JP2012211071A - METHOD FOR MANUFACTURING Si-SiC COMPOSITE MATERIAL - Google Patents

METHOD FOR MANUFACTURING Si-SiC COMPOSITE MATERIAL Download PDF

Info

Publication number
JP2012211071A
JP2012211071A JP2012047927A JP2012047927A JP2012211071A JP 2012211071 A JP2012211071 A JP 2012211071A JP 2012047927 A JP2012047927 A JP 2012047927A JP 2012047927 A JP2012047927 A JP 2012047927A JP 2012211071 A JP2012211071 A JP 2012211071A
Authority
JP
Japan
Prior art keywords
sic
metal
molded body
composite material
oxidizable metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012047927A
Other languages
Japanese (ja)
Inventor
Takehide Shimoda
岳秀 下田
Shiho Koike
紫甫 小池
Takahiro Tomita
崇弘 冨田
Yoshimasa Kobayashi
義政 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2012047927A priority Critical patent/JP2012211071A/en
Publication of JP2012211071A publication Critical patent/JP2012211071A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Si-SiC composite material having sufficiently high strength at high temperature, in a low cost.SOLUTION: The Si-SiC composite material is manufactured by the following procedure: an SiC molded body and metal Si are arranged in such a way that metal Si melted by heating comes in contact with the SiC molded body, the metal Si is heat-treated at 1,400-1,800°C in an Ar gas atmosphere under ordinary pressure in a coexistence state with a mixture containing a readily oxidizable metal (e.g., metal Al) comprising an element having a larger negative absolute value of the standard free energy of oxide than that of Si, and the SiC molded body is impregnated with the metal Si melted by the heat treatment.

Description

本発明は、Si−SiC系複合材料の製造方法に関する。   The present invention relates to a method for producing a Si—SiC composite material.

Si−SiC系複合材料は、高い熱伝導率、高温で高い強度、優れた耐酸化性、軽量な材料として知られている。このSi−SiC系複合材料の製造方法としては、大別して下記の3つの方法が開示されている。例えば、SiC粉末を再結晶焼結させたSiC多孔質焼結体に溶融Siを含浸させる方法(特許文献1)、SiCとカーボンブラックとの混合物を焼結させた多孔質焼結体に溶融Siを含浸させる方法(特許文献2)、SiCとカーボンブラックとの混合物からなる成形体に溶融Siを含浸させてSiとカーボンとを反応させてSiCとし、全体としてSiC材料にカーボンと反応しなかったSiを含浸させる方法(特許文献3)などが挙げられる。   Si-SiC based composite materials are known as high thermal conductivity, high strength at high temperatures, excellent oxidation resistance, and lightweight materials. As a method for producing this Si-SiC composite material, the following three methods are roughly classified. For example, a SiC porous sintered body obtained by recrystallizing and sintering SiC powder is impregnated with molten Si (Patent Document 1), and a porous sintered body obtained by sintering a mixture of SiC and carbon black is melted with Si. (Patent Document 2), a molded body made of a mixture of SiC and carbon black was impregnated with molten Si and reacted with Si and carbon to form SiC, and the SiC material as a whole did not react with carbon Examples include a method of impregnating Si (Patent Document 3).

ここで、SiC粉末の表面にはSiO2層が形成されており、このSiO2層は金属Siとの濡れ性が悪く金属SiがSiC粉末の成形体へ含浸するのを妨げる。特許文献1,2では、SiC粉末の成形体ではなくそれを焼結したSiC焼結体に溶融Siを含浸させているが、焼結と同時にSiO2層が除去されるため、SiC焼結体に溶融Siが含浸しやすくなる。また、特許文献3では、SiCとカーボンとからなる成形体に金属Siを2000℃以上の高温で含浸させることにより、SiO2層を除去している。 Here, a SiO 2 layer is formed on the surface of the SiC powder, and this SiO 2 layer has poor wettability with the metal Si and prevents the metal Si from being impregnated into the shaped body of the SiC powder. In Patent Documents 1 and 2, a SiC sintered body obtained by sintering a sintered SiC powder is impregnated with molten Si, but the SiO 2 layer is removed simultaneously with the sintering. It becomes easy to impregnate with molten Si. In Patent Document 3, by impregnating the metal Si at a high temperature of 2000 ° C. or higher in the molded body made of SiC and carbon, and removing the SiO 2 layer.

一方、SiC焼成体にSiとAlとからなる溶融金属を含浸させた材料も開示されている(特許文献4、特に実施例2)。SiCにSiのみを含浸させた場合、溶融Siが凝固する際に体積膨脹するため、焼結体表面からSiが噴出する場合があるが、Alを添加することによりAlは凝固する際に体積収縮するため、溶融金属が噴出することが抑制される。   On the other hand, a material in which a SiC fired body is impregnated with a molten metal composed of Si and Al is also disclosed (Patent Document 4, particularly Example 2). When SiC is impregnated with only Si, volume expansion occurs when molten Si solidifies. Therefore, Si may be ejected from the surface of the sintered body, but by adding Al, volume shrinkage occurs when Al solidifies. Therefore, the molten metal is prevented from being ejected.

特公昭54−10825号公報Japanese Patent Publication No.54-10825 特開2000−103677号公報Japanese Patent Laid-Open No. 2000-103677 特開昭56−129684号公報JP-A-56-129684 特表2003−505329号公報Special table 2003-505329 gazette

しかしながら、特許文献1,2では、SiC成形体を焼結してSiC焼結体を得たあと、そのSiC焼結体に金属Siを含浸させるため、SiC成形体に金属Siを含浸させる場合に比べて、工数が多く、コストが高くなるという問題があった。また、特許文献3では、SiC成形体に金属Siを含浸させているが、2000℃以上の高温で処理する必要があるため、エネルギー消費量が多く、コストが高くなるという問題があった。更に、特許文献4では、比較的低温で含浸できるため、コストはさほど高くならないが、浸透材として、約50重量%のSiと約50重量%のAlを含むものを用いているため、得られたSi−SiC系複合材料の高温での強度が著しく低下すると考えられる。   However, in Patent Documents 1 and 2, when an SiC sintered body is obtained by sintering an SiC compact, the SiC sintered body is impregnated with metal Si, so that the SiC compact is impregnated with metal Si. In comparison, there are problems that man-hours are large and costs are high. In Patent Document 3, the SiC compact is impregnated with metal Si. However, since it is necessary to perform the treatment at a high temperature of 2000 ° C. or higher, there is a problem that the energy consumption is large and the cost is increased. Further, in Patent Document 4, since the impregnation can be performed at a relatively low temperature, the cost is not so high. However, since a material containing about 50% by weight of Si and about 50% by weight of Al is used as the penetrating material, it is obtained. It is considered that the strength at high temperature of the Si-SiC based composite material is remarkably lowered.

本発明はこのような課題を解決するためになされたものであり、コストがかからず、高温での強度も十分高いSi−SiC系複合材料を提供することを主目的とする。   The present invention has been made to solve such problems, and it is a main object of the present invention to provide a Si—SiC composite material that is inexpensive and sufficiently high in strength at high temperatures.

本発明のSi−SiC系複合材料の製造方法は、上述の主目的を達成するために以下の手段を採った。   The manufacturing method of the Si—SiC based composite material of the present invention employs the following means in order to achieve the main object described above.

すなわち、本発明のSi−SiC系複合材料の製造方法は、加熱後に溶融したSiがSiC成形体に接触するように金属SiとSiC成形体とを配置し、酸化物の標準生成自由エネルギーの負の絶対値がSiより大きい元素からなる易酸化性金属又はそれを含む混合物を共存させた状態で、常圧下、不活性ガス雰囲気中、1400〜1800℃で加熱処理することにより、溶融した金属SiをSiC成形体に含浸させるものである。   That is, in the method for producing a Si—SiC composite material according to the present invention, metal Si and a SiC molded body are arranged so that Si melted after heating comes into contact with the SiC molded body, and the standard free energy of formation of the oxide is negative. In a state where an oxidizable metal composed of an element whose absolute value is larger than Si or a mixture containing the same coexisted, heat treatment is performed at 1400 to 1800 ° C. in an inert gas atmosphere under normal pressure to obtain molten metal Si. Is impregnated into the SiC molded body.

この製造方法では、常圧下、不活性ガス雰囲気中で加熱処理したとき、SiC成形体を構成しているSiC粉末の表面に形成されているSiO2層が、SiC成形体からSiOガスとして揮発し、そのSiOガスの酸素元素を易酸化性金属が奪い取り、Siと易酸化性金属の酸化物とが生成し、系内のSiOガスが減少したことに伴って、さらにSiC成形体からのSiOガスの揮発が促進されると考えられる。その結果、SiC成形体はSiO2をほとんど含まない状態となるため、金属Siは常圧下でもSiC成形体へ容易に含浸していき、Si−SiC系複合材料が生成する。また、金属Siの表面にもSiO2層が形成されているため、金属Siの表面に形成されているSiO2層も同様に揮発し、金属SiもSiO2をほとんど含まない状態となるため、金属SiがSiC成形体へより含浸しやすくなる。 In this manufacturing method, when heat treatment is performed in an inert gas atmosphere under normal pressure, the SiO 2 layer formed on the surface of the SiC powder constituting the SiC molded body volatilizes from the SiC molded body as SiO gas. In addition, the oxidizable metal takes away the oxygen element of the SiO gas, Si and an oxide of the oxidizable metal are generated, and the SiO gas in the system is reduced. It is thought that volatilization of is promoted. As a result, the SiC molded body is almost free of SiO 2 , so that the metal Si easily impregnates the SiC molded body even under normal pressure, and a Si—SiC based composite material is generated. Further, since the SiO 2 layer is formed on the surface of the metallic Si, since the SiO 2 layer formed on the surface of the metal Si volatilized similarly, metal Si also in a state containing little SiO 2, Metal Si is more easily impregnated into the SiC molded body.

この製造方法によれば、SiC成形体に金属Siを含浸させるため、SiC成形体を焼結してSiC焼結体を得たあと、そのSiC焼結体に金属Siを含浸させる場合に比べて工数が少なく、コストがかからない。また、金属Siの含浸を1400〜1800℃で行うため、2000℃以上で行う場合に比べてエネルギー消費量が少なく、コストがかからない。更に、金属Siを含浸させる際、Si以外の多量の金属成分が含浸することがないため、得られたSi−SiC系複合材料の高温での強度が低下することがない。更にまた、この製造方法はSiC成形体を焼結させることなくSiC成形体に金属Siを含浸するため、SiC成形体を焼結してSiC焼結体を得たあと、そのSiC焼結体に金属Siを含浸させる場合に比べて、SiC成形体の焼結に伴う収縮がない分、SiC成形体からSi−SiC系複合材料への寸法変化が小さい。そのため、多孔質で加工しやすいSiC成形体の段階で最終製品寸法に仕上げておけば、含浸後の、緻密質で硬く加工しにくいSi−SiC系複合材料の段階での仕上げ加工を減らす、もしくは、なくすことができる。   According to this manufacturing method, since the SiC molded body is impregnated with metal Si, the SiC molded body is sintered to obtain a SiC sintered body, and then compared with the case where the SiC sintered body is impregnated with metal Si. Less man-hours and costs. Further, since the impregnation of metal Si is performed at 1400 to 1800 ° C., energy consumption is small and cost is not required as compared with the case where it is performed at 2000 ° C. or higher. Furthermore, when impregnating metal Si, since a large amount of metal components other than Si are not impregnated, the strength of the obtained Si—SiC composite material at high temperature does not decrease. Furthermore, since this manufacturing method impregnates the SiC molded body with metal Si without sintering the SiC molded body, after obtaining the SiC sintered body by sintering the SiC molded body, Compared with the case where metal Si is impregnated, the dimensional change from the SiC molded body to the Si-SiC composite material is small because there is no shrinkage accompanying the sintering of the SiC molded body. Therefore, if the final product dimensions are finished at the stage of the porous and easy-to-process SiC molded body, the finishing process at the stage of the dense, hard and difficult to process Si-SiC composite material after impregnation is reduced, or Can be eliminated.

実施例1におけるSiC成形体等の配置図であり、(a)は平面図、(b)はA−A断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a layout view of SiC molded bodies and the like in Example 1, (a) is a plan view, and (b) is an AA cross-sectional view. 実施例3におけるSiC成形体等の配置を表す平面図である。6 is a plan view illustrating an arrangement of SiC molded bodies and the like in Example 3. FIG. 実施例8におけるSiC成形体等の配置を表す平面図である。10 is a plan view illustrating an arrangement of SiC molded bodies and the like in Example 8. FIG. 比較例1におけるSiC成形体等の配置図であり、(a)は平面図、(b)はB−B断面図である。It is arrangement | positioning figures, such as a SiC molded object in the comparative example 1, (a) is a top view, (b) is BB sectional drawing.

本発明のSi−SiC系複合材料の製造方法は、加熱後に溶融したSiがSiC成形体に接触するように金属SiとSiC成形体とを配置し、酸化物の標準生成自由エネルギーの負の絶対値がSiより大きい元素からなる易酸化性金属又はそれを含む混合物を共存させた状態で、常圧下、不活性ガス雰囲気中、1400〜1800℃で加熱処理することにより、溶融した金属Siを前記SiC成形体に含浸させるものである。   In the method for producing a Si-SiC composite material of the present invention, the metal Si and the SiC molded body are arranged so that the molten Si after heating is in contact with the SiC molded body. In a state where an easily oxidizable metal composed of an element having a value larger than Si or a mixture containing the same coexisted, heat treatment is performed at 1400 to 1800 ° C. in an inert gas atmosphere under normal pressure, whereby the molten metal Si is The SiC molded body is impregnated.

本発明の製造方法において、SiC成形体は、平均粒径の異なる2種類以上のSiC粒子の混合物を成形したものでもよいし、平均粒径が1種類のSiC粒子を成形したものでもよい。平均粒径は例えば2〜500μmの範囲で適宜設定すればよい。また、SiC成形体は、カーボンやバインダーなどを含んでいてもよい。なお、バインダーはこの分野で周知のものを使用可能である。バインダーを含むSiC成形体の脱脂は、窒素雰囲気又は大気雰囲気で行うことが好ましい。こうしたSiC成形体の形状は、特に限定するものではなく、例えば、中の詰まった中実の柱状体、中空の柱状体、筒体、球形、円板、多角形板など種々の形状とすることができる。また、金属Siの含浸のしやすさを考慮すると、多数の穴が形成されていることが好ましく、例えばハニカム構造であることが好ましい。   In the production method of the present invention, the SiC compact may be a mixture of two or more types of SiC particles having different average particle diameters, or may be one obtained by molding SiC particles having one average particle diameter. What is necessary is just to set an average particle diameter suitably in the range of 2-500 micrometers, for example. The SiC molded body may contain carbon, a binder, or the like. In addition, a binder well-known in this field | area can be used. It is preferable to degrease the SiC molded body containing the binder in a nitrogen atmosphere or an air atmosphere. The shape of such a SiC molded body is not particularly limited. For example, various shapes such as a solid solid columnar body, a hollow columnar body, a cylindrical body, a spherical shape, a circular plate, and a polygonal plate are used. Can do. Considering the ease of impregnation with metal Si, it is preferable that a large number of holes are formed, for example, a honeycomb structure is preferable.

本発明の製造方法において、金属Siは、Siの金属粉を所定形状に成形したものを用いてもよいし、Siのインゴットを用いてもよい。Si金属粉の成形方法は、一軸プレス、CIP、押出などが適用可能で、乾式の一軸プレスや乾式のCIPが好ましい。Siのインゴットは、粉砕してSi金属粉を作る前の塊であり、Si金属粉に比べて表面積が小さく酸化が少ない分、Siの金属粉に比べてSiO2の含有量が少ない。金属Siに含まれるSiO2の量が少ないほど、SiC成形体へ含浸しやすくなることから、金属SiとしてSiのインゴットを用いるのが好ましい。なお、Siのインゴットは酸素含有量が0.1重量%以下のものが好ましい。金属Siの重量は、SiC成形体内部の空隙に充填したい量に応じて設定でき、緻密にする場合は隙間に充填するのに必要な量以上のSiを配置すればよい。金属Siの形状に特に制約はないが、SiC成形体の上に金属Siを接触して配置できる形状がより好ましい。金属Siは、加熱後に溶融したSiがSiC成形体と接触するように配置すればよく、加熱前の段階で必ずしも接触している必要はない。金属SiをSiC成形体の上に直接載せてもよいし、加熱前には金属Siを冶具を用いて浮かしておき、加熱時には溶融したSiがSiC成形体に接触するようにしてもよい。また、SiC成形体の横や下に接触させた状態で金属Siを置いてもよい。 In the manufacturing method of the present invention, the metal Si may be formed by molding Si metal powder into a predetermined shape, or may be an Si ingot. As a method for forming the Si metal powder, uniaxial press, CIP, extrusion and the like are applicable, and dry uniaxial press and dry CIP are preferable. The Si ingot is a lump before being pulverized to produce a Si metal powder, and has a smaller surface area and less oxidation than the Si metal powder, and thus has a lower SiO 2 content than the Si metal powder. Since the smaller the amount of SiO 2 contained in the metal Si, the easier it is to impregnate the SiC molded body, it is preferable to use an Si ingot as the metal Si. The Si ingot preferably has an oxygen content of 0.1% by weight or less. The weight of the metal Si can be set according to the amount to be filled in the voids inside the SiC compact, and when it is made dense, it is sufficient to dispose more Si than is necessary for filling the gap. Although there is no restriction | limiting in particular in the shape of metal Si, The shape which can arrange | position metal Si in contact on a SiC molded object is more preferable. Metal Si should just be arrange | positioned so that Si fuse | melted after a heating may contact with a SiC molded object, and does not necessarily need to be in contact in the stage before a heating. The metal Si may be directly placed on the SiC molded body, or the metal Si may be floated using a jig before heating, and the molten Si may contact the SiC molded body during heating. Moreover, you may put metal Si in the state contacted beside or under the SiC molded object.

本発明の製造方法において、酸化物の標準生成自由エネルギーの負の絶対値がSiより大きい元素は、例えば、Al,Zr,Ti,第2族元素(Be,Mg,Ca,Sr,Baなど)及び希土類元素(Y,Ce,La,Ybなど)からなる群より選ばれた1種以上の元素である。易酸化性金属を共存させずに、常圧下、不活性ガス雰囲気中で加熱処理したときには、SiO2がSiC成形体や金属SiからSiOガスとして揮発するが、揮発量は少量のため、含浸には至らない。易酸化性金属を共存させて加熱処理すると、揮発したSiOガスの酸素元素を易酸化性金属が奪い取り、Siと易酸化性金属の酸化物とが生成し、系内のSiOガスが減少したことに伴って、さらにSiC成形体や金属SiからのSiOガスの揮発が促進される。その結果、SiC成形体や金属SiはSiO2をほとんど含まない状態となるため、金属Siは常圧下でもSiC成形体へ容易に含浸していく。易酸化性金属としては、AlやZr,Ti,Mgが好ましい。ここで、Mgは、加熱処理時の温度において気体となって飛散したり気相反応を起こしたりするおそれがある。Alも、こうしたおそれはあるものの、Mgほどではないため、Mgに比べてAlの方が好ましい。Zr,Tiは、加熱処理時の温度において液体状態を維持しており、Mgのように飛散するおそれがないため、Mgに比べてZr,Tiの方がより好ましい。また、Zr,Tiは、焼結体中へ混入しにくいため、この点でも好ましいが、高価なため、コスト面では好ましいとはいえない。易酸化性金属の量は、Si、SiC原料および雰囲気に含まれる酸素と反応する以上の量が好ましい。易酸化性金属の形態は、粉の方が表面積が大きくSiOガスを奪いやすいため好ましいが、塊状、板状、箔状を用いてもかまわない。また、易酸化性金属のみを配置してもよいし、易酸化性金属を含む混合物を配置してもよい。 In the production method of the present invention, elements whose negative absolute value of standard free energy of formation of oxide is larger than Si are, for example, Al, Zr, Ti, Group 2 elements (Be, Mg, Ca, Sr, Ba, etc.) And one or more elements selected from the group consisting of rare earth elements (Y, Ce, La, Yb, etc.). When heat treatment is performed in an inert gas atmosphere under normal pressure without coexistence of an easily oxidizable metal, SiO 2 volatilizes from the SiC molded body or metal Si as SiO gas. Is not reached. When heat treatment was performed in the presence of an easily oxidizable metal, the oxygen element of the volatilized SiO gas was taken away by the easily oxidizable metal, Si and an oxide of the easily oxidizable metal were generated, and the SiO gas in the system was reduced. Along with this, volatilization of SiO gas from the SiC molded body and metal Si is further promoted. As a result, the SiC molded body and the metal Si are almost free of SiO 2 , so that the metal Si easily impregnates the SiC molded body even under normal pressure. As the easily oxidizable metal, Al, Zr, Ti, and Mg are preferable. Here, Mg may be scattered as a gas at the temperature during the heat treatment or cause a gas phase reaction. Al also has such a fear, but it is not as much as Mg, so Al is preferable to Mg. Zr and Ti maintain a liquid state at the temperature during the heat treatment, and there is no fear of scattering like Mg. Therefore, Zr and Ti are more preferable than Mg. Zr and Ti are also preferable in this respect because they are difficult to be mixed into the sintered body, but are not preferable in terms of cost because they are expensive. The amount of the easily oxidizable metal is preferably an amount that reacts with oxygen contained in the Si and SiC raw materials and the atmosphere. The form of the easily oxidizable metal is preferable because the powder has a larger surface area and easily deprives the SiO gas, but a lump, plate, or foil may be used. Moreover, only an easily oxidizable metal may be arrange | positioned and the mixture containing an easily oxidizable metal may be arrange | positioned.

本発明の製造方法では、金属SiとSiC成形体と易酸化性金属とを共存させる。共存方法として、SiC成形体と易酸化性金属とを同じ炉内に配置すれば本発明の効果が得られる。本発明の効果を高めるためには、同一さや内にSiC成形体と易酸化性金属とを配置し、さやに蓋をする方がより好ましい。密閉した空間の方が外部からの酸素供給が制限され、易酸化性金属がSiC成形体や金属Siから酸素元素をより奪いやすくなるためである。また、SiC成形体の周りを取り囲むように易酸化性金属を配置するほうが更に好ましい。具体的な配置の仕方としては、例えば、SiC成形体の周りの2箇所以上に略等間隔となるように易酸化性金属を配置してもよいし、SiC成形体の周りを取り囲むように易酸化性金属を含むリング状成形体を配置してもよい。SiC成形体の周りの1箇所だけに易酸化性金属を配置した場合、SiC成形体及び金属Siは易酸化性金属に面している箇所からはSiO2が抜け出しやすいが、易酸化性金属に面していない箇所からはSiO2が抜け出しにくいことがある。SiC成形体の周りを取り囲むように易酸化性金属を配置すれば、SiC成形体及び金属Siの全体からSiO2が抜け出しやすくなり、SiC成形体の全体により均一に金属Siが含浸しやすくなる。最良な共存の方法は、同一さや内にSiC成形体とSiC成形体の周りを取り囲むように易酸化性金属を配置し、さやに蓋をすることである。 In the production method of the present invention, the metal Si, the SiC molded body, and the oxidizable metal are allowed to coexist. As a coexistence method, the effect of the present invention can be obtained by arranging the SiC molded body and the easily oxidizable metal in the same furnace. In order to enhance the effect of the present invention, it is more preferable to place the SiC compact and the oxidizable metal in the same sheath and cover the sheath. This is because the oxygen supply from the outside is more restricted in the sealed space, and the easily oxidizable metal more easily takes the oxygen element from the SiC molded body or metal Si. Further, it is more preferable to dispose an easily oxidizable metal so as to surround the SiC molded body. As a specific arrangement method, for example, an oxidizable metal may be arranged at approximately equal intervals at two or more places around the SiC molded body, or it may be easy to surround the SiC molded body. You may arrange | position the ring-shaped molded object containing an oxidizable metal. When placing the oxidizable metal in only one place around the SiC molded body, SiC compacts and metal Si are SiO 2 tends to escape from the portion facing the oxidizable metal, but easily oxidizable metal It may be difficult for SiO 2 to escape from a portion that does not face. If an easily oxidizable metal is disposed so as to surround the SiC molded body, SiO 2 can easily escape from the entire SiC molded body and metal Si, and the entire SiC molded body can be easily impregnated with metal Si uniformly. The best coexistence method is to place an easily oxidizable metal in the same sheath so as to surround the SiC molded body and the SiC molded body, and to cover the sheath.

本発明の製造方法において、SiC成形体の周りに易酸化性金属を配置するにあたり、土台(容器でもよい)の上に易酸化性金属又はそれを含む混合物を配置するか、易酸化性金属と骨材とを含む成形体を配置するのが好ましい。易酸化性金属を単独で配置すると、加熱処理時に易酸化性金属が溶融してSiC成形体に向かって流れていきSiC成形体と接触するおそれがある。しかし、土台の上に易酸化性金属又はそれを含む混合物を配置した場合には、土台の上に易酸化性金属の溶湯が留まるため、易酸化性金属の溶湯がSiC成形体と接触するおそれがない。特に、土台として多孔体を用いた場合には、土台に易酸化性金属の溶湯が染みこむため、より好ましい。また、易酸化性金属と骨材とを含む成形体を配置した場合には、骨材が成形体の骨格を維持して易酸化性金属の溶湯が流れ出すのを防止するため、易酸化性金属の溶湯がSiC成形体と接触するおそれがない。なお、土台や骨材の材質としては、例えばカーボンやセラミック(SiCやAl23など)が挙げられる。骨材の平均粒径は、1〜300μmが好ましく、易酸化性金属と骨材とを含む成形体における骨材の割合が体積比で40〜95%となるようにすることが好ましい。 In the production method of the present invention, when the oxidizable metal is arranged around the SiC molded body, the oxidizable metal or a mixture containing the oxidizable metal or a mixture containing the oxidizable metal or a mixture containing the oxidizable metal and It is preferable to arrange a molded body containing aggregate. When the easily oxidizable metal is disposed alone, the easily oxidizable metal may melt and flow toward the SiC molded body during the heat treatment, and may come into contact with the SiC molded body. However, when an easily oxidizable metal or a mixture containing the same is disposed on the base, the melt of the easily oxidizable metal remains on the base, and therefore the molten oxidizable metal may come into contact with the SiC molded body. There is no. In particular, when a porous body is used as the base, a melt of easily oxidizable metal permeates into the base, which is more preferable. In addition, when a molded body including an easily oxidizable metal and an aggregate is disposed, the aggregate maintains the skeleton of the molded body and prevents the molten metal of the easily oxidizable metal from flowing out. There is no possibility that the molten metal comes into contact with the SiC molded body. Examples of the material for the base and aggregate include carbon and ceramic (SiC, Al 2 O 3, etc.). The average particle diameter of the aggregate is preferably 1 to 300 μm, and the ratio of the aggregate in the molded body containing the oxidizable metal and the aggregate is preferably 40 to 95% by volume ratio.

本発明の製造方法において、常圧とは、特に減圧も加圧もしないときの圧力をいい、大気圧に等しい圧力(ほぼ1atm)をいう。また、不活性ガスとは、アルゴン、ヘリウムなどの希ガスをいい、窒素ガスは含まない。酸素分圧は一般的に流通し入手可能な不活性ガスの酸素分圧程度(例えば、10-4atm以下)が好ましいが、酸素濃度が多い場合は易酸化性金属を増やせばよい。 In the production method of the present invention, the normal pressure refers to a pressure when neither depressurizing nor pressurizing, and a pressure equal to atmospheric pressure (approximately 1 atm). Moreover, an inert gas means noble gases, such as argon and helium, and does not contain nitrogen gas. The oxygen partial pressure is preferably about the oxygen partial pressure of an inert gas that is generally available and available (for example, 10 −4 atm or less). However, if the oxygen concentration is high, the oxidizable metal may be increased.

本発明の製造方法において、易酸化性金属としてAlを用いた場合には、含浸後の圧粉体の周辺にはアルミナ質の反応生成物が形成される。その形状は、ファイバー状、ウイスカ状、板状、塊状など、様々であるが、作業安全面の観点から、ファイバー状やウイスカ状の反応生成物は好ましくない。そこで、Alを用いる場合には、反応生成物の形態を制御する目的で、助剤を添加することが好ましい。助剤を添加することにより、ファイバー状やウイスカ状の反応生成物の形成を抑制し、塊状の生成物が形成されやすくなり、作業の安全性が向上する。助剤を構成する元素は、Al23と反応して低融点になるもので、金属SiやAlと反応しにくいものであればよく、例えばCa,Sr,Baなどのアルカリ土類金属が好ましい。また、助剤としては、扱いやすさの面から、アルカリ土類金属の塩が好ましく、そのうち炭酸塩がより好ましく、特にCaCO3が好ましい。助剤の添加量は、Alに対して重量比で等倍〜3倍が好ましい。 In the production method of the present invention, when Al is used as the easily oxidizable metal, an alumina reaction product is formed around the green compact after impregnation. There are various shapes such as fiber, whisker, plate, and lump, but fiber or whisker-like reaction products are not preferable from the viewpoint of work safety. Therefore, when Al is used, it is preferable to add an auxiliary agent for the purpose of controlling the form of the reaction product. By adding an auxiliary agent, the formation of a fiber-like or whisker-like reaction product is suppressed, and a lump-like product is easily formed, thereby improving work safety. The element constituting the auxiliary agent may be any element that reacts with Al 2 O 3 to have a low melting point and hardly reacts with metal Si or Al. For example, alkaline earth metals such as Ca, Sr, and Ba preferable. The auxiliary agent is preferably an alkaline earth metal salt from the viewpoint of ease of handling, of which carbonate is more preferable, and CaCO 3 is particularly preferable. The amount of auxiliary agent added is preferably from 1 to 3 times by weight with respect to Al.

本発明の製造方法において、加熱処理時の温度を1400〜1800℃としたのは、この温度範囲であればSiC成形体の焼結と金属Siの含浸とが同時に進行するからである。こうした加熱処理は、例えばさやの中に金属Siを載せたSiC成形体を配置し、その周りに易酸化性金属を配置して蓋を閉め、そのさやを炉材がカーボンからなるカーボン炉や炉材が酸化物からなる酸化物炉(アルミナ炉など)に入れて行われる。さや及び蓋は、例えば酸化物(アルミナなど)で形成されたものを用いる。また、さやの底面には酸化物の粉体(アルミナ粉など)を敷いておくのが好ましい。こうすれば、加熱処理終了後にSi−SiC系複合材料を容易に取り出すことができる。焼成工程は、昇温工程、最高温度保持工程、降温工程の3つの工程を含み、昇温工程において、SiO2除去のため、所定温度で保持する工程を追加してもよい。昇温、降温速度は、使用する炉の能力や炉内温度分布の偏り抑制、使用するさやの割れ防止などに配慮して設定すればよい。最高温度保持工程の温度は1400〜1800℃が好ましく、保持時間は1〜20時間が好ましいが、成形体の大きさや形状、共存させる易酸化性金属の量などに左右されるため、好ましくは予備実験等を適宜行い、設定することが望ましい。 In the production method of the present invention, the temperature during the heat treatment is set to 1400 to 1800 ° C. because sintering of the SiC molded body and impregnation with metal Si proceed simultaneously within this temperature range. Such heat treatment is performed by, for example, arranging a SiC molded body in which metal Si is placed in a sheath, placing an easily oxidizable metal around the sheath, closing the lid, and covering the sheath with a carbon furnace or furnace in which the furnace material is made of carbon. The material is placed in an oxide furnace (such as an alumina furnace) made of an oxide. For the sheath and the lid, for example, those made of oxide (such as alumina) are used. Further, it is preferable to lay oxide powder (alumina powder or the like) on the bottom surface of the sheath. If it carries out like this, Si-SiC type composite material can be taken out easily after completion | finish of heat processing. The firing step includes three steps of a temperature raising step, a maximum temperature holding step, and a temperature lowering step. In the temperature raising step, a step of holding at a predetermined temperature for removing SiO 2 may be added. The temperature increase / decrease rate may be set in consideration of the ability of the furnace to be used, suppression of uneven temperature distribution in the furnace, and prevention of cracking of the sheath used. The temperature of the maximum temperature holding step is preferably 1400 to 1800 ° C., and the holding time is preferably 1 to 20 hours. However, since it depends on the size and shape of the molded body, the amount of easily oxidizable metal to be coexisted, etc. It is desirable to set it by conducting experiments etc. as appropriate.

本発明の製造方法は、SiCが57〜85重量%、Siが14.4〜43重量%、Alが0.6重量%以下であるSi−SiC系複合材料を得るのに適している。また、開気孔率が0〜5%、熱伝導率が130〜170W/mK、室温強度が200〜250MPa、1000℃での強度が180〜230MPaのSi−SiC系複合材料を得るのに適している。   The production method of the present invention is suitable for obtaining a Si—SiC composite material in which SiC is 57 to 85% by weight, Si is 14.4 to 43% by weight, and Al is 0.6% by weight or less. Moreover, it is suitable for obtaining a Si—SiC composite material having an open porosity of 0 to 5%, a thermal conductivity of 130 to 170 W / mK, a room temperature strength of 200 to 250 MPa, and a strength at 1000 ° C. of 180 to 230 MPa. Yes.

[実施例1]
平均粒径45μmのSiC粉末70重量%と平均粒径35μmのSiC粉末10重量%と平均粒径5μmのSiC粉末20重量%に、バインダーを外配で4重量%(つまりSiC粉末100重量部に対して4重量部)と水とを混ぜ合わせ、ニーダーを使用して混練して混練物を得た。この混練物を真空土練機に投入し、円柱状の坏土を作製した。次に、押出機に格子状のスリットが形成された口金を装着し、この押出機に円柱状の坏土を入れて、円柱状で複数のセルを持つハニカム成形体を作製した。ハニカム成形体は、全長20mm、外径44mm、外周壁の厚さ2mm、隔壁の厚さ0.3mm、セル密度25セル/cm2であった。これを乾燥した後、窒素雰囲気にて500℃、5時間脱脂を行い、SiC成形体(重量約20g)とした。
[Example 1]
70% by weight of SiC powder with an average particle size of 45 μm, 10% by weight of SiC powder with an average particle size of 35 μm, 20% by weight of SiC powder with an average particle size of 5 μm, and 4% by weight of binder (that is, 100 parts by weight of SiC powder) 4 parts by weight) and water were mixed and kneaded using a kneader to obtain a kneaded product. This kneaded material was put into a vacuum kneader to produce a columnar clay. Next, a die having grid-like slits was attached to the extruder, and columnar clay was put into the extruder to produce a honeycomb formed body having a columnar shape and a plurality of cells. The honeycomb formed body had a total length of 20 mm, an outer diameter of 44 mm, an outer peripheral wall thickness of 2 mm, a partition wall thickness of 0.3 mm, and a cell density of 25 cells / cm 2 . After drying this, degreasing was performed at 500 ° C. for 5 hours in a nitrogen atmosphere to obtain a SiC molded body (weight: about 20 g).

金属Siの成形体は、SiC成形体の100重量部に対して85重量部となるようにSi粉末(酸素含有量約0.6重量%)を秤量後、1軸プレスにより直径50mmのペレットに成形して作製した。   The metal Si compact was weighed with Si powder (oxygen content of about 0.6% by weight) to 85 parts by weight with respect to 100 parts by weight of the SiC compact, and then uniaxially pressed into pellets with a diameter of 50 mm. Molded to produce.

易酸化性金属を含む圧粉体は、重量比でAl:Si=7:3となるようにAl粉末とSi粉末とを秤量して混合した後、1軸プレスにより直径30mmのペレット(重量約8.5g)に成形して作製した。   The green compact containing an easily oxidizable metal was weighed and mixed with Al powder and Si powder so that the weight ratio was Al: Si = 7: 3. 8.5 g).

そして、図1に示すように、150mm角、高さ50mmのAl23製の容器であるさや10を用意し、底面に敷き粉12(Al23粉末)を敷いた。この敷き粉12は、焼成後に製品を取り出しやすくするためのものである。そのさや10の中央にSiC成形体14を配置し、その上に金属Siの成形体16を載せ、その周りを取り囲むように、さや10の4隅に易酸化性金属を含む圧粉体18を1つずつ配置した。なお、Al−Si溶融金属がさや10内に広がらないよう、易酸化性金属を含む圧粉体18の下には、SiC粉を1軸プレスにより直径30mmのペレットに成形し、このペレットを土台20として配置した。その後、このさや10にAl23製の蓋をしてカーボン炉に入れ、常圧下、Ar雰囲気中、1450℃で4時間加熱処理を行うことにより、金属SiをSiC成形体に含浸させつつSiC成形体を焼結させて、Si−SiC系複合材料からなるハニカム焼結体を得た。なお、昇温速度は200℃/hとした。 Then, as shown in FIG. 1, 150 mm square, prepared sheath 10 is made of Al 2 O 3 container height 50 mm, lined with laid powder 12 (Al 2 O 3 powder) on the bottom. This spread powder 12 is for facilitating removal of the product after firing. A SiC compact 14 is placed in the center of the sheath 10, a metal Si compact 16 is placed thereon, and a green compact 18 containing an oxidizable metal is placed at the four corners of the sheath 10 so as to surround the periphery. One by one. In order to prevent the Al—Si molten metal from spreading into the sheath 10, SiC powder is formed into a pellet with a diameter of 30 mm by uniaxial pressing under the green compact 18 containing an easily oxidizable metal, and this pellet is the base. 20 was arranged. Thereafter, the sheath 10 is covered with an Al 2 O 3 lid, placed in a carbon furnace, and subjected to heat treatment at 1450 ° C. for 4 hours under normal pressure in an Ar atmosphere, thereby impregnating the SiC compact with metallic Si. The SiC molded body was sintered to obtain a honeycomb sintered body made of a Si-SiC composite material. The temperature rising rate was 200 ° C./h.

得られたハニカム焼結体を切断して金属Siの含浸状態を調べたところ、全体にムラなく含浸していた。また、嵩密度、気孔率、Al含有量、Si含有量、SiC含有量、熱伝導率及び強度を測定した。測定方法は以下の通りである。その測定結果を表1に示す。表1から明らかなように、比較例2(詳しくは後述)並みの熱伝導率をキープしつつ、比較例2よりもAl含有量を減らすことができ、高温での材料強度低下を抑制することができた。
(1)嵩密度:アルキメデス法にて測定した。
(2)気孔率a:試料を研磨して凹凸や傷、汚れを除去したのち、任意の3箇所を倍率50倍にて撮影した。各画像の濃淡ヒストグラムを作成すると、濃い側から順に、気孔、SiC、Al、Siの各ピークが現れるため、気孔とSiCのピーク間の谷の位置を閾値にして気孔部とその他の部分に2値化した。面積比から気孔率をそれぞれ算出、3箇所の平均値を気孔率とした。
(3)気孔率b:アルキメデス法による嵩密度と、試料を粉砕した物を密度計(島津製作所製、乾式自動密度計 アキュピック1330)により測定した真密度とを用いて算出した。
(4)Al、Mg、Ti、Zrの含有量:ICP発光分光分析により測定した(JIS R 1616に準拠)。
(5)Si、SiC含有量:易酸化性金属としてAlを用いた場合、嵩密度と、気孔率と、Al含有量の実測値と、真密度の文献値(Si:2.33g/cc、SiC:3.21g/cc、Al:2.7g/cc)を用い、Si−SiC系複合材料がSi、SiC、Al、気孔のみから構成されると仮定し、Si、SiCの含有量を算出した。易酸化性金属としてMg,Ti又はZrを用いた場合も、これと同様にして算出した。なお、真密度の文献値は、Mg:1.7g/cc、Ti:4.5g/cc、Zr:6.5g/ccである。
(6)熱伝導率:SiC成形体と同一材料を2mm厚以上のプレート状に押出し、実施例と同じ方法で含浸したものをレーザーフラッシュ法で測定した(JIS R 1611に準拠)。
(7)強度:SiC成形体と同一材料を3mm厚以上のプレート状に押出し、実施例と同じ方法で含浸したものを4点曲げ試験で測定した(JIS R 1601およびJIS R 1604に準拠)。
When the obtained honeycomb sintered body was cut and the impregnation state of metal Si was examined, it was impregnated uniformly. Further, the bulk density, porosity, Al content, Si content, SiC content, thermal conductivity and strength were measured. The measuring method is as follows. The measurement results are shown in Table 1. As is clear from Table 1, while maintaining the same thermal conductivity as that of Comparative Example 2 (details will be described later), the Al content can be reduced as compared with Comparative Example 2, and the decrease in material strength at high temperatures can be suppressed. I was able to.
(1) Bulk density: measured by Archimedes method.
(2) Porosity a: The sample was polished to remove irregularities, scratches and dirt, and then photographed at three arbitrary locations at a magnification of 50 times. When the density histogram of each image is created, each peak of pores, SiC, Al, and Si appears in order from the dark side. Therefore, the position of the valley between the pores and the peak of SiC is set as a threshold value to 2 in the pores and other parts. Priced. The porosity was calculated from the area ratio, and the average value at three locations was defined as the porosity.
(3) Porosity b: It was calculated using the bulk density according to Archimedes method and the true density measured by a density meter (manufactured by Shimadzu Corporation, dry automatic density meter Accupic 1330) by pulverizing the sample.
(4) Content of Al, Mg, Ti, Zr: measured by ICP emission spectroscopic analysis (based on JIS R 1616).
(5) Si, SiC content: When Al is used as the oxidizable metal, the bulk density, the porosity, the measured value of the Al content, and the literature value of the true density (Si: 2.33 g / cc, (SiC: 3.21 g / cc, Al: 2.7 g / cc) and assuming that the Si-SiC composite material is composed of only Si, SiC, Al, and pores, the content of Si and SiC is calculated. did. When Mg, Ti, or Zr was used as the easily oxidizable metal, the same calculation was performed. The literature values for true density are Mg: 1.7 g / cc, Ti: 4.5 g / cc, Zr: 6.5 g / cc.
(6) Thermal conductivity: The same material as that of the SiC molded body was extruded into a plate shape having a thickness of 2 mm or more, and a material impregnated by the same method as in Examples was measured by a laser flash method (based on JIS R 1611).
(7) Strength: The same material as the SiC molded body was extruded into a plate having a thickness of 3 mm or more, and impregnated by the same method as in the examples was measured by a four-point bending test (based on JIS R 1601 and JIS R 1604).

[実施例2]
実施例1の易酸化性金属を含む圧粉体及び土台を用いる代わりに、重量比でAl:SiC=1:1となるようAl粉末とSiC粉末とを秤量して混合した後、1軸プレスにより直径30mmのペレット(重量約9.7g)に成形して作製した易酸化性金属を含む圧粉体を用いた。この圧粉体は、Alが溶融したとしてもSiCが成形体の骨格を保ち、Alの溶湯がさや内に広がるのを防止することから、その下に土台となるSiCのペレットを置かなかった。その他の条件は実施例1と同じとした。この場合も、金属Siが全体にムラなく含浸したハニカム焼結体が得られた。また、表1に、実施例1と同様のパラメータの測定結果を示す。表1から明らかなように、比較例2並みの熱伝導率をキープしつつ、比較例2よりもAl含有量を減らすことができ、高温での材料強度低下を抑制することができた。
[Example 2]
Instead of using the green compact and base containing the easily oxidizable metal of Example 1, the Al powder and the SiC powder were weighed and mixed so that the weight ratio was Al: SiC = 1: 1, and then uniaxial press A green compact containing an easily oxidizable metal prepared by molding into a 30 mm diameter pellet (weight: about 9.7 g) was used. Since this green compact keeps the skeleton of the molded body even if Al is melted and prevents the molten Al from spreading into the sheath, no SiC pellets are placed underneath. Other conditions were the same as in Example 1. Also in this case, a honeycomb sintered body in which the metal Si was uniformly impregnated was obtained. Table 1 shows the measurement results of the same parameters as in Example 1. As can be seen from Table 1, while maintaining the same thermal conductivity as that of Comparative Example 2, the Al content could be reduced as compared with Comparative Example 2, and a decrease in material strength at high temperatures could be suppressed.

[実施例3]
実施例2の易酸化性金属を含む圧粉体の代わりに、巾17mm×高さ12mm×長さ102mmのAl23ボートに易酸化性金属であるAl粉末(重量約5g)を入れたものを、被含浸用成形体を取り囲むよう2つ配置した。その他の条件は実施例2と同じとした。このときの配置図を図2に示す。なお、図2の符号は、実施例1と同じものを表す。この場合も、金属Siが全体にムラなく含浸したハニカム焼結体が得られた。また、表1に、実施例1と同様のパラメータの測定結果を示す。表1から明らかなように、比較例2並みの熱伝導率をキープしつつ、比較例2よりもAl含有量を減らすことができ、高温での材料強度低下を抑制することができた。
[Example 3]
Instead of the green compact containing the oxidizable metal of Example 2, Al powder (weight: about 5 g), which is an oxidizable metal, was placed in an Al 2 O 3 boat having a width of 17 mm, a height of 12 mm, and a length of 102 mm. Two things were arrange | positioned so that the molded object for impregnation might be surrounded. Other conditions were the same as in Example 2. The layout at this time is shown in FIG. The reference numerals in FIG. 2 represent the same as those in the first embodiment. Also in this case, a honeycomb sintered body in which the metal Si was uniformly impregnated was obtained. Table 1 shows the measurement results of the same parameters as in Example 1. As can be seen from Table 1, while maintaining the same thermal conductivity as that of Comparative Example 2, the Al content could be reduced as compared with Comparative Example 2, and a decrease in material strength at high temperatures could be suppressed.

[実施例4]
実施例2の金属Siの成形体の代わりに、酸素含有量が0.1重量%以下のSi塊(インゴット)を、SiC成形体100重量部に対して85重量部となるよう秤量したものを用いた。その他の条件は実施例2と同じとした。この場合も、金属Siが全体にムラなく含浸したハニカム焼結体が得られた。また、表1に、実施例1と同様のパラメータの測定結果を示す。表1から明らかなように、比較例2並の熱伝導率をキープしつつ、比較例2よりもAl含有量を減らすことができ、高温での材料強度低下を抑制することができた。
[Example 4]
Instead of the metal Si molded body of Example 2, a Si lump (ingot) having an oxygen content of 0.1% by weight or less was weighed to be 85 parts by weight with respect to 100 parts by weight of the SiC molded body. Using. Other conditions were the same as in Example 2. Also in this case, a honeycomb sintered body in which the metal Si was uniformly impregnated was obtained. Table 1 shows the measurement results of the same parameters as in Example 1. As can be seen from Table 1, while maintaining the same thermal conductivity as that of Comparative Example 2, the Al content could be reduced as compared with Comparative Example 2, and a decrease in material strength at high temperatures could be suppressed.

[実施例5]
実施例2のハニカム成形体の脱脂を、大気雰囲気にて400℃、4時間という条件で行った。その他の条件は実施例2と同じとした。この場合も、金属Siが全体にムラなく含浸したハニカム焼結体が得られた。また、表1に、実施例1と同様のパラメータの測定結果を示す。表1から明らかなように、脱脂雰囲気条件を窒素から大気に変更しても実施例2と同等の特性を持つ材料が得られた。
[Example 5]
The honeycomb formed body of Example 2 was degreased at 400 ° C. for 4 hours in an air atmosphere. Other conditions were the same as in Example 2. Also in this case, a honeycomb sintered body in which the metal Si was uniformly impregnated was obtained. Table 1 shows the measurement results of the same parameters as in Example 1. As is clear from Table 1, a material having the same characteristics as in Example 2 was obtained even when the degreasing atmosphere condition was changed from nitrogen to air.

[実施例6]
実施例2のカーボン炉での加熱処理を、酸化物炉(アルミナ炉)にて常圧下、Ar雰囲気中、1450℃で4hという条件で行った。その他の条件は実施例2と同じとした。この場合も、金属Siが全体にムラなく含浸したハニカム焼結体が得られた。また、表1に、実施例1と同様のパラメータの測定結果を示す。表1から明らかなように、酸化物炉での含浸においても、実施例2と同等の特性を持つ材料が得られた。
[Example 6]
The heat treatment in the carbon furnace of Example 2 was performed in an oxide furnace (alumina furnace) under normal pressure and in an Ar atmosphere at 1450 ° C. for 4 hours. Other conditions were the same as in Example 2. Also in this case, a honeycomb sintered body in which the metal Si was uniformly impregnated was obtained. Table 1 shows the measurement results of the same parameters as in Example 1. As is clear from Table 1, a material having the same characteristics as in Example 2 was obtained even in the impregnation with an oxide furnace.

[実施例7]
平均粒径45μmのSiC粉末87重量%と平均粒径35μmのSiC粉末13重量%に、バインダーを外配で4重量%と水とを調合後、自転公転混合機を用いて自転/公転=600/1800rpmにて約4分間混合した。100℃にて15時間乾燥した後、粉砕し、30μmの篩を通して、原料粉末を作製した。この原料粉末を1軸プレスで成形後、3tonでCIP処理を行い、φ50mmのペレットを作製し、窒素雰囲気にて500℃、5時間脱脂を行い、SiC成形体(重量約32g)とした。易酸化性金属を含む圧粉体は、重量比でMg:Si=77:33となるようMg粉末とSi粉末とを秤量し混合した後、1軸プレスにより直径30mmのペレット(重量約10g)に成形して作製した。そして、150mm角、高さ50mmのAl23製のさやの対角にSiC成形体を1つずつ配置し、その上に実施例1と同様の金属Siの成形体を載せ、さやの残り2隅に易酸化性金属を含む圧粉体を1つずつ配置し、実施例1と同様の条件で加熱処理を行った。この場合も、金属Siが全体にムラなく含浸した焼結体が得られた。また、表1に、実施例1と同様のパラメータの測定結果を示す。表1から明らかなように、易酸化性金属にMgを用いても、易酸化性金属にAlを用いた場合と同等の特性をもつ材料が得られた。
[Example 7]
After blending 87% by weight of SiC powder with an average particle size of 45 μm and 13% by weight of SiC powder with an average particle size of 35 μm, 4% by weight of binder and water, and rotation / revolution using a rotation / revolution mixer = 600 For about 4 minutes at 1800 rpm. After drying at 100 ° C. for 15 hours, the mixture was pulverized and passed through a 30 μm sieve to produce a raw material powder. This raw material powder was molded with a uniaxial press, then CIP-treated with 3 tons to produce a φ50 mm pellet, and degreased at 500 ° C. for 5 hours in a nitrogen atmosphere to obtain a SiC molded body (weight of about 32 g). The green compact containing an easily oxidizable metal was weighed and mixed with Mg powder and Si powder so that the weight ratio was Mg: Si = 77: 33, and then pellets having a diameter of 30 mm (weight: about 10 g) by uniaxial pressing. It was formed by molding. Then, one SiC molded body is placed on the opposite corner of the 150 mm square and 50 mm high Al 2 O 3 sheath, and the same metal Si molded body as in Example 1 is placed thereon, and the rest of the sheath One green compact containing an easily oxidizable metal was placed in two corners, and heat treatment was performed under the same conditions as in Example 1. Also in this case, a sintered body in which metal Si was uniformly impregnated was obtained. Table 1 shows the measurement results of the same parameters as in Example 1. As is apparent from Table 1, even when Mg was used as the oxidizable metal, a material having the same characteristics as when Al was used as the oxidizable metal was obtained.

なお、実施例7では、SiC成形体としてハニカム状ではなくペレット状のものを用いたが、実施例1で用いたハニカム状のSiC成形体を用いた場合でも、金属Siが全体にムラなく含浸したハニカム焼結体が得られた。   In Example 7, the SiC molded body was in the form of a pellet instead of a honeycomb. However, even when the honeycomb shaped SiC molded body used in Example 1 was used, metal Si was completely impregnated. A honeycomb sintered body was obtained.

[実施例8]
実施例2において、150mm角、高さ50mmのAl23製のさやの1隅にSiC成形体を1つ配置し、その上に金属Siの成形体を載せ、SiC成形体と対角側のさやの隅に重量比でAl:SiC=1:1となるよう成形した圧粉体を1つ配置した。また、別のさやには重量比でMg:Si=77:33となるよう成形した圧粉体を1つ配置し、さやには蓋をしなかった。それ以外は、実施例2と同じ条件で行った。図3に、実施例8の配置図を示す。2つのさやのうち、一方のさや10については、実施例1と同様のため、実施例1と同じ符号を付し、その説明を省略する。もう一方のさや110については、底面に敷き粉112(Al23 粉)を敷き、その中央に圧粉体118を配置した。この場合も、金属Siが全体にムラなく含浸したハニカム焼結体が得られた。表1に、各パラメータの測定結果を示す。
[Example 8]
In Example 2, one SiC molded body is placed at one corner of an Al 2 O 3 sheath of 150 mm square and 50 mm height, and a metal Si molded body is placed thereon, and the SiC molded body and the diagonal side One green compact formed so as to have a weight ratio of Al: SiC = 1: 1 was placed at the corner of the sheath. In addition, one green compact molded so as to have a weight ratio of Mg: Si = 77: 33 was placed in another sheath, and the sheath was not covered. The other conditions were the same as in Example 2. FIG. 3 shows a layout diagram of the eighth embodiment. Of the two sheaths, one sheath 10 is the same as that of the first embodiment, and therefore, the same reference numerals as those of the first embodiment are given and the description thereof is omitted. As for the other sheath 110, the spread powder 112 (Al 2 O 3 powder) was spread on the bottom surface, and the green compact 118 was arranged in the center thereof. Also in this case, a honeycomb sintered body in which the metal Si was uniformly impregnated was obtained. Table 1 shows the measurement results for each parameter.

[実施例9]
実施例7の圧粉体の代わりに、重量比でTi:SiC=1:4となるようTi粉末とSiC粉末を秤量し混合した後、1軸プレスにより作成した直径30mmのペレットを使用した以外は、実施例7と同様にして加熱処理を行った。この場合も、金属Siが全体にムラなく含浸した焼結体が得られた。表1に、各パラメータの測定結果を示す。
[Example 9]
Instead of using the green compact of Example 7, Ti powder and SiC powder were weighed and mixed so that the weight ratio of Ti: SiC = 1: 4, and then a 30 mm diameter pellet prepared by uniaxial pressing was used. Were heated in the same manner as in Example 7. Also in this case, a sintered body in which metal Si was uniformly impregnated was obtained. Table 1 shows the measurement results for each parameter.

[実施例10]
実施例7の圧粉体の代わりに、重量比でZr:SiC=1:4となるようZr粉末とSiC粉末を秤量し混合した後、1軸プレスにより作成した直径30mmのペレットを使用した以外は、実施例7と同様にして加熱処理を行った。この場合も、金属Siが全体にムラなく含浸した焼結体が得られた。表1に、各パラメータの測定結果を示す。
[Example 10]
Instead of the green compact of Example 7, Zr powder and SiC powder were weighed and mixed so that the weight ratio was Zr: SiC = 1: 4, and then pellets with a diameter of 30 mm prepared by uniaxial pressing were used. Were heated in the same manner as in Example 7. Also in this case, a sintered body in which metal Si was uniformly impregnated was obtained. Table 1 shows the measurement results for each parameter.

[比較例1]
実施例1において、150mm角、高さ50mmのAl23製のさやにSiC成形体を1つ配置し、その上に金属Siの成形体を載せた。易酸化性金属は配置しなかった。それ以外は、実施例1と同じ条件で行った。図4に、比較例1の配置図を示す。符号は実施例1と同様のため、ここでは説明を省略する。この場合には、金属Siが含浸しなかった。
[Comparative Example 1]
In Example 1, one SiC compact was placed on a 150 mm square, 50 mm high Al 2 O 3 sheath, and a metal Si compact was placed thereon. No oxidizable metal was placed. The other conditions were the same as in Example 1. FIG. 4 shows a layout diagram of the first comparative example. Since the reference numerals are the same as those in the first embodiment, the description is omitted here. In this case, metal Si was not impregnated.

[比較例2]
実施例1と同様にして、SiC成形体を作製した。そして、易酸化性金属の圧粉体の代わりに、含浸金属成形体を作製した。すなわち、含浸金属成形体は、重量比Si:Al=9:1となるようAl,Siを秤量し混合した後、SiC成形体100重量部に対して85重量部となるよう、1軸プレスにより直径50mmのペレットに成形して含浸金属成形体を作製した。そして、90mm角、高さ50mmのAl23製のさやの中央にSiC成形体を配置し、その上に含浸金属成形体を載せ、カーボン炉にて常圧下、Ar雰囲気中、1450℃で4hの条件で含浸した。この場合には、SiC成形体の全体に金属が含浸したが、その金属にはAlが約10重量%含まれるため、各実施例の製品に比べて強度が劣った。また、表1に、実施例1と同様のパラメータの測定結果を示す。表1から明らかなように、実施例1〜7に比べ、Al含有量が多く、高温での強度低下が顕著であった。
[Comparative Example 2]
A SiC molded body was produced in the same manner as in Example 1. Then, an impregnated metal molded body was produced instead of the oxidizable metal compact. That is, the impregnated metal formed body was weighed and mixed with Al and Si so that the weight ratio Si: Al = 9: 1, and then uniaxially pressed so as to be 85 parts by weight with respect to 100 parts by weight of the SiC formed body. An impregnated metal molded body was formed by forming into pellets having a diameter of 50 mm. Then, a SiC molded body is placed in the center of a 90 mm square, 50 mm high Al 2 O 3 sheath, and an impregnated metal molded body is placed thereon, in a carbon furnace at normal pressure in an Ar atmosphere at 1450 ° C. Impregnation was performed for 4 hours. In this case, the entire SiC molded body was impregnated with metal, but the metal contained about 10% by weight of Al, so that the strength was inferior to the products of the examples. Table 1 shows the measurement results of the same parameters as in Example 1. As is clear from Table 1, the Al content was higher than in Examples 1 to 7, and the strength reduction at high temperatures was remarkable.

[実施例11]
易酸化性金属としてTiやZrを用いた場合(実施例9,10)、含浸後の圧粉体の周辺にはファイバーは観察されなかったが、易酸化性金属としてAlを用いた場合(実施例1〜6,8)、含浸後の圧粉体の周辺にアルミナ質のファイバーが発生した。こうしたファイバーは、作業安全面の観点から好ましくない。そこで、助剤としてCaCO3を添加し、ファイバーを塊状化する効果があるか否かを検討した。具体的には、実施例1のペレットの代わりに、CaCO3入りペレットを用いた以外は、実施例1と同様にしてハニカム焼結体を得た。CaCO3入りペレットは、次のようにして作製した。すなわち、重量比でAl:SiC=1:4となるようAl粉末とSiC粉末を秤量し混合した後、そこにCaCO3の粉末を重量比でAl:CaCO3=2:5となるように添加した。添加後、さらに混合し、1軸プレスにより直径30mmのペレット(重量約14g)を作製した。この場合も、助剤が含浸を阻害することなく、金属Siが全体にムラなく含浸した焼結体が得られた。さらに、含浸後の圧粉体の周辺には、アルミナファイバーはほとんど観察されず、アルミナ質の塊状物が生成した。この塊状物は、アルミナファイバーが反応して塊状化したものと考えられる。表1に、各パラメータの測定結果を示す。
[Example 11]
When Ti or Zr was used as the oxidizable metal (Examples 9 and 10), no fiber was observed around the green compact after impregnation, but when Al was used as the oxidizable metal (implementation) Examples 1 to 6, 8) Alumina fibers were generated around the green compact after impregnation. Such a fiber is not preferable from the viewpoint of work safety. Therefore, CaCO 3 was added as an auxiliary agent to examine whether or not there was an effect of agglomerating the fiber. Specifically, a honeycomb sintered body was obtained in the same manner as in Example 1 except that instead of the pellets in Example 1, pellets containing CaCO 3 were used. The pellet containing CaCO 3 was produced as follows. That is, Al powder and SiC powder are weighed and mixed so that Al: SiC = 1: 4 by weight ratio, and then CaCO 3 powder is added thereto so that Al: CaCO 3 = 2: 5 by weight ratio. did. After the addition, the mixture was further mixed to produce a 30 mm diameter pellet (weight: about 14 g) by uniaxial pressing. Also in this case, a sintered body in which the metal Si was uniformly impregnated was obtained without inhibiting the impregnation. Furthermore, almost no alumina fiber was observed around the green compact after impregnation, and an aluminous mass was formed. This lump is thought to be agglomerated by the reaction of alumina fibers. Table 1 shows the measurement results for each parameter.

Figure 2012211071
Figure 2012211071

本発明の製造方法によって得られるSi−SiC系複合材料は、自動車、半導体製造装置や工作機械、生産設備などの部品に利用可能である。例えば、高熱伝導の特性を活かし、排熱回収および冷却用途の熱交換部品に利用可能であり、自動車分野、産業分野など特に限定されない。自動車分野で使用する場合は、排熱回収用熱交換器やEGRクーラーが一例として考えられ、この場合は、自動車の燃費向上やNOx低減に役立てることができる。また、高温での高い強度、優れた耐酸化性を活かし、窯道具などへの適用も可能である。   The Si—SiC composite material obtained by the production method of the present invention can be used for parts such as automobiles, semiconductor production apparatuses, machine tools, and production facilities. For example, it can be used for heat exchange parts for exhaust heat recovery and cooling applications utilizing the characteristics of high heat conduction, and is not particularly limited to the automotive field, the industrial field, and the like. When used in the automobile field, a heat exchanger for exhaust heat recovery and an EGR cooler are considered as examples, and in this case, it can be used for improving the fuel consumption of the automobile and reducing NOx. In addition, it can be applied to kiln tools, etc. by taking advantage of high strength at high temperatures and excellent oxidation resistance.

10 さや、12 敷き粉、14 SiC成形体、16 金属Siの成形体、18 易酸化性金属の圧粉体、20 土台、110 さや、112 敷き粉、118 易酸化性金属の圧粉体。 10 pods, 12 spread powder, 14 SiC molded body, 16 metal Si molded body, 18 oxidizable metal green compact, 20 base, 110 pod, 112 spread powder, 118 oxidizable metal green compact.

Claims (10)

加熱後に溶融したSiがSiC成形体に接触するように金属SiとSiC成形体とを配置し、酸化物の標準生成自由エネルギーの負の絶対値がSiより大きい元素からなる易酸化性金属又はそれを含む混合物を共存させた状態で、常圧下、不活性ガス雰囲気中、1400〜1800℃で加熱処理することにより、溶融した金属SiをSiC成形体に含浸させる、Si−SiC系複合材料の製造方法。   The metal Si and the SiC molded body are arranged so that the molten Si after heating is in contact with the SiC molded body, or an easily oxidizable metal composed of an element whose negative absolute value of the standard free energy of formation of the oxide is larger than Si. Of Si-SiC composite material in which molten metal Si is impregnated into a SiC compact by heat treatment at 1400-1800 ° C. in an inert gas atmosphere under normal pressure in the presence of a mixture containing Method. 前記元素は、Al,Zr,Ti,第2族元素及び希土類元素からなる群より選ばれた1種以上の元素である、請求項1に記載のSi−SiC系複合材料の製造方法。   2. The method for producing a Si—SiC composite material according to claim 1, wherein the element is at least one element selected from the group consisting of Al, Zr, Ti, a Group 2 element, and a rare earth element. 前記元素は、Al,Zr,Ti又はMgである、請求項1又は2に記載のSi−SiC系複合材料の製造方法。   The method for producing a Si-SiC composite material according to claim 1 or 2, wherein the element is Al, Zr, Ti, or Mg. 前記SiC成形体は、ハニカム構造を有する、請求項1〜3のいずれか1項に記載の1項に記載のSi−SiC系複合材料の製造方法。   The method for producing a Si-SiC composite material according to any one of claims 1 to 3, wherein the SiC compact has a honeycomb structure. 前記金属Siは、Siインゴットである、請求項1〜4のいずれか1項に記載のSi−SiC系複合材料の製造方法。   The method for producing a Si-SiC composite material according to any one of claims 1 to 4, wherein the metal Si is a Si ingot. 前記易酸化性金属を含む混合物として、前記易酸化性金属と骨材とを含む成形体を用いる、請求項1〜5のいずれか1項に記載のSi−SiC系複合材料の製造方法。   The manufacturing method of the Si-SiC type composite material according to any one of claims 1 to 5, wherein a molded body containing the oxidizable metal and an aggregate is used as the mixture containing the oxidizable metal. 前記金属Siと前記SiC成形体と前記易酸化性金属又はそれを含む混合物とを共存させるにあたり、同一さや内に前記金属Siと前記SiC成形体と前記易酸化性金属又はそれを含む混合物とを配置してさやに蓋をする、請求項1〜6のいずれか1項に記載のSi−SiC系複合材料の製造方法。   In coexistence of the metal Si, the SiC molded body, and the oxidizable metal or a mixture containing the same, the metal Si, the SiC molded body, and the oxidizable metal or a mixture including the same in the same sheath. The manufacturing method of the Si-SiC type composite material according to any one of claims 1 to 6, wherein the Si-SiC composite material is disposed and covered with a sheath. 前記SiC成形体と前記易酸化性金属を共存させるにあたり、前記SiC成形体の周りを取り囲むように前記易酸化性金属を配置する、請求項1〜7のいずれか1項に記載のSi−SiC系複合材料の製造方法。   The Si-SiC according to any one of claims 1 to 7, wherein the oxidizable metal is disposed so as to surround the SiC molded body when the SiC molded body and the oxidizable metal coexist. Method for manufacturing a composite material. 前記混合物として、Alからなる易酸化性金属とアルカリ土類金属の塩とを含むものを用いる、
請求項1〜8のいずれか1項に記載のSi−SiC系複合材料の製造方法。
As the mixture, a mixture containing an oxidizable metal composed of Al and a salt of an alkaline earth metal is used.
The manufacturing method of the Si-SiC type composite material of any one of Claims 1-8.
前記アルカリ土類金属の塩は、炭酸塩である、
請求項9に記載のSi−SiC系複合材料の製造方法。
The alkaline earth metal salt is carbonate;
The manufacturing method of the Si-SiC type composite material of Claim 9.
JP2012047927A 2011-03-18 2012-03-05 METHOD FOR MANUFACTURING Si-SiC COMPOSITE MATERIAL Pending JP2012211071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012047927A JP2012211071A (en) 2011-03-18 2012-03-05 METHOD FOR MANUFACTURING Si-SiC COMPOSITE MATERIAL

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011060514 2011-03-18
JP2011060514 2011-03-18
JP2012047927A JP2012211071A (en) 2011-03-18 2012-03-05 METHOD FOR MANUFACTURING Si-SiC COMPOSITE MATERIAL

Publications (1)

Publication Number Publication Date
JP2012211071A true JP2012211071A (en) 2012-11-01

Family

ID=47265385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012047927A Pending JP2012211071A (en) 2011-03-18 2012-03-05 METHOD FOR MANUFACTURING Si-SiC COMPOSITE MATERIAL

Country Status (1)

Country Link
JP (1) JP2012211071A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213089A1 (en) * 2016-06-06 2017-12-14 イビデン 株式会社 Honeycomb structure production method
WO2017213088A1 (en) * 2016-06-06 2017-12-14 イビデン 株式会社 Honeycomb structure
US20200399185A1 (en) * 2018-03-13 2020-12-24 Ibiden Co., Ltd. Method for producing honeycomb structure
CN114430733A (en) * 2019-10-02 2022-05-03 日本碍子株式会社 Refractory article
CN116768646A (en) * 2022-03-17 2023-09-19 日本碍子株式会社 Method for producing Si-SiC composite structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213089A1 (en) * 2016-06-06 2017-12-14 イビデン 株式会社 Honeycomb structure production method
WO2017213088A1 (en) * 2016-06-06 2017-12-14 イビデン 株式会社 Honeycomb structure
JP2017218341A (en) * 2016-06-06 2017-12-14 イビデン株式会社 Honeycomb structure
CN109311767A (en) * 2016-06-06 2019-02-05 揖斐电株式会社 Honeycomb structure
US20200399185A1 (en) * 2018-03-13 2020-12-24 Ibiden Co., Ltd. Method for producing honeycomb structure
US11866378B2 (en) * 2018-03-13 2024-01-09 Ibiden Co., Ltd. Method for producing honeycomb structure
CN114430733A (en) * 2019-10-02 2022-05-03 日本碍子株式会社 Refractory article
CN114430733B (en) * 2019-10-02 2023-05-09 日本碍子株式会社 Refractory material
CN116768646A (en) * 2022-03-17 2023-09-19 日本碍子株式会社 Method for producing Si-SiC composite structure

Similar Documents

Publication Publication Date Title
US9188397B2 (en) Dense composite material, method for producing the same, and component for semiconductor production equipment
US7419926B2 (en) Sintered bodies based on niobium suboxide
WO2011145387A1 (en) Si-SiC-BASED COMPOSITE MATERIAL AND PROCESS FOR PRODUCTION THEREOF, HONEYCOMB STRUCTURE, HEAT-CONDUCTIVE MATERIAL, AND HEAT EXCHANGER
CN109311760B (en) Zirconia ceramic, porous material made therefrom, and method for manufacturing zirconia ceramic
JP2012211071A (en) METHOD FOR MANUFACTURING Si-SiC COMPOSITE MATERIAL
EP2415542A1 (en) Process for producing porous sintered aluminum, and porous sintered aluminum
KR102107631B1 (en) Composite refractory and manufacturing method for composite refractory
EP2415543A1 (en) Process for producing porous sintered aluminum, and porous sintered aluminum
JP4304749B2 (en) Method for manufacturing member for semiconductor device
CN101323536A (en) Boron nitride porous ceramic thermal insulation material, preparation and use thereof
JP4804046B2 (en) Aluminum nitride ceramics, semiconductor manufacturing member, and aluminum nitride ceramic manufacturing method
JP4062845B2 (en) Degreasing and firing setter and method for producing the same
JP5092135B2 (en) Porous material and method for producing the same
JP2014148436A (en) Method for manufacturing burned tool
KR101571230B1 (en) Sintered mo part for heat sink plate for semiconductor device and semiconductor device including same
JP2012106929A (en) Method for producing porous body
JP6402131B2 (en) Manufacturing method of firing jig
KR102660216B1 (en) Dense composite material, method for producing the same, joined body, and member for semiconductor manufacturing device
KR20230138019A (en) Setter for ceramics firing
JP6343234B2 (en) Silicon carbide sintered body, method for manufacturing silicon carbide sintered body, firing jig, firing furnace, and molten metal holding furnace
EP1919844A2 (en) Improved method for debindering ceramic honeycombs
JPH08109069A (en) Aluminum nitride sintered compact
JP2010254523A (en) Method for producing spinel-based ceramic
JP5166223B2 (en) Method for joining members to be joined of silicon nitride ceramics
JP2003002760A (en) Method for producing ceramics porous body