TW200929580A - Electrolyte of solar cell and dye-sensitized solar cell - Google Patents

Electrolyte of solar cell and dye-sensitized solar cell Download PDF

Info

Publication number
TW200929580A
TW200929580A TW97129838A TW97129838A TW200929580A TW 200929580 A TW200929580 A TW 200929580A TW 97129838 A TW97129838 A TW 97129838A TW 97129838 A TW97129838 A TW 97129838A TW 200929580 A TW200929580 A TW 200929580A
Authority
TW
Taiwan
Prior art keywords
electrolyte
dye
solar cell
sensitized solar
luminescent material
Prior art date
Application number
TW97129838A
Other languages
Chinese (zh)
Other versions
TWI449187B (en
Inventor
Yung-Liang Tung
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW097129838A priority Critical patent/TWI449187B/en
Publication of TW200929580A publication Critical patent/TW200929580A/en
Application granted granted Critical
Publication of TWI449187B publication Critical patent/TWI449187B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A electrolyte of a solar cell is provided and characterized by including at least one kind of luminescent material. A wavelength of the luminescent material is more than 400 nm. Due to the added luminescent material in the electrolyte of the solar cell, originally unused light can be absorbed, and a light with higher wavelength is then radiated by the property of the luminescent material. Therefore, the radiated light will be reused by the solar cell, and the light utilization efficiency may be consequently increased, whereby accomplish higher efficiency.

Description

200929580 l 26236-1 twf. doc/n 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種太陽能電池的電解液 (electrolyte) ’且特別是有關於一種太陽能電池的電解液與 染料敏化太陽能電池(Dye-Sensitized Solar CeU,DSSC)。 【先前技術】 太陽能電池是一種非常有希望的乾淨能源,其可直接 從陽光產生電(electricity)。不過,必須要有效地降低太陽 能電池的生產成本以便使其被廣泛接受而變成主要電源。 近年,由Gratzel提出一種所謂的染料敏化太陽能電池 (DSSC),可更有效地利用太陽能源,而成為繼矽晶太陽能 電池後被視為最有潛力的第三代太陽電池之一。一般而 言,染料敏化太陽能電池的結構如圖丨所示,包括分別位 於透明導電基板l〇〇a和l〇〇b上,提供電流流動通路的二 氧化鈦(Ti〇2)工作電極102和Pt對電極1〇4以及傳輸電洞 的電解液106。 儘管上述染料敏化太陽能電池之架構已具備部分商品 化,件,但仍有許多問題需要克服。例如:一般染料敏化 太陽能電池所用的電解液,不外乎利用碘與三碘離子作為 氧化還原對來還麟料,細#光通過二氧化鈦工作電極 時或是經由電解池,都有部份不會被利用到。因此, 利用率上仍有改進空間。 1 26236-ltwf.doc/n 200929580 【發明内容】 本發明提供一種太陽能電池的電解液’可再利用被浪 費的光,以提供更高的光電轉換率。 本發明另提供一種染料敏化太陽能電池(DSSC),可提 高電池的穩定性,繼而加廣染料敏化太陽能電池的可用性。 本發明提出一種太陽能電池的電解液’包括含有至少 一種發光物質(luminescentmaterial)之電解液,其中所述發 光物質的放射波長大於400 nm。 本發明另提出一種染料敏化太陽能電池(DSSC),包括 工作電極、對電極以及電解液。其中,對電極相對工作電 極配置’而電解液是位於工作電極與對電極之間。而且,電 解液含有至少一種發光物質,其中所述發光物質的放射波 大於400 nm。 在本發明之實施例中,上述發光物質的放射波長例如 大於400 nm且小於600nm。 在本發明之實施例中,上述發光物質例如是選自8-羥 基喹琳鋁(A1Q3)及其衍生物以及ir(bpy)3所組成的族群中 的一種發光材料。 在本發明之實施例中’上述發光物質包括有機無機混 成的發光材料。在本發明之實施例中,上述電解液包括液 態電解液、膠態電解液或固態電解液。 在本發明之實施例中,上述發光物質佔所述電解液的 總量的1%〜10%。 在本發明之實施例中,上述電解液所含的發光物質包 6 1 26236- ltwf.doc/n 200929580 括有機化合物或無機化合物。 在本發明之實施例中,上述對電極包括鍍有白金的透 明導電基板。200929580 l 26236-1 twf. doc/n IX. Description of the Invention: [Technical Field] The present invention relates to an electrolyte of a solar cell, and in particular to an electrolyte and a dye of a solar cell Dye-Sensitized Solar CeU (DSSC). [Prior Art] Solar cells are a very promising clean energy source that can generate electricity directly from sunlight. However, it is necessary to effectively reduce the production cost of the solar cell so that it is widely accepted and becomes the main power source. In recent years, Gratzel has proposed a so-called dye-sensitized solar cell (DSSC) that can more effectively utilize solar energy sources and become one of the most promising third-generation solar cells after silicon solar cells. In general, the structure of the dye-sensitized solar cell is as shown in FIG. ,, including titanium dioxide (Ti〇2) working electrode 102 and Pt which are respectively disposed on the transparent conductive substrates 10a and 10b to provide a current flow path. The counter electrode 1〇4 and the electrolyte 106 for transmitting the hole. Although the above-described structure of the dye-sensitized solar cell has been partially commercialized, there are still many problems to be overcome. For example, the electrolyte used in general dye-sensitized solar cells is nothing more than the use of iodine and triiodide as a redox couple. When the light passes through the working electrode of titanium dioxide or through the electrolytic cell, it will not be partially It is used. Therefore, there is still room for improvement in utilization. 1 26236-ltwf.doc/n 200929580 SUMMARY OF THE INVENTION The present invention provides an electrolyte solution for a solar cell that can reuse light that is wasted to provide a higher photoelectric conversion rate. The present invention further provides a dye-sensitized solar cell (DSSC) which improves the stability of the battery and, in turn, the availability of the dye-sensitized solar cell. The present invention provides an electrolyte solution for a solar cell comprising an electrolyte containing at least one luminescent material, wherein the luminescent material has a radiation wavelength greater than 400 nm. The present invention further provides a dye-sensitized solar cell (DSSC) comprising a working electrode, a counter electrode, and an electrolyte. Wherein the counter electrode is disposed relative to the working electrode and the electrolyte is located between the working electrode and the counter electrode. Moreover, the electrolyte contains at least one luminescent material, wherein the luminescent material has a radiant wave greater than 400 nm. In an embodiment of the invention, the luminescent substance has a radiation wavelength of, for example, greater than 400 nm and less than 600 nm. In an embodiment of the invention, the luminescent material is, for example, a luminescent material selected from the group consisting of 8-hydroxyquinoline aluminum (A1Q3) and derivatives thereof and ir(bpy)3. In the embodiment of the invention, the above luminescent substance comprises an organic-inorganic luminescent material. In an embodiment of the invention, the electrolyte solution comprises a liquid electrolyte, a colloidal electrolyte or a solid electrolyte. In an embodiment of the invention, the luminescent material accounts for 1% to 10% of the total amount of the electrolyte. In an embodiment of the present invention, the luminescent material package 6 1 26236- ltwf.doc/n 200929580 contained in the above electrolyte solution includes an organic compound or an inorganic compound. In an embodiment of the invention, the counter electrode comprises a transparent conductive substrate plated with platinum.

I 在本發明之實施例中,上述工作電極包括一個透明導電 基板以及一層形成於透明導電基板表面之金屬氧化物薄膜, 其中金屬氧化物薄膜載有染料。 在本發明之實施例中,上述染料包括釕、锇、鐵、鈀、 Q 麵或鋅的金屬錯合物。 在本發明之實施例中,上述染料包括不含金屬之有機 化合物。 在本發明之實施例中,上述金屬氧化物薄膜的材料包 括 Ti〇2、Zn0、Al2〇3、Si〇2 或 TixAly〇z (χ=1 〜3, y=1〜3 2=1 〜6)。 ’ 在本發明之實施例中,上述透明導電基板包括透明導 電玻璃、塑膠基材或金屬基材。 本發明因為在太陽能電池的電解液中添加發光物質, 所以可將被浪費的光再次利用,如此使染料可以再次吸收 到更多的光,而提高光電轉換率。另外,本發明之發光物 質可以抑制在電解液中,因光而造成的部分副反應7因此 可以提高電池的穩定性,繼而加廣染料敏化太陽 可用性。 包心的 為讓本發明之上述特徵和優點能更明顯易懂,下 舉較佳實施例,並配合所附圖式,作詳細說明如下。. 7 1 26236-ltwf.doc/η 200929580 【實施方式】 下文中睛參閲附圖來更充分地瞭解本發明,其中附圖 顯示本發明之各實施例。不過,本發明還可用多i不同形 . 式來實踐,且不應將其解釋為限於下文所陳述之實施例。 實際上,提供這些實施例只是為了使本發明被揭露得更詳 盡且完整,同時藉此將本發明之範疇完全傳達至所屬技術 領域中具有通常知識者。在圖式中,為明確起見可能將各 0 層的尺寸以及相對尺寸作誇張的描繪。 圖2是依照本發明之一實施例的一種染料敏化太陽能 電池(Dye-Sensitized Solar Cell ’ DSSC)的剖面示意圖。 5月參照圖2,本實施例的染料敏化太陽能電池2〇〇包 括一個工作電極2〇2、一個對電極204以及電解液206。其 中,對電極204相對工作電極202配置,而電解液206是 位於工作電極2〇2與對電極204之間。而且,電解液206含 有至少一種發光物質(luminescentmaterial)208,其放射波長 大於400 nm;舉例來說,發光物質2〇8的放射波長可以在 ❿ 440〜460 nm之間、在520〜550 nm之間或在580〜600 nm之 間。至於電解液206例如是液態電解液、膠態電解液或固 態電解液。而發光物質2〇8則可以是有機化合物或無機化 合物。在本實施例中’發光物質208佔所述電解液206的 總量的1%〜10%。 請繼續參照圖2 ’在本實施例中的對電極2〇4例如鍍 • 有白金210的透明導電基板212;工作電極202例如一個透 日月導電基板214以及—層形成於透明導電基板214表面之金 200929580 1 26236- ltwf.doc/n 屬氧化物薄膜216 ’其中金屬氧化物薄膜216載有染料。上 述染料例如釕、锇、鐵、鉍、鉑或鋅的金屬錯合物;或是 不含金屬之有機化合物。至於上述金屬氧化物薄膜216的 . 材料例如 Ti02、Zn0、Al203、Si02 或 TixAlyOz (x=l〜3, y=l〜3, z=l〜6)。透明導電基板212與214則可以是透明導電玻璃、 塑膠基材或金屬基材。而在對電極204和工作電極202之 間設有間隔件(spacer)218,以便封住電解液206。 當入射光220往工作電極202入射時,光照射區域222 勢必大於金屬氧化物薄膜218所涵蓋的範圍’因此在其中 會有未被利用的入射光(以實心箭號代表)從區域224直接 入射至電解液206中。此時,電解液206所含的發光物質 208會吸收這些未被利用的入射光,而放射波長大於4〇〇 nm的光(以空心箭號代表)。此外,入射光22〇就算經過金 屬氧化物薄膜216也未必會被完全吸收,如UV光。因此, 電解液206中的發光物質208同樣會吸收這些未被金屬氧 化物薄膜216吸收的光(以實心箭號代表),而放射波長大於 ❹ 400 nm的光(以空心箭號代表)。此外,雖然在圖2中是以 圓形小粒狀表示發光物質208,但是實際上發光物質208 是溶解在電解液206中,並因此分布在工作電極202之金 屬氧化物薄膜216内。 另外,由於金屬氧化物薄膜216上吸附的染料可以不 同’所以本發明尚可配合染料的不同使用放射波長之發光 • 物質,因此可以更有效地調配其光的利用率,並利用此特 性抑制光對電解液206造成的副反應,達到高效與穩定的 l 26236-1twf.doc/n 200929580 染料敏化太陽能電池 【實驗例一】In an embodiment of the invention, the working electrode comprises a transparent conductive substrate and a metal oxide film formed on the surface of the transparent conductive substrate, wherein the metal oxide film carries a dye. In an embodiment of the invention, the dye comprises a metal complex of ruthenium, rhodium, iron, palladium, Q-face or zinc. In an embodiment of the invention, the dye comprises a metal-free organic compound. In an embodiment of the invention, the material of the metal oxide film comprises Ti〇2, Zn0, Al2〇3, Si〇2 or TixAly〇z (χ=1 ~3, y=1~3 2=1 〜6) ). In an embodiment of the invention, the transparent conductive substrate comprises a transparent conductive glass, a plastic substrate or a metal substrate. Since the luminescent material is added to the electrolyte of the solar cell, the wasted light can be reused, so that the dye can absorb more light again, and the photoelectric conversion rate is improved. Further, the luminescent material of the present invention can suppress partial side reactions 7 caused by light in the electrolytic solution, thereby improving the stability of the battery and, in turn, augmenting the usability of the dye-sensitized solar. The above described features and advantages of the present invention will become more apparent from the following description of the preferred embodiments. BRIEF DESCRIPTION OF THE DRAWINGS The invention will be more fully understood from the following description, taken in the <RTIgt; However, the invention may be practiced in many different forms and should not be construed as being limited to the embodiments set forth below. Rather, these embodiments are provided solely to provide a more complete and complete disclosure of the invention, and the scope of the invention is fully disclosed to those of ordinary skill in the art. In the drawings, the dimensions and relative dimensions of each layer may be exaggerated for clarity. 2 is a schematic cross-sectional view of a dye-sensitized solar cell (DSC) of a dye-sensitized solar cell (DSSC) in accordance with an embodiment of the present invention. Referring to Fig. 2 in May, the dye-sensitized solar cell 2 of the present embodiment includes a working electrode 2〇2, a counter electrode 204, and an electrolyte 206. The counter electrode 204 is disposed relative to the working electrode 202, and the electrolyte 206 is located between the working electrode 2〇2 and the counter electrode 204. Moreover, the electrolyte 206 contains at least one luminescent material 208 having a radiation wavelength greater than 400 nm; for example, the emission wavelength of the luminescent material 2 〇 8 may be between 440 440 and 460 nm at 520 to 550 nm. Between 580 and 600 nm. The electrolyte 206 is, for example, a liquid electrolyte, a colloidal electrolyte or a solid electrolyte. The luminescent material 2 〇 8 may be an organic compound or an inorganic compound. In the present embodiment, the luminescent substance 208 accounts for 1% to 10% of the total amount of the electrolytic solution 206. Referring to FIG. 2, the counter electrode 2〇4 in the present embodiment is, for example, plated with a transparent conductive substrate 212 having platinum 210; the working electrode 202 such as a transparent solar cell 214 and a layer are formed on the surface of the transparent conductive substrate 214. Gold 200929580 1 26236- ltwf.doc/n is an oxide film 216 'where the metal oxide film 216 carries a dye. The above-mentioned dyes are metal complexes of ruthenium, osmium, iron, iridium, platinum or zinc; or metal-free organic compounds. As the material of the above metal oxide film 216, for example, Ti02, Zn0, Al203, SiO 2 or TixAlyOz (x = 1 to 3, y = 1 to 3, z = 1 to 6). The transparent conductive substrates 212 and 214 may be transparent conductive glass, plastic substrate or metal substrate. A spacer 218 is provided between the counter electrode 204 and the working electrode 202 to seal the electrolyte 206. When the incident light 220 is incident on the working electrode 202, the light-irradiating region 222 is necessarily larger than the range covered by the metal oxide film 218. Therefore, there is an unused incident light (represented by a solid arrow) directly incident from the region 224. Into the electrolyte 206. At this time, the luminescent material 208 contained in the electrolyte 206 absorbs these unused incident light and emits light having a wavelength greater than 4 〇〇 nm (represented by a hollow arrow). Further, the incident light 22 is not necessarily completely absorbed, such as UV light, even after passing through the metal oxide film 216. Therefore, the luminescent material 208 in the electrolyte 206 also absorbs light (represented by solid arrows) which is not absorbed by the metal oxide film 216, and emits light having a wavelength greater than ❹400 nm (represented by hollow arrows). Further, although the luminescent material 208 is shown in the form of a circular small particle in Fig. 2, the luminescent material 208 is actually dissolved in the electrolytic solution 206 and thus distributed in the metal oxide film 216 of the working electrode 202. In addition, since the dye adsorbed on the metal oxide film 216 can be different, the present invention can be used in combination with the dye to emit a light-emitting substance of a radiation wavelength, so that the light utilization efficiency can be more effectively adjusted, and the light can be suppressed by using this characteristic. The side reaction caused by the electrolyte 206 achieves high efficiency and stability. The dye sensitized solar cell is 260236-1twf.doc/n 200929580 [Experimental Example 1]

产首先’準備-個透明導電基板’再在其上形成一層二 乳化鈦(加2)層。贿,二氧化鈦層在室溫吸附抓9华料 約16〜18小時,再以乙睛(ΑΝ)清洗完畢。接著,將二氧 化鈦層(亦即,工作電極)與鑛有白金(pt)的對電極組成一個 電池,再注入含有發光物質之電解液。其十發光物質是用 8#工基圭琳|呂(八11111^11111111:1^(8-}1&gt;^1*0父&gt;^1^11〇1^16),又稱 AIQ3) ’且於1〇毫升電解液中含有1毫克的發光物質。最 後封住電解液注入孔,完成染料敏化太陽能電池的製作。 【對照例一】 除了電解液不含發光物質之外,依照【實驗例一】的 步驟完成對照組的染料敏化太陽能電池。 圖3是依照上述實驗例(染料敏化太陽能電池中的是 内含發光物質的電解液)與對照例(染料敏化太陽能電池中 的是習知不含發光物質的電解液)之電性分析曲線圖。下表 一則為圖3顯示之效率提升數據。 表一 --—--- Jsc (mA/cm2) Voc (V) FF V (%) 16.9 0.769 0.679 8.8 14.8 0.8 一 0.703 8.3 200929580 1 26236-ltwf.doc/n 表一中的 Jsc 是指短路電流(short circuit current)、Voc 是指開路電壓(open circuit current)、FF是填充因子 (fill-factor)、7/ 是指能量轉換效率(conversion efficiency) 〇 從圖3和表一可知,根據本發明之内含發光物質的電 解液,能提昇太陽能電池效率。 【實驗例二】 與【實驗例一】製作電池步驟相同,但注入含有不同 濃度的8-羥基喹啉鋁於電解液中。然後,對發光物質的濃 度對於電池特性影響進行討論。 【對照例二】 除了電解液不含發光物質之外,依照【實驗例一】的 步驟完成對照組的染料敏化太陽能電池。 圖4是依照本發明之多重吸附的工作電極與習知單一 吸附的工作電極之電性分析曲線圖。下表二則為圖4顯示 之效率數據。 表二 -—-^_ aiq3濃度 (mg/10ml) Jsc (mA/cm2) Voc(V) FF V (%) 實驗例二_1 1 14.00 0.707 0.650 6.41 實驗例二^2 — 10 12.70 0.711 0.676 6.11 對照例二 12.50 0.693 0.679 5.90 從圖4和表二可知,加入濃度1 mg/l〇ml或10mg/10ml 的發光物質’都能提昇太陽能電池效率。 11 1 26236-ltwf.doc/n 200929580 【實驗例三】 二氧化鈦層塗佈方式與【實驗例„】步驟相同,b 料選擇Z907,同樣注入含有不同濃度的8_羥某 木 【對照例三】 土 站0 除了電解液不含發光物質之外,依照【實驗 步驟完成對照組的染料敏化太陽能電池。 的 Ο Ο 圖5是依照本發明之多重吸附的工作電極與習知單―。 附的工作電極之電性分析曲_。下表三縣圖5顯°^^ 數據。 平 表三First, a 'preparative-transparent conductive substrate' is formed and a layer of emulsified titanium (plus 2) is formed thereon. Bribe, the titanium dioxide layer is adsorbed at room temperature for about 9 to 18 hours, and then washed with acetonitrile (ΑΝ). Next, a titanium dioxide layer (i.e., a working electrode) and a counter electrode with platinum (pt) are formed into a battery, and an electrolyte containing a luminescent material is injected. Its ten luminescent substances are made with 8#工基圭琳|吕(八11111^11111111:1^(8-}1&gt;^1*0 parent&gt;^1^11〇1^16), also known as AIQ3) ' It contains 1 mg of luminescent material in 1 ml of electrolyte. Finally, the electrolyte injection hole is sealed to complete the fabrication of the dye-sensitized solar cell. [Comparative Example 1] A dye-sensitized solar cell of the control group was completed in accordance with the procedure of [Experimental Example 1] except that the electrolyte contained no luminescent material. 3 is an electrical analysis of the above experimental example (electrolyte containing a luminescent substance in a dye-sensitized solar cell) and a comparative example (an electrolyte containing a luminescent substance in a dye-sensitized solar cell) Graph. The following table shows the efficiency improvement data shown in Figure 3. Table 1----- Jsc (mA/cm2) Voc (V) FF V (%) 16.9 0.769 0.679 8.8 14.8 0.8 A 0.703 8.3 200929580 1 26236-ltwf.doc/n Jsc in Table 1 means short-circuit current (short circuit current), Voc means open circuit current, FF is fill-factor, and 7/ means energy conversion efficiency. As can be seen from FIG. 3 and Table 1, according to the present invention The electrolyte containing the luminescent substance can improve the efficiency of the solar cell. [Experimental Example 2] The same procedure as in the case of [Experimental Example 1] was carried out, but injection of 8-hydroxyquinoline aluminum having different concentrations was carried out in the electrolyte. Then, the effect of the concentration of the luminescent substance on the characteristics of the battery is discussed. [Comparative Example 2] The dye-sensitized solar cell of the control group was completed in accordance with the procedure of [Experimental Example 1] except that the electrolyte contained no luminescent material. Figure 4 is a graph showing the electrical analysis of a multiple adsorbed working electrode in accordance with the present invention and a conventional single adsorbed working electrode. Table 2 below shows the efficiency data shown in Figure 4. Table II---^_ aiq3 concentration (mg/10ml) Jsc (mA/cm2) Voc(V) FF V (%) Experimental example 2_1 1 14.00 0.707 0.650 6.41 Experimental example 2^2 — 10 12.70 0.711 0.676 6.11 Comparative Example 2 12.50 0.693 0.679 5.90 It can be seen from Fig. 4 and Table 2 that the addition of a luminescent substance having a concentration of 1 mg/l 〇ml or 10 mg/10 ml can improve the efficiency of the solar cell. 11 1 26236-ltwf.doc/n 200929580 [Experimental Example 3] The coating method of the titanium dioxide layer is the same as that of the [Experimental Example „], the Z material is selected as Z907, and the same concentration of 8-hydroxyl wood is also injected [Comparative Example 3] Soil station 0 In addition to the electrolyte containing no luminescent material, the dye-sensitized solar cell of the control group was completed according to the experimental procedure. Figure 5 is a multi-adsorbed working electrode and a conventional single according to the present invention. Electrical analysis of the working electrode _. The following three counties of the county show 5 ^^^ data.

從圖5和表三可知,加入濃度不同的發光物質作為 Ζ907染料之電解液,一樣能提昇太陽能電池效率。 綜上所述’本發明因為在電解液中添加發光物質,用 以吸收未被利用的光,並利用發光物質之發光特性,繼而 放射波長較長之光,因此可使吸附在二氧化鈦上的染料再 次利用發光物質放出來的光,提升更高的光利用率,達到 更局的效率。此外’由於不同染料可以配合不同波長之發 光物質’因此可以更有效地調配其光的利用率,並利用此 12 200929580 26236- ltwf.doc/n 特性抑制光對電解液造成的副反應,達到高 料敏化太陽能電池。 疋的木 雖然本發明已以較佳實施例揭露如上,然其 、 限定本發明,任何所屬技術領域中具有通常知識者以 脫離本發明之精神和範圍内,當可作些許之更動與潤不 因此本發明之保護範圍當視後附之申請專利範圍5斤界定者 為準。 ΟAs can be seen from Fig. 5 and Table 3, the addition of a different concentration of the luminescent material as the electrolyte of the Ζ907 dye can improve the efficiency of the solar cell. In summary, the present invention adds a light-emitting substance to an electrolyte to absorb unused light, and utilizes the light-emitting characteristics of the light-emitting substance, and then emits light having a longer wavelength, thereby allowing the dye adsorbed on the titanium oxide. Re-use the light emitted by the luminescent material to improve the utilization of light and achieve a more efficient efficiency. In addition, 'due to different dyes can be combined with different wavelengths of luminescent materials', it is possible to more effectively adjust the utilization of light, and use this 12 200929580 26236-ltwf.doc/n characteristics to suppress the side reaction caused by light to the electrolyte, to achieve high Material sensitized solar cells. Although the present invention has been disclosed in the above preferred embodiments, the present invention is intended to be limited to the spirit and scope of the present invention. Therefore, the scope of protection of the present invention is subject to the definition of 5 kg which is attached to the patent application. Ο

【圖式簡單說明】 圖1是習知的一種染料敏化太陽能電池的剖面示竟 圖。 圖2是依照本發明之一實施例的一種染料敏化太陽能 電池的剖面示意圖。 圖3是依照本發明之實驗例一與對照例一之電性分析 曲線圖。 圖4是依照本發明之實驗例二與對照例二之電性分析 曲線圖。 圖5是依照本發明之實驗例三與對照例三之電性分析 曲線圖。 【主要元件符號說明】 100a、100b :透明導電基板 102 :二氧化鈦(Ti〇2)層 104 : Pt對電極 13 200929580 1 26236-ltwf.doc/n 106 :電解液 200 :染料敏化太陽能電池 202 :工作電極 204 :對電極 206 :電解液 208 :發光物質 210 :白金 212、214 :透明導電基板 216:金屬氧化物薄膜 218 :間隔件 220 :入射光 222 :光照射區域 224 :區域BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a conventional dye-sensitized solar cell. 2 is a schematic cross-sectional view of a dye-sensitized solar cell in accordance with an embodiment of the present invention. Fig. 3 is a graph showing electrical analysis of Experimental Example 1 and Comparative Example 1 in accordance with the present invention. Figure 4 is a graph showing the electrical analysis of Experimental Example 2 and Comparative Example 2 in accordance with the present invention. Figure 5 is a graph showing the electrical analysis of Experimental Example 3 and Comparative Example 3 in accordance with the present invention. [Main component symbol description] 100a, 100b: transparent conductive substrate 102: titanium dioxide (Ti〇2) layer 104: Pt counter electrode 13 200929580 1 26236-ltwf.doc/n 106: electrolyte 200: dye-sensitized solar cell 202: Working electrode 204: Counter electrode 206: Electrolyte 208: Luminescent substance 210: Platinum 212, 214: Transparent conductive substrate 216: Metal oxide film 218: Spacer 220: Incident light 222: Light irradiation area 224: Area

1414

Claims (1)

200929580 1 26236-ltwf.doc/n 十、申請專利範圍: 1. 一種太陽能電池的電解液,包括: 含有至少一種發光物質之電解液,其中所述發光物質 的放射波長大於400 nm。 2. 如申請專利範圍第1項所述之太陽能電池的電解 液,其中所述發光物質的放射波長大於400nm且小於 600nm。 3_如申請專利範圍第1項所述之太陽能電池的電解 液’其中所述發光物質是選自8-羥基喹啉鋁(A1Q3)及其衍 生物以及Ir(bpy)3所組成的族群中的一種發光材料。 4.如申請專利範圍第1項所述之太陽能電池的電解 液’其中所述發光物質包括有機無機混成的發光材料。 5·如申請專利範圍第1項所述之太陽能電池的電解 液,其中所述發光物質佔所述電解液的總量的1%〜1〇〇/0。 6. 如申請專利範圍第1項所述之太陽能電池的電解 液’其中所述電解液包括液態電解液、膠態電解液或固態 電解液。 7. —種染料敏化太陽能電池,包括: 一工作電極; 一對電極’相對該工作電極配置;以及 電解液’位於該工作電極與該對電極之間,其中該電解 液含有至少一種發光物質,其中所述發光物質的放射波大 於 400 nm。 8. 如申請專利範圍第7項所述之染料敏化太陽能電 15 200929580 ί 26236-ltwf.doc/n 池’其中该電解液所含的該發光物質的放射波長大於400 nm且小於600nm。 9.如申請專利範圍第7項所述之染料敏化太陽能電 池,其中該電解液所含的該發光物質是選自8_羥基喹啉鋁 (A1Q3)及其街生物以及以冲办所組成的族群中的一種發 _ 光材料。 1〇.如申請專利範圍第7項所述之染料敏化太陽能電 池,其中該電解液包括液態電解液、膠態電解液或固態電 ^ 解液。 11.如申請專利範圍第7項所述之染料敏化太陽能電 池’其中該電解液所含的該發光物質包括有機化合物或無 機化合物。 12·如申請專利範圍第7項所述之染料敏化太陽能電 池’其中該電解液所含的該發光物質包括有機無機混成的 發光材料。 13. 如申請專利範圍第7項所述之染料敏化太陽能電 ❿ 池,其中邊發光物質佔該電解液的總量的1%〜1〇〇/0。 14. 如申請專利範圍第7項所述之染料敏化太陽能電 池,其中該對電極包括锻有白金的透明導電基板。 15. 如申請專利範圍第7項所述之染料敏化太陽能電 池’其中該工作電極,包括: 一透明導電基板;以及 • 一金屬氧化物薄膜,形成於該透明導電基板表面,該金 屬氧化物薄骐載有染料。 16 200929580 1 26236-ltwf.doc/n 16.如申請專利範圍第15項所述之染料敏化太陽能電 : 其中所遂染料包括釕、锇、鐵、叙、銘或鋅的金屬錯 含丨7.如申請專利範圍第I5項所述之染料敏化太陽能電 ,其中所述染料包括不含金屬之有機化合物。 池,^妒申請專利範圍第15項所述之染料敏化太陽能電 其中金屬氧化物薄膜的材料包括Ti〇2、ZnO、Al2〇3、 •〇2 成 jwn 穴·r 1 〜j、y=i〜3 與 z=l〜6。 Ο χίχΑΐγ〇ζ,其中 Χ=1 〜3、 Sl 2;L9.妒申請專利範圍第15項所述之染料敏化太陽能電 ,其中该透明導電基板包括透明導電玻璃、塑膠基材或 也’ 食屬基讨。200929580 1 26236-ltwf.doc/n X. Patent Application Range: 1. An electrolyte for a solar cell, comprising: an electrolyte containing at least one luminescent substance, wherein the luminescent substance has a radiation wavelength greater than 400 nm. 2. The electrolytic solution of a solar cell according to claim 1, wherein the luminescent substance has a radiation wavelength of more than 400 nm and less than 600 nm. 3_ The electrolyte of the solar cell of claim 1, wherein the luminescent substance is selected from the group consisting of 8-hydroxyquinoline aluminum (A1Q3) and its derivatives and Ir(bpy)3 a luminescent material. 4. The electrolytic solution of a solar cell according to claim 1, wherein the luminescent material comprises an organic-inorganic luminescent material. The electrolytic solution for a solar cell according to claim 1, wherein the luminescent material accounts for 1% to 1 〇〇/0 of the total amount of the electrolytic solution. 6. The electrolytic solution of the solar cell of claim 1, wherein the electrolyte comprises a liquid electrolyte, a colloidal electrolyte or a solid electrolyte. 7. A dye-sensitized solar cell comprising: a working electrode; a pair of electrodes 'configured relative to the working electrode; and an electrolyte 'between the working electrode and the pair of electrodes, wherein the electrolyte contains at least one luminescent substance Wherein the luminescent material has a radiation wave greater than 400 nm. 8. The dye-sensitized solar cell of claim 7, wherein the luminescent material contained in the electrolyte has a radiation wavelength greater than 400 nm and less than 600 nm. 9. The dye-sensitized solar cell of claim 7, wherein the luminescent material contained in the electrolyte is selected from the group consisting of 8-hydroxyquinoline aluminum (A1Q3) and its street organisms, and is composed of a banknote A kind of hair _ light material in the ethnic group. The dye-sensitized solar cell of claim 7, wherein the electrolyte comprises a liquid electrolyte, a colloidal electrolyte or a solid electrolyte solution. 11. The dye-sensitized solar cell of claim 7, wherein the luminescent material contained in the electrolyte comprises an organic compound or an inorganic compound. 12. The dye-sensitized solar cell of claim 7, wherein the luminescent material contained in the electrolyte comprises an organic-inorganic luminescent material. 13. The dye-sensitized solar cell of claim 7, wherein the side luminescent material accounts for 1% to 1 〇〇/0 of the total amount of the electrolyte. 14. The dye-sensitized solar cell of claim 7, wherein the pair of electrodes comprises a transparent conductive substrate forged with platinum. 15. The dye-sensitized solar cell of claim 7, wherein the working electrode comprises: a transparent conductive substrate; and a metal oxide film formed on the surface of the transparent conductive substrate, the metal oxide The thin crucible carries a dye. 16 200929580 1 26236-ltwf.doc/n 16. The dye-sensitized solar energy of claim 15 wherein the dye includes ruthenium, osmium, iron, ruthenium, zinc or zinc. The dye-sensitized solar power of claim 1, wherein the dye comprises a metal-free organic compound. The dye-sensitized solar energy according to the fifteenth item of the patent application, wherein the material of the metal oxide film comprises Ti〇2, ZnO, Al2〇3, •〇2 into jwn holes·r 1 to j, y= i~3 with z=l~6.染料 χίχΑΐγ〇ζ, wherein Χ=1 ~3, Sl 2; L9. The dye-sensitized solar power according to claim 15, wherein the transparent conductive substrate comprises a transparent conductive glass, a plastic substrate or a food Belong to the base.
TW097129838A 2007-12-26 2008-08-06 Electrolyte of solar cell and dye-sensitized solar cell TWI449187B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097129838A TWI449187B (en) 2007-12-26 2008-08-06 Electrolyte of solar cell and dye-sensitized solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW96150328 2007-12-26
TW097129838A TWI449187B (en) 2007-12-26 2008-08-06 Electrolyte of solar cell and dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
TW200929580A true TW200929580A (en) 2009-07-01
TWI449187B TWI449187B (en) 2014-08-11

Family

ID=44864546

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097129838A TWI449187B (en) 2007-12-26 2008-08-06 Electrolyte of solar cell and dye-sensitized solar cell

Country Status (1)

Country Link
TW (1) TWI449187B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL125291A (en) * 1996-01-11 2003-01-12 Univ Princeton Organic luminescent coating for light detectors
JP3966638B2 (en) * 1999-03-19 2007-08-29 株式会社東芝 Multicolor dye-sensitized transparent semiconductor electrode member and production method thereof, multicolor dye-sensitized solar cell, and display element
JP2001302558A (en) * 2000-04-18 2001-10-31 Fuji Photo Film Co Ltd Method for producing metal complex, method for using the same and silver halide photographic emulsion using the same complex
EP1311001B1 (en) * 2000-07-27 2009-12-09 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric transducer
US6989273B2 (en) * 2002-02-08 2006-01-24 Canon Kabushiki Kaisha Light emissive iridium (III) complexes

Also Published As

Publication number Publication date
TWI449187B (en) 2014-08-11

Similar Documents

Publication Publication Date Title
Rajeswari et al. Recent progress and emerging applications of rare earth doped phosphor materials for dye‐sensitized and perovskite solar cells: a review
KR101223558B1 (en) Photosensitizer for photovoltaic cell, and photovoltaic cell prepared from same
KR100659831B1 (en) Dye-sensitized photovoltaic cell and preparation method of electrode substrate for the photovoltaic cell
US8242355B2 (en) Photoelectric conversion element and solar cell
Bose et al. Recent advances and future prospects for dye sensitized solar cells: A review
JP2009032547A (en) Dye-sensitized photoelectric conversion element, its manufacturing method, electronic equipment, semiconductor electrode, and its manufacturing method
KR20120034586A (en) Dye-sensitized photoelectric converter, manufacturing method thereof, and electronic device
TWI299577B (en)
TW201101508A (en) Dye-sensitized solar cells and manufacturing method for thereof
JP2001035551A (en) Pigment-sensitized type solar cell
JP2014220180A (en) Dye-sensitized solar cell having high durability and high conversion efficiency
EP2272920B1 (en) Dye for dye-sensitized solar cell and dye-sensitized solar cell including the same
TW201116593A (en) Dye-sensitized solar cell and photoanode thereof
JP2012204275A (en) Method for manufacturing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module
JP5239262B2 (en) Solar cell
KR101429759B1 (en) Electrolyte composition comprising energy relay dyes for dye-sensitized solar cell and dye-sensitized solar cell comprising said electrolyte composition
JP4220205B2 (en) Dye-sensitized solar cell
JP4677704B2 (en) Dye-sensitized solar cell
JP5217475B2 (en) Photoelectric conversion element and solar cell
Numata et al. Influences of electron-withdrawing groups of organic dyes on spectral property and photovoltaic performance in dye-sensitized solar cells application
TW200929580A (en) Electrolyte of solar cell and dye-sensitized solar cell
JP2010282780A (en) Photoelectric conversion element and solar cell
KR101219488B1 (en) Dye-Sensitized Solar Cell and Method for the same
JP2013122874A (en) Photoelectric conversion element, method for manufacturing the same, electronic device, counter electrode for photoelectric conversion element, and building
JP2009104976A (en) Photoelectric conversion element, and solar cell