TW200930480A - Method of fabricating porous metal nets - Google Patents

Method of fabricating porous metal nets Download PDF

Info

Publication number
TW200930480A
TW200930480A TW97101351A TW97101351A TW200930480A TW 200930480 A TW200930480 A TW 200930480A TW 97101351 A TW97101351 A TW 97101351A TW 97101351 A TW97101351 A TW 97101351A TW 200930480 A TW200930480 A TW 200930480A
Authority
TW
Taiwan
Prior art keywords
metal
oxide
porous
metal oxide
producing
Prior art date
Application number
TW97101351A
Other languages
Chinese (zh)
Inventor
Shyan-Kay Jou
Sheng-Chung Liao
Original Assignee
Univ Nat Taiwan Science Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan Science Tech filed Critical Univ Nat Taiwan Science Tech
Priority to TW97101351A priority Critical patent/TW200930480A/en
Publication of TW200930480A publication Critical patent/TW200930480A/en

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

A method of fabricating porous metal nets is provided. First, a thermal process is performed on a metal with an oxide-containing gas so as to form a metallic oxide. Next, the metallic oxide is reduced with a reducing gas so as to form porous metal nets. The process temperature of the above reductive reaction is lower than 500 DEG C.

Description

200930480 5307twf.doc/p 九、發明說明: 【發明所屬之技術領域】 本發明疋有關於一種金屬材料的製造方法,且特別是 有關於一種多孔性網狀金屬的製造方法。 【先前技術】 金屬材料工業為一產業關聯性極大的基礎工業,舉凡 製造業中的機械、化工、運輸工具、航太乃至新興之電子 ❹ 資訊業,莫不與金屬材料工業息息相關。 夕孔性金屬即為當前材料科學中發展較為迅速的一 種新穎的金屬材料。所謂「多孔性金屬」是指在金屬基體 中含有一定數量、一定尺寸孔徑、一定孔隙率的孔洞的金 屬材料。此種金屬材料具有輕質、高比強度等結構上的特 點,以及具有多孔、減振、阻尼、吸音、隔音、散熱、吸 收衝擊能、電磁遮罩等多種功能的性能。 目前,已知製造多孔性金屬材料的方法包括:去合金 法(dealloying)、模板法、粉末燒結法及高溫還原法等:其 © 中,去合金法主要是利用對具有固溶性的合金材料進行蝕 刻,以去除掉其中的一個成分,而留下多孔性金屬結構。 模板法則是利用立體的多孔性模板輔助,於預先形成的連 續孔洞内使用電鍍法來填充金屬,然後再利祕刻法去除 ,板,以形成多孔性金屬。另外,粉末燒結法是先將金屬 争刀,與孔隙生成物混合’然後對此混合物進行燒結,以形 成多孔性金屬。高溫還原法則是需在約80(TC的高溫下進 行還原的技術。 5307twf.doc/p 200930480 為了因應科學技術的不斷發展,除了 =仍持續努力於研究新㈣造方法,w 卜料 ==金屬材料鲁薄、短、小的發展= 有鑑於此’本發明的目的就是在提供一種多孔 ❹ 狀合ΐίί方法能夠以簡易的方式形成三維的多孔性網 狀金屬結構,城金屬結構具有具有相連通的孔隙。性網 本發明提出一種多孔性網狀金屬的製造方法。此方法 I愿ί在—含氧環境中,對一金屬進行熱製程,以形成- 声屬氧化物。然後,於一還原氣體環境中以及於一製程溫 使金>|氧化物進行還原反應,而形成多孔性網狀金 屬結構。其中,上述之還原反應的製程溫度小於50(rc。 、、 依照本發明的實施例所述多孔性網狀金屬的製造方 法,上述之製程溫度是介於200°C〜5〇〇°c之間。在一實施 例中’製程溫度是介於25(TC〜45〇°C之間。 、 依照本發明的實施例所述多孔性網狀金屬的製造方 去’上述之還原氣體例如是氫氣或其他適合的。 . 、 依照本發明的實施例所述多孔性網狀金屬的製造方 、' 上述之金屬例如是銅、癌、翻、.辞、鐵、姑或其他合 適之金屬。 、 依照本發明的實施例所述多孔性網狀金屬的製造方 法,上述之多孔性網狀金屬結構具有相連通的孔隙。 、 依照本發明的實施例所述多孔性網狀金屬的製造方 法,上述之金屬氧化物為線狀金屬氧化物,而此金屬氧化 5 200930480 6307twf.doc/p 物是在含氧環境中,以金屬膜進行熱製程而形成。 依照本發明的實施例所述多孔性網狀金屬的製造方 法’上述之金屬氧化物為金屬氧化物粉末,而此金屬氧化 物是在含氧環境中,以金屬粉末進行熱製程而形成。 本發明的方法是採用簡易的方式來形成多孔性網狀 金屬,其是先以熱氧化法形成金屬氧化物,然後再還原金 屬氧化物而形成。而且’採用本發明的方法所形成的多孔 性網狀金屬結構具有相連通的孔隙。 Ο 為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂’下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 【實施方式】 圖1為本發明之多孔性網狀金屬的製造方法的步驟流 程圖。 首先,請參照圖1,利用熱氧化法,以形成金屬氧化 物(步驟110)。步驟Π0例如是在含氧環境中,對金屬進行 ° 熱製程,使金屬產生氧化反應而形成金屬氧化物。上述, ,形成的金屬氧化物為線狀金屬氧化物,而其例如是在含 氧環境中,以金屬膜進行熱製程而形成。另外,所形成的 金屬氧化物亦可為金屬氧化物粉末,而其例如是在含氧環 境中,以金屬粉末進行熱製程而形成。 衣 詳細而言,步驟110所形成的金屬氧化物,例如是在 加熱板上放置金屬膜或金屬粉末,且於氧氣或水氣等含氧 環境中,加熱至30CTC〜55(rc而形成。步驟11〇所形成的 200930480 ^6307twf.doc/p 金屬氧化物,亦可例如是將金屬膜或金屬粉末置於熱爐管 裝置中’且於氧氣或水氣等含氧環境中,於3〇〇。(:〜900。(: 的溫度下而形成。 接著’請繼續參照圖1 ’在還原氣體的環境中,使金 屬氧化物進行還原反應(步驟120)。步驟12〇例如是通入氫 氣或其他合適的還原氣體’且於一製程溫度下,使金屬氧 化物還原,以形成多孔性網狀金屬結構。此還原步驟的製 程溫度為小於50(TC,較佳是在200¾〜5〇〇°c之間,更佳 為在250C〜450°C之間。此還原步驟的時間約為2〜3小 時。另夕卜,在通入還原氣體時,射如入氮氣,或者是氣 氣_、氖氣_、氬氣(Ar)、氪氣(Kr)、氣氣㈣、氣氣 (Rn)等惰性氣體(inert gas)。 詳細而言,在進行步驟120時’還原氣體會使金屬氧 化物中的金屬還原,而形成三維的多孔性網狀金屬且此 金屬結構中會具有相連通的孔隙。 承上述,在本實施例中,所使用的金屬可例如 ❹ (Cu)、鎢(W)·、鉬(M〇)、鋅(Zn)、鐵(Fe)、鈷(c〇)或其他人 適之金屬。 ^ ° 而且,本實施例的多孔性網狀金屬可以為任意幾 造的塊材狀,或是覆蓋於其他物質表面的膜層狀。稱 明以下’特舉實驗例來說明本發明,然非用以限定本發 [實驗例] 贺造金屬氧_ib物 63〇7twf,doc/p 200930480 首先,提供一銅基材或粉末。然後,通入氧氣,以及 在適當的溫度下,使銅基材或粉末進行熱氧化而形成氧化 銅(CuO)或氧化亞銅(CU2〇)。同樣地,可將鎢基材或粉末轉 變成氧化鎢(w〇3);將鉬基材或粉末轉變成氧化鉬 (M〇〇3);將鋅基材或粉末轉變成氧化鋅(ZnO);將鐵基材 或粉末轉變成氧化鐵(FqO3);將鈷基材或粉末轉變成氧化 銘(Co3〇4)。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal material, and more particularly to a method for producing a porous network metal. [Prior Art] The metal materials industry is a basic industry with great relevance to the industry. The machinery, chemicals, transportation tools, aerospace and even the emerging electronics industry in the manufacturing industry are closely related to the metal materials industry. The sinus metal is a novel metal material that has developed rapidly in the current material science. The term "porous metal" refers to a metal material containing a certain number of pores having a certain pore size and a certain porosity in a metal matrix. This metal material has structural characteristics such as light weight and high specific strength, and has many functions such as porous, vibration damping, damping, sound absorption, sound insulation, heat dissipation, shock absorption energy, and electromagnetic shielding. At present, methods for producing porous metal materials include: dealloying, stencil method, powder sintering method, and high-temperature reduction method, etc., among which the de-alloying method is mainly performed on an alloy material having solid solubility. Etching to remove one of the components while leaving a porous metal structure. The templating rule is to use a three-dimensional porous template to assist in filling the metal in a pre-formed continuous hole by electroplating, and then carefully removing the plate to form a porous metal. Further, in the powder sintering method, a metal is smashed and mixed with a pore product, and then the mixture is sintered to form a porous metal. The high-temperature reduction method is a technique that requires reduction at a temperature of about 80 TC. 5307twf.doc/p 200930480 In order to cope with the continuous development of science and technology, in addition to continuing to work hard to study new (four) methods, w = = metal Lumen thin, short, and small development = In view of the above, the object of the present invention is to provide a porous ❹-like composite method capable of forming a three-dimensional porous network structure in a simple manner, and the metal structure of the city has a connection The present invention provides a method for producing a porous network metal. This method is intended to thermally process a metal in an oxygen-containing environment to form a sound-like oxide. The reduction reaction of the gold >|oxide in a gaseous environment and a process temperature to form a porous network metal structure, wherein the process temperature of the above reduction reaction is less than 50 (rc.), according to an embodiment of the present invention In the method for manufacturing the porous network metal, the process temperature is between 200 ° C and 5 ° C. In one embodiment, the process temperature is between 25 (TC and 45). The porous mesh metal according to the embodiment of the present invention is manufactured by the above-mentioned reducing gas such as hydrogen or other suitable ones. The metal is produced, for example, a metal such as copper, cancer, turn, rhodium, iron, or other suitable metal. The method for producing a porous network metal according to an embodiment of the present invention, the above porous The mesh metal structure has interconnected pores. According to the method for producing a porous mesh metal according to an embodiment of the present invention, the metal oxide is a linear metal oxide, and the metal oxide 5 200930480 6307twf.doc The /p substance is formed by a thermal process of a metal film in an oxygen-containing environment. The method for producing a porous network metal according to an embodiment of the present invention is characterized in that the metal oxide is a metal oxide powder and the metal The oxide is formed by a thermal process of metal powder in an oxygen-containing environment. The method of the present invention is to form a porous network metal in a simple manner, which is preceded by heat. The chemical process forms a metal oxide and then reduces the metal oxide to form. And the porous network metal structure formed by the method of the present invention has interconnected pores. Ο For the above and other objects and features of the present invention And the advantages can be more clearly understood. The following is a detailed description of the preferred embodiments and the following description of the drawings. FIG. 1 is a flow chart showing the steps of the method for manufacturing the porous mesh metal of the present invention. First, referring to Fig. 1, a thermal oxidation method is used to form a metal oxide (step 110). Step Π0 is, for example, performing a thermal process on a metal in an oxygen-containing environment to cause an oxidation reaction of the metal to form a metal oxide. In the above, the metal oxide formed is a linear metal oxide, which is formed, for example, by a thermal process of a metal film in an oxygen-containing atmosphere. Further, the metal oxide formed may also be a metal oxide powder which is formed, for example, by a thermal process of a metal powder in an oxygen-containing atmosphere. In detail, the metal oxide formed in the step 110 is formed by, for example, placing a metal film or a metal powder on a hot plate, and heating it to 30 CTC to 55 (rc) in an oxygen-containing atmosphere such as oxygen or moisture. The 200930480^6307twf.doc/p metal oxide formed by 11〇 can also be placed, for example, in a hot furnace tube device in a metal furnace or metal powder, and in an oxygen-containing environment such as oxygen or moisture. (: ~ 900. (: at the temperature of the formation. Next, please continue to refer to Figure 1 'in the reducing gas environment, the metal oxide reduction reaction (step 120). Step 12 〇 for example, the introduction of hydrogen or Other suitable reducing gas 'reduces the metal oxide at a process temperature to form a porous network metal structure. The process temperature of the reduction step is less than 50 (TC, preferably at 2003⁄4 to 5 〇〇 °) Between c, more preferably between 250 C and 450 ° C. The time of this reduction step is about 2 to 3 hours. In addition, when the reducing gas is introduced, it is injected with nitrogen gas or gas. Helium _, argon (Ar), helium (Kr), gas (four), gas Inert gas, such as (Rn). In detail, when the step 120 is performed, the reducing gas reduces the metal in the metal oxide to form a three-dimensional porous network metal and the metal structure is connected. Throughout the above, in the present embodiment, the metal used may be, for example, bismuth (Cu), tungsten (W), molybdenum (M〇), zinc (Zn), iron (Fe), cobalt (c〇). Or other suitable metal. ^ ° Further, the porous network metal of the present embodiment may be in the form of a block made of any number of layers or a film layer covering the surface of other substances. The present invention will be described, but it is not intended to limit the present invention. [Experimental Example] He made metal oxygen _ ib 63 〇 7 twf, doc / p 200930480 First, a copper substrate or powder is provided. Then, oxygen is introduced, and at appropriate At a temperature, the copper substrate or powder is thermally oxidized to form copper oxide (CuO) or cuprous oxide (CU2 〇). Similarly, the tungsten substrate or powder can be converted into tungsten oxide (w〇3); Molybdenum substrate or powder is converted into molybdenum oxide (M〇〇3); zinc substrate or powder is converted into zinc oxide (ZnO); iron substrate Or the powder is converted into iron oxide (FqO3); the cobalt substrate or powder is converted into oxidation (Co3〇4).

形成多孔性網肤合屬 接著,將所形成的氧化銅或氧化亞銅置於氫氣環境 中丄且於小於500°C的溫度下,使氧化銅或氧化亞銅還原 成二維的多孔性網狀銅。同樣地,可以相同的方式將氧化 鎢(W〇3)、氧化鉬(Mo〇3)、氧化辞(Zn〇)、氧化鐵(Fe2〇3)、 氧化鈷(C〇3〇4)還原成三維的多孔性網狀金屬結構。 接下來,利用掃描式電子顯微鏡(Scanning Electmn Microscope ’ SEM)分析技術,對本發明之熱氧化步驟所形 成的金屬氧化物以及還原步驟所形成之多孔性網狀金屬結 構’進行材料表面微結構的特性分析。 , 圖2A與圖2B為本發明之熱氧化步驟所形成的金屬氧 化物的SEM照片;圖3為本發之熱氧化步驟所形成的 多孔性網狀金屬的SEM照片。 如圖2A所示’其是以金屬膜進行熱氧化步驟所形成 的金屬氧化物,—2A可觀察出此金屬氧化物呈線狀。 如圖2B所示’其是以金屬粉末膜進行熱氧化步驟所形成 的金屬氧化物’由圖2B可觀察出此金屬氧化物呈多孔隙 200930480 6307twf.doc/p 結構的粉末狀。另外,圖3的SEM照片則清楚地顯示出 表面的微結構是呈現三維的多孔性網狀的形態,且結構中 會具有相連通的孔隙。由SEM的表面形態分析可知,本 發明的方法確實可形成多孔性網狀金屬結構。Forming a porous mesh body Next, placing the formed copper oxide or cuprous oxide in a hydrogen atmosphere and reducing the copper oxide or cuprous oxide into a two-dimensional porous network at a temperature of less than 500 ° C Copper. Similarly, tungsten oxide (W〇3), molybdenum oxide (Mo〇3), oxidized (Zn〇), iron oxide (Fe2〇3), and cobalt oxide (C〇3〇4) can be reduced in the same manner. Three-dimensional porous mesh metal structure. Next, using a scanning electron microscope (SEM) analysis technique, the metal oxide formed by the thermal oxidation step of the present invention and the porous network metal structure formed by the reduction step are characterized by surface microstructure of the material. analysis. 2A and 2B are SEM photographs of the metal oxide formed by the thermal oxidation step of the present invention; and Fig. 3 is a SEM photograph of the porous network metal formed by the thermal oxidation step of the present invention. As shown in Fig. 2A, which is a metal oxide formed by a thermal oxidation step of a metal film, -2A can be observed to have a linear shape. As shown in Fig. 2B, the metal oxide formed by the thermal oxidation step of the metal powder film was observed in Fig. 2B as a powder having a porous structure of 200930480 6307 twf.doc/p. In addition, the SEM photograph of Fig. 3 clearly shows that the microstructure of the surface is a three-dimensional porous network and that there are interconnected pores in the structure. From the surface morphology analysis of the SEM, it is understood that the method of the present invention can form a porous network metal structure.

綜上所述,本發明之方法是利用以熱氧化法所形成的 金屬氧化物來進行還原,而形成多孔性網狀金屬。本發明 之方法不僅是可採用簡易的方式來形成多孔性金屬且所 形成的金屬結構具有三維網狀結構以及具有相連通的孔 隙。另一方面,本發明的多孔性網狀金屬結構亦可應用在 散熱基板、氣體吸附材料的载體、觸媒、觸媒载體生醫試 劑釋適放的載體、太陽能電池的部分結構體、電池的電極、 超級電容、氣體感測元件等。 Ο 雖然本發明已以較佳實施例揭露如上,然其並非用以 限^本發明,任何熟習此技藝者,在不麟本發明之精神 =範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 程圖 圖1為本發明之多紐輸金屬的製造方法的步驟流 化物為本發明之熱氧化步驟所形成的金屬氧 的本發明之錄化步騎縣的纽性網狀金屬 【主要元件符號說明】 110 ' 120 :步驟 9As described above, the method of the present invention uses a metal oxide formed by a thermal oxidation method to carry out reduction to form a porous network metal. The method of the present invention not only allows the formation of a porous metal in a simple manner and the resulting metal structure has a three-dimensional network structure and has interconnected pores. On the other hand, the porous mesh metal structure of the present invention can also be applied to a heat dissipating substrate, a carrier of a gas adsorbing material, a catalyst, a carrier for releasing a biomedical reagent, a partial structure of a solar cell, Battery electrodes, supercapacitors, gas sensing components, etc. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and any skilled person skilled in the art can make some modifications and refinements within the scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a step of the method for producing a multi-metal metal according to the present invention. The stream is the metal oxygen formed by the thermal oxidation step of the present invention. Metal [Major component symbol description] 110 ' 120 : Step 9

Claims (1)

200930480 6307twf.doc/p 十、申請專利範圍: I一種多孔性網狀金屬的製造方法,包括: 先在一含氧環境中,對一金屬進行熱製程,以形成一 金屬氧化物;以及 再於一還原氣體環境中,以及於一製程溫度下,使該 金屬氧化物進行還原反應,而形成多孔性網狀金屬結構, 其中該製程溫度小於50(TC。 φ 2. 如申請專利範圍第1項所述之多孔性網狀金屬的製 造方法’其中該製程温度是介於20〇t〜5〇〇°C之間。 3. 如申請專利範圍第1項所述之多孔性網狀金屬的製 造方法’其中該製程溫度是介於250。(:〜45〇°c之間。 4·如申請專利範圍第1項所述之多孔性網狀金屬的製 造方法’其中該還原氣體包括氫氣。 ^ 5·如申請專利範圍第1項所述之多孔性網狀金屬的製 造方法,其中該金屬包括銅、鎢、鉬、鋅、鐵或銘。 Ο 止太、.如申喷專利範圍第1項所述之多孔性網狀金屬的製 k方法,其广該多孔性網狀金屬結構具有相連通的孔隙。 、7.如巾請專郷圍第丨項賴之多錄網狀金屬的製 这法,其中該金屬氧化物為線狀金屬氧化物。 冰方i如巾請專職圍第7項所狀乡孔,_狀金屬的製 :熱製程=金屬氧化物是在含氧環境中’以金屬膜進 的製 ^如申請專利制第丨項所狀多孔性網狀金屬 ^ ,其中該金屬氧化物為金屬氧化物粉末。 200930480 6307twf.doc/p 200930480 6307twf.doc/p200930480 6307twf.doc/p X. Patent application scope: I. A method for manufacturing a porous mesh metal, comprising: first performing a thermal process on a metal in an oxygen-containing environment to form a metal oxide; In a reducing gas environment, and at a process temperature, the metal oxide is subjected to a reduction reaction to form a porous network metal structure, wherein the process temperature is less than 50 (TC. φ 2. as claimed in claim 1 The method for producing a porous mesh metal, wherein the process temperature is between 20 〇 t and 5 〇〇 ° C. 3. The manufacture of the porous mesh metal according to claim 1 The method of the method wherein the process gas is in the range of 250. (: ~45 〇 °c. 4. The method for producing a porous network metal according to claim 1 wherein the reducing gas comprises hydrogen. 5. The method for producing a porous mesh metal according to claim 1, wherein the metal comprises copper, tungsten, molybdenum, zinc, iron or iron. 止 止太,. Porous network The method for making metal k, the porous metal structure having a plurality of interconnected pores. 7. If the towel is used, the method of making the network of the metal of the third item, wherein the metal oxide is used. It is a linear metal oxide. Ice square i, such as a towel, please fill the hole in the 7th item of the full-time, _-shaped metal system: hot process = metal oxide is in the oxygen-containing environment The porous mesh metal ^ in the patent application system, wherein the metal oxide is a metal oxide powder. 200930480 6307twf.doc/p 200930480 6307twf.doc/p Ο 10.如申請專利範圍第9項所述之多孔性網狀金屬的 製造方法,其中該金屬氧化物是在含氧環境中,以金屬粉 末進行熱製程而形成。 11 200930480 6307twf.doc/p 五、中文發明摘要: 一種多孔性網狀金屬的製造方法。此方法為,先在一 含氧環境中,對一金屬進行熱製程,以形成一金屬氧化物。 然後,於一還原氣體環境中以及於一製程溫度下,使金屬 氧化物進行還原反應,而形成多孔性網狀金屬結構。其中, 上述之還原反應的製程溫度小於500°C。 〇 六、英文發明摘要: A method of fabricating porous metal nets is provided. First,a thermal process is performed on a metal with an oxide-containing gas so as to form a metallic oxide. Next, the metallic oxide is reduced with a reducing gas so as to form porous metal nets. The process temperature of the above reductive reaction is lower than 500°C. 七、 指定代表圖: 〇 (一)本案指定代表圖為:圖(l)。· (二)本代表圖之元件符號簡單說明: 110、120 :步驟 八、 本案若有化學式時,請揭示最能顯示發明特徵 的化學式: M. 3The method for producing a porous network metal according to claim 9, wherein the metal oxide is formed by a thermal process of a metal powder in an oxygen-containing atmosphere. 11 200930480 6307twf.doc/p V. Abstract of Chinese invention: A method for producing porous mesh metal. In this method, a metal is first thermally processed in an oxygen-containing environment to form a metal oxide. Then, the metal oxide is subjected to a reduction reaction in a reducing gas atmosphere and at a process temperature to form a porous network structure. Wherein, the process temperature of the above reduction reaction is less than 500 °C. First, a thermal process is performed on a metal with an oxide-containing gas so as to form a metallic oxide. Next, the metallic oxide is reduced with a The process temperature of the above reductive reaction is lower than 500 ° C. VII. Designated representative figure: 〇 (1) The representative representative figure of this case is: figure (l). · (2) A brief description of the symbol of the representative figure: 110, 120: Step 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: M. 3
TW97101351A 2008-01-14 2008-01-14 Method of fabricating porous metal nets TW200930480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97101351A TW200930480A (en) 2008-01-14 2008-01-14 Method of fabricating porous metal nets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97101351A TW200930480A (en) 2008-01-14 2008-01-14 Method of fabricating porous metal nets

Publications (1)

Publication Number Publication Date
TW200930480A true TW200930480A (en) 2009-07-16

Family

ID=44864959

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97101351A TW200930480A (en) 2008-01-14 2008-01-14 Method of fabricating porous metal nets

Country Status (1)

Country Link
TW (1) TW200930480A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112444152A (en) * 2019-09-03 2021-03-05 广州力及热管理科技有限公司 Chain-shaped copper metal capillary structure and manufacturing method thereof
CN112444151A (en) * 2019-09-03 2021-03-05 广州力及热管理科技有限公司 Metal oxide slurry for manufacturing capillary structure of uniform temperature plate element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112444152A (en) * 2019-09-03 2021-03-05 广州力及热管理科技有限公司 Chain-shaped copper metal capillary structure and manufacturing method thereof
CN112444151A (en) * 2019-09-03 2021-03-05 广州力及热管理科技有限公司 Metal oxide slurry for manufacturing capillary structure of uniform temperature plate element
CN112444152B (en) * 2019-09-03 2022-01-11 广州力及热管理科技有限公司 Chain-shaped copper metal capillary structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
TWI622663B (en) High conductivity graphene-metal composite and methods of manufacture
EP2321860B1 (en) Anisotropically elongated thermoelectric material and device comprising the material
TWI536877B (en) Via-holed ceramic substrate,metallized via-holed ceramic substrate,and method for manufacture thereof
JP2009013475A (en) Composite material with high thermal conductivity
US8602084B2 (en) Filter casting nanoscale porous materials
JP2006001232A (en) Composite having high heat conduction/low heat expansion and manufacturing process of the same
Jo et al. Novel method of powder-based processing of copper nanofoams for their potential use in energy applications
TW201826467A (en) Heat sink and method for manufacturing same
CN101900505A (en) Heat pipe and manufacturing method thereof
TW200930480A (en) Method of fabricating porous metal nets
CN107530776A (en) The manufacture method of the porous composite component of copper porous body, copper, the manufacture method of copper porous body and the porous composite component of copper
CN107530777A (en) Copper porous body and the porous composite component of copper
Chen et al. SnO2-Ag composites with high thermal cycling stability created by Ag infiltration of 3D ink-extruded SnO2 microlattices
CN112846570B (en) Nano welding flux and preparation method thereof, device and welding method
TWI353963B (en) Method of fabricating one-dimensional metallic nan
JP2012211071A (en) METHOD FOR MANUFACTURING Si-SiC COMPOSITE MATERIAL
JP2002254253A (en) Metallic porous porosity distribution method by electric discharge combined with plastic forming
Chowdhury et al. Effect of dual sintering with laser irradiation and thermal treatment on printed copper nanoparticle patterns
WO2012147610A1 (en) Heat dissipating substrate
US11597012B2 (en) Article and method
JP6901791B2 (en) Method for manufacturing billets for plastic working for manufacturing composite materials
CN113245543A (en) Copper powder, preparation method thereof and capillary core prepared from copper powder
JP6981846B2 (en) Heat dissipation plate and its manufacturing method
JP2010062338A (en) Method of manufacturing heat dissipating sheet
Ohmi et al. Formation of Microchannels in Sintered Titanium-Powder Compacts by Microscopic Reactive Infiltration.