TW200929697A - Miniaturized dual band and wideband printed dipole antenna - Google Patents

Miniaturized dual band and wideband printed dipole antenna Download PDF

Info

Publication number
TW200929697A
TW200929697A TW96148894A TW96148894A TW200929697A TW 200929697 A TW200929697 A TW 200929697A TW 96148894 A TW96148894 A TW 96148894A TW 96148894 A TW96148894 A TW 96148894A TW 200929697 A TW200929697 A TW 200929697A
Authority
TW
Taiwan
Prior art keywords
horizontal
segment
dipole antenna
section
vertical
Prior art date
Application number
TW96148894A
Other languages
Chinese (zh)
Other versions
TWI335689B (en
Inventor
Wen-Shan Chen
Yen-Hao Yu
Sheng-Wen Cheng
Chih-Chiang Chen
Original Assignee
Univ Southern Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Southern Taiwan filed Critical Univ Southern Taiwan
Priority to TW96148894A priority Critical patent/TW200929697A/en
Publication of TW200929697A publication Critical patent/TW200929697A/en
Application granted granted Critical
Publication of TWI335689B publication Critical patent/TWI335689B/zh

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

A miniaturized dual band and wideband printed dipole antenna is disclosed. The miniaturized dual band printed dipole antenna is to form on a substrate with: a first radiating portion, a second radiating portion, and a feed-in portion. The first radiating portion and the second radiating portion are symmetrically lined up and both having a ⊂ -shape opposing to each other. The miniaturized wideband printed dipole antenna installs a bandwidth modulation portion to both the first radiating portion and the second radiating portion, thereby resulting in coupling effect among signals so as to be applied to adjust impedance matching. The prevent invention therefore produces a wideband dipole antenna applicable to WiMax specifications, and once optimized, it is capable of producing wideband operation above 2.49GHz and covering frequency bands including tri-band operation of WiMax. Hence, it features advantages of having excellent radiation characteristics, miniaturized size, and radiation field of omni-directional isotropic radiation.

Description

200929697 九、發明說明: 【發明所屬之技術領域】 本發明係一種小型化雙頻及寬頻印刷偶極天線,特 別指其輻射部設計為兩相對c形之雙頻印刷偶極天線, 而以頻寬調控部與輻射部相連,即形成一應用於WIMAX 規格的寬頻印刷偶極天線者。 【先前技術】 現今WIMAX/WLAN的雙頻或三頻偶極天線,已有相當 Ο多業者及研究單位投入研究,有如:(1)中華民國專利 公告號第1283945號之「雙頻雙偶極天線」、(2)中華 民國專利公開號第200727533號之「平面偶極天線」、 (3)中華民國專利公開號第2〇〇7〇1556號之「雙頻偶極 •天線」、(4)中華民國專利公開號第20071 9532號「偶 極天線」、(5)英國專利申請號第〇518996 4號之 「Balanced antenna devices」及(6)美國專利申請號 ❹第 10/641,913 號之「 Multi-band printed dipole antenna」等專利發表。 然’則述之(1 )、( 2 ) 、( 3 )專利案,係以較複 雜之構造達成其功能性,重量較重成本亦較高,且較不 易射頻電路系統做整合,本發明是印刷式結構,具有重 量輕、低姿態(low profile)、低成本及容易與射頻電 路系統做整合等優點。而(4 )、( 5 )、( 6 )號專利案 僅能單純以寬頻或雙頻天線操作,再者一般常見天線為 要增加通訊頻段和頻寬就必須增加天線的數目或以寬頻 200929697 ’ 天線來涵蓋操作頻段,其資源和成本耗費較高。且在天 線設計上’天線體積都較大佔了電路中很大的面積,對 現今輕薄短小的無線通訊產品來說,不太適用。 【發明内容】 菱此’基於習知天線之種種缺失’故本發明係提供 種小型化雙頻及寬頻印刷偶極天線,其輻射部設計為 兩相對C形,體積僅有40xl〇x〇.8mm3 ,而印刷天線具 有低姿勢、質量輕、製造容易等優點,可應用於wimax 〇規格。 本發明係一種小型化雙頻印刷偶極天線,係於美 上形成有: '土 第一輻射部,係包括平行排列之第一水平段、第二 水平段、第三水平段、第四水平段以及第一垂直段、第 二垂直段,該第一垂直段係與第一水平段、第三水平段 之一端相連,該第二垂直段係設於第一垂直段之對側, ❹而與第二水平段、第四水平段之一端相連; 、 第輻射部,係沿基板中心線與第一輻射部對稱, 並與第—輻射部隔有一間隙,包括有:平行排列之第五 t平奴第六水平段、第七水平段、第八水平段以及第 直段、第四垂直段,該第三垂直段係與第五水平段、 ♦七水平段之一端垂直相連,該第四垂直段係設於第三 垂直段之對側,而與第六水平段、第八水平段垂直相連^ 入’係與第四水平段及第八水平段相連。 上述之小型化雙頻印刷偶極天線,係印製在一相對 6 200929697 介電常數為4.4,損耗正切(loss tangent)為〇. 0245 之FR4板上。 上述之小型化雙頻印刷偶極天線,該饋入部係饋人 有50歐姆之同軸電纜。 上述之小型化雙頻印刷偶極天線,第一轎射部與第 二輻射部之間隙係1〜3mm。 〇段、第二水平段以及第四水平段係形成一匸形。 上述之小型化雙頻印刷偶極天線,該第一垂直段、 第一水平段以及第三水平段係形成一匸形。該第二垂直 該第三 垂直段、第五水平段以及第七水平段係形成一匸形。該 第四垂直段、第六水平段以及第八水平段係形成一匚形。 本發明係一種以前述之小型化雙頻印刷偶極天線 所構成之寬頻印刷偶極天線,係分別於前述之第一輻射 部與第一輻射部分別設有:200929697 IX. Description of the Invention: [Technical Field] The present invention relates to a miniaturized dual-frequency and wide-band printed dipole antenna, in particular to a radiating portion designed as two opposite c-shaped dual-frequency printed dipole antennas, and The wide control unit is connected to the radiating portion to form a broadband printed dipole antenna for use in the WIMAX specification. [Prior Art] Today's WIMAX/WLAN dual-frequency or three-frequency dipole antennas have been put into research by many companies and research institutes, such as: (1) "Double Frequency Dual Dipole" of the Republic of China Patent Bulletin No. 1283945 "Antenna", (2) "Flat Dipole Antenna" of the Republic of China Patent Publication No. 200727533, (3) "Double Frequency Dipole Antenna" of the Republic of China Patent No. 2〇〇7〇1556, (4) The Republic of China Patent Publication No. 20071 9532 "Dipole Antenna", (5) British Patent Application No. 518 996 4 "Balanced antenna devices" and (6) US Patent Application No. 10/641,913 Multi-band printed dipole antenna" and other patents were published. However, the patent cases described in (1), (2), and (3) are functional in a more complicated structure, and the cost is relatively high, and the RF circuit system is less integrated. The present invention is The printed structure has the advantages of light weight, low profile, low cost and easy integration with RF circuitry. The patents (4), (5), and (6) can only be operated by broadband or dual-frequency antennas. In addition, in general, to increase the communication frequency band and bandwidth, the number of antennas must be increased or wideband 200929697 ' The antenna covers the operating frequency band, which is costly and costly. And in the antenna design, the antenna size is large and accounts for a large area in the circuit, which is not suitable for today's thin and light wireless communication products. SUMMARY OF THE INVENTION The present invention provides a miniaturized dual-frequency and wide-band printed dipole antenna, and the radiation portion is designed as two opposite C-shapes, and the volume is only 40xl〇x〇. 8mm3, and the printed antenna has the advantages of low posture, light weight, easy manufacture, etc., and can be applied to the wimax 〇 specification. The invention relates to a miniaturized dual-frequency printed dipole antenna, which is formed on the US: 'the first radiation part of the soil, comprising the first horizontal section, the second horizontal section, the third horizontal section and the fourth level arranged in parallel. And a first vertical segment and a second vertical segment, wherein the first vertical segment is connected to one end of the first horizontal segment and the third horizontal segment, and the second vertical segment is disposed on a side opposite to the first vertical segment, Connected to one end of the second horizontal segment and the fourth horizontal segment; the first radiating portion is symmetric with the first radiating portion along the center line of the substrate, and is separated from the first radiating portion by a gap, including: a fifth row arranged in parallel a sixth horizontal section, a seventh horizontal section, an eighth horizontal section, and a straight section and a fourth vertical section of Pingnu, the third vertical section being vertically connected to one end of the fifth horizontal section and the ♦ seven horizontal section, the fourth The vertical section is disposed on the opposite side of the third vertical section, and is vertically connected to the sixth horizontal section and the eighth horizontal section, and is connected to the fourth horizontal section and the eighth horizontal section. The above-mentioned miniaturized dual-frequency printed dipole antenna is printed on a FR4 board having a dielectric constant of 4.4 and a loss tangent of 245. 0245. The miniaturized dual-frequency printed dipole antenna described above is fed with a 50 ohm coaxial cable. In the above-described miniaturized dual-frequency printed dipole antenna, the gap between the first radiating portion and the second radiating portion is 1 to 3 mm. The crotch segment, the second horizontal segment, and the fourth horizontal segment form a dome shape. In the above miniaturized dual-frequency printed dipole antenna, the first vertical segment, the first horizontal segment and the third horizontal segment form a dome shape. The second vertical portion, the third horizontal portion, the fifth horizontal portion, and the seventh horizontal portion form a dome shape. The fourth vertical section, the sixth horizontal section, and the eighth horizontal section form a dome shape. The present invention is a wide-band printed dipole antenna comprising the above-described miniaturized dual-frequency printed dipole antenna, which is respectively provided in the first radiating portion and the first radiating portion;

直段之一端開始延伸,並垂直連接 於第八水平段之另一端。 上述之寬頻 2. 49GHz 以上。 一端。One end of the straight section begins to extend and is vertically connected to the other end of the eighth horizontal section. The above broadband is 2. 49 GHz or more. One end.

200929697 ' 本發明之優點如下: 1.本發明的雙頻及寬頻印刷偶極天線,其體積僅有 4〇Xl〇x〇. 8mm3 ,可應用於WIMX規格, 低姿勢、質量輕、製造容易等優點,由於其=單: 成本較低廉。 〇 2·本發明之寬頻印刷偶極天線經最佳化後,從返回 損失大於7.5dB來看,可產生2 49GHz以上的寬頻操作, 其頻帶涵蓋WiMAX之三頻操作頻帶,有著良好的輕射特 〇 f生小型化的體積和全向向同性的輻射場型圖等優點。 3.本發明之天線可任意設計成為寬頻或雙頻操 作,而當雙頻操作時更可為電路設計上省下濾波器的成 本,而且此設計只需使用頻寬調控部與輻射部相連造成 抑制頻帶出現,相當便利。 【實施方式】 首先,如第一圖所示,為本發明之第一實施例,係 ❹一種小型化雙頻印刷偶極天線,於相對介電常數為石 r=4.4,損耗正切為0.0245,厚度為〇.8mm及面積為4〇丽 X 10mm的FR4之基板(1 )上形成有: 第一輻射部(2 ),係包括平行排列之水平段組(21 ) 及垂直段組(22),其中該水平段組(21)包含有:第 一水平段(211)、第二水平段( 212)、第三水平段(213)、 第四水平段(214 ),而垂直段組(22 )則包含有:第一 垂直段(221)、第二垂直段(222 ) ’該第一垂直段(221) 係與第一水平段(211)、第三水平段(213)之一端垂 200929697 ’直相連,形成〔形,該第二垂直段(222 )係設於第一垂 直段(221)之相對侧’而與第二水平段(212)、第四 水平段(214)之一端垂直相連,形成匚形,且第二水平 段(212 )及第三水平段(213 )係交錯排列於第一水平 段(211 )及第四水平段(214 )之相對内侧。 第二輻射部(3 )’係沿基板(1 )中心線與第一輻 射部(2)對稱,並與第一輻射部(2)間隔有一係1〜3mm 之間隙(4 ),該第二輻射部(3 )包括有:平行排列之 Ο水平段組(31 )以及垂直段組(3 2 ),其中該水平段組 (31) 包括:第五水平段(311)、第六水平段(312)、 第七水平段(313)、第八水平段(314),該垂直段組 (32) 包括:第三垂直段(321)、第四垂直段(322), 該第三垂直段(321 )係與第五水平段(311 )、第七水 平段(313)之一端垂直相連,形成匚形,該第四垂直段 ( 322 )係設於第三垂直段(321)之對侧,而與第六水 ❹平段(312)、第八水平段(314)垂直相連,形成匚形, 且第六水平段(312)及第七水平段(313)係交錯排列 於第五水平段(311 )及第八水平段(314 )之相對内侧。 饋入部(5),其一端設有第一饋入端(51)以及 第二饋入端(52),係以第一饋入端(51)與第一輻射 部(2)之第四水平段(214)相連,以第二饋入端(52) 與第二輻射部(3)之第八水平段(314)相連,該饋入 部(5 )係沿基板(1 )中線筆直饋入一 5〇歐姆的訊號饋 入線’係一同軸電繞,其寬度為2賴。 200929697 n如丨第:圖所示,為本發明之第二實施例,係-種以 =之係=㈣頻㈣偶極天線所構成之寬頻印刷偶極 天線,係刀別於别述之第一輻射部(2) 分別設有兩個第一頻寬調押邻 ^ 狄邱,7、 / ( )、(6A)與第二頻寬調 二。 、(7A),連接成彎折路徑偶極天線,可有效 頻寬,經最佳化尺寸後,即形成一寬頻操作 之WiMAX印刷偶極天線,其中: Ο Ο 第一頻寬調控部(6)係垂直連接於第二水平段 (212)及第三水平段(213) £ 雄 丁权、之間,另一第一頻寬調控 '(6A)則自第—垂直段(221)之—端㈣延伸,並垂 直連接於第四水平段(214)之另一端。 第一頻寬調控部(7)係垂直連接於第六水平段 )及第七水平#又(313)之間,另一第二頻寬調控 部ΠΑ )則自第五垂直段(321 )之一端開始延伸,並垂 直連接於第八水平段(314)之另一端。 上述之寬頻印刷偶極天線,其操作頻寬係在 2· 49GHz 以上。 第二圖為調整第一輻射部(2)和第二輻射部(3) 之間隙(4 )[即圖中之參數G]之返射損失圖,在間隙(4 ) 由3mm縮小至imm時,整體阻抗匹配變佳,是重要參數 之一。 第四圖為本第二實施例之返回損失圖,其中實線代 表實驗量測、虛線代表軟體模擬的結果,此操作頻段 2· 49〜6GHz是符合WIMAX技術之操作頻段。 200929697 .。第五圖、第六圖及第七圖分別為本第二實施例,其 操作頻率在2. 5GHz、3. 5GHz和5· 5GHz時,平面和 X Y平面上的主極化和交差極化遠場輻射場形實驗量測 結果,且從這些輻射場形的結果顯示本第二實施例具有 不錯的主極化輻射,且為常用的垂向輻射(br〇adside radiation)。 第八圖為本第二實施例之天線增益圖對頻率變化 圖,由圖可知三個頻段的天線分別的最大增益值分別為 〇 3. 41,3. 64及5. 93dBi,除了滿足WiMAX系統高增益的 需求’並且有更小更輕薄的體積。 【圖式簡單說明】 第一圖本發明之第一實施例的幾何結構圖。 第二圖本發明之第二實施例之幾何結構圖。 第二圖本發明之第二實施例之參數G增減對返回損失 的影響。 第四圖本發明之第二實施例之返回損失實驗量測結 果。 ’ 第五圖本發明之第二實施例分別在X-Y平面和Y-Z平 面的2.5GHz之輻射場型圖。 第六圖本發明之第二實施例分別在X-Y平面和Y-Z平 面的3.5GHz之輕射場型圖。 第七圖本發明之第二實施例分別在X-Y平面和Y-Z平 面的5· 5GHz之韓射場型圖。 第八圖本發明第二實施例之天線增益對頻率變化圖。 200929697 Ο200929697 ' The advantages of the present invention are as follows: 1. The dual-frequency and wide-band printed dipole antenna of the present invention has a volume of only 4 〇Xl〇x〇. 8mm3, which can be applied to WIMX specifications, low posture, light weight, easy manufacturing, etc. Advantages, due to its = single: lower cost. 〇2· The wideband printed dipole antenna of the present invention is optimized to have a broadband operation of more than 2 49 GHz from a return loss of more than 7.5 dB, and the frequency band covers the tri-frequency operating band of WiMAX, and has a good light shot. It is characterized by the miniaturized volume and the isotropic radiation field pattern. 3. The antenna of the present invention can be arbitrarily designed to operate as a wide frequency or dual frequency, and the cost of the filter can be saved for the circuit design when the dual frequency operation is performed, and the design only needs to be connected to the radiation portion by using the bandwidth control portion. It is quite convenient to suppress the band. [Embodiment] First, as shown in the first figure, a first embodiment of the present invention is a miniaturized dual-frequency printed dipole antenna having a relative dielectric constant of stone r=4.4 and a loss tangent of 0.0245. The substrate (1) having a thickness of 〇.8 mm and an area of 4 X10 x 10 mm is formed with: a first radiating portion (2) comprising a horizontal segment group (21) and a vertical segment group (22) arranged in parallel. The horizontal segment group (21) includes: a first horizontal segment (211), a second horizontal segment (212), a third horizontal segment (213), a fourth horizontal segment (214), and a vertical segment group (22) The first vertical segment (221) and the second vertical segment (222) are connected to the first horizontal segment (211) and the third horizontal segment (213). 'Directly connected, forming a shape, the second vertical segment (222) is disposed on the opposite side of the first vertical segment (221) and perpendicular to one of the second horizontal segment (212) and the fourth horizontal segment (214) Connected to form a dome shape, and the second horizontal segment (212) and the third horizontal segment (213) are staggered in the first horizontal segment (211) and the fourth level (214) of the opposite inner side. The second radiating portion (3)' is symmetric with the first radiating portion (2) along the center line of the substrate (1), and is spaced apart from the first radiating portion (2) by a gap (4) of 1 to 3 mm, the second The radiation portion (3) includes: a horizontal horizontal segment group (31) and a vertical segment group (3 2 ) arranged in parallel, wherein the horizontal segment group (31) includes: a fifth horizontal segment (311) and a sixth horizontal segment ( 312), a seventh horizontal segment (313), an eighth horizontal segment (314), the vertical segment group (32) includes: a third vertical segment (321), a fourth vertical segment (322), the third vertical segment ( 321) is perpendicularly connected to one end of the fifth horizontal section (311) and the seventh horizontal section (313) to form a dome shape, and the fourth vertical section (322) is disposed on the opposite side of the third vertical section (321). And perpendicularly connected with the sixth horizontal section (312) and the eighth horizontal section (314) to form a dome shape, and the sixth horizontal section (312) and the seventh horizontal section (313) are staggered in the fifth horizontal section. The opposite inner side of (311) and the eighth horizontal segment (314). The feeding portion (5) has a first feeding end (51) and a second feeding end (52) at one end thereof, and is a fourth level of the first feeding end (51) and the first radiating portion (2) The segments (214) are connected to each other, and the second feeding end (52) is connected to the eighth horizontal segment (314) of the second radiating portion (3), and the feeding portion (5) is fed straight along the center line of the substrate (1). A 5 〇 ohm signal feed line is a coaxial winding with a width of 2 Å. 200929697 n, as shown in the figure: is a second embodiment of the present invention, which is a wide-band printed dipole antenna composed of a = (four) frequency (four) dipole antenna, which is different from the other A radiating portion (2) is respectively provided with two first bandwidths, which are adjacent to each other, and the second, second, and second bandwidths are adjusted. (7A), connected to the bend path dipole antenna, can effectively bandwidth, after optimizing the size, form a broadband operating WiMAX printed dipole antenna, where: Ο Ο first bandwidth control unit (6 ) is vertically connected to the second horizontal segment (212) and the third horizontal segment (213) between the male and the right, and the other first bandwidth control '(6A) is from the first-vertical segment (221) - The end (four) extends and is vertically connected to the other end of the fourth horizontal section (214). The first bandwidth control section (7) is vertically connected to the sixth horizontal section) and the seventh level # (313), and the other second bandwidth regulation section ΠΑ is from the fifth vertical section (321) One end begins to extend and is vertically connected to the other end of the eighth horizontal segment (314). The wide-band printed dipole antenna described above has an operating bandwidth of more than 2·49 GHz. The second figure is a map of the return loss of the gap (4) of the first radiating portion (2) and the second radiating portion (3) [ie, the parameter G in the figure], when the gap (4) is reduced from 3 mm to imm. The overall impedance matching is better and is one of the important parameters. The fourth figure is the return loss diagram of the second embodiment, wherein the solid line represents the experimental measurement and the broken line represents the result of the software simulation. The operating band 2·49~6 GHz is the operating frequency band conforming to the WIMAX technology. 200929697 .. The fifth, sixth, and seventh diagrams are respectively the second embodiment, and the operating frequency is 2. 5 GHz, 3.5 GHz, and 5·5 GHz, and the main polarization and the cross polarization are far in the plane and the XY plane. The field radiation field shape experimental measurement results, and the results from these radiation field shapes show that the second embodiment has good main polarization radiation and is a commonly used rading radiation. The eighth figure is the antenna gain map versus the frequency change diagram of the second embodiment. It can be seen that the maximum gain values of the antennas of the three frequency bands are respectively 〇3.11, 3.64 and 5.93dBi, in addition to satisfying the WiMAX system. High gain requirements' and have smaller, thinner and lighter volumes. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a geometrical view of a first embodiment of the present invention. Second Figure is a geometrical view of a second embodiment of the present invention. The second graph shows the effect of the increase or decrease of the parameter G of the second embodiment of the present invention on the return loss. Figure 4 is a graph showing the return loss experimental measurement results of the second embodiment of the present invention. The fifth embodiment of the second embodiment of the present invention has a radiation field pattern of 2.5 GHz on the X-Y plane and the Y-Z plane, respectively. Fig. 6 is a view showing a light field pattern of 3.5 GHz in the X-Y plane and the Y-Z plane, respectively, of the second embodiment of the present invention. Fig. 7 is a view showing a Korean field pattern of 5·5 GHz on the X-Y plane and the Y-Z plane, respectively, in the second embodiment of the present invention. Figure 8 is a diagram showing the antenna gain versus frequency variation of the second embodiment of the present invention. 200929697 Ο

【主要元件符號說明】 (1) 基板 (2) 第一輻射部 (21) (211) 第一水平段 (212) (213) 第三水平段 (214) (22) 垂直段組 (221) (222 ) 第二垂直段 (3) 第二輻射部 (31) (311) 第五水平段 (312) (313) 第七水平段 (314) (32) 垂直段組 (321) (322 ) 第四垂直段 (4) 間隙 (5) (51 ) 第一饋入端 (52) (6) 第一頻寬調控部 (6A) 第一頻寬調控部 (7) 第二頻寬調控部 (7A) 第二頻寬調控部 水平段組 第二水平段 第四水平段 第一垂直段 水平段組 第六水平段 第八水平段 第三垂直段 饋入部 第二饋入端 12[Description of main component symbols] (1) Substrate (2) First radiating section (21) (211) First horizontal section (212) (213) Third horizontal section (214) (22) Vertical section group (221) ( 222) second vertical segment (3) second radiating portion (31) (311) fifth horizontal segment (312) (313) seventh horizontal segment (314) (32) vertical segment group (321) (322) fourth Vertical section (4) Clearance (5) (51) First feed end (52) (6) First bandwidth control unit (6A) First bandwidth control unit (7) Second bandwidth control unit (7A) Second bandwidth control section horizontal segment group second horizontal segment fourth horizontal segment first vertical segment horizontal segment group sixth horizontal segment eighth horizontal segment third vertical segment feeding portion second feeding end 12

Claims (1)

200929697 十、申請專利範圍: 1· 一種小型化雙頻印刷偶極天線,係於基板上形成 有: 第一輻射部’係包括平行排列之第一水平段、第二 水平奴、第三水平段、第四水平段以及第一垂直段、第 一垂直段,該第一垂直段係與第一水平段、第三水平段 之-端相連,該第二垂直段係設於第一垂直段之對侧' 而與第二水平段、第四水平段之一端相連; 〇 »二輻射部,係沿基板中心線與第一輕射部對稱, 並與第-輻射部隔有-間隙’包括有:平行排列之第五 水平段、第六水平段、第七水平段、第人水平段以及第 二垂直段、第四垂直段,該第三垂直段係與第五水平段、 第七水平段之一端垂直相連,該第四垂直段係設於第三 垂直段之對侧’而與第六水平段、第八水平段垂直相連; 饋入部,係與第四水平段及第八水平段相連。 ❹ 2·如申明專利範圍第1項所述之小型化雙頻印刷 偶極天線,係印製在—相對介電常數為4 4,損耗正切 (loss tangent)為 0.0245 之 FR4 板上。 3.如申請專利範圍《 1項所述之小型化雙頻印刷 偶極天線’該饋人部係饋人有50歐姆之同轴電緵。 4·如申請專利範圍» 1項所述之小型化雙頻印刷 偶極天線,第-輻射部與第二輻射部之間隙係卜3咖。 5.如申明專利|&圍帛丨項所述之小型化雙頻印刷 偶極天線,該第-垂直段、第—水平段以及第三水平段 13 200929697 • 係形成一 c形。 6.如申請專利範圍第1項所述之小型化雙頻印刷 偶極天線’該第__垂直段、第二水平段以及第四水平段 係形成一 C形。 7·如申明專利範圍第1項所述之小型化雙頻印刷 偶極天線,該第三垂直段、第五水平段以及第七水平段 係形成一 C:形。 8. 如申請專利範圍帛丨項所述之小型化雙頻印刷 €>偶極天、線,該第四垂直段、第六水平段以及第八水平段 係形成一 C形。 9. 如申請專利範圍第i項所述之小型化雙頻印刷 偶極天線’該第四垂直段、第六水平段、第八水平段係 形成一 C形。 10. —種以申請專利範圍第丨項所述之小型化雙頻 印刷偶極天線所構成之小型化寬頻印刷偶極天線,係分 ❹別於第一輻射部與第二輻射部設有: 兩個第一頻寬調控部,其中一個第一頻寬調控部係 垂直連接於第二水平段及第三水平段之間,另一第一頻 寬調控部則自第一垂直段之一端開始延伸,並垂直連接 於第四水平段之另一端,以及; 兩個第二頻寬調控部,其中一個第二頻寬調控部係 垂直連接於第六水平段及第七水平段之間,另一第二頻 寬調控部則自第五垂直段之一端開始延伸,並垂直連接 於第八水平段之另一端。 200929697 11.如申請專利範圍第10項所述之小型化寬頻印 刷偶極天線,其操作頻寬係在2. 49GHz以上。200929697 X. Patent application scope: 1. A miniaturized dual-frequency printed dipole antenna is formed on a substrate: the first radiating portion includes a first horizontal segment, a second horizontal slave, and a third horizontal segment arranged in parallel a fourth horizontal segment and a first vertical segment, the first vertical segment, the first vertical segment is connected to the end of the first horizontal segment and the third horizontal segment, and the second vertical segment is disposed in the first vertical segment The opposite side is connected to one end of the second horizontal section and the fourth horizontal section; the 辐射»two radiation part is symmetric with the first light-emitting part along the center line of the substrate, and is separated from the first-radiation part by a gap-included : a fifth horizontal section, a sixth horizontal section, a seventh horizontal section, a first horizontal section, and a second vertical section and a fourth vertical section arranged in parallel, the third vertical section and the fifth horizontal section and the seventh horizontal section One end is vertically connected, the fourth vertical section is disposed on the opposite side of the third vertical section and is perpendicularly connected to the sixth horizontal section and the eighth horizontal section; the feeding section is connected to the fourth horizontal section and the eighth horizontal section . ❹ 2· The miniaturized dual-frequency printed dipole antenna described in item 1 of the patent scope is printed on an FR4 board with a relative dielectric constant of 4 4 and a loss tangent of 0.0245. 3. For example, the miniaturized dual-frequency printed dipole antenna described in the scope of claim 1 has a 50 ohm coaxial power supply. 4. The miniaturized dual-frequency printing dipole antenna as described in the scope of application of the patent»1, the gap between the first radiation portion and the second radiation portion is 3 coffee. 5. The miniaturized dual-frequency printed dipole antenna as described in the patent & cofferdam, the first vertical section, the first horizontal section and the third horizontal section 13 200929697 • forms a c-shape. 6. The miniaturized dual-frequency printed dipole antenna of claim 1 wherein the first __ vertical segment, the second horizontal segment, and the fourth horizontal segment form a C shape. 7. The miniaturized dual-frequency printed dipole antenna of claim 1, wherein the third vertical segment, the fifth horizontal segment, and the seventh horizontal segment form a C: shape. 8. The miniaturized dual-frequency printing as described in the scope of the patent application, the dipole day, the line, the fourth vertical segment, the sixth horizontal segment and the eighth horizontal segment form a C shape. 9. The miniaturized dual-frequency printed dipole antenna as described in claim i, wherein the fourth vertical segment, the sixth horizontal segment, and the eighth horizontal segment form a C shape. 10. A miniaturized wide-band printed dipole antenna comprising a miniaturized dual-frequency printed dipole antenna as described in the scope of the patent application, wherein the first radiating portion and the second radiating portion are provided separately from: Two first bandwidth control units, wherein one first bandwidth control unit is vertically connected between the second horizontal segment and the third horizontal segment, and the other first bandwidth control portion is from one end of the first vertical segment Extending and vertically connected to the other end of the fourth horizontal section, and; two second bandwidth regulating sections, wherein one of the second bandwidth regulating sections is vertically connected between the sixth horizontal section and the seventh horizontal section, and A second bandwidth control portion extends from one end of the fifth vertical segment and is vertically connected to the other end of the eighth horizontal segment. The operating bandwidth of the miniaturized wide-band printed dipole antenna according to claim 10 is more than 2.49 GHz. ❹ 15❹ 15
TW96148894A 2007-12-20 2007-12-20 Miniaturized dual band and wideband printed dipole antenna TW200929697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96148894A TW200929697A (en) 2007-12-20 2007-12-20 Miniaturized dual band and wideband printed dipole antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96148894A TW200929697A (en) 2007-12-20 2007-12-20 Miniaturized dual band and wideband printed dipole antenna

Publications (2)

Publication Number Publication Date
TW200929697A true TW200929697A (en) 2009-07-01
TWI335689B TWI335689B (en) 2011-01-01

Family

ID=44864606

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96148894A TW200929697A (en) 2007-12-20 2007-12-20 Miniaturized dual band and wideband printed dipole antenna

Country Status (1)

Country Link
TW (1) TW200929697A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497831B (en) * 2012-11-09 2015-08-21 Wistron Neweb Corp Dipole antenna and radio-frequency device
CN110148835A (en) * 2019-06-04 2019-08-20 深圳市友华通信技术有限公司 Double frequency high-gain intelligent gateway antenna

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9190729B2 (en) * 2012-05-24 2015-11-17 Netgear, Inc. High efficiency antenna
TWI513105B (en) 2012-08-30 2015-12-11 Ind Tech Res Inst Dual frequency coupling feed antenna, cross-polarization antenna and adjustable wave beam module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497831B (en) * 2012-11-09 2015-08-21 Wistron Neweb Corp Dipole antenna and radio-frequency device
CN110148835A (en) * 2019-06-04 2019-08-20 深圳市友华通信技术有限公司 Double frequency high-gain intelligent gateway antenna
CN110148835B (en) * 2019-06-04 2024-03-19 深圳市友华通信技术有限公司 Dual-frequency high-gain intelligent gateway antenna

Also Published As

Publication number Publication date
TWI335689B (en) 2011-01-01

Similar Documents

Publication Publication Date Title
TWI499132B (en) Antenna module
JP5777885B2 (en) Multi-band built-in antenna
TWI323956B (en)
US7733286B2 (en) Wideband printed dipole antenna for wireless applications
US7321333B2 (en) Antenna structure
TWI248231B (en) Planar monopole antenna
US20120032870A1 (en) Broadband antenna using coupling matching with short-circuited end of radiator
KR100616545B1 (en) Multi-band laminated chip antenna using double coupling feeding
CN110165413A (en) Antenna system, broadband microstrip antenna and aerial array
US7791545B2 (en) Multiband antenna
KR100998524B1 (en) Dual-wideband monopole antenna using a modified Sierpinski fractal gasket
TW200929697A (en) Miniaturized dual band and wideband printed dipole antenna
KR100777665B1 (en) Small fractal antenna for multi-band operation
Parkash et al. Design and development of CPW-fed microstrip antenna for WLAN/WiMAX applications
TW200409402A (en) Independently tunable multiband meanderline loaded antenna
TWI536666B (en) Antenna
KR100669249B1 (en) Ultra-WideBand Slot Antenna having a Semi-Circular Extension
KR20090107736A (en) Multi-band antenna
KR100920018B1 (en) Wide Band Width/ Dual Frequency Microstrip Antenna and Array Antenna
CN106505323A (en) Low frequency broadband mobile terminal antenna is realized using double resonance
KR100924126B1 (en) Multi band antenna using fractal structure
CN106058442B (en) A kind of antenna
TW200803052A (en) Triple-band single dipole antenna of small coplanar waveguide feed-in type
TWI459640B (en) A novel design of planar multiband t-shaped monopole antenna for wlan/wimax system
TWI492452B (en) Coupling feed-in loop antenna

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees