TW200930697A - Process for hydrogenating 4-carboxybenzaldehyde to p-toluic acid - Google Patents

Process for hydrogenating 4-carboxybenzaldehyde to p-toluic acid Download PDF

Info

Publication number
TW200930697A
TW200930697A TW97100766A TW97100766A TW200930697A TW 200930697 A TW200930697 A TW 200930697A TW 97100766 A TW97100766 A TW 97100766A TW 97100766 A TW97100766 A TW 97100766A TW 200930697 A TW200930697 A TW 200930697A
Authority
TW
Taiwan
Prior art keywords
palladium
catalyst
acid
shell
compound
Prior art date
Application number
TW97100766A
Other languages
Chinese (zh)
Other versions
TWI400228B (en
Inventor
Kuo-Tseng Li
I-Kai Wang
Ming-Hao Hsu
Original Assignee
Kuo-Tseng Li
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuo-Tseng Li filed Critical Kuo-Tseng Li
Priority to TW97100766A priority Critical patent/TWI400228B/en
Publication of TW200930697A publication Critical patent/TW200930697A/en
Application granted granted Critical
Publication of TWI400228B publication Critical patent/TWI400228B/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

A method for hydrogenating 4-carboxybenzaldehyde (4-CBA) to p-toluic acid (PT) is disclosed. p-Toluic acid can be effectively produced from 4-carboxybenzaldehyde and hydrogen in the presence of a catalyst containing silica and palladium. The said catalyst is presented in the core-shell form, in which palladium is in the core and porous silica is in the shell. Compared to the traditional Pd/C catalyst, the said core-shell catalyst exhibits higher p-toluic acid yield at the lower hydrogenating temperature and has better resistance to catalyst sintering.

Description

200930697 九、發明說明: 【發明所屬之技術領域】 本發明係關於對羧基苯曱醛氫化成對曱基笨曱酸之方 法’尤其有關該氫化方法中所使用之觸媒。 【先前技術】 〇 純對苯二曱酸(Purified Terephthalic Acid ;以下簡稱為 ρτΑ) 為石油化學中間原料,亦是聚酯工業的主要原料,主要用於生產聚對 笨二曱酸乙二酯(PET)及聚對苯二甲酸丁二酯(PBT)。 工業生產的PTA是用對二甲苯(p-xylene ;簡稱PX)氧化所得, 但氧化副產物如對幾基苯甲搭(4-carboxybenzaldehyde ;簡稱4-CBA) 含量較多,與乙二醇(EG)聚合會產生斷鏈,甚至顏色加深,所以粗 © 對苯二甲酸(CTA)不能直接與乙二醇聚合製備PET。目前已商業化運 轉的純對苯二甲酸製程為二段式製程,一是先進行氧化反應產生目標 產物,再進行純化反應去除不純物。 氧化工廠產生的生成物中含有少量難溶於水的雜質,需以純水為 溶劑於純化反應器中在270-280°C範圍内及鈀/碳(Pd/C)觸媒催化下將 對羧基苯曱搭與氫氣反應(N. Pemicone, M. Cerboni,G Prelazzi,F. Pinna, G. Fagherazzi, Catalysis Today, 44(1998)129; F. Menegazzo, T. Fantinel, M. 200930697200930697 IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a process for hydrogenating p-carboxyphenylfurfural to p-nonyl stilbene, which is particularly relevant to the catalyst used in the hydrogenation process. [Prior Art] Purified Terephthalic Acid (hereinafter referred to as ρτΑ) is a petrochemical intermediate material, and is also the main raw material of the polyester industry, mainly used for the production of polyethylene terephthalate ( PET) and polybutylene terephthalate (PBT). Industrially produced PTA is obtained by oxidation of p-xylene (PX), but oxidation by-products such as 4-carboxybenzaldehyde (4-CBA) are more abundant, and ethylene glycol ( EG) Polymerization produces chain scission and even darkening of the color, so crude terephthalic acid (CTA) cannot be directly polymerized with ethylene glycol to prepare PET. The pure terephthalic acid process that has been commercialized at present is a two-stage process. First, an oxidation reaction is carried out to produce a target product, and then a purification reaction is carried out to remove impurities. The product produced in the oxidation plant contains a small amount of impurities that are poorly soluble in water. It needs to be purified in a pure water as a solvent in the range of 270-280 ° C and palladium/carbon (Pd/C) catalyst catalysis. Carboxybenzoquinone reacts with hydrogen (N. Pemicone, M. Cerboni, G Prelazzi, F. Pinna, G. Fagherazzi, Catalysis Today, 44 (1998) 129; F. Menegazzo, T. Fantinel, M. 200930697

Signoretto, F. Pinna, Catalysis Communications, 8(2007) 876-879),轉化 為較易溶於水的化合物-對曱基苯甲酸(p-Toluic acid;簡稱PT), 在後續的結晶與分離過程中,PT將被溶於水而去除。 對於降低雜質4-CBA之氫化反應,一些關於Pd/C觸媒之專利如下:Signoretto, F. Pinna, Catalysis Communications, 8 (2007) 876-879), converted to a more water-soluble compound, p-Toluic acid (PT), in subsequent crystallization and separation processes Medium, PT will be dissolved in water to remove. For reducing the hydrogenation of the impurity 4-CBA, some patents on Pd/C catalyst are as follows:

一、,美國專利第 3138560 號(Keith et al.,“Process for producing Pal ladium on carbon catalysts”,美國專利第 3138560 號,ENGELHARD Ο IND INC,1964)揭示了國際上第一件用於4-CBA氫化反應的Pd/C催 化劑。 二、美國專利第 4791226 號(Puskas et al. “Catalyst and process for purification of crude terephthalie acid”,美國專利第 4791226 號,Amoco Coirporation,1988.)涉及一種粗對苯二曱酸的純 化方法及其催化劑,為將催化活性的鈀微晶負載於多孔活性碳載體 上,活性碳顆粒表面積2 6〇〇 m2/g,微晶縱向長度小於35 A。催化 劑的製備是將活性載體於無氫氣存在下與鈀鹽非水溶液在有機溶劑中 反應,鈀鹽在載體内被還原為鈀金屬微晶。 二、美國專利第 4421676 號(Puskas et al.,“Process for preparation of palladium on carbon catalysts used in the purification of crude terephthalic acid”,美國專利第 4421676 號,Standard Oil 6 200930697 ' Company (Indiana),19θ3)涉及一種粗對苯二甲酸純化中pd/C催化 劑的製備方法’是將催化劑活性鈀微晶吸附於多孔碳載體上,活性碳 顆粒的表面積2 600 m2/g,微晶縱向長度小於35 A,具體方法是將載 體與NazPcKNO2)4反應,Na2Pd(N〇2)4被吸附於載體上還原為金屬鈀,其 中Na2Pd(N〇2)4是由亞确酸鹽與彘化纪以mole比4 : 1反應得到。 美國專利第 4415479 號(Puskas et al.,“Palladium on carbon o catalyst for purification of crude terephthalic acid”,美國專 利第 4415479 號,Standard Oil Company (Indiana), 1983)涉及一種 純化粗對苯二曱酸的Pd/C催化劑,製備方法是將催化劑活性把微晶吸 附於多孔碳載體上,活性碳顆粒的表面積^ 600m2/g,微晶縱向長度 小於35 A,鈀含量小於1. 0%,具體方法包括將活性碳顆粒與胺溶液和 纪鹽在有機羧酸存在下反應’胺濃度需足以溶解纪鹽,酸與胺的m〇le 比^ 0. 75,鈀與碳反應得到催化劑。 〇 四、美國專利第 6066589 號(Malentacci et al.,’v Hydrogenatiom Catalysts”,美國專利第 6066589 號,Sud Chemie MT. s. r. 1.,2000) 揭示了一種氫化催化劑,包括載持在活性碳上的金屬鈀,其中小於 50 wt· % Pd位於距表面50 "m的表面層内,而其餘的pd位於5〇〜400 ym 深的一層内。 200930697 五、二星纟示合化學株式會社(Samsung Genera 1 Chemica 1 s Co.,Ltd.) 和伯若斯可夫催化劑研究所(Institut Kataliza Imeni G.K.1. U.S. Patent No. 3,138,560 (Keith et al., "Process for producing Pal ladium on carbon catalysts", U.S. Patent No. 3,138,560, ENGELHARD(R) IND INC, 1964) discloses the first international use for 4-CBA. Hydrogenated Pd/C catalyst. 2. U.S. Patent No. 4,791,226 (Puskas et al. "Catalyst and process for purification of crude terephthalie acid", U.S. Patent No. 4,791,226, Amoco Coirporation, 1988.) relates to a method for purifying crude terephthalic acid and a catalyst thereof In order to support the catalytically active palladium crystallites on the porous activated carbon support, the surface area of the activated carbon particles is 2 6 〇〇 m 2 /g, and the longitudinal length of the crystallites is less than 35 A. The catalyst is prepared by reacting the active carrier with a non-aqueous solution of the palladium salt in an organic solvent in the absence of hydrogen, and the palladium salt is reduced to palladium metal crystallites in the support. U.S. Patent No. 4,421,676 (Puskas et al., "Process for preparation of palladium on carbon catalysts used in the purification of crude terephthalic acid", U.S. Patent No. 4,421,676, Standard Oil 6 200930697 'Company (Indiana), 19θ3) The method for preparing a pd/C catalyst in crude terephthalic acid purification is to adsorb the catalyst active palladium crystallite on the porous carbon support, the surface area of the activated carbon particles is 2 600 m 2 /g, and the longitudinal length of the crystallite is less than 35 A. The specific method is to react the carrier with NazPcKNO2)4, and Na2Pd(N〇2)4 is adsorbed on the carrier to be reduced to metal palladium, wherein Na2Pd(N〇2)4 is determined by mole ratio of sulfite to sulfonate. : 1 reaction is obtained. U.S. Patent No. 4,415,479 (Plaskas et al., "Palladium on carbon o catalyst for purification of crude terephthalic acid", U.S. Patent No. 4415479, Standard Oil Company (Indiana), 1983) relates to the purification of crude terephthalic acid. The Pd/C catalyst is prepared by the method of adsorbing the crystallites on the porous carbon support, the surface area of the activated carbon particles is 600 m2/g, the longitudinal length of the crystallites is less than 35 A, and the palladium content is less than 1.0%. The activated carbon particles are reacted with an amine solution and a salt in the presence of an organic carboxylic acid. The amine concentration is sufficient to dissolve the salt, and the m〇le ratio of the acid to the amine is 0.775. The palladium reacts with carbon to obtain a catalyst. U.S. Patent No. 6,066,589 (Malentacci et al., 'v Hydrogenatiom Catalysts, US Patent No. 6066589, Sud Chemie MT. sr 1., 2000) discloses a hydrogenation catalyst comprising supported on activated carbon. Metallic palladium, wherein less than 50 wt·% Pd is located in the surface layer of 50 "m from the surface, and the remaining pd is located in a layer of 5 〇 to 400 ym deep. 200930697 Five, two star 纟 纟 化学 化学 (Samsung Genera 1 Chemica 1 s Co., Ltd.) and Berluskov Catalyst Research Institute (Institut Kataliza Imeni GK

Boreskova Sibirskogo Otdelenia Rossiiskoi Akademii Nauk)此二 機構的專利(Romanenko et al.,” Catalytic composition, method for manufacturing thereof and method for the purification of terephthalic acid”,美國專利第 6753290 號,2004)揭示了一種用 於純化對苯二甲酸的催化劑組合物,其製備方法,和對苯二甲酸的純 Q 化技術。該專利用於純化對苯二甲酸的催化劑組合物包含沉積在碳材 料上催化活性的鈀或鈀和至少一種元素週期表中观族金屬的晶體,其 中所述碳材料是中孔度的類似石墨的材料,其平均中孔尺寸是4〇〜4〇〇 A ’中孔隙占總孔隙體積的至少〇. 5,似石墨的程度不低於20%,其中 所述金屬晶體分佈在大量的所述礙材料顆粒中,以致在離所述顆粒外 表面距離等於其半徑的1〜3〇%距離處的層中。 G 由上面之敘述可知,用於將對羧基苯甲醛氫化成對甲基苯曱 酸之觸媒都是使用含浸法製備而成之鈀/碳(Pd/C)觸媒.,而鈀 /碳觸媒用於對羧基苯甲醛氫化成對甲基苯曱酸之反應會有活性點 燒結(sintering)之問題,而造成觸媒活性衰退。文獻中減少此燒 結問《I疋添加貴重的舒(ru)金屬於Pd/c觸媒中(Romanenko et al., Influence of ruthenium addition on sintering of carbon-supported palladium” , Applied Catalysis A: General 8 200930697 227(2002)117-123; Jhung et al., ” Carbon-supported palladium-ruthenium catalyst for hydropurification of terephthalic acid” , Applied Catalysis A: General 225(2002)131-139),然而新鮮的pd-Ru/c觸媒之活性低於新鮮的Boreskova Sibirskogo Otdelenia Rossiiskoi Akademii Nauk) patents of these two institutions (Romanenko et al., "Catalytic composition, method for manufacturing thereof and method for the purification of terephthalic acid", US Pat. No. 6,753,290, 2004) discloses a method for purification Catalyst composition of terephthalic acid, a preparation method thereof, and a pure Q technology of terephthalic acid. The catalyst composition for purifying terephthalic acid comprises crystals of catalytically active palladium or palladium deposited on a carbon material and at least one group of metals of the periodic table, wherein the carbon material is mesoporous like graphite The material having an average mesopore size of 4 〇 4 〇〇 A 'the intermediate pores occupies at least 总 5 of the total pore volume, and the degree of graphite-like is not less than 20%, wherein the metal crystal is distributed in a large amount of the In the material particles, so that the distance from the outer surface of the particle is equal to a distance of 1 to 3 % of its radius. G From the above description, the catalyst for hydrogenating p-carboxybenzaldehyde to p-toluic acid is a palladium/carbon (Pd/C) catalyst prepared by impregnation, while palladium/carbon The use of a catalyst for the hydrogenation of p-carboxybenzaldehyde to p-toluic acid has a problem of sintering of active sites, which causes a decrease in catalytic activity. Reducing this sintering in the literature, "I 疋 add valuable ru (ru) metal to Pd / c catalyst (Romanenko et al., Influence of ruthenium addition on sintering of carbon-supported palladium" , Applied Catalysis A: General 8 200930697 227 (2002) 117-123; Jhung et al., "Carbon-supported palladium-ruthenium catalyst for hydropurification of terephthalic acid", Applied Catalysis A: General 225 (2002) 131-139), however fresh pd-Ru/c Catalyst activity is lower than fresh

Pd/C觸媒之活性。 職是之故’本創作鑑於習知技術之缺失,乃經悉心試驗與研究, 終創作出本案「對羧基苯甲醛氫化成對曱基苯甲酸之方法」。以下為本 案之簡要說明。 【發明内容】 本發明之主要目的係在提供一種將叛基苯甲搭氫化成 對甲基笨甲酸的改良方法,其包括在—含有二氧化矽和鈀之 觸媒系統存在下使對羧基苯甲醛和一含有氫氣之氣體進行 氫化反應以生成對甲基苯甲酸。該含有二氡化矽和鈀之觸媒 系統係以核殼形式存在,觸媒之核中含有鈀,而觸媒之殼 為多孔性之二氧化矽。出乎意料的,該含有二氧化矽和鈀 之觸媒具有極佳之氫化反應活性及極佳之對f基苯甲酸產 率,且該觸媒之核殼形式結構可以減少傳統鈀/碳觸媒燒結 之缺點。 【實施方式】 以下實施例可進一步說明本發明方法,但該等實施例 200930697 僅供作為說明之用而非用於限制本發明之範圍。 實施例 1 - 3 觸媒之製備 觸媒之製備共分為下列兩部份,此觸媒之製備步驟類似於 文獻中製備核殼式銀二氧化矽複合材料之步驟(K.c. Chou, C.C.Chen, Fabrication and characterization of ❹ silver core and porous silica shell nanocomposite materials" , Microporous and Mesoporous Materials, 98(2007)208-213) ° 第一部份: 1. 在3毫升去離子水中加入〇· 0692克Pd(N〇3)2,授拌使之完全溶 解。 2. 將 0.255 克之 poly(vinylpyrrolidone) (PVP)溶於上述溶液 中,攪拌使之完全溶解。 3. 在室溫下將甲醛0.0692毫升加入上述溶液中。 4. 加入〇. 0184克氫氧化鈉,授拌使之完全溶解。 5. 加入11毫升丙酮,形成黑色沉澱物。經離心、丙_清洗及 乾燥,得果凍狀之黑色塊狀物質。 第二部份: 1·將上述之黑色塊狀物質溶於下列組成之溶液中:1毫升去離子 水,0. 34毫升氨水,6· 64毫升乙醇。並加以超音波振盪3〇 分鐘。 200930697 2. 加入0.54愛升之tetmeth〇xysil咖(te⑹於上述溶液中, 於室溫攪拌24小時。 3. 加入去離子水’離心後取固體部份於10(TC下乾操24小時。 4·將上述乾燥後之固體置於u型管令用空氣在靴下锻燒3小 時’即付把/二氧化石夕核殼式觸媒。圖一為該纪/二氧化 石夕核殼式觸媒之示意圖。 〇 氫化反應 於一 600毫升的Parr反應器令加入〇1克的對羧基 苯甲醛(購自AlfaAeSar公司)和50毫升二次去離子水,再加 入上述製備之鈀/二氧化矽核殼式觸媒〇 〇〇35克此以厂 反應器再通人>1力為2GGpsig的氫氣,攪拌速率為〖GGrpm,然 後加熱使反應器達到所設定好之溫度。反應一小時後,將反應 器降溫至室溫以下’取反應過之溶液,以高效率液相層析儀(Ηρα) 〇 進行成份分析,以測量產生之對甲基苯甲酸之莫耳數。由此可計算 對甲基苯甲酸之產率:產率=(對甲基苯曱酸產生之莫耳數)/(對羧 基本甲路放入之莫耳數)xl〇〇%。氮化反應實驗之結果列於表一。 11 200930697 表一 實例1 實例2 實例3 氫化反應之溫 度,。C 180 190 200 對曱基苯甲酸 之產率,% 73.5 98. 1 99. 1 由表一之數據可以看出,於溫度180 一 2〇〇°c範圍 内以把/二氧化石夕核殼式觸媒催化對叛基笨甲搭之氫化反 應’其對曱基苯甲酸之產率皆在70%以上,其中以20(TC之反 應溫度為最佳,對曱基苯曱酸之產率達到9 g. 1 %。 比較例 在此比較例中使用之氫化觸媒為Strem公司所供應 的商業化之5 wt% Pd/C觸媒,氫化反應之步驟及其他條件 如同實施例1-3所述’只是將鈀/二氧化矽核殼式觸媒換成 同重量(0.0035克)之商業化Pd/C觸媒,實驗結果列於表二。 表二 氫化反應之溫度,°C 對甲基笨甲酸之產率,% 200 53.74 12 200930697 由表一及表二之實驗數據可知,在180-200°C之反應 溫度範圍内,鈀/二氧化矽核殼式觸媒(即實施例中之觸 媒)的對甲基苯甲酸產率(73. 5〜99. 1%)顯著的高於比較例 Pd/C觸媒的對甲基苯曱酸產率(在200°C之反應溫度下,產率 僅53. 74%),此結果顯然是出乎意料之外。 從以上描述可以了解到本發明方法具有顯著增進功 效而確為一甚具產業上利用價值的新發明。Pd/C catalyst activity. The job is the reason. This work, based on the lack of conventional technology, was carefully tested and researched to create the "method of hydrogenation of p-carboxybenzaldehyde to p-nonylbenzoic acid". The following is a brief description of the case. SUMMARY OF THE INVENTION The primary object of the present invention is to provide an improved process for the hydrogenation of thiobenzaldehyde to p-methyl benzoic acid, which comprises reacting p-carboxybenzene in the presence of a catalyst system comprising cerium oxide and palladium. Formaldehyde is hydrogenated with a gas containing hydrogen to form p-toluic acid. The catalyst system containing bismuth telluride and palladium exists in the form of a core shell, the core of the catalyst contains palladium, and the shell of the catalyst is porous ruthenium dioxide. Unexpectedly, the catalyst containing ceria and palladium has excellent hydrogenation activity and excellent yield of f-based benzoic acid, and the core-shell structure of the catalyst can reduce the traditional palladium/carbon touch. The shortcomings of medium sintering. The following examples are intended to further illustrate the method of the present invention, but such examples are intended to be illustrative only and not to limit the scope of the invention. EXAMPLES 1 - 3 Catalyst Preparation The preparation of the catalyst is divided into the following two parts. The preparation of the catalyst is similar to the step of preparing the core-shell silver cerium oxide composite in the literature (Kc Chou, CCChen, Fabrication). And characterization of ❹ silver core and porous silica shell nanocomposite materials" , Microporous and Mesoporous Materials, 98 (2007) 208-213) ° Part 1: 1. Add 692·0692 g Pd (N〇) to 3 ml of deionized water. 3) 2, mixing to make it completely dissolved. 2. Dissolve 0.255 g of poly(vinylpyrrolidone) (PVP) in the above solution and stir to dissolve completely. 3. Add 0.0692 ml of formaldehyde to the above solution at room temperature. 4. Add 184. 0184 g of sodium hydroxide and mix to dissolve completely. 5. Add 11 ml of acetone to form a black precipitate. After centrifugation, C-washing and drying, a jelly-like black blocky substance is obtained. The second part: 1. The above-mentioned black bulk material is dissolved in a solution of the following composition: 1 ml of deionized water, 0.34 ml of ammonia water, and 6.64 ml of ethanol. And ultrasonically oscillate for 3 minutes. 200930697 2. Add 0.54 liter of tetmeth〇xysil (te(6) in the above solution and stir at room temperature for 24 hours. 3. Add deionized water to centrifuge and take the solid part for 10 hours under TC. 4 · The above-mentioned dried solid is placed in a u-shaped tube, and the air is calcined under the boot for 3 hours, ie, the pay/cermet dioxide core-shell catalyst. Figure 1 is the epoch / sulphur dioxide nucleocapsid Schematic diagram of the medium. Hydrogenation reaction in a 600 ml Parr reactor, adding 1 gram of p-carboxybenzaldehyde (purchased from Alfa AeSar) and 50 ml of secondary deionized water, and then adding the palladium/cerium oxide prepared above. The core-shell catalyst 〇〇〇 35 grams of this reactor is re-passed with a force of 2 GGpsig of hydrogen, the stirring rate is GG rpm, and then heated to bring the reactor to the set temperature. After one hour of reaction, The reactor is cooled to below room temperature. The reacted solution is taken and analyzed by a high-performance liquid chromatograph (Ηρα) , to measure the molar number of p-toluic acid produced. Yield of methylbenzoic acid: yield = (p-methylbenzoic acid produced) The number of ears) / (the number of moles placed on the carboxyl group) x l 〇〇 %. The results of the nitridation reaction experiments are listed in Table 1. 11 200930697 Table 1 Example 1 Example 2 Example 3 The temperature of the hydrogenation reaction, C 180 190 200 yield of p-mercaptobenzoic acid, % 73.5 98. 1 99. 1 As can be seen from the data in Table 1, in the range of temperature 180 ° 2 ° ° C to put / dioxide dioxide core shell Catalyst catalyzed the hydrogenation reaction of the ruthenium, which has a yield of more than 70%, and the reaction temperature of 20 (TC is the best, the yield of fluorenyl benzoic acid is reached. 9 g. 1%. Comparative Example The hydrogenation catalyst used in this comparative example is a commercially available 5 wt% Pd/C catalyst supplied by Strem, the hydrogenation reaction step and other conditions are as in Examples 1-3. The description is based on the commercial Pd/C catalyst of palladium/cerium dioxide core-shell catalyst replaced by the same weight (0.0035 g). The experimental results are shown in Table 2. Table 2 Hydrogenation temperature, °C vs. methyl Yield of benzoic acid, % 200 53.74 12 200930697 It can be seen from the experimental data of Table 1 and Table 2 that the reaction temperature range is 180-200 ° C. The p-toluene core-shell catalyst (ie, the catalyst in the examples) had a p-toluic acid yield (73. 5 to 99. 1%) which was significantly higher than that of the comparative Pd/C catalyst. The yield of methylbenzoic acid (the yield was only 53.74% at a reaction temperature of 200 ° C), this result is obviously unexpected. It can be understood from the above description that the method of the present invention has a remarkable effect of improving It is indeed a new invention with great industrial value.

1313

Claims (1)

200930697 十、申請專利範圍: 1· 一種將對羧基苯甲醛氫化成對曱基苯甲酸之方法,其包持將 含有對羧基苯甲醛之液體於一含有二氧化矽和鈀之觸媒系 統存在下與一含有氫氣之氣體進行氫化反應以生成對甲 基苯甲酸。該含有二氧化矽和鈀之觸媒系統係以核殼形 式存在,該觸媒之核中含有纪,而該觸媒之殼為多孔性 之二氧化矽。 ❹ 2. 如申請專利範圍第一項所述之方法,該含有二氧化石夕和 鈀之觸媒系統之製備係先以安定劑穩定鈀金屬微小顆 粒’然後再形成二氧化矽之外殼將該鈀金屬之微小顆粒 包含其中。 3. 如申請專利範圍第二項所述之方法,該安定劑為聚合 物、四級銨鹽及菲琳(phenanthroline)。 Q 4.如申請專利範圍第二項所述之方法,該安定劑為聚乙稀 π比嘻酮(polyvinyl pyrrolidone)。 5. 如申請專利範圍第二項所述之方法,該鈀金屬之微小顆 粒係由鈀化合物經還原劑還原而得。 6. 如申請專利範圍第二項所述之方法,該二氧化矽外殼係 由矽化合物經溶膠凝膠法形成。 7. 如申請專利範圍第五項所述之方法,該鈀化合物係為硝, 酸鈀、醋酸鈀、草酸鈀、硫酸鈀、氣鈀酸銨、_化把、 14 200930697 氧化鈀、鈀酯、硫化鈀、氮化鈀、氫化鈀、氰化鈀及碳 化把。 8. 如申請專利範圍第五項所述之方法,該把化合物係為石肖 酸在巴。 9. 如申請專利範圍第六項所述之方法,該矽化合物係為矽 氧烷、矽烷、矽酸、_化矽、矽氧烯、矽草酸、矽凝膠、 乙酸矽、二氧化矽、一氧化矽、矽酸鹽、聚矽氧。 0 10. 如申請專利範圍第六項所述之方法,其中該矽化合物 係為四乙氧基矽。 11. 如申請專利範圍第一項所述之方法,其中該氫化反應 之溫度係介於20至350°C之間。 12. 如申請專利範圍第一項所述之方法,其中該氫化反應 之溫度係介於50至300°C之間。 13. 如申請專利範圍第一項所述之方法,其中該氫化反應 〇 之壓力係介於常壓至1〇〇大氣壓力之間。 14. 如申請專利範圍第一項所述之方法,其中該氫化反應 之壓力係介於常壓至50大氣壓力之間。 15200930697 X. Patent application scope: 1. A method for hydrogenating p-carboxybenzaldehyde to p-nonylbenzoic acid, which comprises containing a liquid containing p-carboxybenzaldehyde in the presence of a catalyst system containing ceria and palladium. Hydrogenation is carried out with a gas containing hydrogen to form p-methylbenzoic acid. The catalyst system containing cerium oxide and palladium exists in the form of a core shell containing a core of the catalyst, and the shell of the catalyst is porous cerium oxide. ❹ 2. As claimed in the first paragraph of the patent application, the catalyst system containing the cerium oxide and the palladium is first prepared by stabilizing the palladium metal fine particles with a stabilizer and then forming the outer shell of the cerium oxide. The fine particles of palladium metal are contained therein. 3. The method of claim 2, wherein the stabilizer is a polymer, a quaternary ammonium salt, and a phenanthroline. Q 4. The method of claim 2, wherein the stabilizer is polyvinyl pyrrolidone. 5. The method of claim 2, wherein the fine particles of the palladium metal are obtained by reducing a palladium compound with a reducing agent. 6. The method of claim 2, wherein the ceria shell is formed by a sol-gel method from a ruthenium compound. 7. The method of claim 5, wherein the palladium compound is nitrate, palladium acetate, palladium acetate, palladium oxalate, palladium sulfate, ammonium palladium hydride, _chemical, 14 200930697 palladium oxide, palladium ester, Palladium sulfide, palladium nitride, palladium hydride, palladium cyanide and carbonization. 8. The method of claim 5, wherein the compound is in the form of tartaric acid. 9. The method of claim 6, wherein the hydrazine compound is a decane, a decane, a decanoic acid, a hydrazine, a decylene, a valeric acid, a hydrazine gel, a cerium acetate, a cerium oxide, Nitric oxide, citrate, polyoxane. 10. The method of claim 6, wherein the hydrazine compound is tetraethoxy hydrazine. 11. The method of claim 1, wherein the hydrogenation reaction has a temperature between 20 and 350 °C. 12. The method of claim 1, wherein the hydrogenation reaction has a temperature between 50 and 300 °C. 13. The method of claim 1, wherein the hydrogenation pressure is between atmospheric pressure and atmospheric pressure. 14. The method of claim 1, wherein the hydrogenation reaction has a pressure between atmospheric pressure and 50 atmospheres. 15
TW97100766A 2008-01-09 2008-01-09 Process for hydrogenating 4-carboxybenzaldehyde to p-toluic acid TWI400228B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97100766A TWI400228B (en) 2008-01-09 2008-01-09 Process for hydrogenating 4-carboxybenzaldehyde to p-toluic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97100766A TWI400228B (en) 2008-01-09 2008-01-09 Process for hydrogenating 4-carboxybenzaldehyde to p-toluic acid

Publications (2)

Publication Number Publication Date
TW200930697A true TW200930697A (en) 2009-07-16
TWI400228B TWI400228B (en) 2013-07-01

Family

ID=44865055

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97100766A TWI400228B (en) 2008-01-09 2008-01-09 Process for hydrogenating 4-carboxybenzaldehyde to p-toluic acid

Country Status (1)

Country Link
TW (1) TWI400228B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105251480B (en) * 2015-10-22 2017-12-08 上海纳米技术及应用国家工程研究中心有限公司 A kind of preparation method of palladium mesopore silicon oxide core-shell nano catalysis material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19723591A1 (en) * 1997-06-05 1998-12-10 Hoechst Ag Catalyst, process for its preparation and its use for the production of vinyl acetate
DE10015250A1 (en) * 2000-03-28 2001-10-04 Basf Ag Shell catalyst for gas phase hydrogenation
DE10225565A1 (en) * 2002-06-10 2003-12-18 Oxeno Olefinchemie Gmbh Supported catalyst, for the hydrogenation of aromatic compounds to the corresponding alicyclic compounds, contains at least one Group 8 metal and has an average pore diameter of 25-50 nm and a specific surface area of greater than 30 m2/g
JP2005144402A (en) * 2003-11-19 2005-06-09 Sangaku Renkei Kiko Kyushu:Kk Catalyst for partial oxidation of hydrocarbon and method of producing synthetic gas using the same

Also Published As

Publication number Publication date
TWI400228B (en) 2013-07-01

Similar Documents

Publication Publication Date Title
JP7019813B2 (en) Catalyst for producing α-phenylethanol by hydrogenation of acetophenone, its production method and application
EP3092072B1 (en) A process for vapor-phase methanol carbonylation to methyl formate
JP6629388B2 (en) Copper-based catalyst precursor, method for producing the same, and hydrogenation method
CN108126762B (en) Cobalt-based catalyst for producing unsaturated carboxylic ester, preparation and carboxylic ester production
CN1775361A (en) Method for preparing nano noble metal hydrogenation catalyst by substitution method and its use
WO2022253171A1 (en) Silver-ruthenium bimetallic/sio2-zro2 composite support catalyst and preparation method therefor and application thereof
CN108126761B (en) Cobalt-based composite particle load, preparation and synthesis of carboxylic ester
JP4777891B2 (en) Catalyst and process for producing cycloolefin
CN114849694A (en) Catalyst based on metal-loaded tungsten oxide hydrogenated nitroarene and preparation method and application thereof
CN109821529B (en) Cobalt-based catalyst and method for preparing unsaturated carboxylic ester by using cobalt-based catalyst
JP2009090283A (en) Catalyst
EP2305628B1 (en) Allylic Oxidation Method for the Preparation of Fragrances using Metal-Organic Compounds and Gold Catalysts
CN111905726A (en) Preparation method of Au-C high-selectivity oxidation catalyst with controllable size
CN112916013B (en) Nickel-based halloysite nanotube hydrogenation catalyst and preparation and application thereof
JP3556397B2 (en) Improved method for producing catalyst for carboxylic acid ester production
TW200930697A (en) Process for hydrogenating 4-carboxybenzaldehyde to p-toluic acid
US10266475B2 (en) Method for producing acrylic acid
Xu et al. Nanocatalysis for organic chemistry
JP5834143B2 (en) 7-Octenal Production Method
KR20130067518A (en) Catalyst for carbon-carbon coupling reactions using transition-metal silica nanoparticles
CN106674173B (en) Dehydrogenation catalyst and method for preparing valerolactone
JP4069242B2 (en) Metal particle carrier and method for producing carboxylic acid ester
CN114100653B (en) Nitride supported palladium catalyst and preparation method and application thereof
JP4056782B2 (en) Catalyst for producing carboxylic acid ester, process for producing the same, and process for producing carboxylic acid ester using the catalyst
CN112206772A (en) Preparation and application of catalyst for synthesizing methyl glycolate

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees