TW200930152A - Alternating current driven light emitting diode module - Google Patents

Alternating current driven light emitting diode module Download PDF

Info

Publication number
TW200930152A
TW200930152A TW096150579A TW96150579A TW200930152A TW 200930152 A TW200930152 A TW 200930152A TW 096150579 A TW096150579 A TW 096150579A TW 96150579 A TW96150579 A TW 96150579A TW 200930152 A TW200930152 A TW 200930152A
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
emitting
led
common
Prior art date
Application number
TW096150579A
Other languages
Chinese (zh)
Inventor
Shih-Chang Shei
Wei-Chih Lai
Nan-Ming Lin
Jinn-Kong Sheu
Original Assignee
Nat Univ Tainan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tainan filed Critical Nat Univ Tainan
Priority to TW096150579A priority Critical patent/TW200930152A/en
Publication of TW200930152A publication Critical patent/TW200930152A/en

Links

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

An alternating current driven light emitting diode (LED) module including a first LED group and a second LED group is provided. The first LED group includes at least one first LED, at least one second LED, and at least one common LED. All of the LEDs in the first LED group are forward connected each other in series. The second LED group includes at least one third LED and at least one fourth LED. The third LED is reverse and parallel-connected to the first LED and the common LED. The fourth LED is reverse and parallel-connected to the second LED and the common LED.

Description

200930152 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種發光二極體模組( module) ’且特別是有關於一種交流驅動發光二極體楔乡且。 【先前技術】 ❹ 在現今發光二極體的技術領域中,一般都會將復多I 光二極體整合成一發光二極體模組,而目前的發光二杨發 模組可根據其驅動方式而區分成直流驅動發光二極徵模挺 (alternating current driven LED module )以及交流驅動於 光二極體(direct current driven LED module ) 模組。 習知的直流驅動發光二極體模組是藉由直流電的魏 動而得以發光。因此,直流驅動發光二極體模組一趣必 配有變壓器、整流器以及電源調整器(regulat〇r)。如此^ 直流驅動發光二極體模組才能接收高電壓的電能(例如市 電)而得以正常運作。然而,變壓器、整流器以及電源調 整盗都會消耗額外的電能,以致於直流驅動發光二 ^ 發光效率職。 _ ^ 圖1是習知一種交流驅動發光二極體的電路示意圖。 月 > 閱圖1,習知的交流驅動發光二極體模組1〇〇包括二 個發光二極體串(strip) 110、120以及一變壓器13〇。發 光—極體串110包括多個彼此串聯正接的發光二極體 112’而發光二極體串12〇包括多個彼此串聯正接的發光二 木體122變壓器電性連接這些發光二極體串ι1〇、 200930152 120,且變壓器130能將交流電VI調降成這些發光二極體 112、122所能接受的電壓’進而使這些發光二極體112、 122能正常運作。 當交流驅動發光二極體模組100被通入交流電VI 時,發光二極體串110與發光二極體串120會交替發光。 詳言之’在交流電VI的一個週期中,當A點被施於正偏 壓’而B點被施於負偏壓時,發光二極體串11〇發光,發 光二極體串120則不發光。當A點被施於負偏壓,而b點 被施於正偏壓時,發光二極體串120發光,發光二極體串 110則不發光。 然而’這種運作方式卻不能有效地增加交流驅動發光 二極體模組100的亮度。以圖1所示的交流驅動發光二極 體模組100為例,交流驅動發光二極體模組1〇〇總共包括 十個發光二極體,即五個發光二極體與五個發光二極 體122。當交流驅動發光二極體模組1〇〇發光時,實際上 只有發光二極體串11〇、12〇其中—串會發光,也就是在十 〇 個發光二極體中,只有其中五個發光二極體會發光。 由此可知,當交流驅動發光二極體模組1〇〇發光時, 實際發光的發光二極體之數量與所有發光二極體之總數的 比例為0.5 ’也就是說,實際上只有一半數量的發光二極 體在發光。在此種情況下,這會造成交流驅動發光二極體 模組100的發光效率嚴重偏低。 【發明内容】 200930152 本發明提供一種交流驅動發光二極體模組,以提高其 發光效率。 本發明提供一種交流驅動發光二極體模組,包括一第 一發光二極體群組(fir st LED gr〇up )以及一第二發光二極 體群組。第一發光二極體群組包括至少一第一發光二極 至少 ——/ 弟二發光二極體以及至少一共用發光二極體, f中f一發光二極體群組的所有發光二極體彼此串聯正200930152 IX. Description of the Invention: [Technical Field] The present invention relates to a light-emitting diode module and particularly relates to an AC-driven light-emitting diode wedge. [Prior Art] ❹ In the technical field of today's light-emitting diodes, complex I-light diodes are generally integrated into one light-emitting diode module, and the current light-emitting two-yang module can be divided into DC according to its driving mode. The driving current driven LED module and the AC drive direct current driven LED module are driven. The conventional DC-driven light-emitting diode module is illuminated by the direct current of the direct current. Therefore, the DC-driven LED module must be equipped with a transformer, a rectifier, and a power regulator (regulat〇r). In this way, the DC-driven LED module can receive high-voltage power (such as utility power) to operate normally. However, transformers, rectifiers, and power supply pirates consume extra power, so that DC drives the illuminating efficiency. _ ^ FIG. 1 is a schematic circuit diagram of a conventional AC-driven light-emitting diode. Month > Referring to Figure 1, the conventional AC-driven LED module 1 includes two light-emitting diodes 110, 120 and a transformer 13A. The light-emitting diode string 110 includes a plurality of light-emitting diodes 112' connected in series with each other, and the light-emitting diode string 12 includes a plurality of light-emitting diodes 122 connected in series with each other to electrically connect the light-emitting diode strings ι1. 〇, 200930152 120, and the transformer 130 can reduce the alternating current VI to a voltage acceptable to the light-emitting diodes 112, 122, thereby enabling the light-emitting diodes 112, 122 to operate normally. When the AC driving LED module 100 is connected to the AC VI, the LED string 110 and the LED string 120 alternately emit light. In detail, in the one cycle of the AC VI, when the point A is applied to the positive bias and the point B is applied to the negative bias, the light-emitting diode string 11 〇 emits light, and the light-emitting diode string 120 does not. Glowing. When point A is applied to the negative bias and point b is applied to the positive bias, the light emitting diode string 120 emits light, and the light emitting diode string 110 does not emit light. However, this mode of operation does not effectively increase the brightness of the AC driven LED module 100. Taking the AC-driven LED module 100 shown in FIG. 1 as an example, the AC-driven LED module 1 includes a total of ten LEDs, that is, five LEDs and five LEDs. Polar body 122. When the AC-driven LED module emits light, only the LED strings 11〇, 12〇, and the strings will emit light, that is, among the ten LEDs, only five of them The light-emitting diode will emit light. It can be seen that when the AC-driven LED module 1 illuminates, the ratio of the number of actual illuminating LEDs to the total number of all LEDs is 0.5 ′, that is, only half of the actual number The light-emitting diode is glowing. In this case, this causes the luminous efficiency of the AC-driven LED module 100 to be severely low. SUMMARY OF THE INVENTION 200930152 The present invention provides an AC driven LED module to improve its luminous efficiency. The invention provides an AC driven LED module, comprising a first group of light emitting diodes (fir st LED gr〇up) and a group of second light emitting diodes. The first light-emitting diode group includes at least one first light-emitting diode and at least one common light-emitting diode, and at least one light-emitting diode of f-light-emitting diode group Body in series with each other

ϊΐϋ發光二極體群組包括至少一第三發光二極體以及 胁四發光二極體。第三發光二極體並聯反接第一發 楚:且第三發光二极體並聯反接共用發光二極體。 炻栌第S發光二極體,且第四發光二 極體並聯反接共用發光二极體。 在本發明之一實施例中 大於第一發光二極體的功率 三發光二極體的功率以及第 在本發明之一實施例中 〇 組’更包括一線路板,其中 極體、第三發光二極體、第 極體皆配置於線路板上。 ’上述共用發光二極體的功率 、第二發光二極體的功率、第 四發光二極體的功率。 ’上述交流驅動發光二極體模 第一發光二極體、第二發光二 四發光二極體以及共用發光二 在本發明之一實施例φ . 面積大於第-發光二極體用發光二極體的發光 極體以及細發光二極體^二發光二極體、第三發光二 在本發明之-實12 的發光面積。 發光二極體、第三發上途第—發光二極體、第二 發九—极體、第四發光二極體以及共用 200930152 發光二極體的發光面積實質上皆相等。 笛發明^實施例中,上述第—發光二極體群組與 第一發光一極體群組整合成—晶片(chip)。 為多Ϊ本發明之一實施例中,上述共用發光二極體的數量 -極體彼此串 在本發明之-實施例中,這些共用發光 聯正接。 另-=例中,其卜個共用發光二極體與 另一個共用發光二極體並聯正接。 在本發狀-實施财,上述第—發光二極體的數量 為夕個’且這些第-發光二極體彼此串聯正接。第二發光 :極f的=為多個’且這些第二發光二極體彼此串聯正 極體的數量為多個,且這些第三發光二極 ,彼此串聯正接’第四發光二極體的數量為多個,且這些 第四發光二極體彼此串聯正接。 ❹ 在本發明之一實施例中,這些共用發光二極體的數量 第^發光二極體的數量、這些第二發光二極體的 些第三發光二極體的數量以及這些第四發光二極 體的數量。 旦在本發明之一實施例中,這些第—發光二極體的數 第二發光二極體的數量、這些第三發光二極體的 篁、延些第四發光二極體以及這些共用發光二極體的數 罝皆相等。 、’亦上所述’藉由共用發光二極體’當交流驅動發光二 200930152 極,核組發糾’本發明能增加實際發光的發光二極體之 數量以及其與所有發光二極體之總數的_ ’進而提高交 流驅動發光二極體模組的發光效率。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉一些實施例,並配合所附圖式,作詳細說明如下。The group of neon light emitting diodes includes at least one third light emitting diode and a four-light emitting diode. The third light-emitting diode is connected in parallel with the first one: and the third light-emitting diode is connected in parallel to the common light-emitting diode. The first S light emitting diode is connected, and the fourth light emitting diode is connected in parallel to the common light emitting diode. In one embodiment of the present invention, the power of the power three-emitting diode that is larger than the first light-emitting diode and the first embodiment of the present invention further include a circuit board in which the pole body and the third light source are included. The diode and the pole body are all disposed on the circuit board. The power of the common light-emitting diode, the power of the second light-emitting diode, and the power of the fourth light-emitting diode. The above-mentioned AC-driven LED body first light-emitting diode, second light-emitting two-four light-emitting diode, and common light-emitting diode are in one embodiment of the present invention. The area is larger than that of the first-light-emitting diode. The light-emitting area of the body and the light-emitting diode of the second light-emitting diode and the third light-emitting diode in the present invention. The light-emitting diodes, the third-pass-up-light-emitting diodes, the second-issuing nine-poles, the fourth light-emitting diodes, and the common 200930152 light-emitting diodes have substantially equal light-emitting areas. In the embodiment of the flute invention, the first group of light-emitting diodes and the group of first light-emitting diodes are integrated into a chip. In an embodiment of the invention, the number of the common light-emitting diodes - the polar bodies are in series with each other. In the embodiment of the invention, the common light-emitting contacts are connected in series. In another example, the common light-emitting diodes are connected in parallel with the other common light-emitting diode. In the present invention, the number of the above-mentioned first light-emitting diodes is a square and the first light-emitting diodes are connected in series with each other. The second illuminating: the number of the poles f is a plurality of 'and the number of the second illuminating diodes connected to each other in series is plural, and the third illuminating dipoles are connected in series with each other 'the number of the fourth illuminating diodes There are a plurality of, and these fourth light-emitting diodes are connected in series with each other. In one embodiment of the present invention, the number of the common light-emitting diodes, the number of the second light-emitting diodes, the number of the third light-emitting diodes of the second light-emitting diodes, and the fourth light-emitting diodes The number of polar bodies. In one embodiment of the present invention, the number of the second light-emitting diodes of the first light-emitting diodes, the turns of the third light-emitting diodes, the fourth light-emitting diodes, and the common light-emitting The number of diodes is equal. , 'also described above' by the common light-emitting diode 'when the AC drive light II 200930152 pole, the core group corrects the 'the invention can increase the number of actual light-emitting diodes and its and all light-emitting diodes The total number of _' further increases the luminous efficiency of the AC-driven LED module. The above described features and advantages of the invention will be apparent from the following description.

【實施方式】 【第一實施例】 #圖2是本發明第一實施例之—種交流驅動發光二極體 換組的電路不意圖。請參關2,交流驅動發光二極體模 組200包括一第一發光二極體群組21如以及一第二發光二 極體群組220,其中第一發光二極體群組21如包括‘少二 第-發光二極體212、至少-第二發光二極體214以及至 少-共用發光二極體216a,而第二發光二極體群組挪包 =至少-第三發光二極體222以及至少一第四發光二極體 224 〇 第-發光二極體群組鳥的所有發光二極體彼此串 正接。也就是說,在第一發光二極體群組21〇a中第一 發光二極體2i2、第二魏二極體214 體2!6a是彼此串聯正接。舉例而言,共 的陽極連接至第-發光认队—極體216a 咖的陰極,而共用發光二 極體施的陰極連接至第二發光二極體214的陽極。 第三發光二極體222並聯反接第一發光二極體212, 二發光-極體222並聯反接共用發光二極體216&。舉 200930152 例而5,第二發光二極體222的陽極連接共用發光二極體 216a的陰極,而第三發光二極體222的陰極連接第一 二極體212的陽極。此外,第三發光二極體222的陽極還 連接第二發光二極體214的陽極。 第四發光二極體224並聯反接第二發光二極體214, : 且第四發光二極體224並聯反接共用發光二極體216a。舉 例而έ,第四發光二極體224的陰極連接共用發光二極體 ❹ 2__16a的陽極,而第四發光二極體224的陽極連接第二發光 一極體214的陰極。此外,第四發光二極體224的陰極還 連接第一發光二極體212的陰極。 交流驅動發光二極體模組2〇〇可被通入一交流電V2 而發光,而交流電V2可以經由C點與D點通入至交流驅 動發光一極體模組200。在交流電V2的一個週期中,當c 點被施於正偏壓,而D點被施於負偏壓時,第一發光二極 體群組21〇a的第一發光二極體212、第二發光二極體214 以及共用發光二極體216a發光,但是第二發光二極體群組 :® 220的第二發光二極體222以及第四發光二極體224則不 發光。 當C點被施於負偏壓,而〇點被施於正偏壓時第二 發光二極體群組220内的第三發光二極體222以及第四發 光二極體224發光,而第一發光二極體群組21〇a的第一發 光二極體212以及第二發光二極體214則不發光,但是共 用發光二極體216a仍然會發光。 ’、 由此可知,不論C點與D點是被施與正偏壓或負偏 200930152 壓’共用發光二極體216a仍然會發光。換句話說,在交流 電V2的一個週期中,共用發光二極體216a的發光時間最 長。此外,當交流驅動發光二極體模組200發光時,實際 發光的發光二極體之數量為三個。 承上述’圖2所示的交流驅動發光二極體模組2〇〇共 包括五個發光二極體。也就是說,交流驅動發光二極體模 組200的所有發光二極體之總數為五個,即一個第一發光 二極體212、一個第二發光二極體214、一個第三發光二極 體222、一個第四發光二極體224以及一個共用發光二極 體 216a。 當父流驅動發光二極體模組200發光時,實際發光的 發光二極體之數量為三個,因此實際發光的發光二極體之 數量與所有發光二極體之總數的比例為〇6。相較於習知 技術而言,實際發光的發光二極體之數量以及其與所有發 $—極體之總數的比例皆比習知技術高,所以交流驅動發 光二極體模組200具有較高的發光效率。 在本實施例中,共用發光二極體216a的功率可以大 於第一發光二極體212的功率、第二發光二極體214的功 率、第二發光二極體222的功率以及第四發光二極體224 的功率,即共用發光二極體216a為交流驅動發光二極體模 紐200中功率最大的發光二極體。由於在交流電v2的一 ,週期中,共用發光二極體216a的發光時間最長,因此, 若共用發光二極體216a的功率越大,則交流驅動發光二極 體模組200的亮度可以大幅提升。 11 200930152 圖3A是根據圖2中的電路所綠示的一種交流驅動發 光二極體模組的俯視示意圖。請參閱3A,在本實施例中, 第一發光二極體群組21〇a與第二發光二極體群組22〇可以 ,. 整合成一晶片。也就是說,交流驅動發光二極體模組200 可以製作成一片晶片。 ·' 具體而言,交流驅動發光二極體模組200可以更包括 一基板230以及一圖案化線路層24〇,而第一發光二極體 ❹ 群組210a與第二發光二極體群組220可以形成在基板23〇 上。另外,第一發光二極體212、第二發光二極體214、第 二發光一極體222、第四發光二極體224以及共用發光二 極體216a的發光面積實質上皆相等,如圖3A所示。 圖案化線路層240可以是一種重配置線路層 (Re-Distributing Layer,RDL),而圖案化線路層 240 可包 括多條走線(trace) 242 ’其中這些走線242可以使第一發 光二極體212、第二發光二極體214以及共用發光二極體 216a彼此串聯正接,第三發光二極體222與第一發光二極 ® 體212以及共用發光二極體216a並聯反接,第四發光二極 體224與第二發光二極體214以及共用發光二極體216a ' 並聯反接。 此外’圖案化線路層240還包括多個接墊244,而這 些接墊244用來連接外部電源,以使交流電能從這些接整 244進入交流驅動發光二極體模組2〇〇。透過這些接墊 244,交流驅動發光二極體模組2〇〇得以接收交流電而發 光。 12 200930152 有關交流驅動發光二極體模組200的製造,其可以採 用以下方法。首先,在基板230上用磊晶成長方法成長多 層半導體材料層,其中磊晶成長方法可包括分子束磊晶法 (Molecular BeamEpitaxial,MBE)、有機金屬化學氣相沉 積法(Metal-Organic Chemical Vapor Deposition, MOCVD) 或其他適當的磊晶成長法。 接著,圖案化這些半導體材料層’以形成第一發光二 極體212、第二發光二極體214、第三發光二極體222、第 四發光二極體224以及共用發光二極體216a。上述圖案化 的方法可以包括微影與蝕刻製程或是其他適當的方法。 之後’形成圖案化線路層240。形成圖案化線路層240 的方法有多種,其中一種方法包括以下流程。首先,可形 成一層全面性覆蓋第一發光二極體212、第二發光二極體 214、第二發光二極體222、第四發光二極體224以及共用 發光二極體216a的導電層。接著,圖案化此導電層,以形 成圖案化線路層240,其中圖案化導電層的方法可包括微 影與姓刻製程或是其他適當的方法。 圖3B是根據圖2中的電路所繪示的另一種交流驅動 發光二極體模組的俯視示意圖。請參閱圖3B,交流驅動發 光一極體模組2〇〇’包括一第一發光二極體群組21仙、第二 發光二極體群組220以及基板230,其中第一發光二極體 群組210b與第二發光二極體群組22〇可以形成在基板23〇 上,而第一發光二極體群組21〇b包括第一發光二極體 212、第二發光二極體214以及共用發光二極體216b。 13 200930152 共用發光二極體216b的發光面積大於第一發光二極 體212、第一發光二極體214、第三發光二極體222以及第 四發光二極體224其中之一的發光面積。也就是說,在第 一發光二極體群組210b中,共用發光二極體2i6b的發光 面積最大。這樣有助於將共用發光二極體2i6b的熱能散 逸’以增加共用發光二極體216b的壽命。 圖3C是根據圖2中的電路所緣示的另一種交流驅動 發光二極體模組的俯視示意圖。請參閱圖3C,交流驅動發 光二極體模組300包括一第一發光二極體群組31〇、一第 一發光一極體群組320以及一線路板330,其中第一發光 二極體群組310包括一第一發光二極體312、一第二發光 二極體314以及一共用發光二極體316,而第二發光二極 體群組320包括一第三發光二極體322以及一第四發光二 極體324。 線路板330具有多條走線332以及多個接墊334,而 第一發光二極體群組310與第二發光二極體群組32〇皆配 φ 置在線路板330上。在本實施例中,第一發光二極體群組 310更包括多條鍵合導線(b〇nding wires) 340。藉由這些 鍵合導線340、這些接墊334以及這些走線332,第一發光 二極體312、第二發光二極體314以及共用發光二極體316 得以彼此串聯正接,第三發光二極體322與第一發光二極 體312以及共用發光二極體316得以並聯反接’而第四發 光二極體324與第二發光二極體314以及共用發光二極體 316得以並聯反接。 200930152 雖然圖3C所示的第一發光二極體312、第二發光二 極體314、第一發光二極體322、第四發光二極體324以及 共用發光二極體316的發光面積實質上皆相等,但是在其 他未繪示的實施财,這些發光二極義發光面積可以都 不相等。 舉例而言,共用發光二極體316的發光面積可以大於 其他發光二極體的發光面積。這樣有助於將共用發光二極 體316的熱能散逸,以增加共用發光二極體316的壽命, 因此圖3C所示的這些發光二極體的發光面積僅為舉例說 明,並非限定本發明。 此外’共用發光二極體316可以為交流驅動發光二極 體模組300中功率最大的發光二極體。如此,交流驅動發 光二極體模組300的亮度可以大幅提升。 【第二實施例】 圖4A是本發明第二實施例之一種交流驅動發光二極 體模組的電路示意圖。請參閱圖4,本實施例之交流驅動 發光二極體模組400與第一實施例的交流驅動發光二極體 模組200 (請參閱圖2)相似,因此以下將著重介紹本實施 例與第一實施例的差異。 交流驅動發光二極體模組400包括一第一發光二極體 群組410以及一第二發光二極體群組420,其中第一發光 二極體群組410所包括的共用發光二極體416之數量為多 個,而這些共用發光二極體416彼此串聯正接。 第一發光二極體群組410更包括多個第一發光二極體 15 200930152 412以及多個弟二發光二極體414。這些第一發光二極體 412彼此串聯正接,而這些第二發光二極體 414也是彼此 串聯正接。此外,第二發光二極體群組42〇包括多個第三 發光一極體422以及多個第四發光二極體424,其中這些 第二發光二極體422彼此串聯正接,而這些第四發光二極 體424彼此串聯正接。 另外,這些第一發光二極體412的數量、這些第二發 光二極體414的數量、這些第三發光二極體422的數量、 這些第四發光二極體424以及這些共用發光二極體416的 數量可以皆相等,如圖4所示。 由於交流驅動發光二極體模組4〇〇包括多個第一發光 二極體412、多個第二發光二極體414、多個第三發光二極 體422、多個第四發光二極體424以及多個共用發光二極 體416 ’因此交流電V2的電壓可以分配到這些發光二極 體’即這些發光二極體可以分擔交流電V2的電壓。 當交流驅動發光二極體模組4〇〇包括數量足夠的發光 © 二極體時’交流驅動發光二極體模組400能承受交流電V2 的電壓。也就是說,交流驅動發光二極體模組4〇〇可以在 沒有變壓器的條件下直接接收高電壓的交流電V 2,例如市 電。如此,交流電V2不會被變壓器耗損’而交流驅動發 光一極體拉組400的發光效率更可以進一步地提高。 必須說明的是’雖然圖4A繪示出四個第一發光二極 體412、四個第二發光二極體414、四個第三發光二極體 422的數量、四個第四發光二極體424以及四個共用發光 200930152 二極體416 ’但是本實施例之第二發光二極體414、第三發 光二極體422的數量、帛四發光二極體似以及共用發光 二極體416四者的數量皆可以是二個、三個或四個以上。 因此’在此強調,圖4A僅為舉例說明,並非限定本發明。 目4B是本發明第二實施例之另一種交流驅動發光二 極體模組的電路示意圖。請參閱圖4β,交流驅動發光二極 體模組400,包括-第-發光二極體群組41〇,以及第二發光 =極體群組420 ’其中第-發光二極體群組響包括多個 第一發光二極體412、多個第二發光二極體414以及多個 共用發光二極體416。 共用發光一極體416的數量可以大於這些第一發光二 極體412的數量、這些第二發光二極體414的數量、這些 第二發光二極體422的數量以及這些第四發光二極體424 的數量。如此,當交流驅動發光二極體模組4〇〇,發光時, 只際發光的發光二極體之數量以及其與所有發光二極體之 總數的比例得以提尚,同時交流驅動發光二極體模組 © 的發光效率也能提高。 值得一提的是’熟悉本發明之技術領域者可以從圖3八 至圖3C以及上述内容得知如何將第一發光二極體群組 410(或410’)與第二發光二極體群組420整合成一晶片, 或是製造出包括線路板的交流驅動發光二極體模組4〇〇 (或400’)。因此,在此不再介紹有關交流驅動發光二極 體模組400、400’的製造方法以及具體結構。 【第三實施例】 17 200930152 圖5是本發明第三實施例之一種交流驅動發光二極體 模組的電路示意圖。請參閲圖5,交流驅動發光二極體模 組500包括一第一發光二極體群組51〇以及第二發光二極 . 體群組420 ’其中第一發光二極體群組510包括多個第一 發光二極體412、多個第二發光二極體414以及多個妓用 發光二極體416。 ^ 本實施例之交流驅動發光二極體模組5〇〇與第三實施 籲 例^交流驅動發光二極體模組400 (請參考圖4A)相似, 而二者的差異在於:其中一個共用發光二極體416與另一 個共用發光二極體416並聯正接。 、 詳言之,這些共用發光二極體416可以區分成至少二 個/、用發光一極體串416a。在同一個共用發光二極體串 416a中的這些共用發光二極416彼此串聯正接,即其中一 個共用發光二極體串416a的陰極端連接至另一個共用發 光一極體串416a的陰極端’而其中一個發光二極體串41如 的陽極端連接至另-個共用發光二極财偷的陽極 © 端。如此,當其中-個共用發光二極體串416a内的共用發 光二極體416失效或損壞時,則另一個共用發光二極體串 416a可以不受到影響而能繼續運作。 值得-提的是,圖5所緣示的共用發光二極體串衞 之數量為二個,而各個共用發光二極體串416a所包括的共 用發光二極體416之數量為二個。然而,在其他未繪示的 實施例中,交流驅動發光二極體模組5〇〇可以包括三個或 三個以上的共用發光二極體串4l6a,而各個共用發光二極 18 200930152 體串416a可以包括三個或三個以上的共用發光二極體 416。 當然’各個共用發光二極體串4l6a亦可以僅包括一 ㈣用發光三極體仙。也狀說,這些共㈣光二極體 416可以彼此並聯正接。此外,針對不同的需求,一個共 ·· 用發光二極體串416a所包括的共用發光二極體416之數量 可以另-個共用發光二極體串416a所包括的共用發光二 極體416之數量不相等。 另外,雖然圖5所繪示的這些第一發光二極體412、 這些第一發光二極體414、這些第三發光二極體422、這些 第四發光二極體424以及這些共用發光二極體416的數量 都樣,但疋在其他未鳍'示實施例中,這些共用發光二極 體416的數量可以大於這些第一發光二極體4'12 ^數^、 这些第二發光二極體414的數量、這些第三發光二極體422 的數量以及這些第四發光二極體424的數量。 由上述内谷可知’圖5所示的這些共用發光二極體416 0 的連接方式以及所有發光二極體的數量僅為舉例說明,炎 非限定本發明。此外,熟悉本發明之技術領域者可以從圖 : 至圖3C以及上述内容得知如何將第一發光二極體群組 510與第二發光二極體群組42〇整合成一晶片,或是製造 出包括線路板的交流驅動發光二極體模組5〇〇。因此,在 此不再介紹有關交流驅動發光二極體模組5〇〇的製造方法 以及具體結構。 綜上所述,藉由共用發光二極體,當交流驅動發光二 19 200930152 極體模組發光時,本發明能增加實際發光的發光二極體之 數置以及其與所有發光二極體之總數的比例。相較於習知 技術而言,本發明能提高交流驅動發光二極體模組的發光 效率。 其次,當共用發光二極體的數量大於這些第一發光二 極體的數量、這些第二發光二極體的數量、這些第三發光 =極體的數量以及這些第四發光二極體的數量時,實際發 光的f光二極體之數量以及其與所有發光二^^體之總數的 比例能夠提高。如此,本發明能更進—步地提高交流驅動 發光二極體模組的發光效率。 再者,共用發光二極體的功率可以大於第一發光二極 ,的功率、第二發光二極體的功率、第三發光二極體的功 第四發光二極體的功率。這樣可以大幅提升交流驅 動么光—極體模組的亮度。[Embodiment] [First Embodiment] Fig. 2 is a circuit diagram of a circuit for alternating current driving light-emitting diodes according to a first embodiment of the present invention. For example, the AC driving LED module 200 includes a first LED group 21 and a second LED group 220, wherein the first LED group 21 includes 'Second second-light emitting diode 212, at least-second light emitting diode 214 and at least-shared light emitting diode 216a, and second light emitting diode group shifting = at least - third light emitting diode 222 and all of the light-emitting diodes of the at least one fourth light-emitting diode 224 〇 first-light-emitting diode group are connected in series with each other. That is, in the first light-emitting diode group 21a, the first light-emitting diode 2i2 and the second-diode body 214 body 2!6a are connected in series with each other. For example, a common anode is connected to the cathode of the first-light-emitting body-pole 216a, and a cathode of the common light-emitting diode is connected to the anode of the second light-emitting diode 214. The third light-emitting diode 222 is connected in parallel to the first light-emitting diode 212, and the two light-emitting bodies 222 are connected in parallel to the common light-emitting diode 216& 5, the anode of the second light-emitting diode 222 is connected to the cathode of the light-emitting diode 216a, and the cathode of the third light-emitting diode 222 is connected to the anode of the first diode 212. In addition, the anode of the third LED 222 is also connected to the anode of the second LED 214. The fourth light-emitting diode 224 is connected in parallel to the second light-emitting diode 214, and the fourth light-emitting diode 224 is connected in parallel to the common light-emitting diode 216a. For example, the cathode of the fourth light-emitting diode 224 is connected to the anode of the light-emitting diode ❹ 2__16a, and the anode of the fourth light-emitting diode 224 is connected to the cathode of the second light-emitting body 214. Further, the cathode of the fourth light-emitting diode 224 is also connected to the cathode of the first light-emitting diode 212. The AC drive LED module 2 can be illuminated by an AC V2, and the AC V2 can be connected to the AC drive Pole Module 200 via points C and D. In one cycle of the alternating current V2, when the point c is applied to the positive bias and the point D is applied to the negative bias, the first light-emitting diode 212 of the first light-emitting diode group 21〇a, the first The two light emitting diodes 214 and the common light emitting diode 216a emit light, but the second light emitting diodes 222 and the fourth light emitting diodes 224 of the second light emitting diode group: 220 do not emit light. When the C point is applied to the negative bias, and the defect is applied to the positive bias, the third LED 222 and the fourth LED 224 in the second LED group 220 emit light, and The first light-emitting diode 212 and the second light-emitting diode 214 of one of the light-emitting diode groups 21A do not emit light, but the common light-emitting diode 216a still emits light. From this, it can be seen that the common light-emitting diode 216a is illuminated even if the C point and the D point are applied with a positive bias or a negative bias. In other words, in one cycle of the alternating current V2, the common light-emitting diode 216a has the longest illumination time. In addition, when the AC-driven LED module 200 emits light, the number of actually-emitting LEDs is three. The AC-driven light-emitting diode module 2 shown in Fig. 2 described above includes a total of five light-emitting diodes. That is to say, the total number of all the LEDs of the AC driving LED module 200 is five, that is, one first LED 212, one second LED 214, and a third LED. The body 222, a fourth light emitting diode 224 and a common light emitting diode 216a. When the parent current driving LED module 200 emits light, the number of actually emitting LEDs is three, so the ratio of the number of actually emitting LEDs to the total number of all LEDs is 〇6. . Compared with the prior art, the number of actually emitting light-emitting diodes and the ratio of the total number of light-emitting diodes to all of the hair-emitting bodies are higher than those of the prior art, so the AC-driven light-emitting diode module 200 has a higher ratio. High luminous efficiency. In this embodiment, the power of the common light-emitting diode 216a may be greater than the power of the first light-emitting diode 212, the power of the second light-emitting diode 214, the power of the second light-emitting diode 222, and the fourth light-emitting diode. The power of the polar body 224, that is, the common light-emitting diode 216a is the most powerful light-emitting diode in the AC-driven light-emitting diode mold 200. Since the common light-emitting diode 216a has the longest light-emitting time in one cycle of the alternating current v2, the greater the power of the shared light-emitting diode 216a, the brightness of the AC-driven light-emitting diode module 200 can be greatly improved. . 11 200930152 FIG. 3A is a top plan view of an AC driven light emitting diode module according to the circuit of FIG. 2. Referring to FIG. 3A, in the embodiment, the first LED group 21A and the second LED group 22 can be integrated into a wafer. That is to say, the AC drive LED module 200 can be fabricated into a single wafer. Specifically, the AC driving LED module 200 may further include a substrate 230 and a patterned circuit layer 24A, and the first LED group 210a and the second LED group 220 may be formed on the substrate 23A. In addition, the light-emitting areas of the first light-emitting diode 212, the second light-emitting diode 214, the second light-emitting diode 222, the fourth light-emitting diode 224, and the common light-emitting diode 216a are substantially equal, as shown in the figure. 3A is shown. The patterned circuit layer 240 can be a Re-Distributing Layer (RDL), and the patterned circuit layer 240 can include a plurality of traces 242 'where the traces 242 can cause the first light-emitting diode The body 212, the second light emitting diode 214 and the common light emitting diode 216a are connected in series with each other, and the third light emitting diode 222 is connected in parallel with the first light emitting diode body 212 and the common light emitting diode 216a. The light emitting diode 224 is connected in parallel with the second light emitting diode 214 and the common light emitting diode 216a'. In addition, the patterned circuit layer 240 further includes a plurality of pads 244 for connecting external power sources to allow AC power to enter the AC drive LED modules 2 from the junctions 244. Through these pads 244, the AC drive LED module 2 receives the AC power and emits light. 12 200930152 For the manufacture of the AC drive LED module 200, the following method can be employed. First, a multilayer semiconductor material layer is grown on the substrate 230 by epitaxial growth, wherein the epitaxial growth method may include Molecular Beam Epitaxial (MBE) and Metal-Organic Chemical Vapor Deposition. , MOCVD) or other suitable epitaxial growth method. Next, the semiconductor material layers ' are patterned to form the first light emitting diode 212, the second light emitting diode 214, the third light emitting diode 222, the fourth light emitting diode 224, and the common light emitting diode 216a. The above patterning method may include a lithography and etching process or other suitable method. Thereafter, the patterned wiring layer 240 is formed. There are various methods of forming the patterned wiring layer 240, and one of the methods includes the following flow. First, a conductive layer covering the first light-emitting diode 212, the second light-emitting diode 214, the second light-emitting diode 222, the fourth light-emitting diode 224, and the common light-emitting diode 216a may be formed in a comprehensive manner. Next, the conductive layer is patterned to form a patterned wiring layer 240, wherein the method of patterning the conductive layer may include a lithography and surname process or other suitable method. FIG. 3B is a top plan view of another AC-driven LED module according to the circuit of FIG. 2. FIG. Referring to FIG. 3B, the AC driving light-emitting diode module 2' includes a first light-emitting diode group 21, a second light-emitting diode group 220, and a substrate 230, wherein the first light-emitting diode The group 210b and the second LED group 22A may be formed on the substrate 23A, and the first LED group 21〇b includes the first LED 212 and the second LED 214. And a shared light emitting diode 216b. 13 200930152 The light-emitting area of the common light-emitting diode 216b is larger than the light-emitting area of one of the first light-emitting diode 212, the first light-emitting diode 214, the third light-emitting diode 222, and the fourth light-emitting diode 224. That is, in the first light-emitting diode group 210b, the light-emitting area of the common light-emitting diode 2i6b is the largest. This helps to dissipate the thermal energy of the shared light-emitting diode 2i6b to increase the lifetime of the common light-emitting diode 216b. 3C is a top plan view of another AC-driven LED module according to the circuit of FIG. 2. Referring to FIG. 3C , the AC driving LED module 300 includes a first LED group 31 , a first LED group 320 , and a circuit board 330 . The first LED body . The group 310 includes a first LED 312, a second LED 314, and a common LED 316, and the second LED group 320 includes a third LED 322. A fourth light emitting diode 324. The circuit board 330 has a plurality of traces 332 and a plurality of pads 334, and the first LED group 310 and the second LED group 32 are disposed on the circuit board 330. In the embodiment, the first LED group 310 further includes a plurality of bonding wires 340. The first light-emitting diode 312, the second light-emitting diode 314, and the common light-emitting diode 316 are connected in series with each other by the bonding wires 340, the pads 334, and the wires 332, and the third light-emitting diodes are connected in series. The body 322 is connected in parallel with the first light-emitting diode 312 and the common light-emitting diode 316, and the fourth light-emitting diode 324 and the second light-emitting diode 314 and the common light-emitting diode 316 are connected in parallel. 200930152 The light-emitting area of the first light-emitting diode 312, the second light-emitting diode 314, the first light-emitting diode 322, the fourth light-emitting diode 324, and the common light-emitting diode 316 shown in FIG. 3C is substantially All are equal, but in other implementations not shown, these illuminating dipole illumination areas may not be equal. For example, the light-emitting area of the common light-emitting diode 316 may be larger than the light-emitting area of the other light-emitting diodes. This helps to dissipate the thermal energy of the common light-emitting diode 316 to increase the lifetime of the common light-emitting diode 316. Therefore, the light-emitting areas of the light-emitting diodes shown in Fig. 3C are merely illustrative and not limiting. In addition, the common light-emitting diode 316 may be the most powerful light-emitting diode in the AC-driven light-emitting diode module 300. Thus, the brightness of the AC drive light-emitting diode module 300 can be greatly improved. [Second Embodiment] Fig. 4A is a circuit diagram showing an AC drive light emitting diode module according to a second embodiment of the present invention. Referring to FIG. 4 , the AC-driven LED module 400 of the present embodiment is similar to the AC-driven LED module 200 of the first embodiment (see FIG. 2 ). Therefore, the present embodiment will be mainly described below. The difference of the first embodiment. The AC driving LED module 400 includes a first LED group 410 and a second LED group 420, wherein the first LED group 410 includes a common LED. The number of 416s is plural, and these common light-emitting diodes 416 are connected in series with each other. The first light emitting diode group 410 further includes a plurality of first light emitting diodes 15 200930152 412 and a plurality of second light emitting diodes 414 . These first light-emitting diodes 412 are connected in series with each other, and these second light-emitting diodes 414 are also connected in series with each other. In addition, the second LED group 42 includes a plurality of third LEDs 422 and a plurality of fourth LEDs 424, wherein the second LEDs 422 are connected in series with each other, and the fourth The light emitting diodes 424 are connected in series with each other. In addition, the number of the first light-emitting diodes 412, the number of the second light-emitting diodes 414, the number of the third light-emitting diodes 422, the fourth light-emitting diodes 424, and the common light-emitting diodes The number of 416s can be equal, as shown in FIG. The AC driving LED module 4 includes a plurality of first LEDs 412, a plurality of second LEDs 414, a plurality of third LEDs 422, and a plurality of fourth LEDs. The body 424 and the plurality of common light-emitting diodes 416 'and thus the voltage of the alternating current V2 can be distributed to the light-emitting diodes', that is, the light-emitting diodes can share the voltage of the alternating current V2. When the AC drive LED module 4 includes a sufficient amount of illumination © the diode, the AC drive LED module 400 can withstand the voltage of the AC V2. That is to say, the AC drive LED module 4 can directly receive the high voltage AC V 2 , such as the mains, without a transformer. Thus, the alternating current V2 is not depleted by the transformer, and the luminous efficiency of the alternating current driving light emitting body group 400 can be further improved. It should be noted that although FIG. 4A illustrates four first light-emitting diodes 412, four second light-emitting diodes 414, four third light-emitting diodes 422, and four fourth light-emitting diodes. The body 424 and the four common illuminating 200930152 diodes 416 'but the number of the second illuminating diode 414, the third illuminating diode 422 of the present embodiment, the 发光 four illuminating diodes, and the common illuminating diode 416 The number of the four can be two, three or more. Therefore, it is emphasized that FIG. 4A is merely illustrative and does not limit the invention. 4B is a circuit diagram of another AC-driven light-emitting diode module according to the second embodiment of the present invention. Referring to FIG. 4β, the AC-driven LED module 400 includes a first-light-emitting diode group 41〇, and a second light-emitting body group 420′, wherein the first-light-emitting diode group includes The plurality of first light emitting diodes 412, the plurality of second light emitting diodes 414, and the plurality of common light emitting diodes 416. The number of the common light-emitting diodes 416 may be greater than the number of the first light-emitting diodes 412, the number of the second light-emitting diodes 414, the number of the second light-emitting diodes 422, and the fourth light-emitting diodes. The number of 424. In this way, when the AC driving LED module 4 is illuminated, the number of light-emitting diodes and the ratio of the total number of LEDs to all of the LEDs are improved, and the AC driving LED is simultaneously driven. The luminous efficiency of the body module © can also be improved. It is worth mentioning that those skilled in the art can understand how to combine the first LED group 410 (or 410') with the second LED group from FIG. 3 to FIG. 3C and the above. The set 420 is integrated into a wafer or an AC driven LED module 4 (or 400') including a circuit board. Therefore, the manufacturing method and specific structure of the AC-driven light-emitting diode modules 400, 400' will not be described here. [Third Embodiment] 17 200930152 Fig. 5 is a circuit diagram showing an AC drive light emitting diode module according to a third embodiment of the present invention. Referring to FIG. 5, the AC driving LED module 500 includes a first LED group 51A and a second LED group. The body group 420' includes a first LED group 510. The plurality of first light emitting diodes 412, the plurality of second light emitting diodes 414, and the plurality of light emitting diodes 416. The AC drive LED module 5 of the present embodiment is similar to the third embodiment of the AC drive LED module 400 (please refer to FIG. 4A), and the difference between the two is: one of the common The light emitting diode 416 is connected in parallel with another common light emitting diode 416. In particular, the shared light-emitting diodes 416 can be divided into at least two /, light-emitting diode strings 416a. The common light-emitting diodes 416 in the same common light-emitting diode string 416a are connected in series with each other, that is, the cathode end of one of the common light-emitting diode strings 416a is connected to the cathode end of the other common light-emitting diode string 416a. The anode end of one of the LED strings 41 is connected to the anode end of another shared light-emitting diode. Thus, when the common light-emitting diode 416 in one of the common light-emitting diode strings 416a fails or is damaged, the other common light-emitting diode string 416a can continue to operate without being affected. It is worth mentioning that the number of shared light-emitting diodes shown in Fig. 5 is two, and the number of common light-emitting diodes 416 included in each common light-emitting diode string 416a is two. However, in other embodiments not shown, the AC driving LED module 5A may include three or more common LED strings 4l6a, and each of the common LEDs 18303030 416a may include three or more common light emitting diodes 416. Of course, each of the common light-emitting diode strings 4l6a may also include only one (four) light-emitting diode. It is also said that these common (four) photodiodes 416 can be connected in parallel with each other. In addition, for a different requirement, the number of the common light-emitting diodes 416 included in the light-emitting diode string 416a may be shared by the common light-emitting diodes 416 included in the common light-emitting diode string 416a. The quantities are not equal. In addition, although the first light-emitting diodes 412, the first light-emitting diodes 414, the third light-emitting diodes 422, the fourth light-emitting diodes 424, and the common light-emitting diodes are illustrated in FIG. The number of the bodies 416 is the same, but in other embodiments of the non-fins, the number of the common light-emitting diodes 416 may be greater than the number of the first light-emitting diodes 4'12^^, these second light-emitting diodes The number of the bodies 414, the number of these third light-emitting diodes 422, and the number of these fourth light-emitting diodes 424. It is to be understood from the above-mentioned inner valley that the connection manner of the common light-emitting diodes 416 0 shown in Fig. 5 and the number of all the light-emitting diodes are merely illustrative, and the present invention is not limited thereto. In addition, those skilled in the art familiar with the present invention can learn how to integrate the first LED group 510 and the second LED group 42 into a wafer, or manufacture from FIG. 3C and the above. The AC drive LED module 5 including the circuit board is provided. Therefore, the manufacturing method and specific structure of the AC-driven light-emitting diode module 5A will not be described here. In summary, by sharing the light emitting diode, when the AC driving light emitting diode 19 200930152 polar body module emits light, the present invention can increase the number of actually emitting light emitting diodes and all of the light emitting diodes thereof. The proportion of the total. Compared with the prior art, the present invention can improve the luminous efficiency of the AC-driven LED module. Secondly, when the number of the shared light-emitting diodes is greater than the number of the first light-emitting diodes, the number of the second light-emitting diodes, the number of the third light-emitting bodies, and the number of the fourth light-emitting diodes At that time, the number of actually-emitting f-light diodes and the ratio of them to the total number of all the light-emitting bodies can be increased. Thus, the present invention can further improve the luminous efficiency of the AC-driven LED module. Furthermore, the power of the shared light-emitting diode may be greater than the power of the first light-emitting diode, the power of the second light-emitting diode, and the power of the third light-emitting diode. This can greatly increase the brightness of the AC drive-polar module.

❿ 雖然本發明Ρ ,、,.❿ Although the invention Ρ , ,,.

20 200930152 準ο 【圖式簡單說明】 圖1是習知一種交流驅動發光二極體的電路示意圖。 圖2是本發明第一實施例之一種交流驅動發光二極體 ·. 模組的電路示意圖。 圖3Α至圖3C是根據圖2中的電路所繪示的各種不同 ❹ 的交流驅動發光二極體模組的俯視示意圖。 圖4Α是本發明第二實施例之一種交流驅動發光二極 體模組的電路示意圖。 圖4Β是本發明第二實施例之另一種交流驅動發光二 極體模組的電路示意圖。 圖5是本發明第三實施例之一種交流驅動發光二極體 模組的電路示意圖。 【主要元件符號說明】 ••❹ 100、200、200’、300、400、400,、500 :交流驅動發 光二極體模組 : 110、120 :發光二極體串 112、122 :發光二極體 130 :變壓器 210a、210b、310、410、410’、510 :第一發光二極體 群組 212、312、412 :第一發光二極體 21 200930152 214、314、414 :第二發光二極體 216a、216b、316、416 :共用發光二極體 220、320、420 :第二發光二極體群組 222、322、422 :第三發光二極體 224、324、424 :第四發光二極體 230 :基板 240 ··圖案化線路層 242、332 :走線 ❹ 244、334 :接墊 330 :線路板 340 :鍵合導線 416a :共用發光二極體串 VI、V2 :交流電20 200930152 准 ο [Simplified description of the drawings] Fig. 1 is a schematic circuit diagram of a conventional AC-driven light-emitting diode. 2 is a circuit diagram of a module of an AC-driven light-emitting diode according to a first embodiment of the present invention. 3A to 3C are top plan views of various AC driven LED modules according to the circuit of FIG. 2. 4 is a circuit diagram of an AC driven LED module according to a second embodiment of the present invention. 4 is a circuit diagram of another AC-driven LED module according to a second embodiment of the present invention. Fig. 5 is a circuit diagram showing an AC drive light emitting diode module according to a third embodiment of the present invention. [Main component symbol description] ••❹ 100, 200, 200', 300, 400, 400, 500: AC drive LED module: 110, 120: LED series 112, 122: LED Body 130: transformers 210a, 210b, 310, 410, 410', 510: first light-emitting diode group 212, 312, 412: first light-emitting diode 21 200930152 214, 314, 414: second light-emitting diode Body 216a, 216b, 316, 416: common light-emitting diodes 220, 320, 420: second light-emitting diode group 222, 322, 422: third light-emitting diode 224, 324, 424: fourth light-emitting two Polar body 230: substrate 240 · Patterned wiring layer 242, 332: wiring ❹ 244, 334: pad 330: wiring board 340: bonding wire 416a: common light-emitting diode string VI, V2: alternating current

22twenty two

Claims (1)

200930152 十、申請專利範面: 1.一種交流驅動發光二極體模組,包括: 一第一發光二極體群組,包括: 至少一第一發光二極體; 至少一第二發光二極體; . 至少一共用發光二極體,其中該第一發光二極體 群組的所有發光二極體彼此串聯正接; 一第二發光二極體群組,包括 鬱 至少一第三發光二極體,並聯反接該第一發光二 極體,且該第三發光二極體並聯反接該共用發光二極 體;以及 x — 至少一第四發光二極體,並聯反接該第二發光二 極體,且該第四發光二極體並聯反接該共用發光二極 體。 2.如申請專利範圍第1項所述之交流驅動發光二極體 模組,其中該共用發光二極體的功率大於該第一發光二極 :❹ 體的功率、該第二發光二極體的功率、該第三發光二極體 的功率以及該第四發光二極體的功率。 : 3.如申請專利範圍第1項所述之交流驅動發光二極體 模組,更包括一線路板,其中該第一發光二極體、該第二 發光二極體、該第三發光二極體、該第四發光二極體以及 該共用發光二極體皆配置於該線路板上。 4.如申請專利範圍第3項所述之交流驅動發光二極體 模組’其中該共用發光二極體的發光面積大於該第一發光 23 200930152 二極體、該第二發光二極體、該第三發光二極體以及該第 四發光二極體其中之一的發光面積。 5.如申請專利範圍第3項所述之交流驅動發光二極體 模組’其中該第一發光二極體、該第二發光二極體、該第 三發光二極體、該第四發光二極體以及該共用發光二極體 的發光面積實質上皆相等。 6·如申請專利範圍第1項所述之交流驅動發光二極體 模組’其中該第一發光二極體群組與該第二發光二極體群 ® 組整合成-晶片。 7.如申請專利範圍第1項所述之交流驅動發光二極體 模組,其中該共用發光二極體的數量為多個。 ^ 8.如申請專利範圍第7項所述之交流驅動發光二極體 杈組,其中該些共用發光二極體彼此串聯正接。 9.如申請專利範圍第7項所述之交流驅動發光二極體 模組’其中一個共用發光二極體與另一個共用發光二極體 並聯正接。200930152 X. Patent application: 1. An AC driven LED module comprising: a first LED group comprising: at least one first LED; at least one second LED At least one common light-emitting diode, wherein all of the light-emitting diodes of the first light-emitting diode group are connected in series with each other; and a second light-emitting diode group includes at least one third light-emitting diode a second light-emitting diode is connected in parallel, and the third light-emitting diode is connected in parallel to the common light-emitting diode; and x- at least one fourth light-emitting diode is connected in parallel to the second light-emitting diode a diode, and the fourth light-emitting diode is connected in parallel to the common light-emitting diode. 2. The AC-driven light-emitting diode module of claim 1, wherein the power of the common light-emitting diode is greater than the power of the first light-emitting diode: the power of the body, the second light-emitting diode The power, the power of the third light emitting diode, and the power of the fourth light emitting diode. 3. The AC-driven light-emitting diode module of claim 1, further comprising a circuit board, wherein the first light-emitting diode, the second light-emitting diode, and the third light-emitting diode The polar body, the fourth light emitting diode, and the common light emitting diode are disposed on the circuit board. 4. The AC-driven LED module of claim 3, wherein the common LED has a larger illumination area than the first illumination 23 200930152 diode, the second LED, a light-emitting area of one of the third light-emitting diode and the fourth light-emitting diode. 5. The AC-driven light-emitting diode module of claim 3, wherein the first light-emitting diode, the second light-emitting diode, the third light-emitting diode, and the fourth light-emitting body The light-emitting areas of the diode and the common light-emitting diode are substantially equal. 6. The AC-driven light-emitting diode module of claim 1, wherein the first LED group and the second LED group are integrated into a wafer. 7. The AC-driven light-emitting diode module of claim 1, wherein the number of the common light-emitting diodes is plural. 8. The AC-driven light-emitting diode set according to claim 7, wherein the common light-emitting diodes are connected in series with each other. 9. The AC-driven LED module as described in claim 7 of the patent application, wherein one of the common light-emitting diodes is connected in parallel with the other common light-emitting diode. 10.如申請專利範圍第7項所述之交流驅動發光二極 ,模組:其中該第—發光二極體的數量為多個,且該些第 =光—極體彼此串聯正接,該第二發光二極體的數量為 且該些第二發光二極體彼此串聯正接,該第三發光 數1為多個,且該些第三發光二極體彼此串聯正 碰=^發光二極_數量為多個,錢些第四發光二 極體彼此串聯正接。 11.如申睛專利範圍第10項所述之交流驅動發光二 24 200930152 極體模組,其中該些共用發光二極體的數量大於該些第一 發光二極體的數量、該些第二發光二極體的數量、該些第 三發光二極體的數量以及該些第四發光二極體的數量。 12.如申請專利範圍第10項所述之交流驅動發光二 極體模組,其中該些第一發光二極體的數量、該些第二發 光二極體的數量、該些第三發光二極體的數量、該些第四 發光二極體以及該些共用發光二極體的數量皆相等。10. The AC-driven light-emitting diode according to claim 7, wherein the number of the first light-emitting diodes is plural, and the plurality of light-polar bodies are connected in series with each other, the first The number of the two light-emitting diodes is such that the second light-emitting diodes are connected in series with each other, the third light-emitting diodes are plural, and the third light-emitting diodes are connected in series with each other. The number is plural, and the fourth light-emitting diodes are connected in series with each other. 11. The AC drive illumination 24th 200930152 polar body module according to claim 10, wherein the number of the common light emitting diodes is greater than the number of the first light emitting diodes, and the second The number of the light emitting diodes, the number of the third light emitting diodes, and the number of the fourth light emitting diodes. 12. The AC-driven light-emitting diode module of claim 10, wherein the number of the first light-emitting diodes, the number of the second light-emitting diodes, and the third light-emitting diodes The number of poles, the fourth light-emitting diodes, and the number of the common light-emitting diodes are all equal. 2525
TW096150579A 2007-12-27 2007-12-27 Alternating current driven light emitting diode module TW200930152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096150579A TW200930152A (en) 2007-12-27 2007-12-27 Alternating current driven light emitting diode module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096150579A TW200930152A (en) 2007-12-27 2007-12-27 Alternating current driven light emitting diode module

Publications (1)

Publication Number Publication Date
TW200930152A true TW200930152A (en) 2009-07-01

Family

ID=44864802

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096150579A TW200930152A (en) 2007-12-27 2007-12-27 Alternating current driven light emitting diode module

Country Status (1)

Country Link
TW (1) TW200930152A (en)

Similar Documents

Publication Publication Date Title
EP1787336B1 (en) Light emitting element comprising a plurality of electrically connected light emitting cells and method of manufacturing the same
KR100634307B1 (en) Light-emitting device and method of manufacturing the same
KR101784901B1 (en) Light emitting device
CN100524857C (en) Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
US7994523B2 (en) AC light emitting diode having improved transparent electrode structure
KR101926358B1 (en) Semiconductor light emitting device and illumination apparatus
JP2009182357A (en) Light-emitting device
JP5408414B2 (en) Light emitting module
US7999271B2 (en) Luminous element having a plurality of cells
TW200930152A (en) Alternating current driven light emitting diode module
KR101229835B1 (en) Luminous element having arrayed cells and Method for manufacturing the same and Luminous device using the same
KR20100038252A (en) White light emitting diode package
KR100898585B1 (en) Light emitting element having arrayed cells and method of fabricating the same
KR101203139B1 (en) Luminous element having arrayed cells
KR101216934B1 (en) Light emitting element having arrayed cells and method of fabricating the same
KR101283972B1 (en) 3-Terminal Light Emitting Device and Lighting Circuit of using the same
JP2014116620A (en) Light emitting diode