TW200929564A - Stacked layer for improving properties of optoelectric device, solar cell having the same and method of fabricating the solar cell - Google Patents

Stacked layer for improving properties of optoelectric device, solar cell having the same and method of fabricating the solar cell Download PDF

Info

Publication number
TW200929564A
TW200929564A TW96151549A TW96151549A TW200929564A TW 200929564 A TW200929564 A TW 200929564A TW 96151549 A TW96151549 A TW 96151549A TW 96151549 A TW96151549 A TW 96151549A TW 200929564 A TW200929564 A TW 200929564A
Authority
TW
Taiwan
Prior art keywords
solar cell
layer
electrode
oxide
substrate
Prior art date
Application number
TW96151549A
Other languages
Chinese (zh)
Inventor
Chung-Wen Lan
Ming-Hsueh Lee
Feng-Yu Tsai
Ching Lin
Song-Yeu Tsai
Kuan-Hui Lee
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW96151549A priority Critical patent/TW200929564A/en
Publication of TW200929564A publication Critical patent/TW200929564A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

A stacked layer for improving the properties of an optoelectric device is provided. The stacked layer includes a base material layer and an atomic layer deposition (ALD) sintering layer covering the surface of the base material layer.

Description

26453twf.doc/006 200929564 九、發明說明: 【發明所屬之技術領域】 本發明是有關於-種光電元件及其製造方法,且特別 是有關於提升光電元件特性之堆疊驗含有此堆疊膜之太 陽電池與其製造方法。 【先前技術】 太陽能是一種具有永不耗盡且無污染的能源,因此在 解決石化能源所面臨的污染與短缺的問題時,一直是最受 矚目的焦點。其中,又以太陽電池(solarcell)可直接將太陽 能轉換為電能,而成為目前相當重要的研究課題。 太陽電池的各電極的表現與基板的選擇是影響其效率 與應用範圍的重要影因素。在電極部分,藉由良好及準確 控制的後處理以及非破壞性的加工,可減少載子的再結合 率(Recombination)或是表面微結構剝裂(crack)等,均可提 升電池效率或是延長壽命(Life Time)。 近年,Gratzel與O’Regan提出一種所謂的染料敏化太 陽電池(DSSC) ’其可有效利用太陽能源’因而引起業界的 注意。一般而言,染料敏化太陽電池的結構包括四部分, 其分別為提供電流流動通路的陰/陽電極、接受電子的半導 體二氧化鈦(Ti〇2)層、染料層以及傳輸電洞的電解質。由 於濕式成膜法是未來光電產業必然的趨勢,但濕式成膜法 所形成的無機薄膜為不連續之多孔洞結構,必須經由高溫 (>450 °C)燒結才能達到可接受的光電與機械性質。然而, 4 26453twf.doc/006 200929564 = 成膜法來形成二氧化鈦層,其後續的高溫燒結必 ^ L、*料敏化太陽電池整體材質特性的改變,而 其發展與應用。 【發明内容】 本發明提供-種堆㈣,可用以提升光電元件之特 性。 ❿ 树明提供—種太陽電池與其製造方法,其可以利用 濕式成膜法來形成其中的無機膜,但可以不需經由高溫燒 結’而使得太陽電池具有和高溫燒結後相當之可接受的光 電與機械性質,讀高電池的效率表減延長其壽命。 本發明提出一種太陽電池,其包括第一電極、第二電 極與光電轉換層。此第一電極包括電極層、基材層以及原 子層沈積黏結層。基材層位於電極層上,且原子層沈積黏 結層披覆在基材層之表面上。光電轉換層,位於第一電極 與第二電極之間。 D 、依照本發明實施例所述,上述之太陽電池中,原子層 沈積黏結層為能隙大於或等於基材層。 依照本發明實施例所述,上述之太陽電池中,原子層 沈積黏結層之材質包括金屬氧化物。 ’、 依照本發明實施例所述,上述之太陽電池中,金屬氧 化物包括氧化鋁、二氧化鈦、氧化錫、氧化鋅、氧化鎂、 氧化錯或其組合。 、 依照本發明實施例所述,上述之太陽電池中,基材層 26453twf.doc/006 200929564 包括金屬或半導體。 依照本發明實施例所述,上述提升光電元件特性之堆 疊膜中,金屬包括金、白金或銀,半導體包括二氧化鈦、 氧化鋅、氧化錫、三氧化鎢或其組合。 依照本發明實施例所述’上述之太陽電池中,第一電 極之電極層的材質包括導電氧化物(tranSparent C()nduetive oxide,TCO)。 ❹ 依照本發明實施例所述’上述之太陽電池中,導電氧 化物包括钢錫氧化物(indium tin oxide,ITO)、摻氟氧化錫 (fluorine doped tin oxide ’ FTO)、摻鋁氧化鋅(aluminium doped zinc oxide ’ AZO)、摻鎵氧化鋅(gallium d〇ped zinc oxide,GZO)或其組合。 依照本發明實施例所述,上述之太陽電池中,第二電 極之材質包括金屬、導電氧化物或其他相關導電物質。 依照本發明實施例所述,上述之太陽電池為染料敏化 太陽電池、多晶矽太陽電池、晶體矽太陽電池或化合物太 〇 陽電池。 依照本發明實施例所述,上述之太陽電池中,當太陽 電池為一染料敏化太陽電池時,基材層為一多孔性薄膜, 光電轉換層為一染料敏化劑且載於多孔性薄膜中,並且染 料敏化太陽電池還包括電解質,其位於第一電極與第二電 極之間。 依照本發明實施例所述,上述之太陽電池中,原子層 沈積黏結層還填入於多孔性薄膜之多數個顆粒之間的間 6 26453twf.doc/006 200929564 隙。 ,本發明還提出一種太陽電池的製造方法,包括在基板 上形成第一電極。第一電極的形成方法包括在基板上形成 電極層。接著’以第一成膜法在電極層上形成基材層,然 後,利用低於攝氏25〇度的第二成膜法在基材層表面上覆 蓋黏結層。 依照本發明實施例所述,上述之太陽電池的製造方法 Q 中,第二成膜法為原子層沈積法。 依照本發明實施例所述,上述之太陽電池的製造方法 中,黏結層為之能隙大於等於該基材層。 依照本發明實施例所述,上述之太陽電池的製造方法 中,黏結層之材質包括金屬氧化物。 依照本發明實施例所述,上述之太陽電池的製造方法 金屬氧化物包括氧化紹、二氧化鈦、氧化錫、氧化鋅、 乳化錯·或其組合。 依照本發明實施例所述’上述之太陽電池的製造方法 中,第一成膜法包括濕式成膜法。 依照本發明實施例所述’上述之太陽電池的製造方法 中,電極層之材質包括導電氧化物。 依照本發明實施例所述’上述之太陽電池的製造方法 中,導電氧化物包括銦錫氧化物(ITO)、摻氟氧化錫(FTO)、 摻鋁氧化鋅(AZO)、摻鎵氧化鋅(GZ〇)或其組合。 依照本發明實施例所述’上述之太陽電池的製造方法 中,基材層包括多孔性薄膜。 7 26453twf.doc/006 200929564 依照本發明實施例所述,上述之太陽電池的製造方 更包括在多孔性薄膜十載入染料敏化劑。 依照本發明實施例所述,上述之太陽電池的製造方 1包括提供第二電極,^還在第-電極與第二電極之間I 填電解質。 门裝 本發明提出一種提升光電元件特性之堆疊膜,包括 電轉換層及原子層沈積黏結層,披覆在光電轉換層之表面 上。 ❹ 依照本發明實施例所述,上述提升光電元件特性之堆 疊膜中’原子層沈積黏結層之能隙大於等於光電轉換層者。 依照本發明實施例所述,上述提升光電元件特性s之堆 疊膜中,原子層沈積黏結層之材質包括金屬氧化物。 依照本發明實施例所述,上述提升光電元件特性之堆 疊膜中,光電轉換層之材質包括半導體材料。 依照本發明實施例所述,上述提升光電元件特性之堆 疊膜中,半導體材料包括矽基材料、碲化鎘(CdTe)、銅銦 Ο 二袖(CuInSe2 ’ CIS)、神化鎵(GaAS)、或磷化鋼鎵(InGap)。 依照本發明實施例所述,上述提升光電元件特性之堆 疊膜中,矽基材料包括多晶矽、單晶矽或非結晶矽。 依照本發明實施例所述,上述提升光電元件特性之堆 疊膜中,上述光電元件包括太陽電池。 本發明利用原子層沈積法來作電極處理,可使得所形 成之鑛膜具有絕佳的均勻性,並且能精準的控制厚度,對 於複雜結構也能提供良好的共形性(C〇nf〇rmity)與階梯性26453twf.doc/006 200929564 IX. Description of the Invention: [Technical Field] The present invention relates to a photovoltaic element and a method of manufacturing the same, and in particular to a stacking test for improving the characteristics of a photovoltaic element. Battery and its manufacturing method. [Prior Art] Solar energy is an energy source that never runs out and is free of pollution. Therefore, it has been the focus of attention in solving the problems of pollution and shortage faced by petrochemical energy. Among them, the solar cell can directly convert solar energy into electrical energy, which has become a very important research topic at present. The performance of the electrodes of the solar cell and the choice of the substrate are important factors affecting the efficiency and application range. In the electrode section, by means of good and accurate controlled post-processing and non-destructive processing, the recombination of the carrier or the crack of the surface microstructure can be reduced, and the battery efficiency can be improved. Life Time. In recent years, Gratzel and O’Regan have proposed a so-called dye-sensitized solar cell (DSSC) which can effectively utilize solar energy sources, thus attracting industry attention. In general, the structure of a dye-sensitized solar cell includes four parts, which are an anode/anode electrode providing a current flow path, a semiconductor-assisted titanium dioxide (Ti〇2) layer, a dye layer, and an electrolyte for transporting holes. Since the wet film formation method is an inevitable trend in the photovoltaic industry in the future, the inorganic film formed by the wet film formation method is a discontinuous porous hole structure, and must be sintered at a high temperature (>450 °C) to achieve an acceptable photoelectricity. With mechanical properties. However, 4 26453twf.doc/006 200929564 = film formation method to form a titanium dioxide layer, and its subsequent high-temperature sintering must change the overall material properties of the solar cell, and its development and application. SUMMARY OF THE INVENTION The present invention provides a seed pile (four) that can be used to enhance the characteristics of a photovoltaic element. ❿ Shuming provides a solar cell and a manufacturing method thereof, which can form an inorganic film by using a wet film forming method, but can make the solar cell have an acceptable photoelectricity after sintering at a high temperature without high-temperature sintering. With mechanical properties, reading the high battery efficiency table reduces the life of the battery. The present invention provides a solar cell comprising a first electrode, a second electrode and a photoelectric conversion layer. The first electrode includes an electrode layer, a substrate layer, and an atomic layer deposition bonding layer. The substrate layer is on the electrode layer, and the atomic layer deposition adhesive layer is coated on the surface of the substrate layer. The photoelectric conversion layer is located between the first electrode and the second electrode. D. According to an embodiment of the invention, in the solar cell described above, the atomic layer deposition bonding layer has an energy gap greater than or equal to the substrate layer. According to an embodiment of the invention, in the solar cell, the material of the atomic layer deposition bonding layer comprises a metal oxide. According to an embodiment of the invention, in the above solar cell, the metal oxide comprises alumina, titania, tin oxide, zinc oxide, magnesium oxide, oxidized error or a combination thereof. According to the embodiment of the invention, in the above solar cell, the substrate layer 26453twf.doc/006 200929564 comprises a metal or a semiconductor. According to an embodiment of the invention, in the stacked film for improving the characteristics of the photovoltaic element, the metal comprises gold, platinum or silver, and the semiconductor comprises titanium dioxide, zinc oxide, tin oxide, tungsten trioxide or a combination thereof. In the above solar cell according to the embodiment of the present invention, the material of the electrode layer of the first electrode includes a conductive oxide (tranSparent C() nduetive oxide (TCO)). In the above solar cell according to the embodiment of the present invention, the conductive oxide includes indium tin oxide (ITO), fluorine doped tin oxide (FTO), aluminum-doped zinc oxide (aluminium). Doped zinc oxide 'AZO), gallium d〇ped zinc oxide (GZO) or a combination thereof. According to an embodiment of the invention, in the solar cell, the material of the second electrode comprises a metal, a conductive oxide or other related conductive material. According to an embodiment of the invention, the solar cell is a dye-sensitized solar cell, a polycrystalline solar cell, a crystalline germanium solar cell or a compound solar cell. According to an embodiment of the invention, in the solar cell, when the solar cell is a dye-sensitized solar cell, the substrate layer is a porous film, and the photoelectric conversion layer is a dye sensitizer and is contained in the porous layer. In the film, and the dye-sensitized solar cell further includes an electrolyte between the first electrode and the second electrode. According to an embodiment of the invention, in the solar cell described above, the atomic layer deposition bonding layer is further filled in a gap between a plurality of particles of the porous film 6 26453 twf.doc/006 200929564. The present invention also provides a method of fabricating a solar cell comprising forming a first electrode on a substrate. The method of forming the first electrode includes forming an electrode layer on the substrate. Next, a substrate layer is formed on the electrode layer by a first film formation method, and then a tack layer is coated on the surface of the substrate layer by a second film formation method of less than 25 degrees Celsius. According to an embodiment of the present invention, in the above method for manufacturing a solar cell Q, the second film forming method is an atomic layer deposition method. According to the embodiment of the invention, in the method for manufacturing a solar cell, the adhesive layer has an energy gap greater than or equal to the substrate layer. According to the embodiment of the invention, in the method for manufacturing a solar cell, the material of the bonding layer comprises a metal oxide. According to an embodiment of the present invention, the above method for producing a solar cell includes a metal oxide including oxidized, titanium oxide, tin oxide, zinc oxide, emulsified, or a combination thereof. In the above method for manufacturing a solar cell according to an embodiment of the present invention, the first film forming method includes a wet film forming method. In the above method for manufacturing a solar cell according to the embodiment of the invention, the material of the electrode layer comprises a conductive oxide. In the above method for manufacturing a solar cell according to an embodiment of the present invention, the conductive oxide includes indium tin oxide (ITO), fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (AZO), and gallium-doped zinc oxide ( GZ〇) or a combination thereof. According to the above method of manufacturing a solar cell according to the embodiment of the invention, the substrate layer comprises a porous film. 7 26453 twf.doc/006 200929564 According to an embodiment of the invention, the above-mentioned solar cell manufacturing method further includes a dye sensitizer loaded in the porous film. According to an embodiment of the invention, the above-described solar cell manufacturing method 1 includes providing a second electrode, and further filling an electrolyte between the first electrode and the second electrode. Door Mount The present invention proposes a stacked film for improving the characteristics of a photovoltaic element, comprising an electrical conversion layer and an atomic layer deposition bonding layer, which are coated on the surface of the photoelectric conversion layer. According to the embodiment of the present invention, the energy gap of the 'atomic layer deposition bonding layer' in the stacked film for improving the characteristics of the photovoltaic element is greater than or equal to the photoelectric conversion layer. According to an embodiment of the invention, in the stacked film for improving the characteristics of the photovoltaic element, the material of the atomic layer deposition bonding layer comprises a metal oxide. According to the embodiment of the invention, in the stacked film for improving the characteristics of the photovoltaic element, the material of the photoelectric conversion layer comprises a semiconductor material. According to the embodiment of the invention, in the stacked film for improving the characteristics of the photovoltaic element, the semiconductor material comprises a bismuth-based material, cadmium telluride (CdTe), copper indium bismuth sleeve (CuInSe2 'CIS), gallium arsenide (GaAS), or Phosphate steel gallium (InGap). According to an embodiment of the invention, in the above laminated film for improving the characteristics of the photovoltaic element, the bismuth-based material comprises polycrystalline germanium, single crystal germanium or amorphous germanium. According to an embodiment of the invention, in the above stacked film for improving the characteristics of the photovoltaic element, the photovoltaic element comprises a solar cell. The invention utilizes the atomic layer deposition method as the electrode treatment, can make the formed mineral film have excellent uniformity, can accurately control the thickness, and can provide good conformality for complex structures (C〇nf〇rmity). And step

S 200929564 26453twf.doc/006 覆蓋性(Step Coverage), (Sintering,Connecting ) 長其壽命。 並也能提絲材層所需的黏結性 ,故能提高電池的效率表現並延 為讓本發明之上述特徵 舉較佳實施例,並配合所附 和優點能更明顯易懂’下文特 圖式,作詳細說明如下。S 200929564 26453twf.doc/006 Cover Coverage, (Sintering, Connecting) Long life. Moreover, the adhesiveness required for the wire layer can be improved, so that the efficiency of the battery can be improved and the preferred embodiment of the present invention can be extended, and the advantages and advantages of the invention can be more clearly understood. , as detailed below.

【實施方式】 圖1與2分別是依照本發明實施例所繪示 光電元件特性之堆疊膜。 之—種提升 Ο 請參照圖1與2 ’本實施例之提升光電元件特性之堆 豐膜10包括基材層12與披覆在基材層12表面上的原子層 沈積黏結層14。基材層12之材f例如是金屬或半導體: 金屬例如是金、白金或銀等。半導體例如是二氧化鈦 (Ti02)、氧化鋅(Zn〇)、氧化錫或氧聽,但不限定於此。 基材層/2可以是以濕式成膜法或是氣相沈積法來形成的 多孔性薄膜。纽㈣膜之孔級可以是微米級或是 奈米級。舉例來說,基材層12可以是湘金奈綠子懸浮 液所鑛之金膜。 原子層沈積黏結層14為可針對不同基材層12及整體 應用方向來作設計調整。原子層沈積黏結層14之能隙大於 等於基材層12。原子層沈積黏結層14之材質包括金屬氧 化物,例如是氧化鋁(人丨2〇3)、二氧化鈦^沁。、氧化錫 (Sn〇2)、氧化鋅(Zn0)、氧化鎂(Mg〇)或氧化锆(Zr02),但 不限定於此。。在一實施例中,基材層12為二氧化鈦之 9 200929564 26453twf.doc/006[Embodiment] Figs. 1 and 2 are stacked films showing the characteristics of photovoltaic elements, respectively, in accordance with an embodiment of the present invention. The lifting film 10 of the present embodiment for improving the characteristics of the photovoltaic element comprises a substrate layer 12 and an atomic layer deposition bonding layer 14 coated on the surface of the substrate layer 12. The material f of the base material layer 12 is, for example, a metal or a semiconductor: The metal is, for example, gold, platinum or silver. The semiconductor is, for example, titanium dioxide (Ti02), zinc oxide (Zn〇), tin oxide or oxygen, but is not limited thereto. The base material layer/2 may be a porous film formed by a wet film formation method or a vapor deposition method. The hole level of the New (4) film can be micron or nano. For example, the substrate layer 12 may be a gold film of the Jingjinai green seed suspension. The Atomic Layer Deposition Bonding Layer 14 is designed for different substrate layers 12 and overall application orientation. The energy gap of the atomic layer deposition bonding layer 14 is greater than or equal to the substrate layer 12. The material of the atomic layer deposition bonding layer 14 includes a metal oxide such as alumina (manganese 2〇3), titanium oxide. And tin oxide (Sn〇2), zinc oxide (Zn0), magnesium oxide (Mg〇) or zirconia (ZrO 2 ), but is not limited thereto. . In one embodiment, the substrate layer 12 is titanium dioxide 9 200929564 26453twf.doc/006

Ecb為-0.42伏特,原子層沈積黏結層14為氧化铭之Ecb為 -4.45伏特。在一些實施例中’原子層沈積黏結層14為覆 蓋基材層12表面的共形膜層,其厚度例如是1埃至250 埃’但並不只限定於此範圍’如圖1所示。在另一實施例 中’原子層沈積黏結層14不僅覆蓋基材層12表面,並且 還填入於組成基材層12之多個顆粒之間的間隙16,如圖2 所示。 通常,原子層沈積製程包括多個循環。每一個原子層 沈積循壤包括提供基材層12活化源(Activation Source)使 欲處理之基材層12表面活化。接著,提供惰性(Inert)氣體, 將腔體沖洗乾淨(Purge)。之後,在腔體中提供反應前驅物 (Precursor) ’使基材層12表面化學性吸附單一層分子 (Monolayer)。之後,再提供惰性氣體將多餘的反應先驅物 帶出’並將腔體沖洗乾淨。基材層12活性源包括〇2、〇3、 H2〇、電漿、紫外光等任何可使欲沉積基材層12活化,提 升沉積效果者。惰性氣體包括N2、Ar等不參與反應的鈍 氣。反應刖驅物包括金屬或非金屬元素之齒化物或有機化 合物等。在一實施例中’進行原子層沈積循環的次數為1 至75次,但並不只限定此範圍。 本發明利用原子層沈積法來形成黏結層14,可使得所 形成之薄膜具有絕佳的均勻性,並且能精準的控制厚度, 對於複雜結構也能提供良好的共形性(C〇nf〇nnity)與階梯 性覆蓋性(Step Coverage),並也能提供基材層所需的黏結 性(Sintering、Connecting),故其可以應用於光電元件中, 26453twf.doc/006 200929564 以提升其光電特性與機械特性。 本發明之堆疊膜10可以應用的光電元件例如是太陽 電池,以作為電極的一部份。此外,本發明之堆疊膜10 還可以擴展應用於阻氣阻水、抗XJV、抗反射、其他材料 之低溫黏結、調整能階變化等等。 圖3是將本發明之堆疊膜應用於太陽電池的剖面示意 圖。 請參照圖3,太陽電池10〇包括第一電極1〇2與第二 電極104以及位於其中的光電轉換層ι〇6。第一電極ι〇2 包括電極層108、基材層110以及原子層沈積黏結層112。 電極層108配置於基板114上。基板114可以是硬式基板 或可撓式基板,例如是玻璃、塑膠或是金屬。電極層1〇8 的材質包括透明導電氧化物(tranSparent eoncjuctive 〇xide ’ TC0)。導電氧化物例如是銦錫氧化物(indium tin oxide,ITO)、摻氟氧化錫(flu〇rine d〇pedtin 〇xide,FT〇)、 摻紹氧化鋅(aluminium doped zinc oxide ’ AZO)、摻鎵氧化 鋅(gallium doped zinc oxide ’ GZO)或其組合。在製作太陽 電池100時,可以透過沈積方法將電極層1〇8形成於基板 116上,或是直接提供具有電極層1〇8功效的基板114,例 如是導電玻璃基板、導電塑膠基板或金屬基板等。 基材層110位於電極層108上;而原子層沈積黏結層 則披覆在基材層11〇之表面上,或是還填入於組成基 材層110之多個顆粒11〇之間的間隙12〇。基材層11〇以 及原子層沈積黏結層112之材質與形成方法分別與上述實 11 26453twf.doc/006 200929564 施例之基材層12與原子層沈積黏結層14者相同,於此不 再敛述。 第二電極104之材質例如是金屬、導電氧化物或其組 合。金屬例如是金、銀、鋁、錫、鎳、鉑、鈦、飢、鉬、 鶴、姻、或其合金。導電氧化物例如是銦錫氧化物(IT〇)、 摻氟氧化錫(FTO)、摻鋁氧化鋅(ΑΖΟ)、摻鎵氧化鋅(GZ〇) 或其組合。同樣地,在製作太陽電池100時,可以透過沈 積方法將弟二電極104形成於基板116上,或是直接提供 具有電極層108功效的基板116,例如是導電玻璃基板、 導電塑膠基板或金屬基板等。 位於該第一電極102與該第二電極104之間的光電轉 換層106的材質’與太陽電池1〇〇的種類有關。太陽電池 100可以是染料敏化太陽電池、多晶矽太陽電池、結晶矽 太陽電池或化合物太陽電池。光電轉換層106之材質可以 是染料、有機材料、或半導體材料。半導體材料例如是矽 基材料、碲化鎘(CdTe)、銅銦二硒(CuInSe2,CIS)、神化鎵 © (GaAs)、或磷化銦鎵(InGaP)。矽基材料例如是矽基材料多 晶矽、單晶矽、非結晶矽等。 光電轉換層106的形成方法,與其材質以及太陽電池 100的種類有關。當光電轉換層1〇6之材質為半導體材料 或其他相關化合物b ’通常’是在第一電極1 〇2上進行沈 積光電轉換材料層並圖案化(Pattern)以形成光電轉換層 106。當光電轉換層106形成之後,才在其表面上形成第二 電極104材料層,再進行圖案化。 26453twf.doc/006 200929564 請參照圖4 ’當上述太陽電池100為染料敏化太陽電 池100A時,其光電轉換層106為染料,且染料是載入於 基材層110之中,並且在第一電極102與第二電極1〇4之 間還會包括電解質118以傳輸電洞。染料例如是狐2〇〇2, 其中Μ代表釕(Ru) ’ L2代表4,4 -一叛基-2,2’-聯π比咬,X代表 鹵素、鼠基、硫氣酸根、乙酿丙嗣、硫代氨基曱酸、水等,或 是稱為“黑染料”[結構式為RuL3(SCN)3(L=三聯η比咬三缓酸鹽)] 的光敏染料,或是有機、無機/有機複合染料等其他相關光 敏染料。電解質例如是碘基礎(iodine based)之相關電解 質、膠態(gel)電解質或固態(solid)電解質等。 在製作染料敏化太陽電池100時,通常,是提供具有 第一電極102的基板114以及具有第二電極1〇4的基板 116。然後’在具有第一電極1〇2的基板上形成基材層, 並在基材層110之中載入染料106。然後,組裝已形成第 一電極102與載有染料之基材層11〇的基板H4以及具有 第一電極104的基板116,再注入電解質118。在本實施例 中’原子層沈積黏結層112可以在基材層11〇形成之後, 在染料載入基材層110之前,共形覆蓋於基材層11()的表 面上,甚至填入基材層110之顆粒與顆粒110a之間的間隙 120之中,但不以此為限。 由於本實施例在基材層的表面上覆蓋能隙較大的原子 層沈積黏結層112,可以阻止電子逆向反應,減少與電洞 的再結合率,提升太陽電池1〇〇的效能。另一方面,由於 原子層沈積製程是在低於攝氏250度的低溫環境下形成, 13 26453twf.doc/〇〇6 200929564 且可精準控制厚度,對於複雜結構具有絕佳的共形性,且 其階梯性覆蓋性佳可以填入基材層顆粒之間的間隙,其所 產生的效能與南溫燒結(Sintering)者相當,故可以提升電池 整體的效率表現’且可以應用於可撓式基板上,增加其應 用與發展。當然,隨著製程技術的演進,除了原子層沈積 之外,本發明之黏結層還可以以其他低於攝氏25〇度的低 溫且具有良好階梯覆蓋性的製程來形成之。 0 將本發明之染料敏化太陽電池與習知之染料敏化太陽Ecb is -0.42 volts, and the atomic layer deposition bonding layer 14 is oxidized to Ecb of -4.45 volts. In some embodiments, the atomic layer deposition bonding layer 14 is a conformal film layer covering the surface of the substrate layer 12, and has a thickness of, for example, 1 angstrom to 250 angstroms, but is not limited to this range as shown in Fig. 1. In another embodiment, the atomic layer deposition bonding layer 14 covers not only the surface of the substrate layer 12 but also the gap 16 between the plurality of particles constituting the substrate layer 12, as shown in FIG. Typically, an atomic layer deposition process includes multiple cycles. Each atomic layer deposition path includes providing a substrate source 12 activation source to activate the surface of the substrate layer 12 to be treated. Next, an inert gas is supplied and the chamber is rinsed (Purge). Thereafter, a reaction precursor (Precursor) is provided in the cavity to chemically adsorb a single layer of molecules on the surface of the substrate layer 12. Thereafter, an inert gas is supplied to carry the excess reaction precursor out and the chamber is rinsed clean. The active source of the substrate layer 12 includes 〇2, 〇3, H2 〇, plasma, ultraviolet light, etc., which can activate the substrate layer 12 to be deposited and enhance the deposition effect. The inert gas includes an blunt gas such as N2 or Ar which does not participate in the reaction. The reaction ruthenium drive includes a metal or non-metal element tooth or an organic compound or the like. In one embodiment, the number of times of performing the atomic layer deposition cycle is from 1 to 75, but it is not limited to this range. The invention utilizes the atomic layer deposition method to form the bonding layer 14, which can make the formed film have excellent uniformity and can accurately control the thickness, and can provide good conformality for complex structures (C〇nf〇nnity). ) and step coverage, and can also provide the required bonding properties of the substrate layer (Sintering, Connecting), so it can be applied to photovoltaic elements, 26453twf.doc/006 200929564 to enhance its photoelectric properties and Mechanical properties. The photovoltaic element to which the stacked film 10 of the present invention can be applied is, for example, a solar cell as a part of an electrode. In addition, the stacked film 10 of the present invention can be extended to use in gas barrier, water resistance, XJV resistance, anti-reflection, low temperature bonding of other materials, adjustment of energy level changes, and the like. Fig. 3 is a schematic cross-sectional view showing the application of the stacked film of the present invention to a solar cell. Referring to Fig. 3, the solar cell 10A includes a first electrode 1〇2 and a second electrode 104, and a photoelectric conversion layer ι6 located therein. The first electrode ι 2 includes an electrode layer 108, a substrate layer 110, and an atomic layer deposition bonding layer 112. The electrode layer 108 is disposed on the substrate 114. The substrate 114 can be a rigid substrate or a flexible substrate such as glass, plastic or metal. The material of the electrode layer 1〇8 includes a transparent conductive oxide (tranSparent eoncjuctive 〇xide 'TC0). The conductive oxide is, for example, indium tin oxide (ITO), fluorine-doped tin oxide (FT〇), aluminum doped zinc oxide (AZO), gallium-doped Zinc oxide (gallium doped zinc oxide 'GZO) or a combination thereof. When the solar cell 100 is fabricated, the electrode layer 1 8 may be formed on the substrate 116 by a deposition method, or the substrate 114 having the effect of the electrode layer 1 8 may be directly provided, such as a conductive glass substrate, a conductive plastic substrate or a metal substrate. Wait. The substrate layer 110 is on the electrode layer 108; and the atomic layer deposition bonding layer is coated on the surface of the substrate layer 11 or is also filled in the gap between the plurality of particles 11 constituting the substrate layer 110. 12〇. The material and formation method of the substrate layer 11〇 and the atomic layer deposition bonding layer 112 are the same as those of the substrate layer 12 and the atomic layer deposition bonding layer 14 of the above-mentioned embodiment 11 26453 twf.doc/006 200929564, respectively. Said. The material of the second electrode 104 is, for example, a metal, a conductive oxide or a combination thereof. The metal is, for example, gold, silver, aluminum, tin, nickel, platinum, titanium, hunger, molybdenum, crane, marriage, or an alloy thereof. The conductive oxide is, for example, indium tin oxide (IT〇), fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (yttrium), gallium-doped zinc oxide (GZ〇), or a combination thereof. Similarly, when the solar cell 100 is fabricated, the second electrode 104 may be formed on the substrate 116 by a deposition method, or the substrate 116 having the function of the electrode layer 108 may be directly provided, such as a conductive glass substrate, a conductive plastic substrate or a metal substrate. Wait. The material ' of the photoelectric conversion layer 106 between the first electrode 102 and the second electrode 104 is related to the type of the solar cell. The solar cell 100 may be a dye-sensitized solar cell, a polycrystalline solar cell, a crystalline germanium solar cell, or a compound solar cell. The material of the photoelectric conversion layer 106 may be a dye, an organic material, or a semiconductor material. The semiconductor material is, for example, a bismuth based material, cadmium telluride (CdTe), copper indium diselenide (CuInSe2, CIS), deuterated gallium © (GaAs), or indium gallium phosphide (InGaP). The ruthenium-based material is, for example, a ruthenium-based material polycrystalline germanium, a single crystal germanium, an amorphous germanium or the like. The method of forming the photoelectric conversion layer 106 depends on the material and the type of the solar cell 100. When the material of the photoelectric conversion layer 1〇6 is a semiconductor material or other related compound b', the photoelectric conversion material layer is deposited on the first electrode 1 〇2 and patterned to form the photoelectric conversion layer 106. After the photoelectric conversion layer 106 is formed, a material layer of the second electrode 104 is formed on the surface thereof, and patterning is performed. 26453twf.doc/006 200929564 Please refer to FIG. 4 'When the solar cell 100 is a dye-sensitized solar cell 100A, the photoelectric conversion layer 106 is a dye, and the dye is loaded in the substrate layer 110, and at the first An electrolyte 118 may also be included between the electrode 102 and the second electrode 1〇4 to transport holes. The dye is, for example, fox 2〇〇2, where Μ represents 钌(Ru) 'L2 stands for 4,4 -1 叛基-2,2'- π ratio bite, X stands for halogen, murine, sulphur acid, and Propylene, thioamino phthalic acid, water, etc., or a photosensitive dye known as "black dye" [structure is RuL3 (SCN) 3 (L = triple η ratio), or organic, Other related photosensitive dyes such as inorganic/organic composite dyes. The electrolyte is, for example, an iodine based related electrolyte, a gel electrolyte or a solid electrolyte or the like. In the production of the dye-sensitized solar cell 100, generally, a substrate 114 having a first electrode 102 and a substrate 116 having a second electrode 1〇4 are provided. Then, a substrate layer is formed on the substrate having the first electrode 1〇2, and the dye 106 is loaded in the substrate layer 110. Then, the substrate H4 on which the first electrode 102 and the dye-containing substrate layer 11 are formed and the substrate 116 having the first electrode 104 are assembled, and the electrolyte 118 is injected. In the present embodiment, the 'atomic layer deposition bonding layer 112 may conform to the surface of the substrate layer 11 () even after the dye is loaded into the substrate layer 110 after the substrate layer 11 is formed, even filling the substrate. The gap between the particles of the layer 110 and the particles 110a is, but not limited to. Since the present embodiment covers the surface of the substrate layer with the atomic layer deposition bonding layer 112 having a large energy gap, the electron reverse reaction can be prevented, the recombination rate with the hole can be reduced, and the efficiency of the solar cell can be improved. On the other hand, since the atomic layer deposition process is formed at a low temperature of less than 250 degrees Celsius, 13 26453 twf.doc/〇〇6 200929564 and the thickness can be precisely controlled, it has excellent conformality for complex structures, and The step coverage is good enough to fill the gap between the particles of the substrate layer, which produces the same performance as the Sintering, so it can improve the overall efficiency of the battery' and can be applied to the flexible substrate. Increase its application and development. Of course, with the evolution of process technology, in addition to atomic layer deposition, the bonding layer of the present invention can be formed by other processes having a lower temperature of 25 degrees Celsius and a good step coverage. 0 Sensitizing the solar cell of the dye of the present invention with a conventional dye sensitized sun

電池比較。本發明與習知之染料敏化太陽電池均是以12 微米的多孔奈米二氧化鈦層作為基材層;DyeSol公司的商 品N719作為載入於基材層的染料;電解質則為含有〇 6M 的 PrMImI(l,2-dimethyl-3-propylimidazoliumi〇dide)、0.05]V[的 I2、0.5M 的 4-叔丁基吼咬(4-tert-butylpyridine,TBP)以及 0.1M的Lil的乙腈(Acetonitrile)溶液。但,在本發明的染 料敏化太陽電池的多孔奈米二氧化鈦層上還覆蓋4微米的 二氧化鋁黏結層。圖5是僅以習知二氧化鈦基材層之染料 〇 敏化太陽電池以及應用本發明之同時具有二氧化鈦基材層 與原子層沈積氧化鋁黏結層之染料敏化太陽電池之電性關 係圖。本發明與習知之染料敏化太陽電池的特性值如表1 所示。由表1的結果顯示採用原子層沈積氧化鋁黏結層確 實可以提升電池的效率達原來的22.8%。 200929564 26453twf.doc/006 Ο 表1 開路電壓 短路電流 填滿因 光電轉換效率 增加效率 V〇〇 密度 子 η(%) (%) (伏特) Jsc FF (mA/cm2) 習知 =~0^66 ~Ϊ3Α4~ _ 0.63 ~ 5^7~- 無 ALD-A1203 本發明 有 ald-ai2o3 0.78 13.98 0.63 6.84 22.8 片----丞柯層衣面上覆蓋原子層沈 積氧化鋁黏結層可以有效提升太陽電池之效率。 綜合以上所述,本發明之堆疊膜中具有原子層沈積黏 結層可以提升光電元件的光電錢械特性。在朗於太陽 電池時’可以有效提升其效能,延展期壽命, 展其應用的領域。 _ ❾ 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何所屬技術領域中具有通常知識者,在不脫 ,發明之精神和範圍内’ t可作些許之更動與潤飾, ,發明之賴範®當視後附之巾請專利範圍所界定者為 -° 【圖式簡單說明】 圖1與2分別是依照本發明實施例所繪示之一 光電元件特性之堆㈣。 梗钕升 圖3是將本發明實施例之堆疊膜應用於太陽電池的剖 15 200929564 26453twf.doc/006 面示意圖。 圖4是將本發明實施例之堆疊膜應用於染料敏化太陽 電池的剖面示意圖。 圖5是習知與本發明之染料敏化太陽電池之電性關係 圖。 【主要元件符號說明】 ❹ 10 : 堆疊膜 12 : 基材層 14 : 原子層沈積黏結層 16 : 間隙 100 :太陽電池 100A :染料敏化太陽電池 102、104 :電極 106 :光電轉換層 108 :電極層 〇 110:基材層 110a :顆粒 112 :原子層沈積黏結層 114、116 :基板 118 :電解質 -120:間隙 16Battery comparison. The dye-sensitized solar cells of the present invention and the conventional ones are a 12 micron porous nano titanium dioxide layer as a substrate layer; DyeSol's commercial product N719 as a dye loaded on the substrate layer; and the electrolyte is a PrMmI containing 〇6M ( l,2-dimethyl-3-propylimidazoliumi〇dide), 0.05]V [I2, 0.5M 4-tert-butylpyridine (TBP) and 0.1 M Lil acetonitrile (Acetonitrile) solution . However, the porous nano titanium dioxide layer of the dye-sensitized solar cell of the present invention is also covered with a 4 μm alumina bonding layer. Fig. 5 is a graph showing the electrical relationship between a dye-sensitized solar cell having only a conventional titanium oxide substrate layer and a dye-sensitized solar cell having a titanium dioxide substrate layer and an atomic layer-deposited alumina adhesion layer to which the present invention is applied. The characteristic values of the dye sensitized solar cell of the present invention and the conventional one are shown in Table 1. The results in Table 1 show that the use of atomic layer deposited alumina bonding layer can actually improve the efficiency of the battery by 22.8%. 200929564 26453twf.doc/006 Ο Table 1 Open circuit voltage short-circuit current is filled due to photoelectric conversion efficiency increase efficiency V〇〇 density η (%) (%) (volts) Jsc FF (mA/cm2) Conventional =~0^66 ~Ϊ3Α4~ _ 0.63 ~ 5^7~- No ALD-A1203 The present invention has ald-ai2o3 0.78 13.98 0.63 6.84 22.8 piece---- 丞 层 layer coating on the surface of the atomic layer deposited alumina bonding layer can effectively enhance the solar cell Efficiency. In summary, the atomic layer deposition bonding layer in the stacked film of the present invention can enhance the photoelectric mechanical properties of the photovoltaic element. When it is in the solar cell, it can effectively improve its performance, extend the life of the product, and expand its application. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , . Fig. 3 is a schematic view showing the application of the stacked film of the embodiment of the present invention to a solar cell section 2009 200964 64 26453 twf.doc/006. Fig. 4 is a schematic cross-sectional view showing the application of the stacked film of the embodiment of the present invention to a dye-sensitized solar cell. Fig. 5 is a graph showing the electrical relationship with a dye-sensitized solar cell of the present invention. [Main component symbol description] ❹ 10 : Stacked film 12 : Substrate layer 14 : Atomic layer deposition bonding layer 16 : Gap 100 : Solar cell 100A : Dye-sensitized solar cell 102 , 104 : Electrode 106 : Photoelectric conversion layer 108 : Electrode Layer 110: Substrate layer 110a: Particle 112: Atomic layer deposition bonding layer 114, 116: Substrate 118: Electrolyte-120: Gap 16

Claims (1)

200929564 26453twf.doc/〇〇6 十、申請專利範園: 1. 一種太陽電池,包括·· 一第一電極,包括一電極層、一基材層以及一原子 層沈積黏結層,其中該基材層位於該電極層上,且該原子 層沈積黏結層披覆在該基材層之表面上; 一第二電極;以及 一光電轉換層,位於該第一電極與該第二電極之 間。 ❹ 2. 如申請專利範圍第1項所述之太陽電池’其中該原 子層沈積黏結層之能隙大於等於該基材層。 3. 如申請專利範圍第1項所述之太陽電池,其中該原 子層沈積黏結層之材質包括金屬氧化物。 4. 如申請專利範圍第3項所述之太陽電池,其中該金 屬氧化物包括氧化紹、二氧化鈦、氧化錫、氧化鋅、氧化 鎮、乳化結或其組合。 5. 如申請專利範圍第1項所述之太陽電池,其中該基 〇 材層之材質包括金屬或半導體。 6. 如申請專利範圍第5項所述之太陽電池,其中該金 屬包括金、白金或銀,半導體包括二氧化鈦、氧化鋅、氧 化錫、二氣化鶴或其組合。。 7·如申請專利範圍第丨項所述之太陽電池,其中該第 一電極之該電極層的材質包括透明導電氧化物(TCO)。 8·如申請專利範圍第7項所述之太陽電池,其中該導 電氧化物包括銦錫氧化物(ITO)、摻氟氡化錫(FTO)、摻鋁 17 200929564 26453twf.doc/006 氧化鋅(AZO)、摻鎵氧化鋅(GZO)或其組合。 9·如申請專利範圍第1項所述之太陽電池,其中該第 二電極之材質包括金屬或導電氧化物。 10.如申請專利範圍第1項所述之太陽電池為染料敏 化太陽電池、多晶矽太陽電池、單晶矽太陽電池、非晶石夕 太陽電池或化合物太陽電池。 11·如申請專利範圍第1項所述之太陽電池,其中當該 太陽電池為一染料敏化太陽電池時,該基材層為—多孔性 薄膜’該光電轉換層為一染料敏化劑且載於該多孔性薄膜 中’並且該染料敏化太陽電池還包括電解質,其位於該第 一電極與該第二電極之間。 12. 如申請專利範圍第^項所述之太陽電池,其中該 原子層沈積黏結層還填入於該多孔性薄膜之多數個顆粒之 間的間隙。 13. —種太陽電池的製造方法,包括: 在一基板上形成一第一電極,包括: 在該基板上形成一電極層; 以第一成膜法在該電極層上形成一基材層;以 及 利用低於攝氏250度的一第二成膜法在該基 材層表面上覆蓋一黏結層。 14. 如申請專利範圍第13項所述之太陽電池的製造方 法,其中該第二成膜法為原子層沈積法。 15. 如申請專利範圍第13項所述之太陽電池的製造方 18 200929564 26453twf.doc/〇〇6 法,其中該黏結層之能隙大於等於該基材層。 16.如申請專利範圍第13項所述之太陽電池的製造方 法,其中該黏結層之材質包括金屬氧化物。 、I7.如申請專利範圍第16項所述之太陽電池的製造方 法’其中該金屬氧化物包括氧化紹、二氧化鈦、氧化錫、 氧化鋅、氧化鎂、氧化鍅或其組合。 18. 如申請專利範圍第13項所述之太陽電池的製造方 法’其巾該帛-朗法包括料成膜法。 19. 如申請專利範圍第13項所述之太陽電池的製造方 法,其中該電極層之材質包括導電氧化物。 、20.如申请專利範圍第19項所述之太陽電池的製造方 法其中該導電氧化物包括銦錫氧化物(IT〇)、換氣氧化鍚 (FTO)、摻紹氧化鋅(Αζ〇)、摻鎵氧化辞(gz〇)或其組合。 21.如申请專利範圍第13項所述之太陽電池的製造方 法,其中該基材層包括多孔性薄膜。 、22·如申♦專利範圍第21項所述之太陽電池的製造方 ❹法’更包括在該多孔性薄膜中載入染料敏化劑。 、23.如申凊專利範圍第η項所述之太陽電池的製造方 =更包括提供-第二電極,且還在該第一電極與該第二 電極之間裝填電解質。 24.-種提升光電元件特性之堆疊膜包括: 一光電轉換層;以及 一原子層沈積黏結層,披覆在該光電轉換層之表面 200929564 26453twf,doc/006 25. 如申請專利範圍第24項所述之提升光電元件特性 之堆疊膜,其中該原子層沈積黏結層之能隙大於等於該光 電轉換層者。 26. 如申請專利範圍第24項所述之提升光電元件特性 之堆疊膜,其中該原子層沈積黏結層之材質包括金屬氧化 物。 Ο 27·如申請專利範圍第26項所述之提升光電元件特性 之堆疊膜,其中該光電轉換層之材質包括半導體材料。 28·如申s青專利範圍第26項所述之提升光電元件特性 之堆疊膜,其中該半導體材料包括矽基材料、碲化鎘 (CdTe)、銅銦二硒(CuInSe2,CIS)、砷化鎵(GaAs)、或磷化 銦鎵 GnGaP)。 29.如申請專利範圍第29項所述之提升光電元件特性 之堆疊膜’其中該;^基材料包括多晶梦、單晶石夕或非結晶 ❹ 20200929564 26453twf.doc/〇〇6 X. Application for a patent garden: 1. A solar cell comprising: a first electrode comprising an electrode layer, a substrate layer and an atomic layer deposition bonding layer, wherein the substrate a layer is disposed on the electrode layer, and the atomic layer deposition bonding layer is coated on the surface of the substrate layer; a second electrode; and a photoelectric conversion layer between the first electrode and the second electrode. 2. The solar cell of claim 1, wherein the energy layer of the atomic layer deposition bonding layer is greater than or equal to the substrate layer. 3. The solar cell of claim 1, wherein the material of the atomic layer deposition bonding layer comprises a metal oxide. 4. The solar cell of claim 3, wherein the metal oxide comprises oxidized, titanium dioxide, tin oxide, zinc oxide, oxidized, emulsified or a combination thereof. 5. The solar cell of claim 1, wherein the base material comprises a metal or a semiconductor. 6. The solar cell of claim 5, wherein the metal comprises gold, platinum or silver, and the semiconductor comprises titanium dioxide, zinc oxide, tin oxide, gasified crane or a combination thereof. . 7. The solar cell of claim 1, wherein the material of the electrode layer of the first electrode comprises a transparent conductive oxide (TCO). 8. The solar cell of claim 7, wherein the conductive oxide comprises indium tin oxide (ITO), fluorine-doped antimony telluride (FTO), aluminum doped 17 200929564 26453twf.doc/006 zinc oxide ( AZO), gallium-doped zinc oxide (GZO) or a combination thereof. 9. The solar cell of claim 1, wherein the material of the second electrode comprises a metal or a conductive oxide. 10. The solar cell according to claim 1 is a dye-sensitized solar cell, a polycrystalline germanium solar cell, a single crystal germanium solar cell, an amorphous quartz solar cell or a compound solar cell. The solar cell according to claim 1, wherein when the solar cell is a dye-sensitized solar cell, the substrate layer is a porous film, and the photoelectric conversion layer is a dye sensitizer and Loaded in the porous film' and the dye-sensitized solar cell further includes an electrolyte between the first electrode and the second electrode. 12. The solar cell of claim 4, wherein the atomic layer deposition bonding layer is further filled in a gap between a plurality of particles of the porous film. 13. A method of fabricating a solar cell, comprising: forming a first electrode on a substrate, comprising: forming an electrode layer on the substrate; forming a substrate layer on the electrode layer by a first film forming method; And coating a surface of the substrate layer with a second film forming method of less than 250 degrees Celsius. 14. The method of producing a solar cell according to claim 13, wherein the second film forming method is an atomic layer deposition method. 15. The method of manufacturing a solar cell according to claim 13, wherein the energy gap of the bonding layer is greater than or equal to the substrate layer. 16. The method of manufacturing a solar cell according to claim 13, wherein the material of the bonding layer comprises a metal oxide. The method of manufacturing a solar cell according to claim 16, wherein the metal oxide comprises oxidized, titanium dioxide, tin oxide, zinc oxide, magnesium oxide, cerium oxide or a combination thereof. 18. The method of manufacturing a solar cell according to claim 13 of the invention, wherein the method comprises a film forming method. 19. The method of manufacturing a solar cell according to claim 13, wherein the material of the electrode layer comprises a conductive oxide. The method for manufacturing a solar cell according to claim 19, wherein the conductive oxide comprises indium tin oxide (IT〇), ventilated yttrium oxide (FTO), and doped zinc oxide (Αζ〇), Gallium-doped oxidation (gz〇) or a combination thereof. The method of producing a solar cell according to claim 13, wherein the substrate layer comprises a porous film. 22. The method of manufacturing a solar cell according to the invention of claim 21, further comprising loading a dye sensitizer in the porous film. 23. The method of manufacturing a solar cell according to item η of the application of the patent, further comprising providing a second electrode, and further filling an electrolyte between the first electrode and the second electrode. 24. A stacked film for improving the characteristics of a photovoltaic element comprising: a photoelectric conversion layer; and an atomic layer deposition bonding layer overlying the surface of the photoelectric conversion layer 200929564 26453 twf, doc/006 25. Patent Application No. 24 The stacked film for improving the characteristics of the photovoltaic element, wherein the energy gap of the atomic layer deposition bonding layer is greater than or equal to the photoelectric conversion layer. 26. The stacked film of the improved photovoltaic element according to claim 24, wherein the material of the atomic layer deposition bonding layer comprises a metal oxide. The stacked film for improving the characteristics of the photovoltaic element according to claim 26, wherein the material of the photoelectric conversion layer comprises a semiconductor material. 28. The stacked film for improving the characteristics of a photovoltaic element according to claim 26, wherein the semiconductor material comprises a bismuth-based material, cadmium telluride (CdTe), copper indium diselenium (CuInSe2, CIS), arsenic. Gallium (GaAs), or Indium Gallium Phosphide (GnGaP). 29. The stacked film of the characteristics of the photovoltaic element as described in claim 29, wherein the base material comprises polycrystalline dream, single crystal or amorphous ❹ 20
TW96151549A 2007-12-31 2007-12-31 Stacked layer for improving properties of optoelectric device, solar cell having the same and method of fabricating the solar cell TW200929564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96151549A TW200929564A (en) 2007-12-31 2007-12-31 Stacked layer for improving properties of optoelectric device, solar cell having the same and method of fabricating the solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96151549A TW200929564A (en) 2007-12-31 2007-12-31 Stacked layer for improving properties of optoelectric device, solar cell having the same and method of fabricating the solar cell

Publications (1)

Publication Number Publication Date
TW200929564A true TW200929564A (en) 2009-07-01

Family

ID=44864537

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96151549A TW200929564A (en) 2007-12-31 2007-12-31 Stacked layer for improving properties of optoelectric device, solar cell having the same and method of fabricating the solar cell

Country Status (1)

Country Link
TW (1) TW200929564A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117525212A (en) * 2024-01-04 2024-02-06 无锡松煜科技有限公司 Solar cell passivation structure and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117525212A (en) * 2024-01-04 2024-02-06 无锡松煜科技有限公司 Solar cell passivation structure and preparation method thereof
CN117525212B (en) * 2024-01-04 2024-03-19 无锡松煜科技有限公司 Solar cell passivation structure and preparation method thereof

Similar Documents

Publication Publication Date Title
Ye et al. Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes
Mali et al. In situ processed gold nanoparticle-embedded TiO 2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency
EP3172776B9 (en) Mesoscopic framework for organic-inorganic perovskite based photoelectric conversion device and method for manufacturing the same
CN112204764A (en) MXene improved mixed photoelectric converter
CN105140319B (en) A kind of thin-film solar cells and preparation method thereof
US20070012356A1 (en) Process for the production of thin layers, preferably for a photovoltaic cell
Wu et al. Electrochemical formation of transparent nanostructured TiO 2 film as an effective bifunctional layer for dye-sensitized solar cells
KR20080091656A (en) Dye-sensitized solar cell
Kyaw et al. Top-illuminated dye-sensitized solar cells with a room-temperature-processed ZnO photoanode on metal substrates and a Pt-coated Ga-doped ZnO counter electrode
CN110429179B (en) AZO/titanium dioxide/tin dioxide-graphene oxide film and perovskite solar cell prepared by using same
TW201115809A (en) Method for manufacturing an electrode
CN110611030A (en) Perovskite solar cell with array structure electron transport layer and preparation method thereof
Horie et al. Enhancement of photocurrent by columnar Nb-doped TiO2 compact layer in dye sensitized solar cells with low temperature process of dc sputtering
US9129751B2 (en) Highly efficient dye-sensitized solar cells using microtextured electron collecting anode and nanoporous and interdigitated hole collecting cathode and method for making same
Hwang et al. Electrochemically deposited CZTSSe thin films for monolithic perovskite tandem solar cells with efficiencies over 17%
Qin et al. Fabricating high-quality Cu2O photocathode by magnetron sputtering: insight into defect states and charge carrier collection in Cu2O
JP2004319661A (en) Photoelectric conversion device, its manufacturing method substrate therefor, and its manufacturing method
JP3740331B2 (en) Photoelectric conversion device and manufacturing method thereof
JP5641981B2 (en) Photoelectric conversion element that can be manufactured by a method suitable for mass production
Ji et al. Oriented rutile TiO2 nanorod arrays for efficient quantum dot-sensitized solar cells with extremely high open-circuit voltage
Kang et al. Effect of double blocking layers at TiO 2/Sb 2 S 3 and Sb 2 S 3/spiro-MeOTAD interfaces on photovoltaic performance
JP5334380B2 (en) Dye-sensitized solar cell and method for producing the same
JP2008277422A (en) Laminated photoelectric converter
JP2003289151A (en) Manufacturing method of photoelectric conversion device
TW200929564A (en) Stacked layer for improving properties of optoelectric device, solar cell having the same and method of fabricating the solar cell