TW200929648A - Method for making touch panel - Google Patents

Method for making touch panel Download PDF

Info

Publication number
TW200929648A
TW200929648A TW96151272A TW96151272A TW200929648A TW 200929648 A TW200929648 A TW 200929648A TW 96151272 A TW96151272 A TW 96151272A TW 96151272 A TW96151272 A TW 96151272A TW 200929648 A TW200929648 A TW 200929648A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
flexible substrate
layer
touch panel
preparing
Prior art date
Application number
TW96151272A
Other languages
Chinese (zh)
Other versions
TWI360903B (en
Inventor
Kai-Li Jiang
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96151272A priority Critical patent/TWI360903B/en
Publication of TW200929648A publication Critical patent/TW200929648A/en
Application granted granted Critical
Publication of TWI360903B publication Critical patent/TWI360903B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Laminated Bodies (AREA)
  • Position Input By Displaying (AREA)

Abstract

The present invention relates to a method for making a touch panel. The method includes the steps of: providing a flexible base; fabricating at least one carbon nanotube film; laying the at least one carbon nanotube film on a surface of the flexible base, thereby forming at least one carbon nanotube layer on the surface of the flexible base; hot-pressing the flexible base laid the at least one carbon nanotube layer; and separately forming at least two electrodes on the carbon nanotube layers, thereby forming the touch panel.

Description

200929648 九、發明說明: 【發明所屬之技術領域】 ’ 科明涉及—種觸摸屏的製備方法,尤其涉及一種梁 性觸摸屏的製備方法。 【先前技術】 近年來#隨著移動電話與觸摸導銳系統等各種電子設備 的高性能化和多樣化的發展,在液晶等顯示設備的前面安裝透 光|·生的觸摸屏的電子没備逐步增加。這樣的電子設備的利用老 ❹j過觸摸,邊對位於觸摸屏背面的顯示設備的顯示内容進 灯視覺確㉙’-邊彻手指或筆等方式按壓觸摸屏來進行操 作。由此’可以操作電子設備的各種功能。 按照觸摸屏的工作原理和傳輸介質的不同,先前技術中的 觸摸屏分爲四種類型,分別爲電阻式、電容式、紅外線式以及 表面聲波式。其中電容式觸摸屏因準確度較高、抗干擾能力强 應用較爲廣泛(李樹本,王清弟,吉建華,光電子技術,v〇 P62 (1995))。 © 賴技射的電容型觸摸屏包括-破璃基板…透明導電 層,以及多個金屬電極。在該電容型觸摸屏中,玻璃基板的材 料爲納鮮玻璃。透明導電層爲例如銦錫氧化物(ιτ〇)或錄錫氧 化物(ΑΤΟ)等透明材料。電極爲通過印製具有低電阻的導電 金屬(例如銀)械。電極間隔設置在透料電層的各個角處。 此外,透明導電層上塗覆有鈍化層。該鈍化層由液體玻璃材料 通過硬化或緻密化工藝,並進行熱處理後,硬化形成。 當手指等觸摸物觸摸在觸摸屏表面上時,由於人體電場, 手指等觸摸物和觸摸屏中的透明導電層之間形成一個耦合電 6 200929648 容。對於高頻電流來說’電容為直接導體,手指等觸摸物的觸 摸將從接觸點吸走一個很小的電流。這個電流分別從觸模屏上 • 的電極中流出,並且流經這四個電極的電流與手指到四角的距 離成正比,觸摸屏控製器通過對這四個電流比例的精確計算, 得出觸摸點的位置。 然而,隨著顯示技術的日益發展,採用柔性材料製造的柔 性顯示設備已經被製造和生産’如有機電致發光顯示器(OLED) 和電子紙(e-paper)。在這些柔性顯示設備上設置的觸摸屏須爲一 ❹柔性觸摸屏。先前技術中觸摸屏的基板爲一不可變形的玻璃基 板,並且,透明導電層通常採用ITO層。ITO層作爲透明導電 層具有機械和化學耐用性不好’無法彎折等缺點,因此,上述 觸摸屏只適合設置於不可變形的傳統顯示設備上,無法用於柔 性顯示設備。另外’ ITO層目前主要採用濺射或蒸鍵等方法製 備’在製備的過程中’需要較高的真空環境及加熱到2〇〇〇c 〜300°C,因此’使得ITO層的製備成本較高。進一步地,採用 ITO層作透明導電層存在電阻阻值分布不均勻的現象,導致先 Ο前技術中的電谷式觸摸屏存在分辨率低、精確度不高等問題。 有鑒於此,確有必要提供一種製備柔性觸摸屏的方法,且 該方法具有工藝簡單、成本低等優點。 【發明内容】 一種觸摸屏的製備方法,其包括以下步驟:提供一柔性基 體;製備至少一奈米碳管薄膜;將上述至少一奈米碳管薄膜鋪 設在所述柔性基體的表面,從而形成至少一覆蓋在所述柔性基 體表面上的奈米碳管層;熱壓覆蓋覆蓋有奈米碳管層的柔性基 體;以及間隔地形成至少兩個電極於上述熱壓後的奈米碳管層 7 200929648 的表面,從而形成一觸摸屏 與先前技術的觸摸屏的製備方法相比較 的觸摸屏的製備方法具有以下優點:复一,由於案棱供 有優异的力學特性並且耐弯折,&amp;,採用上述的; 進-步地,與紐基魏合,可叫備—柔 ^械强度。 合用於柔性顯示裝置上。其二,由於㈣屏’從而適 管薄膜由-拉伸卫具拉取而獲得,該方法I需真米碳 ❹ =二=述的方法製備的奈米破管薄“3 及製備_摸屏’具有成本低、環保及祕的舰。其三 於本實施例提供的奈米碳管層和柔性基體可通過―熱^寇 結在柔性基體上,從而降低了製作成本,簡化了製作工# -步地’本實施賴減過程,溫度要求較低,從 體材料的溫度限製較小。 八 ^ 【實施方式】 以下將結合附圖對本技術方案作進一步的詳細說明。 請參閱圖1’本技術方案實施例爲一觸摸屏的製備方法,其 主要包括以下步驟: ^ 步驟一:提供一柔性基體。 所述柔性基體爲柔性平面結構,厚度爲0 01毫米〜丄厘米。 該柔性基體由塑料,樹脂等柔性材料形成。具體地,所述柔性 基體的材料可以爲聚碳酸酯(pc)、聚甲基丙烯酸甲酯(PMMA)、 聚對苯二甲酸乙二醇酯(PET)等聚酯材料,以及聚醚颯(pES)、 聚亞醯胺(PI)、纖維素酯、苯並環丁烯(BCB)、聚氣乙烯(pvc) 8 200929648 及丙稀酸樹脂等材料。可以理解,形成所述柔性基體的材料並 不限於上述列舉的材料,只要確保柔性基體具有一定柔 好的透明度即可。 ' 其中,本實施例的柔性基體爲一聚對笨二甲酸乙二醇酯 (PET)薄膜(以下簡稱PET薄膜)’該pET薄膜的厚度爲2毫米: 寬度爲20厘米’長度爲3〇厘米。 ' 步驟二:製備至少一個奈米碳管薄膜。 其中,所述奈米碳管薄膜的製備步驟包括:提供一奈米碳 β管陣列;以及採用一拉伸工具從所述奈米碳管陣列中拉取莽 一奈米碳管薄膜。 Λ ’ 首先’提供一奈米碳管陣列,優選地,該陣列爲超順排夺 米碳管陣列。 $ 本技術方案實施例提供的奈米碳管陣列爲單壁奈米碳管陣 列、雙壁奈米碳管陣列或多壁奈米碳管陣列。本實施例中,超 順排奈米碳管陣列的製備方法採用化學氣相沈積法,其具體步 ❹驟包括:(a)提供一平整基底,該基底可選用ρ型或Ν型矽基 底,或選用形成有乳化層的梦基底,本實施例優選爲採用4英 寸的石夕基底;(b)在基底表面均勻形成一催化劑層,該催化劑 層材料可選用鐵鎳(Ni)或其任意組合的合 金之一;(c)將上述形成有催化劑層的基底在7〇〇&lt;ϊ(:〜9〇〇。^的 空氣中退火約30分鐘〜90分鐘;(d)將處理過的基底置於反應 爐中,在保護氣體環境下加熱到500。(:〜740°C,然後通入碳源 氣體反應約5〜30分鐘,生長得到超順排奈米碳管陣列,其高^ 爲50微米〜5毫米。該超順排奈米碳管陣列爲多個彼此平 9 200929648 垂直於基底生長的奈米碳管形成的純奈米碳管陣列。通過上述 控製生長條件,該超順排奈米碳管陣列中基本不含有雜質,如 無定型碳或殘留的催化劑金屬顆粒等。該奈米碳管陣列中的奈 米碳管彼此通過凡德瓦爾力緊密接觸形成陣列。該奈米碳管陣 列與上述基底面積基本相同。 本實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性質較 活潑的碳氫化合物,本實施例優選的碳源氣爲乙炔;保護氣體 爲氮氣或惰性氣體,本實施例優選的保護氣體爲氬氣。 © 可以理解,本實施例提供的奈米碳管陣列不限於上述製備 方法。也可爲石墨電極恒流電弧放電沈積法、激光蒸發沈積法 等。 其次,採用一拉伸工具從奈米碳管陣列中拉取獲得一奈来 碳管薄膜。其具體包括以下步驟:(a)從上述奈米碳管陣列中 選定一定寬度的多個奈米碳管片斷,本實施例優選爲採用具有 一定寬度的膠帶接觸奈米碳管陣列以選定一定寬度的多個奈米 ^ 碳管片斷;(b)以一定速度沿基本垂直於奈米碳管陣列生長方 向拉伸該多個奈米碳管片斷,以形成一連續的奈米碳管薄膜。 在上述拉伸過程中,該多個奈米碳管片段在拉力作用下沿 拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作用,該選定 的多個奈米碳管片斷分別與其他奈米碳管片斷首尾相連地連續 地被拉出’從而形成一奈米碳管薄膜。 請參閱圖2’該奈米碳管薄膜爲擇優取向排列的多個奈米碳 管束首尾相連形成的具有一定寬度的奈米破管薄膜。該奈米碳 管薄膜中奈米碳管的排列方向基本平行於奈米碳管薄膜的拉伸 200929648 方向。該直接㈣獲得的擇優取__奈米碳管薄膜比無序 的奈米碳管薄麟有更好㈣自性,即具有更羽的厚度以及 更=句的導電性能。同時該直接拉伸獲得奈米碳管薄膜的方法 簡單快速’適宜進行工業化應用。 本實施例中’所述奈米碳管薄膜的寬度與奈米碳管陣列所 =長的基底的尺寸有關,該奈米碳管薄膜的長度不限,可根據 實=需求製得。本實施财_ 4英相基底生長超順排奈米200929648 IX. Description of the invention: [Technical field to which the invention pertains] </ br> relates to a method for preparing a touch screen, and more particularly to a method for preparing a beam touch screen. [Prior Art] In recent years, with the development of high performance and diversification of various electronic devices such as mobile phones and touch-guided sharp systems, optical devices are installed in front of display devices such as liquid crystals. increase. Such an electronic device utilizes an old touch to perform a touch operation on the display content of the display device located on the back of the touch screen by pressing the touch screen in a manner of a finger or a pen. Thus, various functions of the electronic device can be operated. According to the working principle of the touch screen and the transmission medium, the touch screens in the prior art are divided into four types, namely, resistive, capacitive, infrared, and surface acoustic wave. Among them, capacitive touch screens are widely used due to their high accuracy and strong anti-interference ability (Li Shuben, Wang Qingdi, Ji Jianhua, Optoelectronic Technology, v〇 P62 (1995)). © Lai Ge's capacitive touch screen includes a glass substrate... a transparent conductive layer and a plurality of metal electrodes. In the capacitive touch panel, the material of the glass substrate is fresh glass. The transparent conductive layer is a transparent material such as indium tin oxide (ITO) or tin oxide (ITO). The electrode is a conductive metal (e.g., silver) that has a low electrical resistance by printing. The electrode spacing is disposed at each corner of the dielectric layer. Further, the transparent conductive layer is coated with a passivation layer. The passivation layer is formed by a hardening or densification process of the liquid glass material, followed by heat treatment. When a touch object such as a finger touches the surface of the touch screen, a coupling electric power is formed between the touch object such as a finger and a transparent conductive layer in the touch screen due to a human body electric field. For high-frequency currents, the capacitance is a direct conductor, and the touch of a finger or the like picks up a small current from the contact point. This current flows out from the electrodes on the touch screen, and the current flowing through the four electrodes is proportional to the distance from the finger to the four corners. The touch screen controller calculates the touch point by accurately calculating the ratio of the four currents. s position. However, with the development of display technology, flexible display devices fabricated using flexible materials have been manufactured and produced, such as organic electroluminescent displays (OLEDs) and electronic papers (e-papers). The touch screen provided on these flexible display devices must be a flexible touch screen. The substrate of the touch panel in the prior art is a non-deformable glass substrate, and the transparent conductive layer usually employs an ITO layer. The ITO layer as a transparent conductive layer has disadvantages such as poor mechanical and chemical durability, such as the inability to bend. Therefore, the touch panel described above is only suitable for being placed on a non-deformable conventional display device and cannot be used for a flexible display device. In addition, the 'ITO layer is currently mainly prepared by sputtering or steaming, etc.' During the preparation process, a higher vacuum environment is required and heating is required to 2 〇〇〇c to 300 °C, thus making the preparation cost of the ITO layer more expensive. high. Further, the use of the ITO layer as the transparent conductive layer has a phenomenon in which the resistance value distribution is uneven, which leads to problems such as low resolution and low precision in the electric valley type touch screen in the prior art. In view of this, it is indeed necessary to provide a method for preparing a flexible touch screen, and the method has the advantages of simple process, low cost, and the like. SUMMARY OF THE INVENTION A method for preparing a touch screen includes the steps of: providing a flexible substrate; preparing at least one carbon nanotube film; laying the at least one carbon nanotube film on a surface of the flexible substrate to form at least a carbon nanotube layer covering the surface of the flexible substrate; hot pressing covering a flexible substrate covered with a carbon nanotube layer; and intermittently forming at least two electrodes on the hot pressed carbon nanotube layer 7 The surface of 200929648, thereby forming a touch screen, compared with the preparation method of the prior art touch screen, has the following advantages: the first one, because the case edge is provided with excellent mechanical properties and is resistant to bending, &amp; Into the step, with the New Zealand Wei, can be called - soft mechanical strength. Used in a flexible display device. Secondly, since the (four) screen is thus obtained by pulling the film from the stretching aid, the method I requires a nanometer carbon crucible = two methods to prepare the nano tube to be thin "3 and preparation_touch screen 'The ship with low cost, environmental protection and secret. The third carbon nanotube layer and the flexible substrate provided in this embodiment can be bonded to the flexible substrate through the heat, thereby reducing the manufacturing cost and simplifying the production work# - Step 'This implementation depends on the reduction process, the temperature requirement is lower, and the temperature limit of the body material is smaller. VIII. [Embodiment] The technical solution will be further described in detail below with reference to the accompanying drawings. The technical solution embodiment is a method for preparing a touch screen, which mainly comprises the following steps: ^ Step 1: providing a flexible substrate. The flexible substrate is a flexible planar structure having a thickness of 0 01 mm to 丄 cm. The flexible substrate is made of plastic. A flexible material such as a resin is formed. Specifically, the material of the flexible substrate may be a polyester material such as polycarbonate (pc), polymethyl methacrylate (PMMA), or polyethylene terephthalate (PET). And polyether oxime ( pES), polyiminamide (PI), cellulose ester, benzocyclobutene (BCB), polyethylene (pvc) 8 200929648 and acrylic resin, etc. It can be understood that the material forming the flexible substrate It is not limited to the materials listed above, as long as the flexible substrate has a certain flexible transparency. The flexible substrate of the present embodiment is a polyethylene terephthalate (PET) film (hereinafter referred to as PET film). The thickness of the pET film is 2 mm: the width is 20 cm and the length is 3 cm. 'Step 2: preparing at least one carbon nanotube film. The preparation steps of the carbon nanotube film include: providing a nano carbon beta tube array; and a tantalum tool for drawing a tantalum carbon nanotube film from the array of carbon nanotubes. Λ 'First' provides a carbon nanotube array, preferably the array The array of carbon nanotubes provided by the embodiment of the present invention is a single-walled carbon nanotube array, a double-walled carbon nanotube array or a multi-walled carbon nanotube array. In the case of preparation of a super-sequential carbon nanotube array The method adopts a chemical vapor deposition method, and the specific steps include: (a) providing a flat substrate, the substrate may be selected from a p-type or a plutonium-based substrate, or a dream substrate formed with an emulsifying layer, and the embodiment is preferably Using a 4 inch stone base; (b) uniformly forming a catalyst layer on the surface of the substrate, the catalyst layer material may be selected from one of iron nickel (Ni) or any combination thereof; (c) forming the catalyst layer described above The substrate was annealed in air of 7 〇〇 (ϊ~9〇〇.^ for about 30 minutes to 90 minutes; (d) the treated substrate was placed in a reaction furnace and heated to 500 in a protective gas atmosphere. (: ~ 740 ° C, then pass the carbon source gas reaction for about 5 to 30 minutes, grow to obtain a super-sequential carbon nanotube array, its height ^ 50 microns ~ 5 mm. The super-sequential carbon nanotube array is a plurality of pure carbon nanotube arrays formed by a plurality of carbon nanotubes that are perpendicular to the substrate. The super-sequential carbon nanotube array is substantially free of impurities such as amorphous carbon or residual catalyst metal particles by controlling the growth conditions as described above. The carbon nanotubes in the array of carbon nanotubes are in close contact with each other to form an array by van der Waals forces. The carbon nanotube array is substantially the same area as the above substrate. In this embodiment, the carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or methane. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment. It is argon. © It is understood that the carbon nanotube array provided in the present embodiment is not limited to the above preparation method. It can also be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method, or the like. Next, a carbon nanotube film was obtained by pulling from a carbon nanotube array using a stretching tool. Specifically, the method comprises the following steps: (a) selecting a plurality of carbon nanotube segments of a certain width from the carbon nanotube array; in this embodiment, it is preferred to contact the carbon nanotube array with a tape having a certain width to select a certain width. a plurality of carbon nanotube segments; (b) stretching the plurality of carbon nanotube segments at a rate substantially perpendicular to the growth direction of the carbon nanotube array to form a continuous carbon nanotube film. In the above stretching process, the plurality of carbon nanotube segments are gradually separated from the substrate in the stretching direction under the action of the tensile force, and the selected plurality of carbon nanotube segments are respectively associated with the other naphthalenes due to the van der Waals force. The carbon nanotube segments are continuously pulled out end to end to form a carbon nanotube film. Referring to Fig. 2', the carbon nanotube film is a nano-tube film having a certain width formed by connecting a plurality of carbon nanotube bundles arranged in a preferred orientation. The arrangement of the carbon nanotubes in the carbon nanotube film is substantially parallel to the stretching of the carbon nanotube film in the direction of 200929648. The direct (four) obtained preferentially obtained __nano carbon nanotube film has better (four) self-sufficiency than the disordered carbon nanotube thinner, that is, has a more plume thickness and more conductivity. At the same time, the direct stretching method for obtaining a carbon nanotube film is simple and rapid, and is suitable for industrial application. In the present embodiment, the width of the carbon nanotube film is related to the size of the substrate in which the carbon nanotube array is long. The length of the carbon nanotube film is not limited and can be obtained according to the actual demand. This implementation of the financial _ 4 Ying phase growth super-shunned nano

Ο 碳管陣列’該奈米碳管薄膜的寬度可爲睛厘米〜Η)厘米,該 =碳管薄膜的厚度爲〇.5奈来^⑽微米。其中,所述奈米碳 2膜中包括多個單壁奈米碳管、雙壁奈米碳管及多壁奈米碳 止的種或几種,該單壁奈米碳管的直裡爲〇5奈米〜%奈 =的奈米碳^的直控爲Μ奈米〜5〇奈米,該多壁奈米碳 &amp;的直徑爲1.5奈米〜50奈米。 步驟「冑上述至少—奈米碳管薄賴設在所述柔性基體 瑞2從而形成至少一覆蓋於所述柔性基體的表面上的奈米 硬管層。 本技術方案實關中’所述奈米碳管層用作透明導電層, 二未碳管層包括多個定向排列的奈米碳管。進一步地,所述 層可以為單個奈米碳管薄膜或為多個平行且無間隙鋪 泊正^薄膜。每個奈米碳管薄财的奈米碳管排列方向 Μ腾行於拉^方向。由於上述的奈米碳管層中的多個奈米碳管 官可以平行且無間隙的鋪設,故,上述奈米碳管層的長度和 ^不限,可根據實際需要製成具有任意長度和寬度的奈米碳 &amp;可以理解’核術方案料的奈米碳管層也可爲其他結 11 200929648 構的奈米碳管層,並不僅限於本實施例所述的結構。 可以理解,本實施例中,還可以將至少兩個奈米碳管薄膜 ‘ 重叠鋪設在所述柔性基體的表面,從而形成覆蓋在所述柔性基 體的表面的多個奈米碳管層,且相鄰的兩個奈米碳管層中的奈 米碳管依據奈米碳管的排列方向以一夾角α鋪設,且0〇^α $ 90°。本實施例中,相鄰的兩個奈米碳管層中的奈米碳管排列方 向的夾角α優選爲90度。 另外,所述將上述至少一奈米碳管薄膜鋪設在所述柔性基 0 體的表面的過程還可爲:將所述至少一個奈米碳管薄膜直接鋪 設在所述支撐體的表面或將多個奈米碳管薄膜平行且無間隙地 鋪設於一支撐體的表面;除去所述支撑體,形成一自支撑的奈 米碳官薄膜結構;及將該奈米碳管層直接覆蓋在所述柔性基體 的表面。可以理解,也可將至少兩個奈米碳管薄膜重叠鋪設在 所述支撑體的表面;相鄰的兩個奈米碳管薄膜中的奈米碳管依 據奈米碳官的排列方向以一交叉角度α直接重叠鋪設,從而形 成多個自支撑的奈米碳管薄膜結構’其中,90。。由於所 述奈米碳管薄膜包括多個定向排列的奈米碳管,且該多個奈米 碳管沿著拉膜的方向排列,故可以將上述的多個奈米碳管薄膜 中的奈米碳管以一交叉角度α設置。 上述支撐體可以爲一基板,也可選用一框架結構。由於本 實施例提供的超順排奈米碳管陣列中的奈米碳管非常純淨,且 由於奈米碳管本身的比表面積非常大,所以該奈米碳管薄膜本 身具有較强的枯性’該奈米碳管薄膜可利用其本身的枯性直接 枯附於基板或框架。奈米碳管薄膜枯附在基板或框架上,基板 12 200929648 或框架以外多餘的奈米碳管薄膜部分可以用刀子刮去。去除基 板或框架,得到一奈米碳管薄膜結構。本實施例中,該基板或 框架的大小可依據實際需求確定。 本實施例中,進一步還可以在將上述至少一奈米碳管薄膜 鋪设在所述柔性基體的表面之前,或形成至少一覆蓋於所述柔 性基體的表面上的奈米碳管層之後,逕行機溶劑處理奈米碳管 薄膜或奈米碳管廣的步驟。該有機溶劑爲揮發性有機溶劑,可 選用乙醇、甲醇、丙剩、二氣乙烧或氯仿等,本實施例中的有 機溶劑採用乙醇。該使用有機溶劑處理的步驟可通過試管將有 機溶劑滴落在奈米碳管薄膜、奈米碳管層或奈米複管薄膜 的表面,並浸潤整個奈米碳管薄膜、奈米後管層或奈米碳管薄 == 上 = 成有奈米碳管層的柔性基體或形成有奈 =管薄膜結構的支撑體整個浸人盛有有機溶劑的容器 潤。所述的奈米碳管薄膜、奈米碳管層 〇 有機溶劑浸潤處理後,在揮發性有機㈣十碳&amp; 4膜、,、°構紅 τ τ 味 评赞往有機溶劑的表面張力的作用 I二行的奈米碳管片斷會部分聚集成奈米碳管束。因此,該 管薄膜、奈古卡碳管層或奈米碳管薄膜結構表面體積比 】、,無粘性,且具有良好的機械强度及韌性。 塗霜:外,還奈米碳管層覆蓋在柔性基體的表面之前, 愛覆低溶點的材料於所述柔性基㈣ 可起到枯結劑的作用,用於將所逃;面。該低溶點的材料 迷柔性基體的-錄面。 碳管料_钻結在所 進一步地,所述低熔點材料 體和奈米碳管層的材料,例騎點均低於所述柔性基 基丙埽暖曱酯(ΡΜΜΑ)等。本 13 200929648 實施例中,所述PN1MA均勻地塗覆在柔性基體的表面。 . 具體地,在塗覆低熔點的材料於柔性基體的表面之前,還 . 進一步包括一清洗的過程。具體地,該清洗的過程爲:用乙醇、 丙酮等有機溶劑清洗所述柔性基體。可以理解,所述對柔性基 體的清洗也町採用其它方法和溶劑,只需確保所述柔性基體表 面無污染物即玎。 步驟四:熱歷覆蓋有奈米碳管層的柔性基體。 請參見圖3及圖4’所述熱壓覆蓋在柔性基體表面上的奈来 φ碳管層的步驟可通過一熱壓裝置30實現,其具體包括以下步驟: 首先,將至少一個上述覆蓋有奈米碳管層的柔性基體22放 置於一具有軋輥的熱壓裝置30中。 所述熱壓裝置30包括一施壓裝置32及一加熱裝置(圖中 未顯示)。本實施例中,所述熱壓裝置30爲熱壓機或封塑機, 所述施壓裝置32爲兩個金屬軋輥, 其次,加熱所述熱壓裝置30中的軋輥。 具體地,用熱壓裝置30中的加熱装置加熱所述的軋輥32。 Φ 本實施例中,加熱的溫度爲〜120〇C。可以理解,所述加熱 札輥32的溫度可以根據實際需要進行選擇。 、 再次,將所述覆蓋有奈米碳管層的柔性基體通過加熱了的 軋鶫32。 本實施例中,將所述覆蓋有奈米碳管層的柔性基體慢慢通 過加熱的金屬雙輥32,速度控製在χ毫米/分〜1〇米/分。加熱了 的軋輥32可以施加一定的壓力於覆蓋有奈米碳管層的柔性基體 之上,並能軟化所述的奈米碳管層和柔性基體,從而使得g米 200929648 碳管層與柔性基體之_线被擠壓出來,從顿得所述奈米 碳管層緊密粘結在所述柔性基體之上。 • 可以理解,所述通過軋輥32的速度可根據實γ雲要選擇, 只需確保奈米碳管層能緊密枯結在所述柔性基體的1*表面即可。 在所述柔性基體的表面塗覆一低熔點的材料,並覆蓋有齐米碳 管層時,本實施例所述的熱壓過程中的溫度需確保低溶== 融化;從而使得經熱壓過程之後,所述低炫點材料能將所述夺 米碳管層和柔性基體粘結在-起。本技術方案實施例中所述的 β溫度並不僅限於上述的溫度範圍,可以理解,封塑機中的溫度 根據低熔點材料的不同而不同,只需確保贿點的材料在熱壓 的過程中融化完全即可。 步驟五:間隔地形成至少兩個電極於上述熱壓後的奈米碳 管層的表面’並與該奈米碳管層形成電連接,從而形成觸摸屏。 其中,可以用導電粘結劑如銀膠等將上述的電極粘結在奈 米碳管層的表面。可以理解,所述電極也可以採用濺射、電鍵^ ❹化學鍍等沈積方法直接形成在奈米碳管薄膜的表面。本實施例 中所述至少兩個電極爲由銀或銅等低電阻的導電金屬錄層或 者金屬箔片組成的條狀電極。該條狀電極透過濺射方法直接間 隔地沈積在奈米碳管薄膜的四個邊上。 所述電極亦可設置於奈米碳管薄膜與柔性基體之間或柔性 基體的表面上,且與奈米碳管薄膜電連接。可以理解,所述電 極的設置方式和粘結方式並不僅限於上述的設置方式和粘結方 式。只要能使上述的電極與奈米碳管薄膜之間形成電連接的方 式都應在本發明的保護範圍内。 15 200929648 :以理解本實施中的至少兩個電极也可在形成奈米碳管 層之=形成在所述紐基體上,至少錢蓋奈米碳管層於所述 柔性基體上,再進行熱壓,最終形成一觸摸屏。 進-步地,可以在所述奈米碳管層和電極之上形成一透明 的防護層,防護層可由氮切、氧切、苯并環丁_cb)、聚 醋膜或丙稀㈣脂等形成。該防護層具有—定的硬度,對透明 導電層起保護作用。 在本實施例中,在形成有電極的透明導電層上形成一二氧 ❹化々層用作防護層’該防護層的硬度達到7H (H爲洛氏硬度試 驗中,卸除主試驗力後,在初試驗力下壓痕殘留的深度)。可以 理解,防護層的硬度和厚度可以根據需要進行選擇。所述防護 層可以通過粘結劑粘結在透明導電層上。 此外,爲了减小由顯示設備産生的電磁干擾,避免從觸摸 屏發出的彳§號産生錯誤,還可在柔性基體的第二表面上通過枯 結劑粘結一屏蔽層。該屏蔽層可由銦錫氧化物(IT〇)薄膜、銻 錫氧化物(ΑΤΟ)薄膜、鎳金薄膜、銀薄膜或奈米碳管層等透 明導電材料形成。本實施例中,該奈米碳管層的具體結構可與 透明導電層相同。該奈米碳管層作爲電接地點,起到屏蔽的作 用’從而使得觸摸屏能在無干擾的環境中工作。可以理解,所 述奈米碳管層還可以為其它結構的奈米碳管層。 本技術方案實施例提供的觸摸屏的製備方法具有以下優 點:其一,由於奈米碳管層具有優异的力學特性並且耐弯折, 故’採用上述的奈米碳管層作透明導電層,可使得透明導電層 具有很好的韌性和機械强度。進一步地,與柔性基體配合,可 16 200929648 以製備一柔性觸摸屏,從 a於太眘而適合用於柔性顯示裝置上。其-, 由於本實施例所提供的奈 =- 得,該方法無需直办援^ 膜由拉伸工具拉取而獲 ^ ^ ' 二兄和加熱過程,故採用上述的方法劁偌 薄膜和柔性基體可通過施例提供的奈求碳管 低了製作成本,簡化了製;;^程U紐顧上,從而降 過程,溫产要加Λ 藝。進一步地,本實施例的熱壓 ❹ ❹ 綜上:、十、而對柔性基體材料的溫度限製較小。 專利申往。ί明確已符合發明補之要件,遂依法提出 明。’ ’以上所料料本發明之較佳實關,自不能 太恭限製本案之申請專利範圍。舉凡熟悉本案技藝之人士援依 發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專 利範圍内。 【圖式簡單說明】 圖1為本技術方案實施例的觸摸屏的製備方法的流程圖。 圖2為本技術方案實施例的透明導電層中奈米碳管薄膜的 掃描電鏡圖。 圖3為本技術方案實施例的熱壓後的奈米碳管層和柔性基 體的照片。 a 圖4為本技術方案實施例的熱壓後的過程的示意圖。 【主要元件符號說明】 無 17Ο Carbon tube array 'The width of the carbon nanotube film can be from eye centimeters to Η) cm, and the thickness of the carbon nanotube film is 〇.5 奈 ^ (10) μm. Wherein, the nanocarbon 2 membrane comprises a plurality of single-walled carbon nanotubes, double-walled carbon nanotubes and multi-walled nanocarbons, and the straight-line of the single-walled carbon nanotubes is 〇 5 nm ~% Nai = nano carbon ^ direct control for Μ nano ~ 5 〇 nano, the multi-walled nano carbon &amp; diameter of 1.5 nm ~ 50 nm. The step "the above at least - the carbon nanotubes are thinly disposed on the flexible substrate 2 to form at least one nano tube layer covering the surface of the flexible substrate. The carbon tube layer is used as a transparent conductive layer, and the second carbon tube layer comprises a plurality of aligned carbon nanotube tubes. Further, the layer may be a single carbon nanotube film or a plurality of parallel and gapless positive ^Film. The arrangement of the carbon nanotubes of each carbon nanotube is entangled in the direction of the pull. Since the above multiple carbon nanotubes in the carbon nanotube layer can be laid in parallel and without gaps Therefore, the length and the length of the above-mentioned carbon nanotube layer are not limited, and the carbon carbon of any length and width can be made according to actual needs. It can be understood that the carbon nanotube layer of the nuclear process material can also be other The carbon nanotube layer of the structure of 200911648 is not limited to the structure described in this embodiment. It can be understood that, in this embodiment, at least two carbon nanotube films may be overlapped and laid on the flexible substrate. Surface, thereby forming a cover over the flexible base a plurality of carbon nanotube layers on the surface, and the carbon nanotubes in the adjacent two carbon nanotube layers are laid at an angle α according to the arrangement direction of the carbon nanotubes, and 0〇^α $ 90° In this embodiment, the angle α of the arrangement direction of the carbon nanotubes in the adjacent two carbon nanotube layers is preferably 90 degrees. In addition, the at least one carbon nanotube film is laid on the flexible The process of the surface of the base may also be: laying the at least one carbon nanotube film directly on the surface of the support or laying a plurality of carbon nanotube films in parallel and without gaps on a support. Surface; removing the support to form a self-supporting nano carbon official film structure; and directly covering the carbon nanotube layer on the surface of the flexible substrate. It is understood that at least two nanocarbons may also be used. The tube film is overlapped and laid on the surface of the support body; the carbon nanotubes in the adjacent two carbon nanotube films are directly overlapped and laid at an intersection angle α according to the arrangement direction of the carbon carbon, thereby forming a plurality of self-separation Supported carbon nanotube film structure 'of which 90. The carbon nanotube film comprises a plurality of aligned carbon nanotubes, and the plurality of carbon nanotubes are arranged along the direction of the film, so that the nano carbon in the plurality of carbon nanotube films can be used. The tube is disposed at an intersection angle α. The support body may be a substrate or a frame structure. The carbon nanotubes in the super-sequential carbon nanotube array provided by the embodiment are very pure and due to the nanometer. The specific surface area of the carbon tube itself is very large, so the carbon nanotube film itself has a strong dryness. The carbon nanotube film can be directly attached to the substrate or the frame by its own dryness. The carbon nanotube film Attached to the substrate or frame, the excess portion of the carbon nanotube film outside the substrate 12 200929648 or the frame can be scraped off with a knife. The substrate or frame is removed to obtain a carbon nanotube film structure. In this embodiment, the substrate or The size of the frame can be determined according to actual needs. In this embodiment, after the at least one carbon nanotube film is laid on the surface of the flexible substrate, or after at least one carbon nanotube layer covering the surface of the flexible substrate is formed, The step of solvent treatment of carbon nanotube film or carbon nanotubes. The organic solvent is a volatile organic solvent, and ethanol, methanol, propane, diethylene or chloroform may be used. The organic solvent in this embodiment is ethanol. The step of treating with an organic solvent can drop the organic solvent on the surface of the carbon nanotube film, the carbon nanotube layer or the nanotube film by a test tube, and infiltrate the entire carbon nanotube film and the back layer of the nano tube. Or the carbon nanotube thin == upper = a flexible substrate having a carbon nanotube layer or a support formed with a naphthalene film structure is entirely immersed in a container containing an organic solvent. After the nanocarbon tube film and the carbon nanotube layer are immersed in an organic solvent, the surface tension of the organic solvent is evaluated in the volatile organic (tetra) ten carbon &amp; 4 film, and the composition of the red τ τ taste. The carbon nanotube fragments of the second row of action I will partially aggregate into the carbon nanotube bundle. Therefore, the surface film volume ratio of the tube film, the naguka carbon tube layer or the carbon nanotube film structure is non-tacky, and has good mechanical strength and toughness. Frosting: In addition, before the carbon nanotube layer is covered on the surface of the flexible substrate, the material that is coated with the low melting point on the flexible base (4) can act as a deadting agent for the escape; The low-melting point material is a flexible substrate-recording surface. The carbon tube material is further formed, and the material of the low melting point material body and the carbon nanotube layer is, for example, lower than the flexible base material, and the like. In the embodiment of the present invention, the PN1MA is uniformly coated on the surface of the flexible substrate. Specifically, before the coating of the low melting point material on the surface of the flexible substrate, a further cleaning process is further included. Specifically, the cleaning process is: washing the flexible substrate with an organic solvent such as ethanol or acetone. It will be appreciated that the cleaning of the flexible substrate employs other methods and solvents, as long as the surface of the flexible substrate is free of contaminants or imperfections. Step 4: The thermal calendar is covered with a flexible substrate of a carbon nanotube layer. Referring to FIG. 3 and FIG. 4', the step of hot pressing the Nie φ carbon tube layer on the surface of the flexible substrate can be implemented by a hot pressing device 30, which specifically includes the following steps: First, at least one of the above is covered The flexible substrate 22 of the carbon nanotube layer is placed in a hot pressing device 30 having rolls. The hot pressing device 30 includes a pressing device 32 and a heating device (not shown). In the present embodiment, the hot pressing device 30 is a hot press or a sealer, and the pressing device 32 is two metal rolls, and secondly, the rolls in the hot pressing device 30 are heated. Specifically, the rolls 32 are heated by a heating means in the heat pressing device 30. Φ In this embodiment, the heating temperature is 〜120 〇C. It can be understood that the temperature of the heating roller 32 can be selected according to actual needs. Again, the flexible substrate covered with the carbon nanotube layer is passed through the heated nip 32. In this embodiment, the flexible substrate covered with the carbon nanotube layer is slowly passed through a heated metal twin roll 32 at a speed of χ mm/min to 1 〇m/min. The heated roll 32 can apply a certain pressure on the flexible substrate covered with the carbon nanotube layer, and can soften the carbon nanotube layer and the flexible substrate, thereby making the carbon meter 200929648 carbon tube layer and the flexible substrate. The wire is extruded and the layer of carbon nanotubes is tightly bonded to the flexible substrate. • It will be appreciated that the speed through the rolls 32 can be selected based on the actual gamma cloud, and it is only necessary to ensure that the carbon nanotube layer can be tightly smeared on the 1* surface of the flexible substrate. When a surface of the flexible substrate is coated with a low melting point material and covered with a carbon nanotube layer, the temperature during the hot pressing process described in this embodiment needs to ensure low solubility == melting; After the process, the low-spot material can bond the carbon nanotube layer and the flexible substrate. The β temperature described in the embodiments of the present technical solution is not limited to the above temperature range. It can be understood that the temperature in the sealing machine varies according to the low melting point material, and only the material of the bribe point is required to be in the process of hot pressing. Melting is complete. Step 5: at least two electrodes are formed at intervals on the surface of the hot-pressed carbon nanotube layer and electrically connected to the carbon nanotube layer to form a touch screen. Among them, the above electrode may be bonded to the surface of the carbon nanotube layer with a conductive adhesive such as silver paste or the like. It can be understood that the electrode can also be directly formed on the surface of the carbon nanotube film by a deposition method such as sputtering, electric bonding, or electroless plating. The at least two electrodes in this embodiment are strip electrodes composed of a low-resistance conductive metal recording layer such as silver or copper or a metal foil. The strip electrodes are deposited directly on the four sides of the carbon nanotube film by sputtering. The electrode may also be disposed on the surface of the carbon nanotube film and the flexible substrate or on the surface of the flexible substrate, and electrically connected to the carbon nanotube film. It can be understood that the arrangement and bonding manner of the electrodes are not limited to the above-described arrangement and bonding method. Any manner in which an electrical connection between the above electrode and the carbon nanotube film can be made is within the scope of the present invention. 15 200929648: It is understood that at least two electrodes in the present embodiment may also be formed on the base substrate in the formation of a carbon nanotube layer, and at least the cover gas carbon nanotube layer is on the flexible substrate, and then Hot pressing, eventually forming a touch screen. Further, a transparent protective layer may be formed on the carbon nanotube layer and the electrode, and the protective layer may be cut by nitrogen, oxygen cut, benzocyclobutane _cb), polyester film or propylene (tetra) grease. Formed. The protective layer has a constant hardness and protects the transparent conductive layer. In this embodiment, a bismuth dioxide layer is formed on the transparent conductive layer on which the electrode is formed as a protective layer. The hardness of the protective layer reaches 7H (H is the Rockwell hardness test, after the main test force is removed) , the depth of the indentation residue under the initial test force). It can be understood that the hardness and thickness of the protective layer can be selected as needed. The protective layer may be bonded to the transparent conductive layer by an adhesive. In addition, in order to reduce the electromagnetic interference generated by the display device and to avoid the occurrence of errors from the touch screen, it is also possible to bond a shield layer with a binder on the second surface of the flexible substrate. The shield layer may be formed of a transparent conductive material such as an indium tin oxide (IT〇) film, a bismuth tin oxide (ITO) film, a nickel gold film, a silver film or a carbon nanotube layer. In this embodiment, the specific structure of the carbon nanotube layer can be the same as that of the transparent conductive layer. The carbon nanotube layer acts as an electrical grounding point and acts as a shield to enable the touch screen to operate in a non-interfering environment. It will be understood that the carbon nanotube layer may also be a carbon nanotube layer of other structures. The method for preparing the touch screen provided by the embodiments of the present technical solution has the following advantages: First, since the carbon nanotube layer has excellent mechanical properties and is resistant to bending, the above-mentioned carbon nanotube layer is used as a transparent conductive layer. The transparent conductive layer can be made to have good toughness and mechanical strength. Further, in cooperation with the flexible substrate, 16 200929648 can be used to prepare a flexible touch screen, which is suitable for use in a flexible display device. - Because of the nephew provided in this embodiment, the method does not require a direct processing aid film to be pulled by the stretching tool to obtain the ^ ^ 'two brothers and the heating process, so the above method is used to film and flexible The base body can reduce the manufacturing cost by the carbon tube provided by the embodiment, and the system is simplified; the process of U is taken care of, and the process of lowering the temperature is required to increase the temperature. Further, the hot press 本 本 of the present embodiment is: ten, and the temperature limit on the flexible base material is small. Patent application. ί clarifies that it meets the requirements of the invention and clarifies it according to law. The above is a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Any equivalent modifications or variations made by those who are familiar with the skill of the present invention in accordance with the spirit of the invention shall be covered by the following application patents. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart of a method for preparing a touch screen according to an embodiment of the present technical solution. 2 is a scanning electron micrograph of a carbon nanotube film in a transparent conductive layer according to an embodiment of the present technical solution. Fig. 3 is a photograph of a carbon nanotube layer and a flexible substrate after hot pressing according to an embodiment of the present technical solution. a FIG. 4 is a schematic diagram of a process after hot pressing of an embodiment of the present technical solution. [Main component symbol description] None 17

Claims (1)

200929648 十、申請專利範圍 種觸摸屏的製備方法,其包括以下步驟: 提供一柔性基體; 製備至少一奈米碳管薄膜; 將上述至少一奈米碳管薄膜鋪設在上述柔性基體的表 面,$而形成至少一覆蓋於所述柔性基體的表面的奈 米碳管層; 熱壓覆蓋有奈米碳管層的柔性基體;以及 _地形成至少兩個電極於上述熱壓後的奈米碳管層 的表面’從而形成一觸摸屏。 2·如申睛專利範圍第1項所述的觸摸屏的製備方法,其 中’所述製備奈求碳管薄膜的方法包括以下步驟:提 供一奈米碳管陣列;及採用一拉伸工具從上述奈米碳 管哮列中拉取獲得一奈米碳管薄膜,該奈米碳管薄膜 中的奈米碳管的排列方向平行於拉伸方向。 〇 3. Μ請專利範圍第i項所述的觸摸屏的製備方法,其 中所述將至少-奈米碳管薄膜舖設在所述柔性基體 的表面的步驟爲將一個奈米碳管薄膜直接鋪設在所述 柔性基體的表面或將多個奈米碳管薄膜平行且益間隙 地鋪設在所述柔性基體的表面,形成一覆蓋在所述柔 性基體的表面的奈米碳管層,該奈米碳管層中的奈求 碳管沿同一方向排列。 4·如申請專利範圍第3項所述的觸摸屏的製備方法,其 中,進一步包括重叠鋪設多個奈米碳管薄膜於所述柔 18 200929648 性基體的表面形成覆蓋在所述柔性基體的表面的多個 奈米碳管層的步驟。 5·如申请專利範圍第4項所述的觸摸屏的製備方法,其 中’所述多個奈米碳管層依據奈米碳管的排列方向以 一父叉角度α直接重叠鋪設,其中,α大於等於零度 且小於等於九十度。 6.如申明專利範圍第1項所述的觸摸屏的製備方法,其 中,所述將至少一奈米碳管薄膜鋪設在所述柔性基體 7.200929648 X. Patent application method for preparing a touch screen, comprising the steps of: providing a flexible substrate; preparing at least one carbon nanotube film; laying the at least one carbon nanotube film on the surface of the flexible substrate, Forming at least one carbon nanotube layer covering the surface of the flexible substrate; hot pressing the flexible substrate covered with the carbon nanotube layer; and forming at least two electrodes on the hot pressed carbon nanotube layer The surface' thus forms a touch screen. 2. The method for preparing a touch panel according to claim 1, wherein the method for preparing a carbon nanotube film comprises the steps of: providing a carbon nanotube array; and using a stretching tool from the above A carbon nanotube film is obtained by pulling in a carbon nanotube row, and the arrangement of the carbon nanotubes in the carbon nanotube film is parallel to the stretching direction. The method for preparing a touch panel according to the invention of claim 1, wherein the step of laying at least a carbon nanotube film on the surface of the flexible substrate is to directly lay a carbon nanotube film on the film. The surface of the flexible substrate or a plurality of carbon nanotube films are laid on the surface of the flexible substrate in parallel and with a gap to form a carbon nanotube layer covering the surface of the flexible substrate, the nanocarbon The carbon tubes in the tube layer are arranged in the same direction. The method for preparing a touch panel according to claim 3, further comprising: overlaying a plurality of carbon nanotube films on the surface of the flexible substrate to form a surface covering the surface of the flexible substrate; The steps of multiple carbon nanotube layers. 5. The method for preparing a touch panel according to claim 4, wherein the plurality of carbon nanotube layers are directly overlapped by a parental angle α according to an arrangement direction of the carbon nanotubes, wherein α is greater than Equal to zero degrees and less than or equal to ninety degrees. 6. The method for preparing a touch panel according to claim 1, wherein the at least one carbon nanotube film is laid on the flexible substrate. 8.8. 的表面的方法包括以下步驟:將所述一個奈米碳管薄 膜直接鋪設在一支撐體的表面或將多個奈米碳管薄膜 平行且無間隙地鋪設於一支撑體的表面;除去所述支 撑體,形成一自支撑的奈米碳管薄膜結構;及將該奈 米碳管薄膜結構直接覆蓋在所述柔性基體的表面。 如申請專利範圍第6項所述的觸摸屏的製備方法,其 中’進一步包括重叠鋪設多個奈米碳管薄膜於所較 撑體的表面’形成多個自支撐的奈米碳管薄赌構的步 如申請專利範圍第7項所述的職屏的製備方法,其 中’該多個奈米碳管薄膜結構依據奈来碳管的排列方 向以-交叉角冑α直接重叠鋪設,其中,αΑ於等於 零度且小於等於九十度。 如申请專利範圍第3丨6項所述的職屏的製 :’其中’在所述將至少一奈米碳管薄膜鋪設在上述 柔性基體的表面的步驟之前,進一步包括清洗所述柔 19 200929648 柔性基體的表面的 性基體及塗覆低熔點的材料於所述 步驟。 瓜如申請專利範圍第9項所述的觸摸屏的製備方法,其 中’所述清洗柔性基體的步驟爲用乙醇或丙網清洗所 述柔性基體的表面。 江如申請專利範圍第9項所述的觸摸屏的製備方法,其 中,所述低熔點材料的溶點低於所述奈米碳管層和柔 性基體的熔點。The method of the surface comprises the steps of: laying the one carbon nanotube film directly on the surface of a support or laying a plurality of carbon nanotube films on the surface of a support in parallel and without gap; The support body forms a self-supporting carbon nanotube film structure; and the carbon nanotube film structure is directly covered on the surface of the flexible substrate. The method for preparing a touch screen according to claim 6, wherein 'further comprising overlappingly laying a plurality of carbon nanotube films on the surface of the support body to form a plurality of self-supporting carbon nanotubes The method for preparing a job screen according to claim 7, wherein the plurality of carbon nanotube film structures are directly overlapped by a cross angle 胄α according to an arrangement direction of the carbon nanotubes, wherein Equal to zero degrees and less than or equal to ninety degrees. The system of the job screen as described in claim 3:6, wherein the step of: before the step of laying at least one carbon nanotube film on the surface of the flexible substrate, further comprises cleaning the soft 19 200929648 The surface of the flexible substrate and the low melting point material are applied to the step. A method of producing a touch panel according to claim 9, wherein the step of cleaning the flexible substrate is to clean the surface of the flexible substrate with an ethanol or a propylene mesh. The method for producing a touch panel according to claim 9, wherein the low melting point material has a melting point lower than a melting point of the carbon nanotube layer and the flexible substrate. 12·如申請專利範圍第i項所述的觸摸屏的製備方法,其 中,在將上述至少-奈米碳管薄膜鋪設在上述柔性基 體的表面之前,或形成至少一覆蓋於所述柔性基體的 表面的奈米碳管層之後,進一步包括採用有機溶劑對 奈米碳管薄膜或奈米碳管層處理的步驟。 13.如申請專利範圍第卫項所述的觸摸屏的製備方法, 中,所述熱壓奈求碳管層和柔性基體的過程包括以下 步驟·將覆蓋有奈米碳管層的柔性基體放置於一包括 軋輥的熱壓裝置中;加熱上述熱壓裝置中的軋輥;將 上述覆蓋有奈米碳管層的柔性基體通過加熱了的軋 輥。 W·如申請專利範圍第13項所述的觸摸屏的製備方法, 其中’所述熱壓裝置爲熱壓機或封塑機。 15.如申請專利範圍第i項所述的觸摸屏的製備方法,其 中,進一步包括形成一透明防護層於奈米碳管層遠離 基體的表面的步驟。 20 200929648 16·如申請專利範圍第15項所述的觸摸屏的製備方法 其中,所述防護層通過粘結劑粘結在透明導電芦’ 17. 如申請專利範圍第i項所述的觸摸屏的 ^ ° 中,所述防護層爲氮化石夕、氧化石夕、笨并環 ’ ^ 酯膜或丙烯酸樹脂。 ^ 18. 如申請專利範圍第1項所述的觸摸屏的製備方法, 中’進-步包括形成-屏蔽層於所述柔性基體遠離太 米碳管層的表面’該屏蔽層爲導電聚合物薄太: 碳管層。 一不木 19.如申請專利範圍第is項所述的觸摸屏的製備方法, 其中,所述屏蔽層通過粘結劑粘結在所述柔性基體的 表面。The method for preparing a touch panel according to the invention, wherein the at least the carbon nanotube film is laid on the surface of the flexible substrate or at least one surface covering the flexible substrate is formed. After the carbon nanotube layer, the step of treating the carbon nanotube film or the carbon nanotube layer with an organic solvent is further included. 13. The method for preparing a touch panel according to the above-mentioned patent application, wherein the hot pressing process of the carbon tube layer and the flexible substrate comprises the following steps: placing a flexible substrate covered with a carbon nanotube layer on a hot press device comprising a roll; heating the roll in the hot press device; passing the flexible substrate covered with the carbon nanotube layer to a heated roll. The method for producing a touch panel according to claim 13, wherein the hot pressing device is a hot press or a sealer. 15. The method of preparing a touch panel according to claim i, further comprising the step of forming a transparent protective layer on the surface of the carbon nanotube layer away from the substrate. The method for preparing a touch panel according to claim 15, wherein the protective layer is bonded to the transparent conductive reed by an adhesive. 17. The touch screen according to item i of claim patent. In °, the protective layer is a nitride rock, a oxidized stone, a stupid ring, and an acrylate film or an acrylic resin. The method of manufacturing the touch panel of claim 1, wherein the step further comprises forming a shielding layer on the surface of the flexible substrate away from the carbon nanotube layer. The shielding layer is a thin conductive polymer. Too: Carbon tube layer. A method of producing a touch panel according to the invention of claim 1, wherein the shielding layer is bonded to the surface of the flexible substrate by an adhesive. 21twenty one
TW96151272A 2007-12-31 2007-12-31 Method for making touch panel TWI360903B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96151272A TWI360903B (en) 2007-12-31 2007-12-31 Method for making touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96151272A TWI360903B (en) 2007-12-31 2007-12-31 Method for making touch panel

Publications (2)

Publication Number Publication Date
TW200929648A true TW200929648A (en) 2009-07-01
TWI360903B TWI360903B (en) 2012-03-21

Family

ID=44864582

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96151272A TWI360903B (en) 2007-12-31 2007-12-31 Method for making touch panel

Country Status (1)

Country Link
TW (1) TWI360903B (en)

Also Published As

Publication number Publication date
TWI360903B (en) 2012-03-21

Similar Documents

Publication Publication Date Title
CN101464759B (en) Production method of touch screen
CN101464763B (en) Production method of touch screen
TWI354921B (en) Touch panel and displaying device using the same
TWI364860B (en) Touch panel, method for making the same, and displaying device adopting the same
CN101458594B (en) Touch screen and display device
CN101470558B (en) Touch screen and display equipment
CN101458597B (en) Touch screen, method for producing the touch screen, and display device using the touch screen
CN102109917B (en) Touch screen and preparation method thereof
CN101458593B (en) Touch screen and display device
KR101212372B1 (en) Touch panel and display device using the same
CN101458608B (en) Touch screen preparation method
JP2009157923A (en) Touch panel and display using the same
CN101419518A (en) Touch panel
JP2009146420A (en) Touch panel and display device using the same
JP4944167B2 (en) Manufacturing method of touch panel
TW200926471A (en) Touch panel and displaying device using the same
TWI386831B (en) Touch panel and displaying device using the same
TWI411944B (en) Method for making touch panel
CN101620491B (en) Touch screen
TWI403928B (en) Method for making touch panel
TW200928908A (en) Touch panel and displaying device using the same
TW200929648A (en) Method for making touch panel
CN102819340B (en) The preparation method of touch panel
TWI436510B (en) Touch panel and displaying device using the same
TWI423084B (en) Touch panel and displaying device using the same