TW200929635A - Touch panel and displaying device using the same - Google Patents

Touch panel and displaying device using the same Download PDF

Info

Publication number
TW200929635A
TW200929635A TW96149379A TW96149379A TW200929635A TW 200929635 A TW200929635 A TW 200929635A TW 96149379 A TW96149379 A TW 96149379A TW 96149379 A TW96149379 A TW 96149379A TW 200929635 A TW200929635 A TW 200929635A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
electrode plate
touch screen
display device
substrate
Prior art date
Application number
TW96149379A
Other languages
Chinese (zh)
Other versions
TWI355765B (en
Inventor
Kai-Li Jiang
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96149379A priority Critical patent/TWI355765B/en
Publication of TW200929635A publication Critical patent/TW200929635A/en
Application granted granted Critical
Publication of TWI355765B publication Critical patent/TWI355765B/en

Links

Landscapes

  • Position Input By Displaying (AREA)

Abstract

The present invention relates to a touch panel and a displaying device using the same. The touch panel includes a first electrode plate, and a second electrode plate separated from the first electrode plate. The first electrode plate includes a first substrate and a first conductive layer disposed on a lower surface of the first substrate. The second electrode plate includes a second substrate and a second conductive layer disposed on an upper surface of the second substrate. At least one of the first conductive layer and the second conductive layer includes at least two overlapping and intersecting carbon nanotube layers. The carbon nanotubes in the adjacent two carbon nanotube layers are arranged along different direction.

Description

200929635 ••九、發明說明: ••【發明所屬之技術領域】 本發明涉及一種觸摸屏及使用該觸摸屏的顯示裝置, 尤其涉及一種基于奈米碳管的觸摸屏及使用該觸摸屏的顯 示裝置。 【先前技術】 近年來,伴隨著移動電話與觸摸導航系統等各種電子 設備的高性能化和多樣化的發展,在液晶等顯示元件的前 β面安裝透光性的觸摸屏的電子設備逐步增加。這樣的電子 設備的利用者通過觸摸屏,一邊對位于觸摸屏背面的顯示 元件的顯示内容進行視覺確認,一邊利用手指或筆等方式 按壓觸摸屏來進行操作。由此,可以操作電子設備的各種 功能。 按照觸摸屏的工作原理和傳輸介質的不同,先前的觸 摸屏通常分爲四種類型,分別爲電阻式、電容感應式、紅 Φ外線式以及表面聲波式。其中電阻式觸摸屏的應用最爲廣 泛,請參見文獻 “Production of Transparent Conductive Films with Inserted Si02 Anchor Layer, and Application to a Resistive Touch Panel” Kazuhiro Noda, Kohtaro Tanimura. Electronics and Communications in Japan, Part 2,Vol.84, P39-45(2001) ° 先前的電阻式觸摸屏一般包括一上基板,該上基板的 下表面形成有一上透明導電層;一下基板,該下基板的上 表面形成有一下透明導電層;以及多個點狀隔離物(Dot 6 200929635 ’ Spacer)設置在上透明導電層與下透明導電層之間。其中, .·該上透明導電層與該下透明導電層通常釆用具有導電特 性的銦錫氧化物(Indium Tin 0xide,IT〇)層(下稱ιτ〇層)。 當使用手指或筆㈣上基板時,上基板發生扭曲,使^按 壓處的上透明導電層與下透明導電層彼此接觸。通過外接 的電子電路分別向上透明導電層與下透明導電層依次施 加電壓’觸摸屏&制器通過分別測量第一㈣層上的電壓 變化與第二導電層上的電壓變化,並進行精確計算,將它 轉換成觸點坐標。觸摸屏控制器將數字化的觸點坐標傳遞 給十央處理器。中央處理器根據觸點坐標發出相應指令, 啓動電子設備的各種功能切換,並通過顯示器控制器控制 顯示元件顯示。 ❹ *然而’㈣層作爲透明導電層通常釆用離子束賤射或 蒸鑛等工藝製備,在製備的過程,需要較高的直空環境及 需要加熱到3帆,因此,使得ΙΤ〇層的製備成本較 面。此外,1Τ〇層作爲透明導電層具有機械性能不够好、 難以f曲及阻值分布不均句等缺點。另外,ιτ〇在潮渴的 空氣中透明度會逐漸下m導致先前的電阻式觸摸屏 f顯不裝置存在❹性不够好,靈敏度低、線性及準確性 較差等缺點。 且靈敏度高 有鑒于此,確有必要提供一種耐用性好, 線性及準確性强的觸摸屏及顯示裝置。 【發明内容】 一種觸摸屏,包括:一第— 電極板’該第一電極板包 7 200929635 •括一第一基體及一第一導電層設置在該第一基體的下表 -面;以及一第二電極板’該第二電極板與第一電極板間隔 设置,該第二電極板包括一第二基體及一第二導電層設置 在該第二基體的上表面;其中,上述第一導電層和第二導 電層中的至少一個導電層包括至少兩個重叠且交叉設置的 奈米奴管層,每一奈米碳管層包括多個定向排列的奈米碳 官,且相鄰的兩個奈米碳管層中的奈米碳管沿不同方向排 列。 ® —種顯不裝置,包括:一觸摸屏,該觸摸屏包括一第 一電極板及一第二電極板,該第一電極板包括一第一基體 及一第一導電層設置在該第一基體的下表面,該第二電極 板與第一電極板間隔設置,且包括一第二基體及一第二導 電層設置在該第二基體的上表面;及一顯示設備,該顯示 设備正對且罪近上述觸摸屏的第二電極板設置;其中,上 述第一導電層和第二導電層中的至少一個導電層包括至少 ❹兩個重叠且交叉設置的奈米碳管層,每一奈米碳管層包括 多個定向排列的奈米碳管,且相鄰的兩個奈米碳管層中的 奈米碳管沿不同方向排列。 本技術方案實施例提供的采用至少兩個重叠且交又設 置的奈米碳管層作爲透明導電層的觸摸屏及顯示裝置具有 以下優點··其一,由于奈米碳管具有優異的力學性能,則 由定向排列的奈米碳管組成的單個奈米碳管層具有較好的 韌性及機械强度,則該至少兩個重叠且交叉設置的奈米碳 管層具有更加優異的韌性及機械强度,采用該至少兩個重 8 200929635 •..叠且交叉設置的奈米碳管層作透明導電層,可以相應的提 • *高觸摸屏的耐用性,進而提高使用該觸摸屏的顯示裝置的 耐用性,其一,由于奈米破管具有優異的導電性能,則由 定向排列的奈米碳管組成的奈米碳管層具有均勻的阻值分 布,因而,采用上述重叠且交叉設置的至少兩層奈米碳管 層作透明導電層,可以相應的提高觸摸屏及顯示裝置的分 辨率和精確度。 【實施方式】 ❹ 將結合關詳細說明本技術方案提供的觸摸屏及 顯示装置。 請參閱圖1及圖2,本技術方案實施例提供一種觸摸 屏1〇 ’該觸摸屏10包括一第一電極板12,-第二電極板 14以及設置在第—電極板12與第二電極板14之間的多個 透明點狀隔離物16。 該第一電極板12包括一第一基體12〇,一第一導電層 〇 122以及兩個第—電極124。該第—基體⑽爲平面結構, §第導電層122與兩個第一電極124均設置在第一基體 ⑽的下表面。兩個第一電極124分別設置二;; 122沿第一方向的兩端並與第一導電層η]電連接。該第 二電極板u包括—第二基體14G,—第二導電層142以及 ::第二電極144。該第二基體14〇爲平面結構,該第二 、層142與兩個第二電極144均設置在第二基體14〇的 f表面。兩個第二電極144分別設置在第二導電層142沿 弟一方向的兩端並與第二導電層142電連接。該第一方向 9 200929635 •.垂直于該第二方向,即兩個第-電極124與兩個第_電極 • ·141正交設置。其中,該第-基體12。爲透明的y 定柔軟度的薄臈或薄板,哕 旳丫、有一 =-基體⑽特料可轉爲麵、^英 料 等硬性材料或柔性材料。所述第二基體⑽主要起 2用:ί! 一電極124與該第二電極144的材料爲金屬: 實施例中,該第一基體Π,二導電性即可。本 ❹爲玻璃今皆 材料爲聚酯膜,該第二基體14〇 爲玻璃基板,該苐一電極124盘第-雷炼 漿層。 ”弟—電極144爲導電的銀 進-步地’該第二電極板14上表面外圍設置有一絕 層18。上述的第一雷搞*緣 键々 弟電極板12設置在該絕緣層18上,且节BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a touch panel and a display device using the same, and more particularly to a carbon nanotube-based touch panel and a display device using the same. [Prior Art] In recent years, with the development of high performance and diversification of various electronic devices such as mobile phones and touch navigation systems, electronic devices in which a translucent touch panel is mounted on the front surface of a display element such as a liquid crystal are gradually increasing. The user of such an electronic device operates by pressing the touch panel by a finger, a pen, or the like while visually checking the display content of the display element located on the back surface of the touch panel through the touch panel. Thereby, various functions of the electronic device can be operated. According to the working principle of the touch screen and the transmission medium, the previous touch screens are generally divided into four types, namely, resistive, capacitive inductive, red-Φ outer-line and surface acoustic wave. Among them, the resistive touch screen is the most widely used, please refer to the document "Production of Transparent Conductive Films with Inserted Si02 Anchor Layer, and Application to a Resistive Touch Panel" Kazuhiro Noda, Kohtaro Tanimura. Electronics and Communications in Japan, Part 2, Vol. 84, P39-45 (2001) ° The prior resistive touch screen generally comprises an upper substrate, the upper surface of the upper substrate is formed with an upper transparent conductive layer; the lower substrate, the upper surface of the lower substrate is formed with a lower transparent conductive layer; A plurality of dot spacers (Dot 6 200929635 'Spacer) are disposed between the upper transparent conductive layer and the lower transparent conductive layer. Wherein, the upper transparent conductive layer and the lower transparent conductive layer are usually made of an indium tin oxide (IT) layer having a conductive property (hereinafter referred to as an ITO layer). When the upper substrate of the finger or the pen (four) is used, the upper substrate is twisted so that the upper transparent conductive layer and the lower transparent conductive layer at the pressing portion are in contact with each other. The voltage is sequentially applied to the upper transparent conductive layer and the lower transparent conductive layer by an external electronic circuit, respectively. The touch screen & controller measures the voltage change on the first (four) layer and the voltage change on the second conductive layer, respectively, and performs accurate calculation. Convert it to contact coordinates. The touch screen controller passes the digitized contact coordinates to the ten central processor. The central processor issues a corresponding command according to the contact coordinates, activates various function switching of the electronic device, and controls the display of the display component through the display controller. ❹ *However, the '(four) layer as a transparent conductive layer is usually prepared by ion beam spraying or steaming. In the process of preparation, a high straight space environment is required and heating to 3 sails is required, thus making the layer of the layer The preparation cost is relatively good. In addition, the one-layer layer as a transparent conductive layer has disadvantages such as insufficient mechanical properties, difficulty in f-bending, and uneven distribution of resistance values. In addition, the transparency of the ιτ〇 in the thirsty air will gradually decrease, resulting in the disadvantages of the previous resistive touch screen, such as low sensitivity, low sensitivity, poor linearity and low accuracy. High sensitivity. In view of this, it is necessary to provide a touch screen and display device with good durability, linearity and accuracy. SUMMARY OF THE INVENTION A touch screen includes: a first electrode plate 'the first electrode plate package 7 200929635 · includes a first substrate and a first conductive layer disposed on the lower surface of the first substrate; and a first The second electrode plate is spaced apart from the first electrode plate, the second electrode plate includes a second substrate and a second conductive layer disposed on the upper surface of the second substrate; wherein the first conductive layer And at least one of the second conductive layers comprises at least two overlapping and intersecting layers of nanotubes, each carbon nanotube layer comprising a plurality of aligned carbon directors, and two adjacent ones The carbon nanotubes in the carbon nanotube layer are arranged in different directions. A display device includes: a touch screen, the touch screen includes a first electrode plate and a second electrode plate, the first electrode plate includes a first substrate and a first conductive layer disposed on the first substrate a lower surface, the second electrode plate is spaced apart from the first electrode plate, and includes a second substrate and a second conductive layer disposed on an upper surface of the second substrate; and a display device, the display device is opposite Sin is disposed near the second electrode plate of the touch screen; wherein at least one of the first conductive layer and the second conductive layer comprises at least two overlapping and intersecting carbon nanotube layers, each nano carbon The tube layer includes a plurality of aligned carbon nanotubes, and the carbon nanotubes in the adjacent two carbon nanotube layers are arranged in different directions. The touch screen and the display device using the at least two overlapping and disposed carbon nanotube layers as the transparent conductive layer provided by the embodiments of the present technical solution have the following advantages: First, since the carbon nanotube has excellent mechanical properties, The single carbon nanotube layer composed of the aligned carbon nanotubes has good toughness and mechanical strength, and the at least two overlapping and intersecting carbon nanotube layers have more excellent toughness and mechanical strength. By using the at least two layers of carbon nanotubes, which are stacked and cross-shaped, as a transparent conductive layer, the durability of the high touch screen can be correspondingly improved, thereby improving the durability of the display device using the touch screen. First, since the nanotube has excellent electrical conductivity, the carbon nanotube layer composed of the aligned carbon nanotubes has a uniform resistance distribution, and thus, at least two layers of overlap and crossover are used. The carbon nanotube layer is used as a transparent conductive layer, which can correspondingly improve the resolution and accuracy of the touch screen and the display device. [Embodiment] The touch panel and the display device provided by the present technical solution will be described in detail. Referring to FIG. 1 and FIG. 2 , the embodiment of the present disclosure provides a touch screen 1 ′′. The touch screen 10 includes a first electrode plate 12 , a second electrode plate 14 , and a first electrode plate 12 and a second electrode plate 14 . A plurality of transparent dot spacers 16 therebetween. The first electrode plate 12 includes a first substrate 12A, a first conductive layer 122, and two first electrodes 124. The first substrate (10) is a planar structure, and the first conductive layer 122 and the two first electrodes 124 are disposed on the lower surface of the first substrate (10). The two first electrodes 124 are respectively disposed at two ends; 122 are electrically connected to the first conductive layer η] at both ends in the first direction. The second electrode plate u includes a second substrate 14G, a second conductive layer 142 and a :: second electrode 144. The second substrate 14 is a planar structure, and the second layer 142 and the two second electrodes 144 are disposed on the surface f of the second substrate 14A. The two second electrodes 144 are respectively disposed at both ends of the second conductive layer 142 in the direction of the first one and are electrically connected to the second conductive layer 142. The first direction 9 200929635 • is perpendicular to the second direction, that is, the two first electrodes 124 are orthogonally disposed with the two _ electrodes • 141. Wherein the first base 12 is. A thin or thin plate with a softness of y, a - 旳丫, a =- base (10) special material can be converted into a hard material such as a surface, a material, or a flexible material. The second substrate (10) is mainly used for: ί! The material of the one electrode 124 and the second electrode 144 is metal: In the embodiment, the first substrate is Π, and the second conductivity is sufficient. The present invention is a polyester film which is a polyester film, and the second substrate 14 is a glass substrate, and the first electrode 124 is a disk-thrust refining layer. "The electrode-electrode 144 is electrically conductive, and the step of the second electrode plate 14 is provided with a layer 18 on the periphery of the upper surface of the second electrode plate 14. The first first electrode is provided on the insulating layer 18. And festival

第一電極板12的第一導雷s A 二導電層142設置。上述多:正對第二電極板14的第 述夕個透明點狀隔離物16設置在第 二電極板14的第二導電層142上,且該多個透明點狀= 〇物16彼此間隔設置。第—雷炻士 " ^ ^ 弟電極板12與第二電極板14之間 爲2〜1〇微来。該絕緣層18與透明點狀隔離物16 均可禾用絕緣透明樹脂或其他絕緣透明㈣ 緣層18與點狀隔離物16可使得第一電極板U與第二電極 板12電絕緣。可以理解,當觸摸屏1Q尺寸較小時,點狀 隔離物16爲可選擇的結構’只需確保第-電極板14與第 二電極板12電絕緣即可。 另外’該第一電極板12上表面可進-步設置一透明保 瘦膜126,該透明保護膜126可由氣化石夕、氧化石夕、笨丙 200929635 ’環丁烯(BCB)、聚酯以及丙烯酸樹脂等材料形成。該透明 保護膜126也可采用一層表面硬化處理、光滑防刮的塑料 層,如聚對笨二曱酸乙二醇酯(PET )膜,用于保護第一 電極板12,提高耐用性。該透明保護膜126還可用于提供 一些其它的附加功能,如可以减少眩光或降低反射。 該第一導電層122與第二導電層142中的至少一個導 電層包括至少兩個重叠且交叉設置的奈米碳管層,每一奈 米碳管層包括多個定向排列的奈米碳管,且相鄰的兩個奈 米碳官層中的奈米碳管沿不同方向排列。該奈米碳管層爲 一奈米碳管薄膜或平行且無間隙鋪設的多個奈米碳管薄 膜。相鄰的奈米碳管層之間通過凡德瓦爾力緊密結合。該 奈米碳管薄膜進一纟包括多個奈米碳管束片段,每個奈米 碳管束片段具有大致相等的長度且每個奈米碳管束片段由 多個相互平行的奈米碳管束構成,所述多個奈米碳管束片 #又兩通過凡德瓦爾力相互連接。由于奈米碳管層可由多 ❹個奈米碳管薄膜平行且無間隙的鋪設,故該奈米碳管層的 長度及寬度不限,可根據實際需求製備。上述第一導電層 122與第二導電層中的奈米碳管層的層數不限,所述相鄰 兩個奈米碳管層中的奈米碳管的排列方向具有一交叉角度 « ’ 〇<拉〇度,具體可依據實際需求製備。該奈米碳管^ 膜的厚度爲0.5納米~1〇〇微米。本技術方案實施例中,該 第一導電層122與第二導電層142均包括重叠且交叉設置 的2個奈米碳管層,相鄰兩個奈米碳管層中的奈米碳管之 間交叉的角度爲90度。該奈米碳管層的長度爲3〇厘米, 11 200929635 30厘米,該奈米碳管層的厚度爲 該奈米碳管層的寬度爲 10微米。 本實施例第一導電層122和/或第二導電層142中的夺 米碳官薄膜的製備方法主要包括以下步驟: 、 步驟-.提供-奈米碳管陣列,嗓選地,該 順排奈米碳管陣列。 超 …本技術方案實施例提供的奈米碳管陣列爲單壁奈米碳 β官陣列、雙壁奈米碳管陣列或多壁奈米碳管陣列。本實施 例中,超順排奈米碳管陣列的製備方法采用化學氣相沈積 法’其具體步驟包括:(a)提供一平整基底,該基底可選 用P3L或N型石夕基底,或選用形成有氧化層的石夕基底,本 實施例優選爲采用4英寸的石夕基底;(b)在基底表面均句 形成一催化劑層,該催化劑層材料可選用鐵(h)、鈷 (Co)、鎳(Ni)或其任意組合的合金之一;(c)將上述 形成有催化劑層的基底在7〇〇〜9〇〇。〇的空氣中退火約%分 ❹鐘〜90分鐘;(d)將處理過的基底置于反應爐中,在保護 氣體環境下加熱到500〜74(rc ’然後通入碳源氣體反應約 5〜30分鐘,生長得到超順排奈米碳管陣列,其高度爲 200〜400微米。該超順排奈米碳管陣列爲多個彼此平行且 垂直于基底生長的奈米碳管形成的純奈米碳管陣列。通過 上述控制生長條件,該超順排奈米碳管陣列甲基本不含有 雜質’如無定型碳或殘留的催化劑金屬顆粒等。該奈米碳 答陣列_的奈米碳管彼此通過凡德瓦爾力緊密接觸形成陣 列°該奈米碳管陣列與上述基底面積基本相同。 12 200929635 ·’ .本實施例中碳源氣可選用乙炔、乙烯、曱烷等化學性 ,質較活潑的碳氫化合物,本實施例優選的碳源氣爲乙炔; 保護氣體爲氮氣或惰性氣體,本實施例優選的保護氣體爲 氬氣。 … 可以理解,本實施例提供的奈米碳管陣列不限于上述 製備方法。也可爲石墨電極恒流電弧放電沈積法、雷射蒸 發沈積法等。 步驟二:采用一拉伸工具從奈米碳管陣列中拉取獲得 一奈米碳管薄膜。其具體包括以下步驟:(a)從上述奈米 石厌官陣列中選定一定寬度的多個奈米碳管片斷,本實施例 優選爲采用具有一定寬度的膠帶接觸奈米碳管陣列以選定 -定寬度的多個奈米碳管片斷;(b)以一定速度沿基本垂 直于奈米碳管陣列生長方向拉伸該多個奈米碳管片斷以 形成一連續的奈米碳管薄膜。 在上述拉伸過程中,該多個奈米碳管片段在拉力作用 〇下沿拉伸方向逐漸脫離基底的同時,由于凡德瓦爾力作 用,該選定的多個奈米碳管片斷分別與其它奈米碳管片斷 首尾相連地連續地被拉出,從而形成一奈米碳管薄膜。該 奈米碳管薄膜包括多個首尾相連且定向排列的奈米碳管 束。該奈米石反官薄膜中奈米碳管的排列方向基本平行于奈 米碳管薄膜的拉伸方向。 丁 取上述製備的兩個奈米碳管薄膜分別作一奈米碳管 層,即每-奈米碳管層包括一個奈米碳管薄膜。重叠且交 又設置上述的兩個奈米碳管層,幷使得到上述兩個奈米碳 13 200929635 •管層中的定向排列的奈米碳管之間具有—交叉角度α, …〇<设0。。彳以理解,由于奈米碳管薄骐中奈米碳管=排列 方向基本平行于奈米碳管薄膜的拉伸方向,故,可以使得 上述的兩個奈米碳管層之間的奈米碳管成一交叉角度α設 置。 又0 。=參閱圖3,該奈米碳管薄膜爲擇優取向排列的多個奈 米碳管束首尾相連形成的具有一定寬度的奈米石炭管薄膜。 ❹,奈米碳管薄膜中奈米碳管的排列方向基本平行于奈米礙 f薄膜的拉伸方向。該直接拉伸獲得的擇優取向的奈米碳 管薄膜比無序奈米碳管薄膜具有更好的均勻性,即具有更 均勻的厚度以及具有更均勻的導電性能。同時該直接拉伸 獲得奈米碳管薄朗方法簡單快速,適宜進行卫業化應用。 本實知例中,該奈米碳管薄膜的寬度與奈米碳管陣列 所生長的基底的尺寸有關,該奈米碳管薄膜的長度不限, 可根據實際需求製得。該奈米碳管薄膜的厚度爲〇·5奈米 ❹jOG微米。當該奈米碳管薄膜中的奈米碳管爲單壁奈米碳 吕時’該單壁奈米碳管的直徑爲0.5奈米〜50奈米。當該 奈2管薄膜中的奈米碳管爲雙壁奈米碳管時,該雙壁奈 米碳管? ί徑爲L〇奈米〜50奈未。當該奈米碳管薄臈; 的奈米碳管爲多壁奈米碳管時,該多壁奈米碳 1.5奈米〜50奈米。 可以理解,由于本實施例超順排奈米碳管陣列中的太 米礙管非常純淨,且由于奈米碳管本身的比表面積非^ 大’故該奈米碳管薄膜本身具有較强的粘性。因此,該奈 200929635 *米碳官薄膜作爲第一導電層122與第二導電層142時可直 -,接粘附在第一基體12〇或第二基體14〇上。 另外,可使用有機溶劑處理上述枯附在第一基體 或第一基體140上的奈米碳管薄膜。具體地,可通過試管 將有機溶劑滴落在奈米碳管薄膜表面浸潤整個奈米碳管薄 膜。該有機溶劑爲揮發性有機溶劑,如乙醇、甲醇、丙酮、 二氣乙烷或氣仿,本實施例中采用乙醇。該奈米碳管薄膜 經有機溶劑浸潤處理後,在揮發性有機溶劑的表面張力的 作用下,該奈米碳管薄膜可牢固地貼附在基體表面,且表 面體積比减小,粘性降低,具有良好的機械强度及韌性。 此外,可選擇地,冑了减小由顯示設備產生的電磁干 擾,避免從觸摸屏10發出的信號產生錯誤,還可在第二基 體140的下表面上設置一屏蔽層(圖未示)。該屏蔽層可= 銦錫氧化物(ιτο)薄膜、銻錫氧化物(AT〇)薄、鎳金薄 膜、銀薄膜膜或奈米碳管薄膜等導電材料形成。本實施例 ❹甲,所述的屏蔽層包含一奈米碳管薄膜,該奈米碳管薄膜 中的奈米碳管的排列方式不限,可爲定向排列也可爲其它 的排列方式。本實施射,該屏蔽層中的奈米碳管定^排 列。該奈米碳官薄膜作爲電接地點,起到屏蔽的作用,從 而使得觸摸屏10能在無干擾的環境中工作。 請參閱圖4,本技術方案實施例還提供一使用上述觸摸 屏10的顯示裝置100,其包括上述觸摸屏1〇及—顯示設 備20。該顯示設備20正對且靠近上述觸摸屏1〇的第二= 極板14設置。該觸摸屏10可以與該顯示設備2〇間隔一預 15 200929635 •定距離設置,也可集成在該顯示設備20上。當該觸摸屏 10與該顯示設備2〇集成設置時,可通過粘結劑將該觸 屏10附著到該顯示設備20上。 、 本技術方案顯示設備20可以爲液晶顯示器、尸 -3&存政 琢赞射顯 不器、電漿顯示器、電致發光顯示器、真空螢光顯示时 陰極射線管等顯示設備。 》及 進一步地’當在該觸摸屏1〇第二基體14〇的下表面上 ❺設置一屏蔽層22時,可在該屏蔽層22遠離第二基體14〇 的表面上設置—鈍化層24,該鈍化層24可由氮化矽、好 化石夕等材料形成。該純化層24與顯示設#2()的正二 -間隙26設置。該鈍化層24作爲介電層使用,且保二 顯不设備20不致于由于外力過大而損壞。 ” 另外’該顯示裝置100進一步包括一觸摸屏控制器3〇、 一中央處理H 40及一顯示設備控制器5〇。盆中, 該中央處理器4。及該顯示設備控制器 ❹電互連接’該觸摸屏控制器30與該觸摸屏 設備控制器50與該顯示設備20電連接。 單m 30通過手指等觸摸物60觸摸的圖標或菜 Π〇=Τ信息輸入,並將該信息傳遞給中央處ΐ 不兀件20顯示。 刊攻糊 使用時,第一電極板12之間與第二電極板Μ之間分 電壓。❹者—邊視覺確認在觸摸屏iq下面設 兀件2〇的顯示,一邊通過觸摸物60如手指或筆 16 200929635The first conductive s A second conductive layer 142 of the first electrode plate 12 is disposed. In the above, the first transparent dot-shaped spacers 16 facing the second electrode plate 14 are disposed on the second conductive layer 142 of the second electrode plate 14, and the plurality of transparent dots=the objects 16 are spaced apart from each other. . The first - Thunder gentleman " ^ ^ between the electrode plate 12 and the second electrode plate 14 is 2 ~ 1 〇 micro. Both the insulating layer 18 and the transparent dot spacer 16 may be insulated from the second electrode plate 12 by an insulating transparent resin or other insulating transparent (tetra) edge layer 18 and a dot spacer 16. It will be understood that when the size of the touch screen 1Q is small, the dot spacers 16 are of an alternative structure 'only need to ensure that the first electrode plate 14 is electrically insulated from the second electrode plate 12. In addition, the upper surface of the first electrode plate 12 may be further provided with a transparent thin film 126, which may be composed of gasification stone, oxidized stone, styrene 200929635 'cyclobutene (BCB), polyester and A material such as an acrylic resin is formed. The transparent protective film 126 can also be provided with a surface-hardened, smooth scratch-resistant plastic layer such as a polyethylene terephthalate (PET) film for protecting the first electrode plate 12 for durability. The transparent protective film 126 can also be used to provide some other additional functions such as reducing glare or reducing reflection. At least one of the first conductive layer 122 and the second conductive layer 142 includes at least two overlapping and intersecting carbon nanotube layers, each of the carbon nanotube layers including a plurality of aligned carbon nanotubes And the carbon nanotubes in the adjacent two carbon carbon layers are arranged in different directions. The carbon nanotube layer is a carbon nanotube film or a plurality of carbon nanotube films laid in parallel and without gaps. Adjacent carbon nanotube layers are tightly bonded by van der Waals forces. The carbon nanotube film further comprises a plurality of carbon nanotube bundle segments, each of the carbon nanotube bundle segments having substantially equal lengths and each of the carbon nanotube bundle segments being composed of a plurality of mutually parallel carbon nanotube bundles. The plurality of carbon nanotube bundles are connected to each other by Van der Waals force. Since the carbon nanotube layer can be laid by a plurality of carbon nanotube films in parallel and without gaps, the length and width of the carbon nanotube layer are not limited and can be prepared according to actual needs. The number of layers of the carbon nanotube layer in the first conductive layer 122 and the second conductive layer is not limited, and the arrangement direction of the carbon nanotubes in the adjacent two carbon nanotube layers has an intersection angle « ' 〇< Pulling degree, which can be prepared according to actual needs. The carbon nanotube film has a thickness of 0.5 nm to 1 μm. In the embodiment of the technical solution, the first conductive layer 122 and the second conductive layer 142 each include two carbon nanotube layers which are overlapped and intersected, and the carbon nanotubes in the adjacent two carbon nanotube layers The angle of intersection is 90 degrees. The carbon nanotube layer has a length of 3 cm, 11 200929635 30 cm, and the carbon nanotube layer has a thickness of 10 μm. The method for preparing the carbon-retaining carbon film in the first conductive layer 122 and/or the second conductive layer 142 of the embodiment mainly comprises the following steps: Step-providing an array of carbon nanotubes, optionally, the alignment Nano carbon tube array. The carbon nanotube array provided by the embodiment of the present invention is a single-walled nanocarbon β-an array, a double-walled carbon nanotube array, or a multi-walled carbon nanotube array. In this embodiment, the method for preparing a super-sequential carbon nanotube array adopts a chemical vapor deposition method. The specific steps include: (a) providing a flat substrate, the substrate may be selected from a P3L or N-type stone substrate, or selected The Shishi substrate having an oxide layer is formed, and in this embodiment, a 4-inch stone substrate is preferably used; (b) a catalyst layer is formed on the surface of the substrate, and the catalyst layer material may be iron (h) or cobalt (Co). One of alloys of nickel (Ni) or any combination thereof; (c) the substrate on which the catalyst layer is formed is at 7 〇〇 to 9 〇〇. Annealing in the air for about 90 minutes for 90 minutes; (d) placing the treated substrate in a reaction furnace and heating it to 500~74 under a protective gas atmosphere (rc' then passing a carbon source gas reaction about 5 ~30 minutes, the super-sequential carbon nanotube array is grown to a height of 200 to 400 microns. The super-sequential carbon nanotube array is pure for a plurality of carbon nanotubes that are parallel to each other and grow perpendicular to the substrate. Nano carbon tube array. The above-mentioned controlled growth conditions, the super-sequential carbon nanotube array methyl group does not contain impurities such as amorphous carbon or residual catalyst metal particles, etc. The nano carbon array _ nano carbon The tubes are in close contact with each other to form an array by van der Waals force. The carbon nanotube array is substantially the same area as the above substrate. 12 200929635 ·' In this embodiment, the carbon source gas may be chemically selected such as acetylene, ethylene or decane. The preferred carbon source gas in the present embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment is argon. It is understood that the carbon nanotubes provided in the present embodiment are understood. Array It is not limited to the above preparation method, and may also be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method, etc. Step 2: A carbon nanotube film is obtained by pulling from a carbon nanotube array using a stretching tool. Specifically, the method comprises the following steps: (a) selecting a plurality of carbon nanotube segments of a certain width from the nanocrystalline anomaly array, and the embodiment preferably adopts a tape having a certain width to contact the carbon nanotube array to select - a plurality of carbon nanotube segments of a predetermined width; (b) stretching the plurality of carbon nanotube segments at a rate substantially perpendicular to the growth direction of the nanotube array to form a continuous carbon nanotube film. In the above stretching process, the plurality of carbon nanotube segments are gradually separated from the substrate in the stretching direction under the action of the tensile force, and the selected plurality of carbon nanotube segments are respectively associated with the other naphthalenes due to the van der Waals force. The carbon nanotube segments are continuously pulled out end to end to form a carbon nanotube film. The carbon nanotube film comprises a plurality of end-to-end aligned carbon nanotube bundles. The arrangement direction of the carbon nanotubes is substantially parallel to the stretching direction of the carbon nanotube film. The two carbon nanotube films prepared above are respectively made into a carbon nanotube layer, that is, each carbon nanotube layer. Including a carbon nanotube film. The two carbon nanotube layers are overlapped and disposed, and the two carbon nanotubes are arranged to the two nanocarbons 13 200929635 • between the aligned carbon nanotubes in the tube layer— The intersection angle α, ... 〇 < set 0. 彳 to understand, because the carbon nanotubes in the thin carbon nanotubes = alignment direction is substantially parallel to the stretching direction of the carbon nanotube film, so that the above The carbon nanotubes between the two carbon nanotube layers are arranged at an intersection angle α. Also 0. = Referring to Fig. 3, the carbon nanotube film is formed by connecting a plurality of carbon nanotube bundles arranged in a preferential orientation end to end. A certain width of the carboniferous tube film. ❹, the arrangement of the carbon nanotubes in the carbon nanotube film is substantially parallel to the stretching direction of the nano film. The preferred orientation of the carbon nanotube film obtained by direct stretching has better uniformity than the disordered carbon nanotube film, i.e., has a more uniform thickness and a more uniform conductivity. At the same time, the direct stretching method for obtaining the carbon nanotube thinning method is simple and rapid, and is suitable for the industrial application. In the present embodiment, the width of the carbon nanotube film is related to the size of the substrate on which the carbon nanotube array is grown. The length of the carbon nanotube film is not limited and can be obtained according to actual needs. The thickness of the carbon nanotube film is 〇·5 nm ❹jOG micron. When the carbon nanotube in the carbon nanotube film is a single-walled nanocarbon, the single-walled carbon nanotube has a diameter of 0.5 nm to 50 nm. When the carbon nanotube in the naphthalene film is a double-walled carbon nanotube, the double-walled carbon nanotube has a diameter of L 〇 nanometer ~ 50 奈. When the carbon nanotube is thinner; the carbon nanotube is a multi-walled carbon nanotube, the multi-walled nanocarbon is 1.5 nm to 50 nm. It can be understood that since the rice in the super-sequential carbon nanotube array of the embodiment is very pure, and the specific surface area of the carbon nanotube itself is not large, the carbon nanotube film itself has a strong viscosity. Therefore, the nano-200929635*m carbon-based film can be directly adhered to the first substrate 12A or the second substrate 14b as the first conductive layer 122 and the second conductive layer 142. Further, the above-described carbon nanotube film adhered to the first substrate or the first substrate 140 may be treated with an organic solvent. Specifically, the organic solvent may be dropped on the surface of the carbon nanotube film by a test tube to infiltrate the entire carbon nanotube film. The organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, di-ethane or gas, and ethanol is used in this embodiment. After the carbon nanotube film is infiltrated by an organic solvent, the carbon nanotube film can be firmly attached to the surface of the substrate under the action of the surface tension of the volatile organic solvent, and the surface volume ratio is reduced and the viscosity is lowered. Has good mechanical strength and toughness. Further, alternatively, in order to reduce electromagnetic interference generated by the display device, to avoid errors in signals emitted from the touch panel 10, a shield layer (not shown) may be disposed on the lower surface of the second substrate 140. The shielding layer can be formed of a conductive material such as an indium tin oxide (ιτο) film, a tantalum tin oxide (AT〇) thin film, a nickel gold film, a silver film film, or a carbon nanotube film. In the armor of the embodiment, the shielding layer comprises a carbon nanotube film, and the arrangement of the carbon nanotubes in the carbon nanotube film is not limited, and may be oriented or arranged. In the present embodiment, the carbon nanotubes in the shielding layer are arranged. The nano carbon official film acts as an electrical grounding point and acts as a shield, thereby enabling the touch screen 10 to operate in an interference-free environment. Referring to FIG. 4, the embodiment of the present invention further provides a display device 100 using the above touch screen 10, which comprises the above touch screen 1 and display device 20. The display device 20 is disposed adjacent to and adjacent to the second = plate 14 of the touch screen 1A. The touch screen 10 can be disposed at a distance from the display device 2, and can also be integrated on the display device 20. When the touch screen 10 is integrated with the display device 2, the touch screen 10 can be attached to the display device 20 by an adhesive. The display device 20 of the present technical solution may be a liquid crystal display, a display device such as a liquid crystal display, a corpse -3, a memory monitor, a plasma display, an electroluminescence display, a vacuum ray display, and a cathode ray tube. And further, when a shielding layer 22 is disposed on the lower surface of the touch panel 1 〇 the second substrate 14 ,, a passivation layer 24 may be disposed on a surface of the shielding layer 22 away from the second substrate 14 ,, The passivation layer 24 may be formed of a material such as tantalum nitride or a fossilized stone. The purification layer 24 is provided with a positive two-gap 26 of display design #2(). The passivation layer 24 is used as a dielectric layer, and the device 20 is not damaged by excessive external force. In addition, the display device 100 further includes a touch screen controller 3, a central processing unit H 40, and a display device controller 5. In the basin, the central processing unit 4 and the display device controller are electrically connected to each other. The touch screen controller 30 and the touch screen device controller 50 are electrically connected to the display device 20. The single m 30 is input by an icon or a dish touched by a touch object 60 such as a finger, and the information is transmitted to the center. The component 20 is displayed. When the paste is used, the voltage is divided between the first electrode plate 12 and the second electrode plate. The side-by-side visual confirmation is that the display of the frame 2〇 is provided under the touch screen iq, while passing through Touch object 60 such as a finger or pen 16 200929635

按壓觸摸屏1〇第-電極板12進行操作。第一電極板η 中第一基體120發生彎曲,使得按壓處7〇的第一導電 122與第二電極板14的第二導電層142接觸形成導通 摸屏控制器30通過分別測量第一導電層m第一方向上 電壓變化與第二導電層142第二方向上的電壓變化,並進 行精確計算,將它轉換成觸點坐標。觸摸屏控制器扣將數 字化的觸點坐標傳遞給中央處理器4〇。中央處理器根 據觸點坐標發出相應指令,啓動電子設備的各種^功能切X 換,並通過顯示器控制器50控制顯示元件2〇顯示。 本技術方案實施例提供的采用至少兩個重叠且交又設 置的奈米碳管層作爲透明導電層的觸摸屏及顯示裝置具有 以下優點:其一,由于奈米碳管具有優異的力學性能,則 由定向排列的奈米碳管組成的單個奈米碳管層具有較好的 韌性及機械强度,則該至少兩個重叠且交又設置的奈米碳 管層具有更加優異的韌性及機械强度,采用該至少兩個重 叠且交叉設置的奈米碳管層作透明導電層,可以相應的提 兩觸摸屏的耐用性’進而提高使用該觸摸屏的顯示裝置的 耐用性’其二’由于奈米碳管具有優異的導電性能,則由 定向排列的奈米碳管組成的奈米碳管層具有均勻的阻值分 布’因而’采用上述重叠且交叉設置的至少兩層奈米碳管 層作透明導電層’可以相應的提高觸摸屏及顯示裝置的分 辨率和精確度。 綜上所述’本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 17 200929635 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 ^人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圓1係本技術方案實施例觸摸屏的立體結構示意圖。 圖2係本技術方案實施例觸摸屏的側視結構示意圖。 苗電I::本技術方案實施例觸摸屏中奈米碳管薄膜的掃 哥。係本技術方案實施例顯示裝置的側視結構示意 【主要元件符號說明】 觸 摸屏 第 一電極 板 第 二電極 板 點 狀隔離 物 ❹絕, 緣層 第 —基體 第 一導電 層 第 一電極 第 二基體 第 二導電 層 第 一電極 透 明保護 膜 顯 示裴置 10 12 14 16 18 120 122 124 140 142 144 126 100 18 200929635 顯示設備 20 ^觸摸屏控制器 30 中央處理器 40 顯示設備控制器 50 觸摸物 60 按壓處 70 屏蔽層 22 鈍化層 24 ®間隙 26 ❹ 19The first electrode plate 12 of the touch panel 1 is pressed to operate. The first substrate 120 of the first electrode plate η is bent such that the first conductive layer 122 of the pressing portion 7 is in contact with the second conductive layer 142 of the second electrode plate 14 to form the conductive screen controller 30 by measuring the first conductive layer separately The voltage change in the first direction of m and the voltage change in the second direction of the second conductive layer 142 are accurately calculated to convert it into contact coordinates. The touch screen controller buckle passes the digitized contact coordinates to the central processor 4〇. The central processor issues corresponding commands according to the coordinates of the contacts, activates various functions of the electronic device, and controls the display device 2 to display through the display controller 50. The touch screen and the display device using the at least two overlapping and disposed carbon nanotube layers as the transparent conductive layer provided by the embodiments of the present technical solution have the following advantages: First, since the carbon nanotube has excellent mechanical properties, The single carbon nanotube layer composed of the aligned carbon nanotubes has good toughness and mechanical strength, and the at least two overlapping and disposed carbon nanotube layers have more excellent toughness and mechanical strength. By adopting the at least two overlapping and cross-setting carbon nanotube layers as the transparent conductive layer, the durability of the two touch screens can be correspondingly improved to further improve the durability of the display device using the touch screen, and the second is due to the carbon nanotubes. With excellent electrical conductivity, the carbon nanotube layer consisting of aligned carbon nanotubes has a uniform resistance distribution 'thus' using at least two layers of carbon nanotubes stacked and intersected as a transparent conductive layer 'The resolution and accuracy of the touch screen and display device can be improved accordingly. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and 17 200929635 cannot limit the scope of patent application in this case. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the present invention are intended to be within the scope of the following claims. [Simple Description of the Drawing] Circle 1 is a schematic diagram of the three-dimensional structure of the touch screen of the embodiment of the present technical solution. FIG. 2 is a schematic side view showing the structure of a touch screen according to an embodiment of the present technical solution. Miao Electric I:: A sweep of the carbon nanotube film in the touch screen of the embodiment of the present technical solution. The schematic diagram of the side view structure of the display device of the embodiment of the present technical solution [main element symbol description] the first electrode plate of the touch screen, the second electrode plate, the dot-shaped spacer, the edge layer, the first substrate, the first conductive layer, the first electrode, the second substrate Second conductive layer first electrode transparent protective film display device 10 12 14 16 18 120 122 124 140 142 144 126 100 18 200929635 Display device 20 ^ touch screen controller 30 central processor 40 display device controller 50 touch object 60 press 70 Shield 22 Passivation layer 24 ® Clearance 26 ❹ 19

Claims (1)

200929635 十、申請專利範圍 •丄.一種觸摸屏,包括·· 第一電極板’該第-電極板包括-第-基體及一第 -導電層設置在該第一基體的下表面;以&amp; :第二電極板,該第二電極板與.第一電極板間隔設 置’該第二電極板包括一第二基體及一第二設 置在該第二基體的上表面; 寬廣口又 ❾其改良在于:上述第一導電層和第二導電層中的至少一 個導電層包括至少兩個重叠且交叉^置的奈米碳管 層’每-奈来碳管層包括多個定向排列的奈米碳管,且 相_兩個奈米碳管層中的奈米碳管沿不同方向排列。 2. t申明專利1&amp;圍第1項所述的龍屏,其中,該奈米碳 I曰爲不米奴官薄膜或平行且無間隙鋪設的多個奈米 碳管薄膜。 ” 3·如申請專利範圍第1項所述的觸摸屏,其中,該相鄰兩 ❹個奈米碳管層中的奈米碳管的排列方向具有-交又角度 α’α大于〇度且小于等于9G度(G&lt;C^90。)。 4.2請專利範圍第2項所述的觸摸屏,其中,該奈米破 膜進v包括夕個奈米碳管束片段,每個奈米碳管 束片段具有大致相等的長度且每個奈米碳管束片段由多 個相互平行的奈米碳f束構成,所❹個奈米碳管束片 段兩端通過凡德瓦爾力相互連接。 5·如申請專利範圍第1項所述的觸摸屏,其t,該奈米碳 管薄膜的厚度爲0.5奈米〜_微米。 20 200929635 6·如申請專利範圍第1項 *管層中的奈米碳管爲„ 34的觸摸屏,其中,該奈米礙 多壁奈米碳管。·‘、、早壁奈米碳管、雙壁奈米碳管或 7.如申請專利範圍第6項 單壁奈米碳管的直捏爲〇;太5屏太:特徵在于’該 碳管的直徑爲10太+ &lt;·不未〜5〇奈米,該雙壁奈米 徑爲U奈米〜50^:50奈米,該多壁奈米碳管的直 ο SHUT第1項所述的觸摸屏,其中,該第-電 極板進一步包括+第電 導電層的兩端且盥第—㈣極“一方向設置在第- 9.如申請專利範圍第8第項二電層電連接。 =一步包括兩個第二電極沿第二方向二 兩端且與第二導電層電連接。 Η)·如申:專利範圍第9項所述的觸摸 方向垂直于第一方向。 、〒a第一 ❾11·如申請專利範圍第j項 屏進-步包括一絕緣層”在::屏,其中’該觸摸 圚,㈣+ 啄層叹置在該第二電極板上表面外 圍該第一電極板設置在該絕緣層上。 ,,二月專利祀圍第u項所述的觸摸屏,其中,該觸摸 包括多個點狀隔離物設置在該 盥 該第二電極板之間。 电性极/、 3·如U利㈣第12項所述的觸摸屏 點狀隔離物設置在 Τ逐夕個 間。 置在上述第—導電層和第二導電層之 21 200929635 心圍第12項所述的觸摸屏,其中,該點狀 隔離物與該絕緣層材料爲絕緣且透明的樹脂。 二申:專利乾圍第1項所述的觸摸屏,其中,該觸摸 一進步包括一屏蔽層,該屏蔽層設置在該觸摸屏 =基體的下表面,該屏蔽層爲銦錫氧化物薄膜、綈錫 氧化物薄膜、鎳金薄膜、銀薄膜或奈米碳管薄膜。 16.如申$專利範圍第}項所述的觸摸屏,其中,該第一 ❹ 基體材料爲聚醋膜,該第二基體材料爲玻璃、石英、 金剛石或塑料。 、 17·如申sf專利範圍帛1:^所述的觸摸屏,其中,該觸模 屏進:步包括一透明保護膜,該透明保護膜設置在該 ,—電極板上表©,該透明保護膜的材料爲氮化石夕^ 氧化石夕、|丙環丁稀、聚酿、丙烯酸樹脂或聚對笨二 甲酸乙二醇酯。 18.—種顯示裝置,包括: 〇 一觸摸屏,該觸摸屏包括一第一電極板及一第二電極 板,該第一電極板包括一第一基體及一第一導電層設 置在該第一基體的下表面,該第二電極板與第一電極 板間隔設置,且包括一第二基體及一第二導電層設置 在該第二基體的上表面;及 一顯示設備’該顯示設備正對且靠近上述觸摸屏的第 一電極板設置; 其改良在于:上述第一導電層和第二導電層中的至少一 個導電層包括至少兩個重叠且交叉設置的奈米碳管 22 200929635 層,每一奈米碳管層包括多個定向排列的奈米碳管,且 相鄰的兩個奈米碳管層中的奈米碳管沿不同方向排列。 19. 如申請專利範圍第ι8項所述的顯示裝置,其中,所述 顯示裝置進一步包括一觸摸屏控制器、一中央處理器 及一顯示設備控制器’其中,該觸摸屏控制器、該中 央處理器及該顯示設備控制器三者通過電路相互連 接,該觸摸屏控制器與該觸摸屏電連接,該顯示設備 β 控制器與該顯示設備電連接。 20. 如申請專利範圍第18項所述的顯示裝置,其中,所述 顯示设備爲液晶顯示器、場發射顯示器、電漿顯示器、 電致發光顯示器、真空螢光顯示器及陰極射線管顯示 器中的一種。 21. 如申請專利範圍第18項所述的顯示裝置,其中,該觸 摸屏與該顯示設備間隔設置或該觸摸屏集成在該顯示 δ又備上。 ❹22.如申請專利範圍第18項所述的顯示裝置,其中,所述 顯示裝置進一纟包括一屏蔽層,該屏蔽層設置在該觸 摸屏第二基體的下表面,該屏蔽層爲銦錫氧化物薄 膜、銻錫氧化物薄膜、錄金薄膜、銀薄膜或奈米碳管薄 膜。 守 23.如申請專利範圍第22項所述的顯示裝置,其中,所述 ,丁裝置進一步包括一鈍化層,該鈍化層設置在該屏 蔽層遠離該_屏第三基底的表面上,祕化層的材 料爲氮化石夕或氧化石夕。 23200929635 X. Patent application scope: 触摸. A touch screen comprising: · a first electrode plate 'the first electrode plate includes a -first substrate and a first conductive layer disposed on a lower surface of the first substrate; to &amp; a second electrode plate, the second electrode plate is spaced apart from the first electrode plate. The second electrode plate includes a second substrate and a second surface disposed on the upper surface of the second substrate. The at least one of the first conductive layer and the second conductive layer includes at least two overlapping and intersecting carbon nanotube layers. The carbon nanotube layer comprises a plurality of aligned carbon nanotubes. And the phase carbon nanotubes in the two carbon nanotube layers are arranged in different directions. 2. The invention relates to the long screen described in the above paragraph 1, wherein the nanocarbon I 曰 is a non-nano film or a plurality of carbon nanotube films laid in parallel and without gaps. 3. The touch screen of claim 1, wherein the arrangement of the carbon nanotubes in the adjacent two carbon nanotube layers has an intersection angle α'α greater than a twist and less than </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The segments of substantially equal length and each of the carbon nanotube bundle segments are composed of a plurality of mutually parallel nano carbon f beams, and the ends of the carbon nanotube bundle segments are connected to each other by van der Waals force. In the touch panel of claim 1, the thickness of the carbon nanotube film is 0.5 nm to _micrometer. 20 200929635 6 · As claimed in the first item * the carbon nanotubes in the tube layer are „ 34 A touch screen, wherein the nanometer is obstructed by a multi-walled carbon nanotube. · ', early wall carbon nanotubes, double-walled carbon nanotubes or 7. As claimed in the scope of the sixth paragraph of the single-walled carbon nanotubes, the pinch is too 〇; too 5 screen too: characterized by 'the carbon tube The diameter is 10 too + &lt; · not not ~ 5 〇 nano, the double-walled nanometer diameter is U nano ~ 50 ^: 50 nm, the multi-walled carbon tube straight ο SHUT item 1 The touch panel, wherein the first electrode plate further comprises two ends of the + electrically conductive layer and the first (four) poles are disposed in a direction of the second electrical connection of the eighth electrical field according to claim 8. = One step includes two second electrodes in two opposite ends of the second direction and electrically connected to the second conductive layer. Η)· 申: The touch direction described in claim 9 is perpendicular to the first direction. ❾11·If the application of the scope of the invention, the j-th screen includes an insulating layer in the:: screen, where the touch 圚, (4) + 啄 layer is placed on the surface of the second electrode plate, the first electrode plate It is disposed on the insulating layer. The touch screen of the second aspect of the invention, wherein the touch comprises a plurality of dot spacers disposed between the second electrode plates. The electric pole/, 3. The touch screen dot spacer described in item 12 of Uli (4) is set between Τ and 夕. The touch panel of claim 12, wherein the dot spacer and the insulating layer material are insulating and transparent resins. The touch screen of claim 1, wherein the touch-up includes a shielding layer disposed on the lower surface of the touch screen=substrate, the shielding layer is an indium tin oxide film, bismuth tin An oxide film, a nickel gold film, a silver film or a carbon nanotube film. The touch panel of claim 1, wherein the first base material is a polyester film, and the second base material is glass, quartz, diamond or plastic. The touch screen of the sf patent scope 帛1: ^, wherein the touch screen comprises: a transparent protective film, the transparent protective film is disposed on the electrode plate, the transparent protection The material of the film is nitriding stone, oxidized stone, butyl ring, polystyrene, acrylic resin or polyethylene terephthalate. 18. A display device comprising: a touch screen comprising a first electrode plate and a second electrode plate, the first electrode plate comprising a first substrate and a first conductive layer disposed on the first substrate The second electrode plate is spaced apart from the first electrode plate, and includes a second substrate and a second conductive layer disposed on the upper surface of the second substrate; and a display device that is facing the display device a first electrode plate disposed adjacent to the touch screen; the improvement is that at least one of the first conductive layer and the second conductive layer comprises at least two overlapping and intersecting carbon nanotubes 22 200929635 layers, each The carbon nanotube layer comprises a plurality of aligned carbon nanotubes, and the carbon nanotubes in the adjacent two carbon nanotube layers are arranged in different directions. 19. The display device of claim 1, wherein the display device further comprises a touch screen controller, a central processing unit, and a display device controller, wherein the touch screen controller, the central processing unit And the display device controllers are connected to each other through a circuit, the touch screen controller is electrically connected to the touch screen, and the display device β controller is electrically connected to the display device. 20. The display device of claim 18, wherein the display device is a liquid crystal display, a field emission display, a plasma display, an electroluminescence display, a vacuum fluorescent display, and a cathode ray tube display. One. 21. The display device of claim 18, wherein the touch screen is spaced from the display device or the touch screen is integrated on the display δ. The display device of claim 18, wherein the display device further comprises a shielding layer disposed on a lower surface of the second substrate of the touch screen, the shielding layer being indium tin oxide Film, antimony tin oxide film, gold film, silver film or carbon nanotube film. The display device of claim 22, wherein the device further comprises a passivation layer disposed on a surface of the shielding layer away from the third substrate of the screen, The material of the layer is nitrite or oxidized stone. twenty three
TW96149379A 2007-12-21 2007-12-21 Touch panel and displaying device using the same TWI355765B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96149379A TWI355765B (en) 2007-12-21 2007-12-21 Touch panel and displaying device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96149379A TWI355765B (en) 2007-12-21 2007-12-21 Touch panel and displaying device using the same

Publications (2)

Publication Number Publication Date
TW200929635A true TW200929635A (en) 2009-07-01
TWI355765B TWI355765B (en) 2012-01-01

Family

ID=44864570

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96149379A TWI355765B (en) 2007-12-21 2007-12-21 Touch panel and displaying device using the same

Country Status (1)

Country Link
TW (1) TWI355765B (en)

Also Published As

Publication number Publication date
TWI355765B (en) 2012-01-01

Similar Documents

Publication Publication Date Title
CN101470565B (en) Touch screen and display equipment
TWI354921B (en) Touch panel and displaying device using the same
CN101464765B (en) Touch screen and display equipment
CN101458603B (en) Touch screen and display device
CN101458607B (en) Touch screen and display device
CN101458608B (en) Touch screen preparation method
CN101464764B (en) Touch screen and display equipment
CN101458602B (en) Touch screen and display device
CN101458604B (en) Touch screen and display device
CN101464766B (en) Touch screen and display equipment
TW200926471A (en) Touch panel and displaying device using the same
KR101210747B1 (en) Touch panel and display device using the same
TWI386831B (en) Touch panel and displaying device using the same
TWI423083B (en) Touch panel and displaying device using the same
TWI408575B (en) Touch panel and displaying device using the same
CN101458605B (en) Touch screen and display device
TWI412962B (en) Touch panel and displaying device using the same
TWI436510B (en) Touch panel and displaying device using the same
TWI362776B (en) Touch panel and displaying device using the same
TW200929635A (en) Touch panel and displaying device using the same
TWI354920B (en) Touch panel and displaying device using the same
TWI482324B (en) Touch panel and displaying device using the same
TWI423084B (en) Touch panel and displaying device using the same
TW200929646A (en) Touch panel and displaying device using the same
TW200929636A (en) Touch panel and displaying device using the same