05 0.05 40.0 X © @ 153 60.30 37.39 2.00 0.10 0.0075 0.10 0.05 0.05 40.0 @ © ◎ Rain 60.30 37.39 2.00 0.10 0.0150 0.10 0.0S 0.05 40.0 ◎ ◎ 155 60.60 37.05 2· 00 0. (5 0 0.10 0.05 0.05 40.0 ◎ ◎ ◎ Μ 60.90 36.70 zoo 0.20 0 0.10 0.05 0.05 40.0 @ 157 60.90 36.69 2.00 0.20 0.0075 0.10 0.05 0.05 40.0 ◎ ◎ 158 60.90 36.69 2.00 0.20 0.0150 0.10 0.05 0.05 40.0 © 159 61.40 36.10 2.00 0.30 0 0.10 0.05 0.05 40.0 @ @ 160 61.40 36. t0 2.00 0.30 0.0040 0.10 0.05 0·05 40.0 © Θ © 161 61.40 36.09 2.00 0.30 0.0075 0.10 0.05 0.05 40.0 © 162 61.40 36.09 2· 00 0.30 0.0150 0.10 0.0S 0.05 40.0 © @ 163 62.50 34.80 zoo 0.50 0 0.10 0.05 0.05 40.0 3 ◎ 164 65.20 31.60 2.00 1.00 0 0.10 0.05 0.05 40.0 © © 165 67.90 28.40 2,00 1.50 0 0.10 O.OS 0.05 40.0 ◎ © 166 70.60 25.20 2.00 2.00 0 0.10 0.05 O.OS 40.0 φ © o («7 60.40 37.19 2.00 0 0.0075 0,30 0,05 0.05 40.0 X ◎ 168 60.40 37.19 2.00 0 0.0150 0.30 0.05 O.OS 40.0 X © ® 169 60.40 37.18 2.00 0 0.0200 0.30 0.05 0.05 40.0 @ © @ 170 60.40 37.17 2.00 0 0.0300 0.30 0.05 0.05 40.0 © ◎ @ 171 60.90 36.60 2.00 0-10 0 0.30 0.05 0.05 40.0 X © ◎ 172 60.90 36.59 2.00 0.10 0.0075 0.30 O.OS O.OS 40.0 © &amp; 173 60.90 3β. 59 2.00 0.10 0.0150 0.30 0.05 0.05 40.0 © ◎ 174 61.50 35.90 2.00 0.20 0 0.30 0.05 0.05 40. a X ◎ ◎ 175 61.50 35.89 2,00 0.20 0.0075 0.30 0.05 0.05 40.0 @ p ◎ 176 61.50 35. &amp;9 2.00 0.20 0.0t50 0.30 0.05 0.05 40.0 © @ 177 62.00 35.30 2.00 0.30 0 0.30 0.05 0.05 40.0 X © © 17Β 2.00 0.30 RRiRi] 0.30 0-05 0.05 40.0 ◎ I ◎ © 179 卞 · ·]·1·°, 1 2.00 0.30 0.30 0.05 0.05 40.0 ◎ © -27- [ Table 10]

Cu Zn B i si B A 1 Sn N i 鋅 當置 鑄造 破裂 切削性 機械 特性 180 62.00 35.29 2.00 0.30 0.007S 0.30 0.05 a. 〇5 40.0 © © ◎ 181 62.00 35.29 2.00 0.30 1&gt;λ»κι»ι·] mm 爾甽仰 UMOH·] Ι·]|·:.Ν*】 Ι«ν*Ιι!ί)1 mm [·Μ»ΙΟΜ nw*rwii mm 0.30 0.05 0.05 40.0 © ◎ 182 62. οα 35.27 2.00 0.30 0.30 0.05 0.05 40.0 © © © 183 63.10 34.00 2.00 0.50 0.30 0.05 0.05 40.0 X © ◎ 184 63.10 34.00 2.00 0.50 0.30 0.05 0.05 40.0 © ◎ 185 63.10 34.00 2.00 0.50 0.30 0.05 0.05 40.0 © © ◎ 1B6 63.10 34.00 Too&quot; 0.50 0.30 0.05 0.05 40.0 @ © ◎ 187 63.10 34.00 2.00 0.50 0.30 0.05 0.05 40.0 © © ◎ 188 65.80 30.80 2.00 1.00 0.30 0.05 0.05 40.0 X © ◎ 189 65.80 30.80 2.00 1.00 0.30 0.05 0.05 40.0 © ◎ ◎ 190 65. BO 30.80 2.00 1.00 0.30 0.05 0.05 40.0 ◎ © 191 65.80 30.80 2.00 1.00 0.30 0.05 0.05 40.0 © © © 192 68.50 27.60 2.00 1.50 0.30 0.05 0.05 40.0 X ◎ 193 68.50 27.60 2.00 1.50 IOIiIiH·】 wmm IOIiWW ϊϊΜϋίΓΓϋ [WKHIt] 0.30 0.05 0.D5 40.0 @ © ◎ 194 68.50 27.60 2.00 K50 0.30 0.05 0.05 40.0 ◎ ◎ © 195 71.20 U.AO too 2.00 0.30 0.05 0.05 40.0 X 〇 196 71.20 24.40 2.00 2.00 0.30 0.05 0.05 40.0 X © 〇 197 71.20 24.40 2.00 2.00 0.30 0.05 0.05 40.0 X ◎ 〇 198 71.20 24.40 ZOO 2.00 0.30 0.05 0.05 40.0 @ ◎ 〇 199 62.50 34.39 2.00 0 1.00 0.05 0.05 40.0 X © @ 200 62.50 34.39 2.00 0 1.00 0.05 0.05 40.0 X 丨◎ 201 62.50 34.38 2.00 0 1.00 0.05 0.05 40.0 X ◎ 丨◎ 202 S2.50 34.37 2.00 0 1,00 0.05 0.05 40.0 X ◎ 203 63.00 33.80 2.00 0.10 mm l·爾《丨I扣1 Μ·侧 Ε· t_)niorPi mm 1·Λ_】 ΙΛΊίΜ ΓϊΙϊΤΡϊϊΙ ΜΙ·7_ΙΝ 1.00 0.05 ! 0.05 40.0 X ◎ ◎ 204 63.00 33.79 2.00 0.10 1.00 0.05 0.05 40.0 © © © 205 63.00 33.79 2.00 0.10 1.00 0.05 0.05 40.0 © ◎ 206 63.60 3110 2.00 0.20 ! 1.00 0.05 0.05 40.0 X © ◎ 207 63.60 33.09 2.00 0.20 1.00 0.05 0.05 40.0 © ◎ © 208 63.60 33.09 2.00 0.20 1.00 0.05 0.D5 40.0 ◎ 209 64.10 3Z50 2.00 0.30 1.00 0.05 0.05 40.0 X © ◎ 210 64.10 32.50 2.00 0.30 1.00 0.05 0.05 40.0 X © 211 64.10 32.49 2.00 0.30 1.00 0.05 0.05 40·0 ◎ ◎ ◎ 212 213 嗣 32.49 2.00 0.30 1.00 0.05 0.05 40.0 @ ◎ 31.20 ί 2.00 0.50 1.00 0.05 0.05 40.0 X ◎ ◎ [表 11]Cu Zn B i si BA 1 Sn N i Zinc-casting rupture machinability mechanical properties 180 62.00 35.29 2.00 0.30 0.007S 0.30 0.05 a. 〇5 40.0 © © ◎ 181 62.00 35.29 2.00 0.30 1&gt;λ»κι»ι·] Mm 甽 甽 UMOH·] Ι·]|·:.Ν*] Ι«ν*Ιι!ί)1 mm [·Μ»ΙΟΜ nw*rwii mm 0.30 0.05 0.05 40.0 © ◎ 182 62. οα 35.27 2.00 0.30 0.30 0.05 0.05 40.0 © © 183 63.10 34.00 2.00 0.50 0.30 0.05 0.05 40.0 X © ◎ 184 63.10 34.00 2.00 0.50 0.30 0.05 0.05 40.0 © ◎ 185 63.10 34.00 2.00 0.50 0.30 0.05 0.05 40.0 © © ◎ 1B6 63.10 34.00 Too&quot; 0.50 0.30 0.05 0.05 40.0 @ © ◎ 187 63.10 34.00 2.00 0.50 0.30 0.05 0.05 40.0 © © ◎ 188 65.80 30.80 2.00 1.00 0.30 0.05 0.05 40.0 X © ◎ 189 65.80 30.80 2.00 1.00 0.30 0.05 0.05 40.0 © ◎ ◎ 190 65. BO 30.80 2.00 1.00 0.30 0.05 40.0 ◎ © 191 65.80 30.80 2.00 1.00 0.30 0.05 0.05 40.0 © © 192 68.50 27.60 2.00 1.50 0.30 0.05 0.05 40.0 X ◎ 193 68.50 27.60 2.00 1.50 IOIiIiH·】 wmm IOIiWW ϊϊΜϋίΓΓϋ [WKHIt ] 0.30 0.05 0.D5 40.0 @ © ◎ 194 68.50 27.60 2.00 K50 0.30 0.05 0.05 40.0 ◎ ◎ © 195 71.20 U.AO too 2.00 0.30 0.05 0.05 40.0 X 〇196 71.20 24.40 2.00 2.00 0.30 0.05 0.05 40.0 X © 〇197 71.20 24.40 2.00 2.00 0.30 0.05 0.05 40.0 X ◎ 〇198 71.20 24.40 ZOO 2.00 0.30 0.05 0.05 40.0 @ ◎ 〇199 62.50 34.39 2.00 0 1.00 0.05 0.05 40.0 X © @ 200 62.50 34.39 2.00 0 1.00 0.05 0.05 40.0 X 丨◎ 201 62.50 34.38 2.00 0 1.00 0.05 0.05 40.0 X ◎ 丨 ◎ 202 S2.50 34.37 2.00 0 1,00 0.05 0.05 40.0 X ◎ 203 63.00 33.80 2.00 0.10 mm l··“丨I buckle 1 Μ·side Ε· t_) niorPi mm 1·Λ_] ΙΛΊίΜ ΓϊΙϊΤΡϊϊΙ ΜΙ·7_ΙΝ 1.00 0.05 ! 0.05 40.0 X ◎ ◎ 204 63.00 33.79 2.00 0.10 1.00 0.05 0.05 40.0 © © 205 63.00 3.00 0.10 1.00 0.05 0.05 40.0 © ◎ 206 63.60 3110 2.00 0.20 ! 1.00 0.05 0.05 40.0 X © ◎ 207 63.60 33.09 2.00 0.20 1.00 0.05 0.05 40.0 © ◎ © 208 63.60 33.09 2.00 0.20 1.00 0.05 0.D5 40.0 ◎ 209 64.10 3Z50 2.00 0.30 1.00 0.05 0.05 40.0 X © ◎ 210 64.10 32.50 2.00 0.30 1.00 0.05 0.05 40.0 X © 211 64.10 32.49 2.00 0.30 1.00 0.05 0.05 40·0 ◎ ◎ ◎ 212 213 嗣32.49 2.00 0.30 1.00 0.05 0.05 40.0 @ ◎ 31.20 ί 2.00 0.50 1.00 0.05 0.05 40.0 X ◎ ◎ [Table 11]

No. Cu Zn B i S i B A I S n N 1 鋅 當置 鑄造 破裂 切削性 刪 特性 214 65.20 31.20 200 0.50 0.0020 1.00 0.05 0.05 40.0 X @ ◎ 215 65.20 31.20 2.00 0.50 0.0040 1.0D 0.05 0.05 40.0 @ © © 216 67.90 28.00 2.00 1.00 0 1.00 0.05 0.05 40.0 X © ◎ 217 67.90 28.00 2.00 1.00 0.0005 1,00 0.05 0.05 40.0 ◎ © 218 67.90 28.00 100 1.00 0.0010 1.00 0.05 0.05 40.0 ◎ © ◎ 219 67.90 28.00 2.00 1.00 0.0020 1.00 0.05 0.05 40.0 © © 220 67.90 28.00 2.00 1.00 0.0040 1.00 0.05 0.05 40.0 ◎ ◎ © m 70.50 24.80 2.00 1.50 0.0005 1.00 0.05 0.05 40.0 X ◎ @ 222 70.60 24.80 zoo 1.50 Q.0010 1.00 0.05 0.05 40.0 © © @ 223 70.60 24.80 2.00 1.50 0.0020 1.00 0.05 0.05 40.0 © © @ 224 73.30 21.60 zoo 2.00 0.0005 1.00 0.05 0.05 40.0 X © 〇 225 73.20 21.60 zoo 2.00 0.0010 1.00 0.05 0.05 40.0 © 〇 226 73.30 21.60 2.00 2.00 0.6020 1.00 0.05 0.05 40.0 ◎ 〇 227 63.50 32.57 2.00 ; 0. 30 i l· 躍 OCUIH l··氺《I·】 1.50 0.05 0.05 41.9 @ © © 228 65.00 30.57 2.00 ! 0.30 1 2.00 0.05 0.05 ; 41.9 © © 〇 -28- 200930822 [表 12]No. Cu Zn B i S i BAIS n N 1 Zinc-casting rupture cutting property 214 65.20 31.20 200 0.50 0.0020 1.00 0.05 0.05 40.0 X @ ◎ 215 65.20 31.20 2.00 0.50 0.0040 1.0D 0.05 0.05 40.0 @ © © 216 67.90 28.00 2.00 1.00 0 1.00 0.05 0.05 40.0 X © ◎ 217 67.90 28.00 2.00 1.00 0.0005 1,00 0.05 0.05 40.0 ◎ © 218 67.90 28.00 100 1.00 0.0010 1.00 0.05 0.05 40.0 ◎ © ◎ 219 67.90 28.00 2.00 1.00 0.0020 1.00 0.05 0.05 40.0 © © 220 67.90 28.00 2.00 1.00 0.0040 1.00 0.05 0.05 40.0 ◎ ◎ © m 70.50 24.80 2.00 1.50 0.0005 1.00 0.05 0.05 40.0 X ◎ @ 222 70.60 24.80 zoo 1.50 Q.0010 1.00 0.05 0.05 40.0 © © @ 223 70.60 24.80 2.00 1.50 0.0020 1.00 0.05 0.05 40.0 © © @ 224 73.30 21.60 zoo 2.00 0.0005 1.00 0.05 0.05 40.0 X © 〇225 73.20 21.60 zoo 2.00 0.0010 1.00 0.05 0.05 40.0 © 〇226 73.30 21.60 2.00 2.00 0.6020 1.00 0.05 0.05 40.0 ◎ 〇227 63.50 32.57 2.00 ; 0. 30 il · 跃OCUIH l··氺 "I·] 1.50 0.05 0.05 41.9 @ © © 228 65.00 30.57 2.00 ! 0. 30 1 2.00 0.05 0.05 ; 41.9 © © 〇 -28- 200930822 [Table 12]

Cu 2η Β 1 Si Β A 1 Sn N j 鋅; 當量 鋳造 破裂 切削性 機械 特性 229 59,50 3β.34 2.001 0 0.0075 0 0.10 0.05 40.0 X ◎ ◎ 230 231 Ι4·Ι(^Ι 38.34 100 0 Γιϊ·ΐί.1»1 0 0.10 0.05 40.0 X ◎ β 38.33 2.00 0 0 0.10 0.05 40,0 X © 232 59.50 38.32 2.00 0 0.0300 0 0.10 0.05 40.0 ; ◎ © @ 233 60.10 37.65 2.00 0.10 0 0 0.10 0.05 40.0 X 項} @ 234 60.10 37.65 2.00 0.10 0.0040 0 0.10 0.05 40.0 X ◎ © 235 60.10 37.64 2.00 0.10 0.0075 0 0.10 0.05 40.0 © @ 236 60.10 37.64 2.00 0.10 0.0150 0 0.10 0.05 40.0 © @ ◎ 237 60.60 37.05 2.00 0.20 0 0 0.10 0.05 40.0 X © © 238 Ιδίό1 37.05 2.00 0.20 0.0020 0 0.10 0.05 40.0 © @ 239 60.60 37.05 ZOO 0.20 0.0040 0 0.10 0.05 40.0 ◎ © 240 60.60 37.04 2.00 0.20 0.0075 0 0.10 0.05 40.0 © 241 61.10 36.45 100 0.30 0 0 0.10 0.05 40.0 X © 242 61.10 36.45 2.00 0.30 0.0020 0 0.10 0.05 40.0 @ © @ 243 61.10 36.45 2.00 0.30 0.0040 0 0.10 0.05 40.0 @ @ ◎ 244 61.10 36.44 2.00 0.30 0.0075 0 0.10 0.05 40.0 @ ρ ◎ 245 62.20 35.15 2.00 0.50 0 0 0.10 0.05 40.0 ◎ © 246 62.20 35.15 2.00 0.50 0.0005 0 0.10 0.05 40.0 ◎ © 247 62.20 35.15 2.00 0.50 0.0010 0 0.10 0.05 40.0 ◎ © ◎ 248 62.20 35.15 2.00 0.50 Q.0020 0 0.10 0.05 40,0 © © 249 64.90 31.95 2.00 1.00 ^~τ~ 0 0.10 0.05 40.0 © @ © 2S0 64.90 31.95 2.00 1.00 0.0005 0 0.10 0.05 40.0 © @ ◎ 251 64.90 31.95 2.00 1.00 0.0010 0 0J0 0.05 40.0 © ◎ © 252 67.60 28.75 2.00 1.50 0 0 0.10 0.05 40.0 ◎ © @ 253 ¢7.60 28.75 2.00 1.50 0.0005 0 0.10 0.05 40.0 © @ ◎ 254 67.60 28.75 2.00 1.50 0.0010 0 0.10 0.05 40.0 © @ ◎ 255 70.30 25.55 2.00 2.00 0 0 0J0 0.05 40.0 © ◎ 〇 256 59.60 38.04 2.00 0 0.0075 0 0.30 0.05 40.0 X &lt;φ © 坜7 S9.60 FH«I1 2.00 0 0.0150 0 0.30 0.05 40.0 X ◎ ◎ 258 59.60 Rrnrwi 2.00 0 0.0200 0 0.30 0.05 40.0 X @ ◎ 259 Ι^'Χίί·! 2.00 0 0.0300 0 0.30 0.05 40.0 ◎ ◎ ◎ 260 ΕΤΐΚϋ 100 Ο.ίΟ 0 0 0.30 0.05 40.0 X ί ◎ ◎Cu 2η Β 1 Si Β A 1 Sn N j Zinc; Equivalent rupture and machinability Mechanical properties 229 59,50 3β.34 2.001 0 0.0075 0 0.10 0.05 40.0 X ◎ ◎ 230 231 Ι4·Ι(^Ι 38.34 100 0 Γιϊ· Ϊ́ί.1»1 0 0.10 0.05 40.0 X ◎ β 38.33 2.00 0 0 0.10 0.05 40,0 X © 232 59.50 38.32 2.00 0 0.0300 0 0.10 0.05 40.0 ; ◎ © @ 233 60.10 37.65 2.00 0.10 0 0 0.10 0.05 40.0 X Item} @ 234 60.10 37.65 2.00 0.10 0.0040 0 0.10 0.05 40.0 X ◎ © 235 60.10 37.64 2.00 0.10 0.0075 0 0.10 0.05 40.0 © @ 236 60.10 37.64 2.00 0.10 0.0150 0 0.10 0.05 40.0 © @ ◎ 237 60.60 37.05 2.00 0.20 0 0 0.10 0.05 40.0 X © © 238 Ιδίό1 37.05 2.00 0.20 0.0020 0 0.10 0.05 40.0 © @ 239 60.60 37.05 ZOO 0.20 0.0040 0 0.10 0.05 40.0 ◎ © 240 60.60 37.04 2.00 0.20 0.0075 0 0.10 0.05 40.0 © 241 61.10 36.45 100 0.30 0 0 0.10 0.05 40.0 X © 242 61.10 36.45 2.00 0.30 0.0020 0 0.10 0.05 40.0 @ © @ 243 61.10 36.45 2.00 0.30 0.0040 0 0.10 0.05 40.0 @ @ ◎ 244 61.10 36.44 2.00 0.30 0.0075 0 0.10 0.05 40.0 @ ρ ◎ 245 62.20 35.15 2.00 0.50 0 0 0.10 0.05 40.0 ◎ © 246 62.20 35.15 2.00 0.50 0.0005 0 0.10 0.05 40.0 ◎ © 247 62.20 35.15 2.00 0.50 0.0010 0 0.10 0.05 40.0 ◎ © ◎ 248 62.20 35.15 2.00 0.50 Q.0020 0 0.10 0.05 40 , 0 © © 249 64.90 31.95 2.00 1.00 ^~τ~ 0 0.10 0.05 40.0 © @ © 2S0 64.90 31.95 2.00 1.00 0.0005 0 0.10 0.05 40.0 © @ ◎ 251 64.90 31.95 2.00 1.00 0.0010 0 0J0 0.05 40.0 © ◎ © 252 67.60 28.75 2.00 1.50 0 0 0.10 0.05 40.0 ◎ © @ 253 ¢7.60 28.75 2.00 1.50 0.0005 0 0.10 0.05 40.0 © @ ◎ 254 67.60 28.75 2.00 1.50 0.0010 0 0.10 0.05 40.0 © @ ◎ 255 70.30 25.55 2.00 2.00 0 0 0J0 0.05 40.0 © ◎ 〇256 59.60 38.04 2.00 0 0.0075 0 0.30 0.05 40.0 X &lt; φ © 坜7 S9.60 FH«I1 2.00 0 0.0150 0 0.30 0.05 40.0 X ◎ ◎ 258 59.60 Rrnrwi 2.00 0 0.0200 0 0.30 0.05 40.0 X @ ◎ 259 Ι^'Χίί ·! 2.00 0 0.0300 0 0.30 0.05 40.0 ◎ ◎ ◎ 260 ΕΤΐΚϋ 100 Ο.ίΟ 0 0 0.30 0.05 40.0 X ί ◎ ◎

❹ -29- m i3]❹ -29- m i3]

Ko. Cu Zn B i Si B A 1 Sn N i 鋅 當量 鑄造 破裂 切削性 機械 特性 2§Γ 60.20 37.34 2.00 0.10 0.0075 0 0.30 0.05 40.0 X © © 262 60.20 37.34 2.00 0.10 0.0150 0 0.30 0.05 40.0 @ ◎ © 263 60.70 36.75 2.00 0.20 0 0 0.30 0.05 40.0 X ◎ 264 60.70 36.75 2.00 0.20 0.0040 0 0.30 0.05 40.0 X @ ρ 265 60.70 36.74 2.00 0.20 0.0075 0 0.30 0.05 40.0 @ © ◎ 266 61.20 36.15 2.00 0.30 0 0 0.30 0.05 40.0 X © ◎ 267 6Κ30 36.05 2.00 0.30 0.0020 0 0.30 0.05 40.0 ◎ ◎ ◎ 268 61.30 36.05 2.00 0.30 0.0040 0 0.30 0.05 40.0 p ◎ © 269 61.30 36.04 2.00 0.30 0.0075 0 0.30 0·坜 40,0 @ © ◎ 270 62.30 34.85 2.00 0.50 0 0 0.30 0.05 40.0 X © ◎ 271 €2.30 34.85 2.00 0.50 0.0005 0 0.30 0.05 40.0 夺 © © 272 62.30 34. B5 2.00 0.50 0.0010 0 0.30 0.05 40.0 © 273 62.30 34.85 2.00 0.50 0.0020 0 0.30 0.05 40.0 Θ 274 65.⑽ 31.昉 2.00 1.00 0 0 0.30 0.05 40.0 X @ ◎ 275 65.00 31.65 2.00 1.00 0.0005 0 0.30 0.05 40.0 ◎ @ © 276 65.00 31.65 2.00 1.00 0.0010 0 0.30 0.05 40.0 © © 277 67.70 28.45 2.00 1.50 0 0 0.30 0.06 40.0 © 278 €7.70 28.45 2.00 1.50 0.0005 0 0.30 0.05 40.0 @ ◎ 279 67.70 28.45 2.00 1.50 0.0010 0 0.30 0.05 40.0 © @ ◎ 280 70.40 25,25 2.00 2.00 0 0 0.30 0.05 40.0 X 〇 281 70.40 25.25 2.00 2.00 0.0005 0 0.30 0.05 40.0 X ◎ 〇 282 70.40 25.25 2.00 too 0.0010 0 0.30 0.05 40.0 @ ◎ 〇 283 60.40 36.04 2.00 0 0.0075 0 1,50 0.05 40.0 X @ ◎ 284 60.40 36.04 2.00 0 0.0150 0 1.50 0.05 40.0 X ◎ © 285 60.40 36.03 2.00 0 0.0200 0 1.50 0.05 40.0 X 286 60.40 36.02 2.00 a 0.0300 0 1.50 0.05 40.0 ◎ © 287 60.90 35.45 2.00 0.10 0 0 1.50 0.05 40.0 X © ◎ 28S 60.90 35.44 2.00 0.10 0,0075 0 1.50 0.05 40.0 X ◎ 289 60.90 35.44 2.00 o.to 0.0150 0 1.50 0.05 40.0, X ◎ © 290 60.90 35.43 2.00 0.10 0.0250 0 1.50 0.05 40.0 X ◎ ◎ 291 60.90 35.42 2.00 0.10 0.0300 0 1.50 0.05 40.0 ◎ ◎ ◎ 292 6Ϊ.40 34.85 100 0.20 0 0 1.50 0.05 4Q.0 X © ◎ 293 ,61.40 34.84 2.00 0,20 ην»ϊίΐιΐ 0 t.50 0.05 40.0 X ◎ ◎ 294 I 61.40 34.84 2.00 0.20 0 1.50 0.05 40.0 X ◎ @ -30- 200930822 [表 14]Ko. Cu Zn B i Si BA 1 Sn N i Zinc equivalent casting fracture mechanical properties 2§Γ 60.20 37.34 2.00 0.10 0.0075 0 0.30 0.05 40.0 X © © 262 60.20 37.34 2.00 0.10 0.0150 0 0.30 0.05 40.0 @ ◎ © 263 60.70 36.75 2.00 0.20 0 0 0.30 0.05 40.0 X ◎ 264 60.70 36.75 2.00 0.20 0.0040 0 0.30 0.05 40.0 X @ ρ 265 60.70 36.74 2.00 0.20 0.0075 0 0.30 0.05 40.0 @ © ◎ 266 61.20 36.15 2.00 0.30 0 0 0.30 0.05 40.0 X © ◎ 267 6Κ30 36.05 2.00 0.30 0.0020 0 0.30 0.05 40.0 ◎ ◎ ◎ 268 61.30 36.05 2.00 0.30 0.0040 0 0.30 0.05 40.0 p ◎ © 269 61.30 36.04 2.00 0.30 0.0075 0 0.30 0·坜40,0 @ © ◎ 270 62.30 34.85 2.00 0.50 0 0 0.30 0.05 40.0 X © ◎ 271 €2.30 34.85 2.00 0.50 0.0005 0 0.30 0.05 40.0 。 © © 272 62.30 34. B5 2.00 0.50 0.0010 0 0.30 0.05 40.0 © 273 62.30 34.85 2.00 0.50 0.0020 0 0.30 0.05 40.0 Θ 274 65.(10) 31.昉2.00 1.00 0 0 0.30 0.05 40.0 X @ ◎ 275 65.00 31.65 2.00 1.00 0.0005 0 0.30 0.05 40.0 ◎ @ © 276 65.00 31.65 2.00 1.00 0.0010 0 0.30 0 .05 40.0 © © 277 67.70 28.45 2.00 1.50 0 0 0.30 0.06 40.0 © 278 €7.70 28.45 2.00 1.50 0.0005 0 0.30 0.05 40.0 @ ◎ 279 67.70 28.45 2.00 1.50 0.0010 0 0.30 0.05 40.0 © @ ◎ 280 70.40 25,25 2.00 2.00 0 0 0.30 0.05 40.0 X 〇281 70.40 25.25 2.00 2.00 0.0005 0 0.30 0.05 40.0 X ◎ 〇282 70.40 25.25 2.00 too 0.0010 0 0.30 0.05 40.0 @ ◎ 〇283 60.40 36.04 2.00 0 0.0075 0 1,50 0.05 40.0 X @ ◎ 284 60.40 36.04 2.00 0 0.0150 0 1.50 0.05 40.0 X ◎ © 285 60.40 36.03 2.00 0 0.0200 0 1.50 0.05 40.0 X 286 60.40 36.02 2.00 a 0.0300 0 1.50 0.05 40.0 ◎ © 287 60.90 35.45 2.00 0.10 0 0 1.50 0.05 40.0 X © ◎ 28S 60.90 35.44 2.00 0.10 0,0075 0 1.50 0.05 40.0 X ◎ 289 60.90 35.44 2.00 o.to 0.0150 0 1.50 0.05 40.0, X ◎ © 290 60.90 35.43 2.00 0.10 0.0250 0 1.50 0.05 40.0 X ◎ ◎ 291 60.90 35.42 2.00 0.10 0.0300 0 1.50 0.05 40.0 ◎ ◎ ◎ 292 6Ϊ.40 34.85 100 0.20 0 0 1.50 0.05 4Q.0 X © ◎ 293 , 61.40 34.84 2.00 0,20 ην»ϊίΐιΐ 0 t.50 0.05 40.0 X ◎ 294 I 61.40 34.84 2.00 0.20 0 1.50 0.05 40.0 X ◎ @ -30- 200930822 [Table 14]

Cu 2n B i Si θ A 1 Sn N i 鋅 當置 鑄造 破裂 切削性 機械 特性 295 61.40 34.83 2.00 0.20 0.0250 0 1.50 0.05 40.0 夺 ◎ ◎ 296 62.00 34.15 2.00 0.30 0 0 1.50 0.05 40.0 X © © 297 62.00 34.15 2.00 0.30 0.0040 0 1.S0 0.05 40.0 X ◎ ◎ 298 62.00 34.14 2.00 0.30 0.0075 0 1.50 0.05 40.0 @ @ ; ◎ 299 62.00 34.12 2.00 0.30 0.0300 0 t.50 0.05 40.0 ◎ ❽1 〇 300 63.00 32.95 2.00 0.50 0.0010 0 1.50 0.05 40.0 X @ 301 63.00 32.95 2.00 0.50 0.0020 0 1.50 0.05 40.0 X ◎ 3021 63.00 32.95 Too1 0.50 0.0040 0 1.50 0.05 4D.0 X 303 63.00 32.94 2.00 0.50 0.0075 0 1.50 0.05 40.0 @ © @ 304 65.70 29.75 2.00 1.00 0.000S 0 1.50 0.05 40.0 X 〇 〇 305 65.70 29.75 2.00 1.00 0.0010 0 1.50 0.06 40.0 X 〇 〇 306 65.70 29.75 2.00 1.00 0.0020 0 1.50 0.05 40.0 X 〇 〇 307 65.70 29.75 2.00 1,00 0.0040 0 1.50 0.05 40.0 X 〇 〇 308 65.70 29.74 100 1.00 Q.0075 0 1.50 d〇5 40.0 X 〇 〇 309 65.70 29.74 2.00 1.00 0.0Ϊ50 0 1.50 0.05 40.0 ◎ 〇 〇 310 68.40 26.55 2.W) 1.50 0 0 1.50 0.05 40.0 X 〇 〇 311 68.40 26.55 2.00 1.50 0.0005 0 1.50 0.05 40.0 X 〇 〇 312 68.40 2G.55 2.00 1.50 0.0010 0 1.50 0.05 40.0 X 〇 〇 313 68.40 26.55 2.00 1.50 0.0040 α 1.50 0.05 40.0 X 〇 〇 314 68.40 26.54 2.00 1.50 0.0075 0 1.50 0.05 40.0 X 〇 〇 315 68.40 26.54 2.00 t.50 0.0150 0 1.50 0.05 40.0 X 〇 〇 316 68.40 26.52 2.00 1.50 0.0300 0 t.50 0.05 40.0 X 〇 〇 317 71.10 23.35 2.00 2.00 0 0 1.50 0.05 40.0 X 〇 〇 31d 71.10 23.35 2,00 2.00 0.0005 0 1.50 0.05 40.0 X 〇 〇 31d 71.10 23.35 2.00 2.00 0.0010 0 1.50 0.05 40.0 X 〇 〇 320 71.10 23.35 2.00 2.00 0.0040 0 1.50 0.05 40.0 X 〇 〇 321 71.10 23.34 2.00 2.00 0.0075 0 1.50 0.05 40.0 X 〇 〇 322 71.10 23.34 2.00 2.00 0.0150 0 1.50 0.05 40.0 X 〇 〇 323 71.10 23.32 2. 00 2.00 0.0300 0 1.50 0.05 40.0 X 〇 〇 324 2.00 ESEIEXSE] ΚκΜμι 姻 0.30 2.00 0 41.2 © ◎ 〇 325 2.00 0.30 3.00 ! 0 礼7 © 〇 〇 200930822 [表 15]Cu 2n B i Si θ A 1 Sn N i Zinc when casting rupture machinability 295 61.40 34.83 2.00 0.20 0.0250 0 1.50 0.05 40.0 ◎ ◎ 296 62.00 34.15 2.00 0.30 0 0 1.50 0.05 40.0 X © © 297 62.00 34.15 2.00 0.30 0.0040 0 1.S0 0.05 40.0 X ◎ ◎ 298 62.00 34.14 2.00 0.30 0.0075 0 1.50 0.05 40.0 @ @ ; ◎ 299 62.00 34.12 2.00 0.30 0.0300 0 t.50 0.05 40.0 ◎ ❽1 〇300 63.00 32.95 2.00 0.50 0.0010 0 1.50 0.05 40.0 X @ 301 63.00 32.95 2.00 0.50 0.0020 0 1.50 0.05 40.0 X ◎ 3021 63.00 32.95 Too1 0.50 0.0040 0 1.50 0.05 4D.0 X 303 63.00 32.94 2.00 0.50 0.0075 0 1.50 0.05 40.0 @ © @ 304 65.70 29.75 2.00 1.00 0.000S 0 1.50 0.05 40.0 X 〇〇305 65.70 29.75 2.00 1.00 0.0010 0 1.50 0.06 40.0 X 〇〇306 65.70 29.75 2.00 1.00 0.0020 0 1.50 0.05 40.0 X 〇〇307 65.70 29.75 2.00 1,00 0.0040 0 1.50 0.05 40.0 X 〇〇308 65.70 29.74 100 1.00 Q.0075 0 1.50 d〇5 40.0 X 〇〇309 65.70 29.74 2.00 1.00 0.0Ϊ50 0 1.50 0.05 40.0 ◎ 〇〇310 68.40 26.55 2.W) 1. 50 0 0 1.50 0.05 40.0 X 〇〇311 68.40 26.55 2.00 1.50 0.0005 0 1.50 0.05 40.0 X 〇〇312 68.40 2G.55 2.00 1.50 0.0010 0 1.50 0.05 40.0 X 〇〇313 68.40 26.55 2.00 1.50 0.0040 α 1.50 0.05 40.0 X 〇〇 314 68.40 26.54 2.00 1.50 0.0075 0 1.50 0.05 40.0 X 〇〇315 68.40 26.54 2.00 t.50 0.0150 0 1.50 0.05 40.0 X 〇〇316 68.40 26.52 2.00 1.50 0.0300 0 t.50 0.05 40.0 X 〇〇317 71.10 23.35 2.00 2.00 0 0 1.50 0.05 40.0 X 〇〇31d 71.10 23.35 2,00 2.00 0.0005 0 1.50 0.05 40.0 X 〇〇31d 71.10 23.35 2.00 2.00 0.0010 0 1.50 0.05 40.0 X 〇〇320 71.10 23.35 2.00 2.00 0.0040 0 1.50 0.05 40.0 X 〇〇321 71.10 23.34 2.00 2.00 0.0075 0 1.50 0.05 40.0 X 〇〇322 71.10 23.34 2.00 2.00 0.0150 0 1.50 0.05 40.0 X 〇〇323 71.10 23.32 2. 00 2.00 0.0300 0 1.50 0.05 40.0 X 〇〇324 2.00 ESEIEXSE] ΚκΜμι Marriage 0.30 2.00 0 41.2 © ◎ 〇325 2.00 0.30 3.00 ! 0 Gift 7 © 〇〇200930822 [Table 15]

No. Cu 2n B i Si B Al Sn N \ 鋅 當置 鑄造 破裂 切削性 機械 特性 326 59.40 38.44 2.00 0 0.0075 0 0.05 0.10 40.0 X ◎ 327 5d.40 38.44 2.00 0 0.0150 0 0.05 0.10 40.0 X ◎ © 328 59.40 38.42 2.00 0 0.0300 0 0.05 0.10 40.0 X © © 329 60.00 37.75 2.00 0.10 0 0 0.05 0.10 40.0 X © © 33? 60.00 37.75 2.00 0.10 0.0040 0 0.05 0.10 40.0 @ © © 331 332 ΕΪΕΙΙΣΕΙ t^StWfKn 2.00 0.10 0.0075 0 0.05 0.10 40.0 ◎ @ 2.00 0.10 0.0150 0 0.05 0.10 40.0 © © © 333 60.50 37· 15 2.00 0.20 0 0 0.05 0.10 40.0 X © © 334 60.50 37.14 2.00 0.20 0.0075 0 0.05 0.10 40.0 © © ◎ 335 60. SO 37.14 2.00 0.20 0.0150 0 0.05 0.10 40.0 @ 336 61.00 36.55 2.0D 0.30 0 0 0.05 0.10 40.0 X ◎ ◎ 337 61.0D 36.55 2.00 0.30 0.0020 0 0.05 0.10 40.0 ◎ 338 61.00 36.55 2.00 0.30 0.0040 0 0.05 0.10 40.0 ◎ ◎ 339 61.00 36.54 2.00 0.30 0.0075 0 0.05 0.10 40.0 © © © 340 6t.0Q 36.54 2.00 0.30 0.0150 0 0.05 0-10 40.0 ◎ ◎ 34t 62.10 35.25 2.00 0.50 0 0 0.05 0.10 40.0 X © 342 62.10 35.25 2.00 0.50 0.0005 0 0.05 0.10 40.0 ◎ © 343 62.10 35.25 2.00 D.50 0.0010 0 0.05 0.10 40.0 ◎ © © 344 62.10 35.25 2.00 0.50 0.0020 0 0.05 0.10 40.0 © © 345 64.80 32.05 2.00 1.00 0 0 0.05 0.10 40.0 ◎ © ◎ 346 64.80 32.05 2:00 1.00 0.0005 0 0.05 0.10 40.0 ◎ @ @ 347 67.50 28.85 2.00 1.50 0 0 0.05 0.10 40.0 ◎ © 348 67.50 28.85 2.00 1.50 0.0005 0 0.05 0.10 40.0 @ ◎ 70.20 25.65 ZOO 2.00 0 0 0.05 0.10 40.0 ◎ 〇 ◎ 59.10 38. B4 2.00 0 0.0075 0 0.05 0.30 40.0 X © 園 ΙΦ1Ι·Ι 38.54 2.00 0 0.0150 0 0.05 D.30 40.0 X @ 鼸 38.53 2.00 0 0.0200 0 0.05 0.30 40.0 X ◎ ◎ 59.10 38.52 2.00 0 0.0300 0 0.05 0.30 40.0 X © © 354 59.70 37. 85 2.00 0.10 0 0 0.05 0.30 40.0 X © © 355 59.70 37.84 2.00 0.10 0.0075 0 0.05 0.30 40.0 X © ◎ 356 S9.70 37.84 2.00 0.10 0.0150 0 0.05 0.30 40.0 X © ◎ 357 59· 70 37.83 2.00 o.to 0.0200 0 0.05 0.30 40.0 © © 358 59.70 37.82 2.00 0.10 0.0300 0 0.05 0.30 40.0 @ ©No. Cu 2n B i Si B Al Sn N \ Zinc when casting rupture machinability 326 59.40 38.44 2.00 0 0.0075 0 0.05 0.10 40.0 X ◎ 327 5d.40 38.44 2.00 0 0.0150 0 0.05 0.10 40.0 X ◎ © 328 59.40 38.42 2.00 0 0.0300 0 0.05 0.10 40.0 X © © 329 60.00 37.75 2.00 0.10 0 0 0.05 0.10 40.0 X © © 33? 60.00 37.75 2.00 0.10 0.0040 0 0.05 0.10 40.0 @ © © 331 332 ΕΪΕΙΙΣΕΙ t^StWfKn 2.00 0.10 0.0075 0 0.05 0.10 40.0 ◎ @ 2.00 0.10 0.0150 0 0.05 0.10 40.0 © © 333 60.50 37· 15 2.00 0.20 0 0 0.05 0.10 40.0 X © © 334 60.50 37.14 2.00 0.20 0.0075 0 0.05 0.10 40.0 © © ◎ 335 60. SO 37.14 2.00 0.20 0.0150 0 0.05 0.10 40.0 @ 336 61.00 36.55 2.0D 0.30 0 0 0.05 0.10 40.0 X ◎ ◎ 337 61.0D 36.55 2.00 0.30 0.0020 0 0.05 0.10 40.0 ◎ 338 61.00 36.55 2.00 0.30 0.0040 0 0.05 0.10 40.0 ◎ ◎ 339 61.00 36.54 2.00 0.30 0.0075 0 0.05 0.10 40.0 © © 340 6t.0Q 36.54 2.00 0.30 0.0150 0 0.05 0-10 40.0 ◎ ◎ 34t 62.10 35.25 2.00 0.50 0 0 0.05 0.10 40.0 X © 34 2 62.10 35.25 2.00 0.50 0.0005 0 0.05 0.10 40.0 ◎ © 343 62.10 35.25 2.00 D.50 0.0010 0 0.05 0.10 40.0 ◎ © © 344 62.10 35.25 2.00 0.50 0.0020 0 0.05 0.10 40.0 © © 345 64.80 32.05 2.00 1.00 0 0 0.05 0.10 40.0 ◎ © ◎ 346 64.80 32.05 2:00 1.00 0.0005 0 0.05 0.10 40.0 ◎ @ @ 347 67.50 28.85 2.00 1.50 0 0 0.05 0.10 40.0 ◎ © 348 67.50 28.85 2.00 1.50 0.0005 0 0.05 0.10 40.0 @ ◎ 70.20 25.65 ZOO 2.00 0 0 0.05 0.10 40.0 ◎ 〇◎ 59.10 38. B4 2.00 0 0.0075 0 0.05 0.30 40.0 X © Ι Ι1Ι·Ι 38.54 2.00 0 0.0150 0 0.05 D.30 40.0 X @ 鼸38.53 2.00 0 0.0200 0 0.05 0.30 40.0 X ◎ ◎ 59.10 38.52 2.00 0 0.0300 0 0.05 0.30 40.0 X © © 354 59.70 37. 85 2.00 0.10 0 0 0.05 0.30 40.0 X © © 355 59.70 37.84 2.00 0.10 0.0075 0 0.05 0.30 40.0 X © ◎ 356 S9.70 37.84 2.00 0.10 0.0150 0 0.05 0.30 40.0 X © ◎ 357 59· 70 37.83 2.00 o.to 0.0200 0 0.05 0.30 40.0 © © 358 59.70 37.82 2.00 0.10 0.0300 0 0.05 0.30 40.0 @ ©

❹ -32- [表 16]❹ -32- [Table 16]

No. Cu 2n B 1 Si B A 1 S n N i 鋅 當置 鑄造 破裂 切削性 機械 特性 359 60.20 37.25 2.00 0.20 0 0 0.05 0.30 40.0 X ◎ 360 60.20 37.24 2.00 0.20 HOW k·賈翻 0 0.05 0.30 40.0 © © w 60.20 37.24 2.00 0.20 0 0.05 0.30 40.0 © © ◎ 3S2 60.20 37.23 2.00 0.20 0.0200 0 0.05 0.30 40.0 @ ◎ 363 60.20 37.23 2.00 0.20 0.0250 0 0.05 0.30 40.0 ◎ ◎ 364 60.20 37.22 2.00 0.20 0.0300 0 0.05 0.30 40.0 ◎ ! © 365 60. SO 36.55 2.00 0.30 0 0 0.05 0.30 40.0 X ◎ ◎ 366 60.80 36.55 2.00 0.30 0.0020 0 0.05 0.30 40.0 © ◎ ί 367 60.80 36.55 100 0.30 0.0040 0 0.05 0.30 40.0 @ © © 3es 60.80 36.54 2.00 0.30 0.0075 0 0.05 0.30 40.0 © @ 369 60.80 36.54 2.00 0.30 0.0150 0 0.05 0.30 40.0 © © 370 60.80 36.52 2.00 0.30 0.0300 0 0.05 0.30 40.0 © © © 371 6K80 35.35 2.00 0.50 0 0 0.05 0.30 40.0 X ◎ ◎ 372 61.80 35.3S 2.00 0.50 0.0005 0 0.05 0.30 40.0 @ ◎ 373 61.fi0 35.35 2.00 0.50 O.OOfO 0 0.05 0.30 40.0 ◎ ◎ 374 61.80 35.35 2.00 0.50 0.0020 0 0.05 0.30 40.0 ◎ @ © 375 64. SO 32.15 2.00 1.00 0 0 0.05 0.30 40.0 © ◎ 376 64.50 32.15 2.00 1.00 0.0005 0 0.05 0.30 40.0 ◎ @ 377 64.50 32.15 2.00 i.oa o.ooTo 0 O.OS 0.30 40.0 ◎ @ © 378 67.20 28.95 2.00 1.50 0 0 0.05 0.30 40.0 ◎ 379 67.20 28.95 too 1.50 0.0005 0 0.05 0.30 40.0 © @ @ 380 67.20 28.95 2.00 1.50 0.0010 0 0.05 0.30 40.0 © © ◎ 381 69.90 25,75 2.00 2.00 0 0 0.05 0.30 40.0 X 0 © 382 69.90 25.75 2.00 2.00 0.0005 0 0.05 0.30 40.0 X 〇 ◎ 383 69.90 25.75 2.00 2.00 0.0010 0 a 05 0.30 40.0 X 〇 ρ 384 69.90 25.75 2.00 2.00 0.0020 0 0,05 0.30 40.0 ◎ 〇 ◎ 385 58.20 3B. 74 2.00 a 0.0075 0 0.05 1.00 40.0 X ◎ © 386 58.20 38.74 2.00 I 0 0.0150 0 0.05 1.00 40· 0 X ◎ 387 58.20 38.72 2.00 0 0.0300 0 0.05 1.00 40.0 X © ◎ 3Bd 58.70 38.15 2.00 0.10 0 0 0.05 1.00 40.0 X © @ 369 58.70 38.14 100 0.10 0.0075 0 0.05 1.00 40.0 X ◎ ◎ 390 58.70 38.14 100 0.10 0.0150 0 0.05 1.00 40.0 X &amp; ◎ 391 58.70 38.13 2.0D 0.10 0.0200 0 0.05 1.00 40.0 X ◎ ◎ 392 58.70 38.12 2.00 0.10 0.0300 0 0.05 1.00 40.0 © ◎ 393 59.25 37.50 2.00 0.20 0 0 0.05 1.00 40.0 X © 394 59.25 37.49 2.00 0.20 0.0075 0 a. 05 1.00 40.0 X @ 395 59.25 37.49 100 0.20 0 a. os t.oo 40.0 X ◎ ! © 39$ !59.25 37.48 2.00 0.20 0 0.05 K00 40.0 X ◎ i © -33- 200930822 [表 Γ7]No. Cu 2n B 1 Si BA 1 S n N i Zinc-casting rupture machinability 359 60.20 37.25 2.00 0.20 0 0 0.05 0.30 40.0 X ◎ 360 60.20 37.24 2.00 0.20 HOW k·Jia 0 0.05 0.30 40.0 © © w 60.20 37.24 2.00 0.20 0 0.05 0.30 40.0 © © ◎ 3S2 60.20 37.23 2.00 0.20 0.0200 0 0.05 0.30 40.0 @ ◎ 363 60.20 37.23 2.00 0.20 0.0250 0 0.05 0.30 40.0 ◎ ◎ 364 60.20 37.22 2.00 0.20 0.0300 0 0.05 0.30 40.0 ◎ ! © 365 60. SO 36.55 2.00 0.30 0 0 0.05 0.30 40.0 X ◎ ◎ 366 60.80 36.55 2.00 0.30 0.0020 0 0.05 0.30 40.0 © ◎ ί 367 60.80 36.55 100 0.30 0.0040 0 0.05 0.30 40.0 @ © © 3es 60.80 36.54 2.00 0.30 0.0075 0 0.05 0.30 40.0 © @ 369 60.80 36.54 2.00 0.30 0.0150 0 0.05 0.30 40.0 © © 370 60.80 36.52 2.00 0.30 0.0300 0 0.05 0.30 40.0 © © 371 6K80 35.35 2.00 0.50 0 0 0.05 0.30 40.0 X ◎ ◎ 372 61.80 35.3S 2.00 0.50 0.0005 0 0.05 0.30 40.0 @ ◎ 373 61.fi0 35.35 2.00 0.50 O.OOfO 0 0.05 0.30 40.0 ◎ ◎ 374 61.80 35.35 2.00 0.50 0.0020 0 0.05 0.30 40.0 ◎ @ © 375 64. SO 32.15 2.00 1.00 0 0 0.05 0.30 40.0 © ◎ 376 64.50 32.15 2.00 1.00 0.0005 0 0.05 0.30 40.0 ◎ @ 377 64.50 32.15 2.00 i.oa o.ooTo 0 O.OS 0.30 40.0 ◎ @ © 378 67.20 28.95 2.00 1.50 0 0 0.05 0.30 40.0 ◎ 379 67.20 28.95 too 1.50 0.0005 0 0.05 0.30 40.0 © @ @ 380 67.20 28.95 2.00 1.50 0.0010 0 0.05 0.30 40.0 © © ◎ 381 69.90 25,75 2.00 2.00 0 0 0.05 0.30 40.0 X 0 © 382 69.90 25.75 2.00 2.00 0.0005 0 0.05 0.30 40.0 X 〇◎ 383 69.90 25.75 2.00 2.00 0.0010 0 a 05 0.30 40.0 X 〇ρ 384 69.90 25.75 2.00 2.00 0.0020 0 0,05 0.30 40.0 ◎ 〇◎ 385 58.20 3B. 74 2.00 a 0.0075 0 0.05 1.00 40.0 X ◎ © 386 58.20 38.74 2.00 I 0 0.0150 0 0.05 1.00 40· 0 X ◎ 387 58.20 38.72 2.00 0 0.0300 0 0.05 1.00 40.0 X © ◎ 3Bd 58.70 38.15 2.00 0.10 0 0 0.05 1.00 40.0 X © @ 369 58.70 38.14 100 0.10 0.0075 0 0.05 1.00 40.0 X ◎ ◎ 390 58.70 38.14 100 0.10 0.0150 0 0.05 1.00 40.0 X &amp; ◎ 391 58.70 38.13 2.0D 0.10 0.0200 0 0.05 1.00 40.0 X ◎ ◎ 392 58.70 38.12 2.00 0.10 0.0300 0 0.05 1.00 40.0 © ◎ 393 59.25 37.50 2.00 0.20 0 0 0.05 1.00 40.0 X © 394 59.25 37.49 2.00 0.20 0.0075 0 a. 05 1.00 40.0 X @ 395 59.25 37.49 100 0.20 0 a. os t. Oo 40.0 X ◎ ! © 39$ !59.25 37.48 2.00 0.20 0 0.05 K00 40.0 X ◎ i © -33- 200930822 [Table 7]

Cu 2n B i si B A I S n N i 鋅 當量i mm 破裂 切削性 機械 特性 麵 ED 59.25 37.48 2.00 0.20 0.0250 0 0.05 1 00 40.0 ύ © 59.25 37.47 2.00 0.20 0.0300 0 0.05 1.00 40.0 p © ΕΞ fFP] 59.80 36.85 2.00 0.30 0 〇 0.05 1 00 40.0 X © , @ 59.80 36. 84 2.00 0.30 0.0075 0 0.05 1.00 40.0 X © ΕΙΏ 59.80 36.84 2.00 0.30 0.0150 0 0.05 1.00 40.0 X ◎ © ca 59.80 36.83 2.00 0.30 0.0200 0 0.05 1.00 40.0 φ @ cna 59. ΘΟ 36.83 2.00 0.30 0.0250 0 0.05 1 00 40.0 @ ◎ 59. SO 36.82 2.00 0.30 0.0300 0 0.05 1 00 40.0 贷 © © ESS 60.90 35.55 2.00 0.50 0.0040 0 0.05 1 00 40.0 X ◎ 60.90 35.54 2.00 0.50 0.0075 0 0.05 1 00 40.0 X © ◎ ΕΙΏ 60.90 35.54 2.00 0.50 0.0150 0 0.05 1.00 40.0 X ◎ © EM:I 60.90 35.53 2.00 0.50 0.0200 0 0.05 1.00 40.0 © @ © m BE 63.60 32.35 2.00 1.00 0.0010 0 0.05 1. 00 40.0 X © ◎ 63.60 32.35 2.00 i.oa 0.0020 0 0.05 1.00 40.0 X © ◎ 411 63.60 32.35 2.00 1.00 0.0040 0 0.05 1. 00 40.0 © @ ◎ AM 63.60 32.34 2.00 1.00 0.0075 0 0.05 1.00 40.0 ◎ ◎ 413 66.30 29.15 2.00 1.50 0.0010 0 0.05 1.00 40.0 X ◎ ◎ 414 66.30 29.15 2.00 1.50 0.0020 0 0·诋 a 00 I 40.0 X © © 4t5 66.30 29· 15 2.00 1.50 0.0040 a 0.05 1.00 40.0 X 1 © © 416 66.30 29.14 2.00 1.60 0.0075 0 0.05 ί.00 40.0 X ◎ ◎ 417 66.30 29.14 2.00 1.50 0.0150 0 0.05 1.00 40.0 © 1 © © 418 69,00 25· 95 2.00 2.00 0.0005 0 0.05 1.00 40.0 X 〇 ◎ 419 69.00 25.95 2.00 2.00 0.0010 0 0.05 ΓΣ ΟΟΊ 40.0 X 1 〇 ◎ 420 69.00 25.95 2.00 2.00 0.0020 0 0.05 ;1.001 40.0 X 〇 421 69.00 25.94 ZOO 2.00 0.0075 0 0.05 [I 00 40.0 X 1 〇 ◎ 422 69.00 25.94 2.00 2.00 0.0150 0 0.05 [T ^5~ 40.0 © 〇 423 PrKTil ΙΊ#Μ 38.82 2.00 0.30 o. 0300 0 0.05 I 1.50 I 41.8 ◎ ◎ ◎ 424 38.92 ZOO 0.30 0.0300 0 0.05 a MJ 4T.8 ◎ 1 ◎ 〇Cu 2n B i si BAIS n N i Zinc equivalent i mm Rupture machinability mechanical surface ED 59.25 37.48 2.00 0.20 0.0250 0 0.05 1 00 40.0 ύ © 59.25 37.47 2.00 0.20 0.0300 0 0.05 1.00 40.0 p © ΕΞ fFP] 59.80 36.85 2.00 0.30 0 〇0.05 1 00 40.0 X © , @ 59.80 36. 84 2.00 0.30 0.0075 0 0.05 1.00 40.0 X © ΕΙΏ 59.80 36.84 2.00 0.30 0.0150 0 0.05 1.00 40.0 X ◎ © ca 59.80 36.83 2.00 0.30 0.0200 0 0.05 1.00 40.0 φ @ cna 59 ΘΟ 36.83 2.00 0.30 0.0250 0 0.05 1 00 40.0 @ ◎ 59. SO 36.82 2.00 0.30 0.0300 0 0.05 1 00 40.0 Credit © © ESS 60.90 35.55 2.00 0.50 0.0040 0 0.05 1 00 40.0 X ◎ 60.90 35.54 2.00 0.50 0.0075 0 0.05 1 00 40.0 X © ◎ ΕΙΏ 60.90 35.54 2.00 0.50 0.0150 0 0.05 1.00 40.0 X ◎ © EM:I 60.90 35.53 2.00 0.50 0.0200 0 0.05 1.00 40.0 © @ © m BE 63.60 32.35 2.00 1.00 0.0010 0 0.05 1. 00 40.0 X © ◎ 63.60 32.35 2.00 i.oa 0.0020 0 0.05 1.00 40.0 X © ◎ 411 63.60 32.35 2.00 1.00 0.0040 0 0.05 1. 00 40.0 © @ ◎ AM 63.60 32.34 2.00 1.00 0.0075 0 0.05 1.00 40.0 ◎ ◎ 413 66.30 29.15 2.00 1.50 0.0010 0 0.05 1.00 40.0 X ◎ ◎ 414 66.30 29.15 2.00 1.50 0.0020 0 0·诋a 00 I 40.0 X © © 4t5 66.30 29· 15 2.00 1.50 0.0040 a 0.05 1.00 40.0 X 1 © © 416 66.30 29.14 2.00 1.60 0.0075 0 0.05 ί.00 40.0 X ◎ ◎ 417 66.30 29.14 2.00 1.50 0.0150 0 0.05 1.00 40.0 © 1 © © 418 69,00 25· 95 2.00 2.00 0.0005 0 0.05 1.00 40.0 X 〇◎ 419 69.00 25.95 2.00 2.00 0.0010 0 0.05 ΓΣ ΟΟΊ 40.0 X 1 〇 ◎ 420 69.00 25.95 2.00 2.00 0.0020 0 0.05 ;1.001 40.0 X 〇421 69.00 25.94 ZOO 2.00 0.0075 0 0.05 [I 00 40.0 X 1 〇◎ 422 69.00 25.94 2.00 2.00 0.0150 0 0.05 [T ^5~ 40.0 © 〇423 PrKTil ΙΊ#Μ 38.82 2.00 0.30 o. 0300 0 0.05 I 1.50 I 41.8 ◎ ◎ ◎ 424 38.92 ZOO 0.30 0.0300 0 0.05 a MJ 4T.8 ◎ 1 ◎ 〇

m is] μη C a I Z n B t Si B A 1 Sn N i F· P Kn P b 鋅 當量 鑄造 破裂 切削性 機« ηη. fit.00 38.3&amp; 2.0 0.20 O.OOGO 0.15 0.05 0.05 0 0 0.20 0 40, p i&gt; 9 Φ E1E1 2.0 0.20 0.0050 0.15 o.os ΌΓ 0 0 0.30 0 39.9 9 ο 2.0 0.60 0.0010 Q.SS O.OS 0.05 0 0 0.20 0 40.0 ό e &quot;42Γ 63.70 32.9S 繼 0.0010 0.35 0.05 0.站 0 0 0.30 0 40.0 X ό 429 5S.20 29.70 ^.0 0.0015 ι,ρο 0.05 O.OS 0 0 0.30 0 40.0 X 9 ο &quot;430Ί S6.20 Ά. 60 IP o.M O.OOT5 1.00 0.05 a〇5 0 0 0.4D 0 39.9 X 0 -Ο- nr 67.20 28.50 2.0 ar9〇 0.0015 1.00 0.05 0.D5 0 0 0,30 0 40.0 Ο 令 Ο W »7.20 28.40 2.0 0.90 0.0015 1.00 0.05 0.05 0 0 0.40 9 40, p Ο φ ο IS- (6.60 29.19 1.5 1.50 0.0075 6.10 0.05 0.05 0 0 1.00 0 41.0 9 ο 1 ς Τ5Γ $6.30 214Ϊ %5 i.io 0.007S ΤΤΓ 0.05 0.05 0 0 2.00 〇 «1.0 ρ 〇 ο EM wmi 1.S I. so 0.007S 0.10 0.05 0.05 0 0 3.00 〇 ! 4t.0 ρ ο 〇 1.S 1.50 0.0075 0.10 0.05 0.05 0 0 4.00 0 ' 41.0 〇 Ls_ ο -34- 200930822 [表 19]m is] μη C a IZ n B t Si BA 1 Sn N i F· P Kn P b Zinc equivalent casting cracking machine « ηη. fit.00 38.3&amp; 2.0 0.20 O.OOGO 0.15 0.05 0.05 0 0 0.20 0 40, p i&gt; 9 Φ E1E1 2.0 0.20 0.0050 0.15 o.os ΌΓ 0 0 0.30 0 39.9 9 ο 2.0 0.60 0.0010 Q.SS O.OS 0.05 0 0 0.20 0 40.0 ό e &quot;42Γ 63.70 32.9S Following 0.0010 0.35 0.05 0. Station 0 0 0.30 0 40.0 X ό 429 5S.20 29.70 ^.0 0.0015 ι,ρο 0.05 O.OS 0 0 0.30 0 40.0 X 9 ο &quot;430Ί S6.20 Ά. 60 IP oM O.OOT5 1.00 0.05 A〇5 0 0 0.4D 0 39.9 X 0 -Ο- nr 67.20 28.50 2.0 ar9〇0.0015 1.00 0.05 0.D5 0 0 0,30 0 40.0 Ο Ο W »7.20 28.40 2.0 0.90 0.0015 1.00 0.05 0.05 0 0 0.40 9 40, p Ο φ ο IS- (6.60 29.19 1.5 1.50 0.0075 6.10 0.05 0.05 0 0 1.00 0 41.0 9 ο 1 ς Τ5Γ $6.30 214Ϊ %5 i.io 0.007S ΤΤΓ 0.05 0.05 0 0 2.00 〇«1.0 ρ 〇ο EM wmi 1.S I. so 0.007S 0.10 0.05 0.05 0 0 3.00 〇! 4t.0 ρ ο 〇1.S 1.50 0.0075 0.10 0.05 0.05 0 0 4.00 0 ' 41.0 〇Ls_ ο -34- 200930822 [Table 19]

❹ [表 20] ❹ 161001 lei.SOi❹ [Table 20] ❹ 161001 lei.SOi

1 62.00J 36J#1 62.00J 36J#

2, CO2, CO

[Sn I N I I i T 5〇 n~ 〇5 I 8b[Sn I N I I i T 5〇 n~ 〇5 I 8b

Pb 驩 鼸 .70 L» L20Pb 欢 鼸 .70 L» L20

3S.$S 36.lt is^y ΙΠΓ t.25 _L50 Ϊ.25 0,35 035 00075 cai?财 Ejtumaoa catuzanAJw^ioa ΕΏί·ϋΙ^ΙΜΑ^·ΙΙ-^Ε^Ι_ pjiiaEii^iKEiiaaiHEaa_ traiiKviEazi|^a^Q|CE5stxn D3i9E3E3EZl^MBQ^^SOS· [51 mi υ·ϊϋ Em it .- [表 21]3S.$S 36.lt is^y ΙΠΓ t.25 _L50 Ϊ.25 0,35 035 00075 cai? Ejtumaoa catuzanAJw^ioa ΕΏί·ϋΙ^ΙΜΑ^·ΙΙ-^Ε^Ι_ pjiiaEii^iKEiiaaiHEaa_ traiiKviEazi|^a ^Q|CE5stxn D3i9E3E3EZl^MBQ^^SOS· [51 mi υ·ϊϋ Em it .- [Table 21]

Cu oaoaoaoai-o··——e—psheoe· n^EsaoEMiiQioEmMaimacHKHKEOKK ΜΏί·1ΒΒ^||^3Β$3Ι ΙΚ·Μ KiJKtI 03 10.0078 0,30 0.30 0.30 4ft» 40.9 o 0.15 0.2S &quot;els Os 〇‘》 0.05 0.05Cu oaoaoaoai-o··——e—psheoe· n^EsaoEMiiQioEmMaimacHKHKEOKK ΜΏί·1ΒΒ^||^3Β$3Ι ΙΚ·Μ KiJKtI 03 10.0078 0,30 0.30 0.30 4ft» 40.9 o 0.15 0.2S &quot;els Os 〇'》 0.05 0.05

O.OSO.OS

T« OiOS 0.05T« OiOS 0.05

0.05 T〇f Tw ToT 0.0S oor 40.7 0.P20.05 T〇f Tw ToT 0.0S oor 40.7 0.P2

¥U lay &lt;0.7 15T 40.1 1ST a o 3r 31 o 〇r &quot;g&quot; Ϊ¥U lay &lt;0.7 15T 40.1 1ST a o 3r 31 o 〇r &quot;g&quot; Ϊ

Mn CMn C

Sb Pb Ε3Ε1ί3ΒΜ1Κ]^·α^Η^ΗΡΕΐυΕΕ1ΙΡΕ1ΕΕ3 ^lll^l^lJK19Cia[iX^KSLJE13EX3iEX^ crag]^ji^trigHRM^^rnr^〇aiEr^giT^ir_ir^nmrnnr^ ΡιΊΕΙΕϋϋΐπ ΙΠΙ^ΙΤΤΊ FTT^【耶· nrai gT'Tl FTI· ·»ΓΤίΙ ΡϋίίϋιΙιΙί^ΙΐΜΪ^ΚίΑίΡΙΒ^ΐΏόΚΙΚΑ^ΜΤ^-ΜίΓίΓΤϋ^υΐιΐίΙιΐιΙ1!1^! ου ir^i eiii mM eei ckj κ;πι oa eei ίΕ3 Elga 031^1 ESa Wka K Ί 】ΓΤ7^μι*Κ^3Εα^ιΕΓ?1Η^-1ΗΕ[3ΕΕ^ ΡΑ^^ΕΒ1^Ρ3ΕΙ!^ΕΐπίΜΕΕ1ΚΤ^π^Ι^Ζ1[!ΐ^ΐ!ΐ^ rr7】Crai7amiiI3EE〇IillM_liirCl【TJ_t〇|iaEJi^| 【:·Ίΐ:η·?*υ»¥:.ΐΓΓ&lt;Γ.τ.^π·,ι^.·Γ^ιπ^·Γττ·ηΓΤ·ίΕΐιιΖ3Κ3^ EiEOigciBEigiFiinTMnaEcagT^wi^oiJM^vT^ODacEi E^ia^lfrfelWFniO^lPUfi)·骨 ί·_·»1[.··ι 霣 iV)|g?y?l·丨 π··υ_η:·1 [3CgiiJE:&lt;aijn.imnriTrMu.)^iKir‘^_〇iLjr]acCT.;tg-i CIIEOEilZigl^irmEEiaglUglBlEaiinnEJOillClga E3 οκι pjZjanEiEnranrirnTOngy^gi^ Eiii oaioaoEa ΓΕ3 只^ΕΚΙ^^^ΠΓ^ΠΓ^ΟΙίΙΟ^ΓΤΐΙΙ^ίΤ^ΙΜΓΤΜυ.ίΙι:] ί〇] hmu i^oi kif3 γτ^ττί Frymr· 0:11 E!&amp;3 ·*τι· l: ’· m.l FTTl F 邐·:ί:.丨 FED Etl m f ΙΠΓ·· ΓΤ71 l·! .i .【j mi Β·Ί#ν;1&gt;^^ΐΜ1ί^ΤΤτί^η»:ιΐΡ!·ιΕ^ί*&gt;(Ί-ΐΓΠ^^&gt;^&gt;νΜί&gt;ΜΤιΒ&gt;ί'ΊιΐίΠ7Γ^ίι^ιΐίSb Pb Ε3Ε1ί3ΒΜ1Κ]^·α^Η^ΗΡΕΐυΕΕ1ΙΡΕ1ΕΕ3 ^lll^l^lJK19Cia[iX^KSLJE13EX3iEX^ crag]^ji^trigHRM^^rnr^〇aiEr^giT^ir_ir^nmrnnr^ ΡιΊΕΙΕϋϋΐπ ΙΠΙ^ΙΤΤΊ FTT^[Yes· Nrai gT'Tl FTI··»ΓΤίΙ ΡϋίίϋιΙιΙί^ΙΐΜΪ^ΚίΑίΡΙΒ^ΐΏόΚΙΚΑ^ΜΤ^-ΜίΓίΓΤϋ^υΐιΐίΙιΐιΙ1!1^! ου ir^i eiii mM eei ckj κ;πι oa eei ίΕ3 Elga 031^1 ESa Wka K Ί 】 ΓΤ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^| [:·Ίΐ:η·?*υ»¥:.ΐΓΓ&lt;Γ.τ.^π·, ι^.·Γ^ιπ^·Γττ·ηΓΤ·ίΕΐιιΖ3Κ3^ EiEOigciBEigiFiinTMnaEcagT^wi^oiJM^vT^ODacEi E^ia^lfrfelWFniO^lPUfi)·骨ί·_·»1[.··ι 霣iV)|g?y?l·丨π··υ_η:·1 [3CgiiJE:&lt;aijn.imnriTrMu.)^ iKir'^_〇iLjr]acCT.;tg-i CIIEOEilZigl^irmEEiaglUglBlEaiinnEJOillClga E3 οκι pjZjanEiEnranrirnTOngy^gi^ Eiii oaioaoEa ΓΕ3 only ^ΕΚΙ^^^ΠΓ^ΠΓ^ΟΙίΙΟ^ΓΤΐΙΙ^ ΤΤ^ΙΜΓΤΜυ.ίΙι:] ί〇] hmu i^oi kif3 γτ^ττί Frymr· 0:11 E!&3 ·*τι· l: '· ml FTTl F 逦·: ί:.丨FED Etl mf ΙΠΓ ··ΓΤ71 l·! .i .[j mi Β·Ί#ν;1&gt;^^ΐΜ1ί^ΤΤτί^η»:ιΐΡ!·ιΕ^ί*&gt;(Ί-ΐΓΠ^^&gt;^&gt;νΜί&gt ;ΜΤιΒ&gt;ί'ΊιΐίΠ7Γ^ίι^ιΐί

ICL0Q20I LOOS CoS'ICL0Q20I LOOS CoS'

DE2I [®23 HU aos Ά- 0.1 ROS aS! 0.05 otoi ¢. QlOI 0. CL0T~srDE2I [®23 HU aos Ά- 0.1 ROS aS! 0.05 otoi ¢. QlOI 0. CL0T~sr

M 4〇r 40.8 40. a 4tt5 40.5M 4〇r 40.8 40. a 4tt5 40.5

40.B 41.2 41.2 41.¾ 41.2 机s40.B 41.2 41.2 41.3⁄4 41.2 Machine s

40. S40. S

40.S 4〇ue 41.? 41.2 .2 m o o o o o ft o ft o 〇40.S 4〇ue 41.? 41.2 .2 m o o o o o ft o ft o 〇

O 〇 e o o ❼ oO 〇 e o o ❼ o

Q e oQ e o

DD

D -35· 200930822 m 22]D -35· 200930822 m 22]

No. Γ1Γ zn B ϊ SI Β A 1 $ η N i F· P Μ π [Ej Sb j 鋅 當ft 9jnm &quot;49Γ Ui.io 36.44 JJT 0.35 0.0075 0.30 (LOS a〇5 0 0 ~ΤΊ mtm « msm EEl wjem Esn csn EK9 1¾¾ KDca ixa EXH ντη 40.9 ά -jsr 3S: 49« isr 言 备 ΊΒΓ\ □Ε 50&gt; 50» ί S10 jiL # 51畜 οκά CK] ΓΟΕΆ K^rm Era KKJ mca EEK3 KiS3 D3K1 3S.M TIT 0.3$ 0.0075 0.20 ΚΕΛ HK1 0*3 WSlE no E3 Kl¥3 EX3 KiX3 EK3 inra V^l t^ki oa BEEl EXZ1 lilffl EDEK1 rf^l 0^1 gT!-l KX!ll KX3 0^1 EK3 cxa aos 0 0 &quot;fH 40.备 _δ- 3S.59, 1,2S_ 0.3S 0.0075 0.20 0.0^ 0 0 〇 1 0 4|.2 本 3B.191 驟 D.C07S 0.10 9.05 0 fi ΖΣΖ 6 41? -4- 32.34 1,5? 0.0075 1.00 0.05 0 0 ζ±ζ i 40.0 JL·- ;%$4 t.70 0.3S 0,007$ 2.00 ao$ 0 0 0 0 w Φ If: Rm u? 0,35 0.00½ 3.00 0.05 0 0 0&quot; Q T〇T 9 9 20.3^ 0.35 0.0300 WEimKJM 0 0 0 a 4gtp 0 9 2€·η 1.70 夂 0300 ?r〇5 0 0 0 0 40r0 o 19.39 1.70 9,0150 4.00J £〇S 0 0 ρ ό 4p,〇 ό }lr}} 1.2S 0.0015 ΤΐΓ 0.50 0.01 TW 0.00S 0.0026 αοοβ 4o.d 4 1.2S 1.00 Οόΐ? Ύ1Γ\ 1.00 0.01 0.005 0.00$ ♦•0025 ό,ύάβ 46J δ 5 ikz4 lT 2$ 0,00 沾 1.00 0.50 0.01 aoos ΌΚ&quot; ύ.0025 pB^ ^io LiHJ KOCH R^tn LtAU WLim mm imi K*a tsca KiM^M Kldl 26.09 i.U ιτ6〇 0.0015 1.25 a5Q o.ot 0.00$ αοδΤ 〇5S aoos 42.6 9 0 TOT 12f 1.90 o.ooi6 1.50 0.50 0.01 aoos 0.00$ α〇029 o.oos 43.1 夺 十 IST^ v8 ^7?&quot; 0.6015 1.50 0:70 0.03 &amp;.01 0.01 0.005 o.6i 41fo ο ο 24. B3 1t3〇 0.00IS 1.50 0.7C 0.03 0.03 0.03 0.03 0.0! Τ?Γ ΓΙΤλΙΚΪΊ· KU ra κπα KTO 6 i 2ft. S3 ila 1,00 O.OOIS !.00 0.70 exh IX·暹 Η! DLilJl't'il φ 十 ίΑ,ύ 1,2S 1.00 0.0015 100 0.70 0.01 0.005 wxm nu κη κη κη m iU HOI KiM 令 5pf nrsr ι.βό 0.0015 1.60 0.5Q 0.01 0.01 0.005 0.01 4T.0 ο ο 26.03 ι.ΰύ 0.0015 t.SO 1.00 0.03 0.01 0.01 0.005 〇T?1 I 41.0 ο— ο 25.1β -LgL 1.PQ 0.0010 1.50 0.70 0.03 ΤδΓ 0.01 α.οω ΟγΨι ^40.0 ο ο 2 乂 46 1r00 0.0010 iTso 9,70 0.03 ΌΓ &quot;ΡΓ 0.005 o-W [Ά0 ο ο 27.¾ 3¾ 0.BS 0.0015 1.$D aso 0.03 ΤοΓ 0.01 0.005 Ml 27.48 αϊΓ 0.0015 1.5D 0.70 1 0.05 1 0.03 aot 0.01 0.005 0.01 rttTi t 卞No. Γ1Γ zn B ϊ SI Β A 1 $ η N i F· P Μ π [Ej Sb j Zinc when ft 9jnm &quot;49Γ Ui.io 36.44 JJT 0.35 0.0075 0.30 (LOS a〇5 0 0 ~ΤΊ mtm « msm EEl wjem Esn csn EK9 13⁄43⁄4 KDca ixa EXH ντη 40.9 ά -jsr 3S: 49« isr 言 ΊΒΓ &50&gt; 50» ί S10 jiL # 51畜οκά CK] ΓΟΕΆ K^rm Era KKJ mca EEK3 KiS3 D3K1 3S. M TIT 0.3$ 0.0075 0.20 ΚΕΛ HK1 0*3 WSlE no E3 Kl¥3 EX3 KiX3 EK3 inra V^lt^ki oa BEEl EXZ1 lilffl EDEK1 rf^l 0^1 gT!-l KX!ll KX3 0^1 EK3 cxa Aos 0 0 &quot;fH 40.备_δ- 3S.59, 1,2S_ 0.3S 0.0075 0.20 0.0^ 0 0 〇1 0 4|.2 This 3B.191 Step D.C07S 0.10 9.05 0 fi ΖΣΖ 6 41? -4- 32.34 1,5? 0.0075 1.00 0.05 0 0 ζ±ζ i 40.0 JL·- ;%$4 t.70 0.3S 0,007$ 2.00 ao$ 0 0 0 0 Φ If: Rm u? 0,35 0.001⁄2 3.00 0.05 0 0 0&quot; QT〇T 9 9 20.3^ 0.35 0.0300 WEimKJM 0 0 0 a 4gtp 0 9 2€·η 1.70 夂0300 ?r〇5 0 0 0 0 40r0 o 19.39 1.70 9,0150 4.00J £〇S 0 0 ρ ό 4p, 〇ό }lr}} 1.2S 0.0015 ΤΐΓ 0.50 0.01 TW 0.00S 0.0026 αοοβ 4o. d 4 1.2S 1.00 Οόΐ? Ύ1Γ\ 1.00 0.01 0.005 0.00$ ♦•0025 ό,ύάβ 46J δ 5 ikz4 lT 2$ 0,00 沾1.00 0.50 0.01 aoos ΌΚ&quot; ύ.0025 pB^ ^io LiHJ KOCH R^tn LtAU WLim mm imi K*a tsca KiM^M Kldl 26.09 iU ιτ6〇0.0015 1.25 a5Q o.ot 0.00$ αοδΤ 〇5S aoos 42.6 9 0 TOT 12f 1.90 o.ooi6 1.50 0.50 0.01 aoos 0.00$ α〇029 o.oos 43.1 Ten IST^ v8 ^7?&quot; 0.6015 1.50 0:70 0.03 &amp;.01 0.01 0.005 o.6i 41fo ο ο 24. B3 1t3〇0.00IS 1.50 0.7C 0.03 0.03 0.03 0.03 0.0! Τ?Γ ΓΙΤλΙΚΪΊ· KU ra Κπα KTO 6 i 2ft. S3 ila 1,00 O.OOIS !.00 0.70 exh IX·Siam! DLilJl't'il φ 十ίΑ,ύ 1,2S 1.00 0.0015 100 0.70 0.01 0.005 wxm nu κη κη κη m iU HOI KiM 5pf nrsr ι.βό 0.0015 1.60 0.5Q 0.01 0.01 0.005 0.01 4T.0 ο ο 26.03 ι.ΰύ 0.0015 t.SO 1.00 0.03 0.01 0.01 0.005 〇T?1 I 41.0 ο— ο 25.1β -LgL 1.PQ 0.0010 1.50 0.70 0.03 ΤδΓ 0.01 α.οω ΟγΨι ^40.0 ο ο 2 乂46 1r00 0.0010 iTso 9,70 0.03 ΌΓ &quot;ΡΓ 0.005 oW [Ά0 ο ο 27 .3⁄4 33⁄4 0.BS 0.0015 1.$D aso 0.03 ΤοΓ 0.01 0.005 Ml 27.48 αϊΓ 0.0015 1.5D 0.70 1 0.05 1 0.03 aot 0.01 0.005 0.01 rttTi t 卞

-36- 200930822 οο 【ezs 耐腐 蝕性 0 IS 0 切削性 0 第造 破裂 X ID o 合計 eo 5 O 其他 S O C S o ω 1 0,0080 I CL 1 0.05 1 in 1 0.11 I &lt; o z 「0.05 | β U. o c &lt;0 n 〇 c N 「38·1 l ED s CO Pb I O.UO I Sb o a 〇 s -37- 200930822 例1〜4 對於在Cu/Zn = 60/40的黃銅中添加2%Pb的黃銅,不 發生鑄造破裂。但是,添加B i來取代易切削加工性成分 的Pb時,發生了鑄造破裂。雖然Bi與Pb同樣都可以改 善切削性,但是明顯地容易發生鑄造破裂。 例 5~ 10 0 雖然添加了 Bi的黃銅的鑄造破裂可藉由添加B和Si 來防止,但是如例5所示,Cu超過75wt%時就變爲容易 發生鑄造破裂。另一方面’雖然即使Cu降低至55 wt %也 沒有發現鑄造破裂的發生’但是因Zn增加/3相的比例增 大’發現了材料延展性的降低。從而,爲了獲得良好的鑄 造破裂性使Cu爲75 wt%以下,而且爲了也想要同時獲得 良好的機械特性使C u爲5 5 wt %以上。 ❹ 例1 1〜1 6 如果提昇B和Si的添加量則防止鑄造破裂的效果更 高。但是’如果過量地添加B,則材料變成硬質且變脆。 亦即’切削阻力變局的同時’材料的延展性降低。如果考 慮到對於切削性、機械特性等的影響,則B添加量爲 〇.3wt%以下’爲0.03wt%以下爲宜,爲〇 〇lwt%以下尤 佳。 例17〜100 -38- 200930822-36- 200930822 οο [ezs corrosion resistance 0 IS 0 machinability 0 rupture X ID o total eo 5 O other SOCS o ω 1 0,0080 I CL 1 0.05 1 in 1 0.11 I &lt; oz "0.05 | β U. oc &lt;0 n 〇c N "38·1 l ED s CO Pb I O.UO I Sb oa 〇s -37- 200930822 Examples 1 to 4 For adding in Cu/Zn = 60/40 brass 2% Pb of brass does not undergo casting cracking. However, when B i is added to replace the Pb of the machinability component, casting cracking occurs. Although Bi and Pb can improve the machinability, it is obviously prone to casting. Example 5~10 0 Although the casting crack of the brass to which Bi is added can be prevented by adding B and Si, as shown in Example 5, when Cu exceeds 75 wt%, casting cracking easily occurs. 'Although the occurrence of casting cracking was not found even if Cu was reduced to 55 wt% 'but the increase in the proportion of Zn/3 phase was increased', and the decrease in ductility of the material was found. Thus, Cu was 75 in order to obtain good casting fracture. Below wt%, and in order to also obtain good mechanical properties at the same time, make Cu 5 5 wt % or more. ❹ Example 1 1~1 6 If the addition amount of B and Si is increased, the effect of preventing casting cracking is higher. But 'If B is excessively added, the material becomes hard and becomes brittle. That is, 'cutting resistance At the same time, the ductility of the material is reduced. If the influence on machinability, mechanical properties, etc. is taken into consideration, the amount of B added is 〇.3 wt% or less, and it is preferably 0.03 wt% or less, preferably 〇〇lwt% or less. Example 17~100 -38- 200930822

Bi添加量越多則切削性越高,藉由添加〇 . 3 wt %以上 即可獲得效果。但是由於是昂貴的元素,所以過量地添加 時材料費用變高,因此,抑制在4wt%以下爲宜。而且, 由於Bi是成爲鑄造破裂發生的起點,所以根據添加量的 不同’鑄造破裂發生的容易程度也發生變化。添加量越多 則鑄造破裂發生的危險性越高,因此,爲了防止破裂,增 加B和Si添加量爲宜。The more the amount of Bi added, the higher the machinability, and the effect can be obtained by adding 〇 3 wt % or more. However, since it is an expensive element, the material cost becomes high when it is excessively added, and therefore, it is preferably suppressed to 4 wt% or less. Further, since Bi is a starting point for occurrence of casting fracture, the ease of occurrence of casting fracture varies depending on the amount of addition. The more the amount of addition, the higher the risk of occurrence of casting cracking. Therefore, in order to prevent cracking, it is preferred to increase the amount of B and Si added.

Bi添加量小於1.5wt%時,爲了防止破裂可減少所需 的B和Si添加量,如果以Bi爲1.5 S BiS 4wt%時所需的 B、Si添加量爲基準,貝IJ Bi爲 0.3SBi&lt;0.75wt%時爲 0.2倍,〇.75SBi&lt;1.5wt%時爲0.85倍的添加量可防止鑄 造破裂。 例1 0 1〜1 4 7 例101〜107顯示出使表觀的Zn當量爲37〜45%可 〇 獲得良好的鑄造性。Zn當量小於37%時,產生初晶α相 的樹枝狀結晶,變爲容易發生鑄造破裂。另一方面,Ζη * 當量超過45%時/3相的比例增大,材料的延展性降低。 • 而且,例108〜147顯示出根據表觀的Ζη當量的不 同,鑄造破裂發生的容易程度也發生變化。表觀的Ζιι當 量高則很難發生鑄造破裂,從而可減少爲了防止鑄造破裂 所需的B和Si的添加量。如果以表觀的Ζη含量在39% 以上且小於41%時所需的Β和Si添加量爲基準,則在37 %以上且小於39%時爲1倍’在41以上45%以下時爲 -39- 200930822 0.75倍的添加量可防止鑄造破裂。 例1 4 8〜2 2 8 雖然沒有發現A1的0. 1 wt%以上且小於〇.3 wt%的添 加量對於_造破裂的影響,但是變爲〇.3wt%以上時則變 爲容易發生鑄造破裂,需要提昇B和Si量。而且,如果 提昇B和S i添加量,則可增加添加的A1的量,但是過量 添加A1時材料的延展性降低,因此,需要將a丨抑制至添 加2wt%以下。 例229〜325When the amount of addition of Bi is less than 1.5% by weight, the amount of B and Si added may be reduced in order to prevent cracking, and if the amount of B and Si required for Bi is 1.5 S BiS 4 wt%, the shell IJ Bi is 0.3 SBi &lt; When it is 0.7 times at 0.75 wt%, the addition amount of 0.85 times at 〇.75SBi &lt; 1.5 wt% can prevent casting cracking. Example 1 0 1 to 1 4 7 Examples 101 to 107 show that the apparent Zn equivalent is 37 to 45%. Good castability is obtained. When the Zn equivalent is less than 37%, dendritic crystals of the primary crystal α phase are generated, and casting cracking easily occurs. On the other hand, when the Ζη* equivalent exceeds 45%, the ratio of the /3 phase increases, and the ductility of the material decreases. • Further, Examples 108 to 147 show that the ease of occurrence of casting fracture also changes depending on the apparent Ζη equivalent. The apparent Ζιι high is difficult to cause casting cracking, thereby reducing the amount of B and Si added to prevent casting cracking. If the amount of cerium and Si required for the apparent Ζη content is 39% or more and less than 41%, it is 1% when it is 37% or more and less than 39%, and is - when it is 41 or more and 45% or less. 39- 200930822 0.75 times the amount added to prevent casting cracking. Example 1 4 8~2 2 8 Although the addition amount of 0.1% by weight or more and less than 〇.3 wt% of A1 was not found to affect the rupture of _, it became easy to occur when it became 〇.3 wt% or more. Casting cracks require an increase in the amount of B and Si. Moreover, if the amount of addition of B and S i is increased, the amount of A1 added can be increased, but the ductility of the material is lowered when A1 is excessively added, and therefore, it is necessary to suppress a 丨 to 2 wt% or less. Example 229~325

Sn添加〇.1 wt%以上有可能對於鑄造破裂產生影響, 尤其是Sn變爲1.5 wt %以上時變爲容易發生鑄造破裂,可 藉由提昇B和S i添加量對此加以抑制。 例326〜424The addition of 〇.1 wt% or more of Sn may affect the casting cracking, and in particular, when Sn becomes 1.5 wt% or more, casting cracking easily occurs, which can be suppressed by increasing the amount of addition of B and S i . Example 326~424

Ni添加0.1 wt%以上時,有可能對於鑄造破裂產生影 響,尤其是添加Ni時藉由添加Si可排除該影響。與A1 或Sn同樣,Ni也是隨著添加量增加變爲容易發生鑄造破 裂,對此係以提昇B和Si添加量爲宜。 例425〜436 雖然Μη對於鑄造破裂產生影響,但是只要小於 0.3wt%,就能排除其影響。在添加Mn0.3wt%以上時, -40- 200930822 使Si添加量提昇至0.7wt%以上爲宜。 例437〜454 這些例子顯示出可容許不可避免的雜質的存在,藉由 提昇B和Si的添加量,不可避免的雜質的容許量變高。 雖然Sb使鑄造破裂容易發生,但是藉由提昇B或Si,可 實現添加量爲0.2 wt%以下。而且同樣可實現Fe爲添加 1 wt%以下,Pb爲添加0.5wt%以下,P爲添加〇.2wt%以 下。如果提昇B和S i的添加量至所列的例子以上時,則 顯示出可更多地添加上述元素。 例 45 5 ~ 467 如果提昇B和Si的添加量,可有效地防止鑄造破裂 ,但是如果過量地添加則將會導致切削性、機械特性等的 惡化。例45 5〜467所示的組成分是能夠均衡保持鑄造性 Q 、切削性及機械特性的例子。 * 例 468 〜490 如上所述,B與Fe、Cr等容易形成化合物,如果形 成這樣的化合物則在進行硏磨等的表面加工時,將會成爲 外觀不良的主要原因。從而,對於要進行最後精製硏磨的 裝飾零件等,最好是儘量減少Fe、Cr等的含量的同時, 也儘可能地減少B的添加量。雖然減少B將變爲容易發 生鑄造破裂,但是另一方面卻可藉由提昇Si添加量來防 -41 - 200930822 止鑄造破裂。例468〜490所示的組成分是能夠不使切削 性、機械特性惡化’且可獲得良好的鑄造性和表面加工性 的例。 例4 9 1〜5 1 5 * 藉由Sn的添加可使耐腐蝕性提昇。藉由添加Sn爲When Ni is added in an amount of 0.1% by weight or more, there is a possibility that the influence of casting cracking is exerted, and especially when Ni is added, the influence can be eliminated by adding Si. Like A1 or Sn, Ni also tends to cause casting cracking as the amount of addition increases, and it is preferable to increase the amount of addition of B and Si. Examples 425 to 436 Although Μη has an effect on the casting rupture, as long as it is less than 0.3% by weight, the influence can be eliminated. When Mn is added in an amount of 0.3% by weight or more, -40 to 200930822 is preferably used to increase the amount of Si added to 0.7% by weight or more. Examples 437 to 454 These examples show that the presence of unavoidable impurities can be tolerated, and by increasing the amount of addition of B and Si, the inevitable amount of impurities is increased. Although Sb causes casting cracking to occur easily, the addition amount is 0.2 wt% or less by raising B or Si. Further, it is also possible to add Fe of 1 wt% or less, Pb of 0.5 wt% or less, and P of less than 2 wt%. If the addition amount of B and S i is increased above the listed examples, it is shown that the above elements can be added more. Example 45 5 ~ 467 If the addition amount of B and Si is increased, the casting cracking can be effectively prevented, but if it is excessively added, the machinability, mechanical properties, and the like are deteriorated. Example 45 The composition shown in 5 to 467 is an example in which the castability Q, machinability, and mechanical properties can be maintained in a balanced manner. * Examples 468 to 490 As described above, B forms a compound with Fe, Cr, etc., and if such a compound is formed, it may cause a poor appearance when subjected to surface processing such as honing. Therefore, it is preferable to reduce the content of Fe, Cr, etc. as much as possible, and to reduce the amount of addition of B as much as possible for the decorative part to be subjected to the final refining. Although the reduction of B will become prone to casting cracking, on the other hand, it is possible to prevent casting cracking by increasing the amount of Si added. The components shown in Examples 468 to 490 are examples in which good machinability and surface processability can be obtained without deteriorating machinability and mechanical properties. Example 4 9 1~5 1 5 * Corrosion resistance is improved by the addition of Sn. By adding Sn as

Iwt%以上可獲得良好的耐腐蝕性。而且,如例495〜498 〇 所示,藉由提昇Cu可提昇耐腐鈾性。如例499、500所示 ,如果提昇Cu並添加Sn,則能夠大幅度地提昇耐腐蝕性 ,如例5 0 1〜5 1 5所示的組成分是能夠不使切削性、機械 特性及表面加工性惡化,又可獲得良好的鑄造性和耐腐蝕 性的例。 另外,除了例5以外的上述例1〜5 1 5的α相+冷相 的相比例全部都是在8 5 %以上。 © 【圖式簡單說明】 _ 第1圖是表示對鑄造破裂性進行評價’在兩端約束式 _驗法中所使用的金屬鑄模1的形狀的圖。 【主要元件符號說明】 1 :金屬鑄模 2 :隔熱材料 3 :兩端約束部 -42-Good corrosion resistance can be obtained above Iwt%. Moreover, as shown in Examples 495 to 498, the corrosion resistance of uranium can be improved by increasing Cu. As shown in Examples 499 and 500, if Cu is added and Sn is added, the corrosion resistance can be greatly improved, and the composition shown in Example 5 0 1 to 5 15 can prevent machinability, mechanical properties, and surface. An example in which the workability is deteriorated and good castability and corrosion resistance are obtained. Further, all of the comparative examples of the α phase + the cold phase of the above Examples 1 to 5 15 except for Example 5 were at 85% or more. © [Simplified description of the drawings] Fig. 1 is a view showing the shape of the metal mold 1 used in the evaluation of the casting fracture property in the two-end constraint type test. [Description of main component symbols] 1 : Metal mold 2 : Insulation material 3 : Constraints at both ends -42-

Claims (1)

200930822 十、申請專利範圍 1-—種黃銅,其特徵在於: 結晶組織爲α相和/3相的合計比例在8 5 %以上, 含Cu在55wt%以上75wt%以下, 含Bi在〇.3wt%以上4.0wt%以下, 含B及Si分別爲ywt%及xwt%時,是符合下列關係 的量, OS 2.0、OS 0.3 及 y&gt; -0·15χ + 0.015ab 此處,a 在 Bi 爲 0.3SBi&lt;0.75wt%、0.75SBi&lt; 1.5wt%、1.5SBi$4.0wt% 時,分別爲 0.2、0.85 及 1; b在表觀的Zn含量爲37%以上且小於41%時爲1’ 爲41%以上45%以下時爲0.75, 另外,其餘部分實質上由Zn和不可避免的雜質所組 成的。 2.—種黃銅,其特徵在於: 結晶組織爲α相和召相的合計比例在8 5 %以上’ 含Cu在55wt%以上75wt%以下, 含Bi在0.3wt%以上4_0wt%以下, 含Ni在O.lwt%以上且小於〇_3wt% ’ 含B及Si分別爲ywt%及xwt%時,是符合下列關係 的量’ (1) 0.05abSx$0.75ab 時,〇&lt;yS〇.3’ 還有 (2) 0.75ab &lt; X $ 2.0 時,〇 $ y $ 〇·3 此處,a 在 Bi 爲 0.3SBi&lt;0-75wt%、0.75 多 Bl&lt; -43- 200930822 1.5wt%、4_0wt% 時,分別爲 〇·2、0_85 及 1 ; b在表觀的Zn含量爲37%以上且小於41%時爲 爲41%以上45%以下時爲0.75, 另外,其餘部分實質上由Zn和不可避免的雜質所組 成的。 3. —種黃銅,其特徵在於: 結晶組織爲α相和卢相的合計比例在8 5 %以上’ 含Cu在55wt%以上75wt%以下, 含Bi在0.3wt%以上4.0wt%以下, 含Ni在0.3 wt%以上且小於1 .Owt%, 含B及Si分別爲ywt%及xwt%時,是符合下列關係 的量, (1) 0.05abSxS0.2ab 時,-0.15x+0.03ab&lt;yS〇-3 (2) 0.2ab&lt;xS0.75ab 時,0&lt;y$0.3 (3) 0.75ab&lt;xS1.75ab 時,0SyS0.3,還有 (4) l_75ab&lt;x$2.0 時,0.004x-0.007 ( 2-ab) &lt; y ^ 0.3 此處,a 在 Bi 爲 0.3SBi&lt;0_75wt%、0.75SBi&lt; 1.5wt%、4.0wt% 時’分別爲 0.2、0.85 及 1 ; b在表觀的Zn含量爲37%以上且小於41%時爲1’ 爲41%以上45%以下時爲0.75, 另外,其餘部分實質上由Zn和不可避免的雜質所組 成的。 4. 一種黃銅,其特徵在於: -44 - 200930822 結晶組織爲α相和yS相的合計比例在8 5 %以上, 含Cu在55wt%以上75wt%以下, 含Bi在0.3wt%以上4.0wt%以下, 含Ni在l.Owt%以上2.0wt%以下, 含B及Si分別爲ywt%及xwt%時,是符合下列 * 的量, (1) 0.05abSxS0.2ab 時,0.02ab &lt; y ^ 0.3 ❹ (2) 0.2ab&lt;xS0.3ab 時,-0.05x+0.03 ab&lt;yS0 (3) 0.3ab&lt;xS0.5ab 時,0.015ab&lt;yS0.3 (4) 0.5ab &lt; x S 1 .Oab 時,-0.0 2 6 x + 0 · 0 2 8 ab &lt; y 兰 (5) 1 .Oab &lt; x ^ 1 .5ab 時,0.011x-0.009 ( 2-ab) S 〇.3 ,還有 (6) 1.5ab&lt;xS2.0 時,0.0075ab&lt;yS〇.3 此處,a 在 Bi 爲 0.3S Bi&lt; 〇.75wt%、0.75S 1.5wt%、1.5S BiS 4.0wt% 時,分別爲 0.2、0_85 及 1 ❹ b在表觀的Zn含量爲37%以上且小於41%時爲 爲41%以上45%以下時爲0.75, 另外,其餘部分實質上由Zn和不可避免的雜質 • 成的。 5. —種黃銅,其特徵在於: 結晶組織爲α相和相的合計比例在8 5 %以上, 含Cu在55wt%以上75wt%以下, 含Bi在0_3wt%以上4.0wt%以下, 含A1在O.lwt%以上且小於〇.3wt% , 關係 =0.3 &lt; y Bi &lt; 1 &gt; 所組 -45- 200930822 含B及Si分別爲ywt%及xwt%時’是符口下列關係 的量, 0^y^0.3' 0^x^2.0' y&gt;-0.l5x+0.015ab 此處 ’ a 在 Bi 爲 〇.3SBi&lt;〇.75Wt%、〇.75SBi&lt; 1.5wt%、1.5SBi$4.0wt% 時’分別爲 0.2、0·85 及 1 ’ ' b在表觀的Ζη含量爲37%以上且小於41%時爲1, 爲41%以上45%以下時爲0.75’ 0 另外,其餘部分實質上由Ζη和不可避免的雜質所組 成的。 6. —種黃銅,其特徵在於: 結晶組織爲α相和/5相的合計比例在8 5 %以上’ 含Cu在55wt%以上75wt%以下’ 含Bi在0.3wt%以上4.0wt%以下’ 含A1在0.3wt%以上且小於l.〇wt% ’ 含B及Si分別爲ywt%及xwt%時’是符合下列關係 ❹ 的量, (1) OSxSO.lab 時 ’ -0.15x+0.015ab&lt;y$0.3 (2) 0.1ab&lt;xS1.5ab 時,0&lt;yS0.3’ 還有 • (3) 1 .5ab &lt; X S 2·0 時,0.002χ-0·003 ( 2-ab ) &lt; y g 0.3 此處,a 在 Bi 爲 0.3SBi&lt;0.75wt%、〇.75SBi&lt; 1.5wt%、1.5SBiS4.0wt% 時,分別爲 0.2、0.85 及 1; b在表觀的Zn含量爲37%以上且小於41%時爲1, 爲41%以上45%以下時爲0.75, -46 - 200930822 另外,其餘部分實質上由Zn和不可避免的雜質所組 成的。 7. —種黃銅,其特徵在於: 結晶組織爲α相和/3相的合計比例在85 %以上’ 含Cu在5 5wt%以上75wt%以下, 含Bi在0.3wt%以上4.0wt%以下, 含A1在l.Owt%以上2.0wt%以下, 含B及Si分別爲ywt%及xwt%時,是符合下列關係 的量, (1) 0.05ab 刍 x$0.3ab 時 ’ 0.004ab&lt;yS0.3 (2) 0.3ab&lt;xS0.5ab 時,-0_〇lx+〇.〇〇7ab&lt;y‘0.3 (3) 0.5ab&lt;xS1.0ab 時,-0.004x+ 0.004ab&lt;yS0.3 (4) 1 .Oab &lt; x ^ 1.5ab 時,O.OOlx-O.OOl (2-ab) &lt;y S 0.3,還有 (5) 1 .5ab &lt; x S 2.0 時,0 · 0 0 0 5 ab &lt; y S 0 · 3 此處,a 在 Bi 爲 〇.3$Bi&lt;0.75wt%、〇.75SBi&lt; 1.5wt%、1.5SBiS4.0wt% 時’分別爲 0.2、〇·85 及 1; b在表觀的Zn含量爲37%以上且小於41%時爲1’ 爲41%以上45%以下時爲〇·75, 另外,其餘部分實質上由Zn和不可避免的雜質所組 成的。 8. —種黃銅,其特徵在於: 結晶組織爲α相和β相的合計比例在85 %以上’ 含Cu在55wt%以上75wt%以下, -47- 200930822 含Bi在〇.3wt%以上4.0wt%以下’ 含Sn在O.lwt%以上且小於〇.3wt% ’ 含B及Si分別爲ywt%及xwt%時’是符合下列關係 的量, (1) OSxS〇.125ab 時,-0.16x+0.02ab&lt;yS0.3 (2) 0.125ab&lt;xS0.4ab 時,〇&lt;yS〇.3’ 還有 (3) 0.4ab&lt;xS2.0 時 ’ 0‘yS〇.3 此處,a 在 Bi 爲 0.3SBi&lt;0.75wt%、〇.75SBi&lt; 1.5评1%、1.5‘81$4.0评1:%時’分別爲〇.2、0.85及1’ b在表觀的Zn含量爲37%以上且小於41%時爲1’ 爲41%以上45%以下時爲0.75’ 另外,其餘部分實質上由Zn和不可避免的雜質所組 成的。 9. 一種黃銅,其特徵在於·· 結晶組織爲α相和/S相的合計比例在85 %以上’ 含Cu在55wt%以上75wt%以下, 含Bi在0.3wt%以上4.0wt%以下, 含Sn在0.3wt%以上且小於, 含B及Si分別爲ywt%及xwt%時’是符合下列關係 的量, (1) 〇Sx 彡 0.25ab 時 ’ -〇.〇8x+0.02ab&lt;yS〇.3 (2) 0.25ab&lt;xSl-25ab 時 ’ 0&lt;y 各0·3 (3) 1.25&amp;1&gt;&lt;父$1.75315時 ’ 〇Sy$0·3,還有 (4) 1.75ab&lt; 2.0 時 ’ 〇.〇〇2x-0.〇〇35(2-ab) &lt; y -48- 200930822 ^ 0.3 此處 ’ a 在 Bi 爲 〇 3 $ Bi &lt; 0.75wt %、0.75 S Bi &lt; 1.5wt%、1.5SBig 4 〇wt% 時,分別爲 〇 2、〇 85 及 b在表觀的Zn含量爲37%以上且小於41%時爲1, ψ 舄41%以上45%以下時爲〇75, 另外,其餘部分實質上由Zn和不可避免的雜質所組 成的。 Ο ι〇·—種黃銅,其特徵在於: 結晶組織爲0!相和冷相的合計比例在8 5 %以上, 含Cu在55wt%以上75wt%以下, 含Bi在0.3wt%以上4.0wt%以下, 含Sn在1.5wt%以上3.0wt%以下, 含B及Si分別爲ywt%及xwt%時,是符合下列關係 的量, (1) OSx 彡 O.lab 時,〇.〇25ab&lt;y$0.3 ® ( 2 ) 0· lab &lt; x S 〇.3ab 時,-〇·1〇5χ + 〇.〇3 5 5ab &lt; y S 0.3 (3) 0.3ab&lt;xS〇-5ab 時 ’ 〇.〇〇4ab&lt;yS〇.3 (4) 0.5ab&lt;xSl.〇ab 時,〇.〇〇7x+〇.0〇〇5ab〈y$0.3 ’還有 (5) l.〇ab&lt;xS2.0 時 ’ 〇.〇45x-0.〇375 ( 2_ab) &lt;y$ 0.3 此處,a 在 Bi 爲 〇.3SBi&lt;〇.75wt%、〇.75SBi&lt; i-Swt%、1.5SBi$4.0wt% 時,分別爲 0.2、0.85 及 1; -49- 200930822 b在表觀的Zn含量爲37%以上且小於41%時爲1, 爲41%以上45%以下時爲0.75, 另外,其餘部分實質上由Zn和不可避免的雜質所組 成的。 ' 1 1 . 一種黃銅, * 結晶組織爲α相和石相的合計比例在8 5 %以上’ 含Cu在55wt%以上75wt%以下, Q 含Bi在〇.3wt%以上4.0wt%以下’還有, B 及 Si, 以及從由〇· 1 wt%以上2.0wt%以下的Ni、0.1 wt%以 上2.0wt%以下的A1及以上3.0wt%以下的Sn構 成的群中選擇的至少兩種成分’ 其餘部分實質上由Zn和不可避免的雜質所組成的’ 其特徵在於: B及Si的量分別爲ywt%及xwt%時’同時符合 Q 對應於由上述Ni、Al及sn所構成的群中的至少兩種元素 的各自的量的申請專利範圍第2項至第1 0項中所規定的 ' 至少兩個關係式。 ' 12. —種黃銅,其特徵在於:對於申請專利範圍第1 項至第1 1項中任何一項所述的黃銅’添加〇 · 3 w t %以上 4.0\¥1%以下量的]^11,及〇.7'^%以上2_0\¥1%以下量的31 〇 13.—種黃銅,其特徵在於:對於申請專利範圍桌1 項至第1 1項中任何一項所述的黃銅’添加小於0 ·3 wt %量 -50- 200930822 的Μη。 14. 一種水龍頭零件,係由申請專利範圍第1項至第 1 3項中的任何一項所述的黃銅所構成。 15. 如申請專利範圍第1 4項所述的水龍頭零件,其 爲,以金屬模鑄造的。200930822 X. Patent application scope 1--type brass, characterized in that: the total proportion of the crystal structure is α phase and /3 phase is above 85 %, Cu is 55 wt% or more and 75 wt% or less, and Bi is contained in 〇. 3 wt% or more and 4.0 wt% or less, when B and Si are respectively ywt% and xwt%, the amount is in accordance with the following relationship, OS 2.0, OS 0.3, and y&gt; -0·15χ + 0.015ab where a is 0.3SBi&lt;0.75wt%, 0.75SBi&lt;1.5wt%, 1.5SBi$4.0wt%, respectively 0.2, 0.85 and 1; b is 1' when the apparent Zn content is 37% or more and less than 41%. When the % is more than 45%, it is 0.75. In addition, the rest is substantially composed of Zn and unavoidable impurities. 2. Brass, characterized in that: the total proportion of the crystal structure is α phase and the phase is above 85% 'Cu contains 55 wt% or more and 75 wt% or less, and Bi contains 0.3 wt% or more and 4 wt wt % or less, including When Ni is more than 0.1% by weight and less than 〇_3wt% 'B and Si are ywt% and xwt%, respectively, the amount is in the following relationship' (1) 0.05abSx$0.75ab, 〇&lt;yS〇.3 'And (2) 0.75ab &lt; X $ 2.0, 〇$ y $ 〇·3 Here, a is 0.3SBi&lt;0-75wt%, 0.75 more Bl&lt;-43- 200930822 1.5wt%, 4_0wt % is 〇·2, 0_85 and 1; b is 0.75 when the apparent Zn content is 37% or more and less than 41%, and is 41% or more and 45% or less, and the rest is substantially Zn and Consistent of impurities. 3. Brass, characterized in that: the crystal structure is a total ratio of the α phase and the Lu phase is above 85 % 'Cu contains 55 wt% or more and 75 wt% or less, and Bi contains 0.3 wt% or more and 4.0 wt% or less. When Ni is more than 0.3 wt% and less than 1.0 wt%, and B and Si are ywt% and xwt%, respectively, the amount is in accordance with the following relationship: (1) 0.05abSxS0.2ab, -0.15x+0.03ab&lt; yS〇-3 (2) 0.2ab&lt;xS0.75ab, when 00&lt;y$0.3 (3) 0.75ab&lt;xS1.75ab, 0SyS0.3, and (4) l_75ab&lt;x$2.0, 0.004x-0.007 ( 2-ab) &lt; y ^ 0.3 Here, a is 0.2, 0.85, and 1 when Bi is 0.3SBi &lt; 0_75 wt%, 0.75SBi &lt; 1.5 wt%, 4.0 wt%; b is an apparent Zn content of When 37% or more and less than 41%, when 1' is 41% or more and 45% or less, it is 0.75. Further, the remaining portion is substantially composed of Zn and unavoidable impurities. 4. A brass characterized in that: -44 - 200930822 has a crystal structure in which a total ratio of the α phase and the yS phase is 85 % or more, Cu contains 55 wt% or more and 75 wt% or less, and Bi contains 0.3 wt% or more and 4.0 wt. % or less, containing Ni in an amount of 1.0% by weight or more and 2.0% by weight or less, and when B and Si are respectively ywt% and xwt%, it is an amount satisfying the following *, (1) 0.02ab &lt; y when 0.05abSxS0.2ab ^ 0.3 ❹ (2) 0.2ab&lt;xS0.3ab, -0.05x+0.03 ab&lt;yS0 (3) 0.3ab&lt;xS0.5ab, 0.015ab&lt;yS0.3 (4) 0.5ab &lt; x S 1 . Oab, -0.0 2 6 x + 0 · 0 2 8 ab &lt; y lan (5) 1 .Oab &lt; x ^ 1 .5ab, 0.011x-0.009 ( 2-ab) S 〇.3 , and (6) When 1.5ab&lt;xS2.0, 0.0075ab&lt;yS〇.3 Here, a is when Bi is 0.3S Bi&lt; 〇.75wt%, 0.75S 1.5wt%, 1.5S BiS 4.0wt%, respectively 0.2, 0_85, and 1 ❹ b is 0.75 when the apparent Zn content is 37% or more and less than 41%, and is 41% or more and 45% or less, and the remainder is substantially composed of Zn and unavoidable impurities. . 5. Brass, characterized in that the crystal structure has a total ratio of α phase and phase of more than 85 %, Cu content of 55 wt% or more and 75 wt% or less, and Bi content of 0-3 wt% or more and 4.0 wt% or less, including A1. Above O.lwt% and less than 〇.3wt%, relationship =0.3 &lt; y Bi &lt; 1 &gt; Group -45- 200930822 When B and Si are ywt% and xwt%, respectively, 'is the following relationship Quantity, 0^y^0.3' 0^x^2.0' y&gt;-0.l5x+0.015ab where 'a in Bi is 〇.3SBi&lt;〇.75Wt%, 〇.75SBi&lt;1.5wt%, 1.5SBi$4.0 When wt% is '0.2, 0·85, and 1' 'b, respectively, when the apparent Ζη content is 37% or more and less than 41%, it is 1, and when it is 41% or more and 45% or less, it is 0.75' 0. In addition, the rest It consists essentially of Ζη and unavoidable impurities. 6. Brass, characterized in that the crystal structure has a total ratio of α phase and /5 phase of more than 85 % 'Cu contains 55 wt% or more and 75 wt% or less 'Bi content is 0.3 wt% or more and 4.0 wt% or less 'With A1 above 0.3wt% and less than 1.〇wt% 'B and Si are ywt% and xwt% respectively, 'is in line with the following relationship ,, (1) OSxSO.lab when ' -0.15x+0.015 Ab&lt;y$0.3 (2) 0.1ab&lt;xS1.5ab, 0 &lt;yS0.3' and • (3) 1 .5ab &lt; XS 2·0, 0.002χ-0·003 ( 2-ab ) &lt; Yg 0.3 where a is 0.2, 0.85, and 1 when Bi is 0.3SBi &lt; 0.75 wt%, 〇.75SBi &lt; 1.5 wt%, 1.5 SBiS 4.0 wt%, respectively; b has an apparent Zn content of 37% When the amount is less than 41%, it is 1, and when it is 41% or more and 45% or less, it is 0.75, and -46 - 200930822. In addition, the remaining portion is substantially composed of Zn and unavoidable impurities. 7. Brass, characterized in that: the crystal structure has a total ratio of α phase and /3 phase of 85% or more 'Cu containing 5 5 wt% or more and 75 wt% or less, and Bi containing 0.3 wt% or more and 4.0 wt% or less , A1 is less than 1.0% by weight of 2.0% by weight, and when B and Si are respectively ywt% and xwt%, the amount is in accordance with the following relationship: (1) 0.05ab 刍x$0.3ab when ' 0.004ab&lt;yS0. 3 (2) 0.3ab&lt;xS0.5ab, -0_〇lx+〇.〇〇7ab&lt;y'0.3 (3) 0.5ab&lt;xS1.0ab, -0.004x+ 0.004ab&lt;yS0.3 (4) 1 .Oab &lt; x ^ 1.5ab, O.OOlx-O.OOl (2-ab) &lt;y S 0.3, and (5) 1 .5ab &lt; x S 2.0, 0 · 0 0 0 5 ab &lt; y S 0 · 3 Here, a is 0.2, 〇·85 and 1 when Bi is 〇.3$Bi&lt;0.75wt%, 〇.75SBi&lt;1.5wt%, 1.5SBiS4.0wt%, respectively; b When the apparent Zn content is 37% or more and less than 41%, when 1' is 41% or more and 45% or less, it is 〇·75, and the remainder is substantially composed of Zn and unavoidable impurities. 8. Brass, characterized in that: the crystal structure has a total ratio of α phase and β phase of 85% or more 'Cu contains 55 wt% or more and 75 wt% or less, -47- 200930822 Bi contains 〇. 3 wt% or more 4.0 Below wt%, 'Sn is above O.lwt% and less than 〇.3wt%' When B and Si are ywt% and xwt%, respectively, 'is the quantity that meets the following relationship, (1) OSxS〇.125ab, -0.16 x+0.02ab&lt;yS0.3 (2) 0.125ab&lt;xS0.4ab, 〇&lt;yS〇.3' and (3) 0.4ab&lt;xS2.0 when '0'yS〇.3 here, a When Bi is 0.3SBi&lt;0.75wt%, 〇.75SBi&lt;1.5 rating 1%, 1.5'81$4.0 rating 1:%, respectively, 〇.2, 0.85 and 1'b have an apparent Zn content of 37% or more. When it is less than 41%, it is 1'. When it is 41% or more and 45% or less, it is 0.75'. In addition, the remainder is substantially composed of Zn and unavoidable impurities. A brass characterized in that the crystal structure has a total ratio of the α phase and the /S phase of 85% or more, and the Cu content is 55 wt% or more and 75 wt% or less, and the Bi content is 0.3 wt% or more and 4.0 wt% or less. When Sn is more than 0.3% by weight and less than, when B and Si are ywt% and xwt%, respectively, 'is an amount that satisfies the following relationship, (1) 〇Sx 彡0.25ab when '-〇.〇8x+0.02ab&lt;yS 〇.3 (2) 0.25ab&lt;xSl-25ab' 0&lt;y each 0·3 (3) 1.25&amp;1&gt;&lt;parent $1.75315' 〇Sy$0·3, and (4) 1.75ab&lt; 2.0 When ''.〇〇2x-0.〇〇35(2-ab) &lt; y -48- 200930822 ^ 0.3 Here ' a in Bi is 〇3 $ Bi &lt; 0.75wt %, 0.75 S Bi &lt; 1.5 When wt% and 1.5 SBig 4 〇wt%, 〇2, 〇85 and b are respectively 1 when the apparent Zn content is 37% or more and less than 41%, and 〇75 when ψ 舄 41% or more and 45% or less. In addition, the rest is essentially composed of Zn and unavoidable impurities. 〇 ι〇·—Brown, characterized by: The crystal structure is 0. The total ratio of the phase and the cold phase is above 85 %, the Cu content is 55 wt% or more and 75 wt% or less, and the Bi content is 0.3 wt% or more and 4.0 wt. % or less, when Sn is 1.5 wt% or more and 3.0 wt% or less, and when B and Si are respectively ywt% and xwt%, the amount is in accordance with the following relationship: (1) When OSx 彡O.lab, 〇.〇25ab&lt; y$0.3 ® ( 2 ) 0· lab &lt; x S 〇.3ab, -〇·1〇5χ + 〇.〇3 5 5ab &lt; y S 0.3 (3) 0.3ab&lt;xS〇-5ab when '〇. 〇〇4ab&lt;yS〇.3 (4) 0.5ab&lt;xSl.〇ab, 〇.〇〇7x+〇.0〇〇5ab〈y$0.3 'and (5) l.〇ab&lt;xS2.0' 〇.〇45x-0.〇375 ( 2_ab) &lt;y$ 0.3 Here, a is when Bi is 〇.3SBi&lt;〇.75wt%, 〇.75SBi&lt; i-Swt%, 1.5SBi$4.0wt%, respectively 0.2, 0.85, and 1; -49- 200930822 b is 1 when the apparent Zn content is 37% or more and less than 41%, and 0.75 when it is 41% or more and 45% or less, and the rest is substantially composed of Zn and Consistent of impurities. ' 1 1 . A kind of brass, * The crystal structure is a total ratio of α phase and stone phase of more than 85 % 'Cu contains 55 wt% or more and 75 wt% or less, and Q contains Bi of 0.3 wt% or more and 4.0 wt% or less ' Further, B and Si, and at least two selected from the group consisting of 〇·1 wt% or more and 2.0 wt% or less of Ni, 0.1 wt% or more and 2.0 wt% or less of A1 and 3.0 wt% or less of Sn. The component 'the remainder is substantially composed of Zn and unavoidable impurities' is characterized by: when the amounts of B and Si are ywt% and xwt%, respectively, 'the same as Q corresponds to the composition of Ni, Al and sn described above. The respective quantities of at least two elements in the group are 'at least two relations' as defined in items 2 to 10 of the patent application scope. ' 12. Brass, which is characterized in that the brass 'addition 〇 · 3 wt % or more 4.0 \ ¥ 1% or less as described in any one of the claims 1 to 11. ^11, and 〇.7'^% or more 2_0\¥1% of the amount of 31 〇13.-type brass, characterized by: for any of the patent scope table 1 to item 1 The brass 'adds less than 0 · 3 wt % of the amount -50 - 200930822 of Μη. A faucet part comprising the brass according to any one of claims 1 to 13. 15. The faucet part of claim 14, wherein the faucet part is cast in a metal mold. -51 --51 -
TW097147832A 2008-01-09 2008-12-09 Excellent lead-free quick-brushed brass TWI452153B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/050145 WO2009047919A1 (en) 2007-10-10 2008-01-09 Lead-free free-cutting brass excelling in castability
JP2008157024 2008-06-16

Publications (2)

Publication Number Publication Date
TW200930822A true TW200930822A (en) 2009-07-16
TWI452153B TWI452153B (en) 2014-09-11

Family

ID=44865075

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097147832A TWI452153B (en) 2008-01-09 2008-12-09 Excellent lead-free quick-brushed brass

Country Status (1)

Country Link
TW (1) TWI452153B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI500783B (en) * 2013-11-22 2015-09-21 Metal Ind Res & Dev Ct Brass alloy and its manufacturing method
US11028466B2 (en) 2016-01-21 2021-06-08 Fortune Mfg. Co., Ltd. Unleaded free-cutting brass alloys with excellent castability, method for producing the same, and application thereof
TWI751825B (en) * 2019-12-11 2022-01-01 日商三菱綜合材料股份有限公司 Free-cutting copper alloy and manufacturing method of free-cutting copper alloy
US11479834B2 (en) 2019-06-25 2022-10-25 Mitsubishi Materials Corporation Free-cutting copper alloy and method for manufacturing free-cutting copper alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ250348A (en) * 1992-12-04 1994-06-27 Ideal Standard Brass alloy composition
JP2000239765A (en) * 1999-02-18 2000-09-05 Joetsu Material Kk Leadless corrosion resistant brass alloy for metallic mold casting or for sand mold casting, metallic mold cast product or sand mold cast product, and leadless corrosion resistant brass alloy for continuous casting or continuous cast product
JP4620963B2 (en) * 2004-03-31 2011-01-26 Dowaホールディングス株式会社 Brass, manufacturing method thereof, and parts using the same
JP3964930B2 (en) * 2004-08-10 2007-08-22 三宝伸銅工業株式会社 Copper-base alloy castings with refined crystal grains

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI500783B (en) * 2013-11-22 2015-09-21 Metal Ind Res & Dev Ct Brass alloy and its manufacturing method
US11028466B2 (en) 2016-01-21 2021-06-08 Fortune Mfg. Co., Ltd. Unleaded free-cutting brass alloys with excellent castability, method for producing the same, and application thereof
US11479834B2 (en) 2019-06-25 2022-10-25 Mitsubishi Materials Corporation Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
US11512370B2 (en) 2019-06-25 2022-11-29 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
US11788173B2 (en) 2019-06-25 2023-10-17 Mitsubishi Materials Corporation Free-cutting copper alloy, and manufacturing method of free-cutting copper alloy
US11814712B2 (en) 2019-06-25 2023-11-14 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
TWI751825B (en) * 2019-12-11 2022-01-01 日商三菱綜合材料股份有限公司 Free-cutting copper alloy and manufacturing method of free-cutting copper alloy

Also Published As

Publication number Publication date
TWI452153B (en) 2014-09-11

Similar Documents

Publication Publication Date Title
JP6493473B2 (en) Brass with excellent corrosion resistance
JP5454144B2 (en) Lead-free free-cutting brass with excellent castability
JP3999676B2 (en) Copper-based alloy and method for producing the same
JP4277113B2 (en) Ni-base alloy for heat-resistant springs
JP5555135B2 (en) Copper alloy with improved hot and cold workability, method for producing the same, and copper alloy strip or alloy foil obtained from the copper alloy
JP6056947B2 (en) Brass with excellent castability and corrosion resistance
TW200930822A (en) Lead-free, free-machining brass having excellent castability
JP2011219857A (en) Copper-based alloy for die casting having excellent dezincification corrosion resistance
JP6728150B2 (en) Cast iron molten metal treatment method
US9076569B2 (en) Cu—Co—Si alloy material and manufacturing method thereof
JP2010242184A (en) Lead-free, free-machining brass excellent in castability and corrosion resistance
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
CN101541986B (en) Lead-free, free-machining brass having excellent castability
JP2016151065A (en) Nickel-based alloy and method for producing the same
JP2011080118A (en) Aluminum alloy member and manufacturing method therefor
JP5513230B2 (en) Copper-base alloy for casting
JP2010031301A (en) Nickel-chromium-aluminum alloy base material
EP3778945A1 (en) Al-si-mg-based aluminum alloy
CN111094607B (en) Method for producing Al-Si-Mg-based aluminum alloy casting material
TW201432059A (en) Target material
JP2016113660A (en) Copper-based alloy for mold casting excellent in dezincification corrosion resistance
KR20210078861A (en) Aluminum deoxidation agent for electronic steel sheet and manufacturing method of the same
JP2002146459A (en) Ni ALLOY HAVING EXCELLENT SURFACE PROPERTY AFTER HOT WORKING AND ITS PRODUCTION METHOD
JP2005113265A (en) Aluminum alloy with excellent ductility and its manufacturing method
JP2014208896A (en) Heat-resistant alloy for solid oxide fuel cell