TW200929177A - Radio frequency signal processing apparatus and radio frequency signal processing method - Google Patents

Radio frequency signal processing apparatus and radio frequency signal processing method Download PDF

Info

Publication number
TW200929177A
TW200929177A TW96149689A TW96149689A TW200929177A TW 200929177 A TW200929177 A TW 200929177A TW 96149689 A TW96149689 A TW 96149689A TW 96149689 A TW96149689 A TW 96149689A TW 200929177 A TW200929177 A TW 200929177A
Authority
TW
Taiwan
Prior art keywords
optical storage
storage medium
equalizer
radio frequency
coefficient
Prior art date
Application number
TW96149689A
Other languages
Chinese (zh)
Inventor
Chao-Ming Huang
Chih-Yuan Chen
Original Assignee
Mediatek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Inc filed Critical Mediatek Inc
Priority to TW96149689A priority Critical patent/TW200929177A/en
Publication of TW200929177A publication Critical patent/TW200929177A/en

Links

Abstract

A radio frequency (RF) signal processing apparatus includes a processor, an equalizer, and an equalizer controller. The processor determines a status of an optical storage medium. The first equalizer that includes a plurality of multiplication units and a plurality of shift registers transforms the RF signal into an equalization signal. The equalizer controller unit determines the number of the multiplication units and shift registers which may be enabled according to the status.

Description

200929177 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種射頻信號處理裝置及射頻信號處理方法,更 詳細來說’係關於一種應用於光學存取裝置中,並根據所存取之 一光學儲存媒體之一狀態而改變射頻信號處理裝置内之一等化器 内之乘法器及移位暫存器使用個數之裝置及方法。 【先前技術】 目前市面上使用的光學儲存媒體或光學儲存媒體其格式非常地 H 多,其中唯讀型光學儲存媒體包括CD-ROM、DVD-ROM、 BD-ROM、HD-DVD-ROM,非唯讀型光學儲存媒體又可以分為可 寫入一次的 CD-R、DVD-R、DVD+R、BD-R、HD-DVD-R,以及 可重複寫入的 CD-RW、 DVD-RW、DVD+RW、DVD-RAM、 BD-RE、HD-DVD-RW 等。 而CD光學儲存媒體、DVD光學儲存媒體、Βϋ光學儲存媒體與 HD-DVD光學儲存媒體最大的差異就在於資料記錄密度的不同, BD光學儲存媒體與HD-DVD光學儲存媒體的資料密度較高,而 〇 CD光學儲存媒體的資料密度最低t不同資料密度的光學儲存媒 體,其射頻h號之特性也不同。舉例來說,符際干擾(inter_Symb〇l interference,ISI)的程度不同,符際·干擾越嚴重,則資料回復時 的錯誤機率也就越高。在資料記錄密度越高的光學儲存媒體,例 如BD光學儲存媒體與HD-DVD光學儲存媒體,其射頻信號的符 際干擾會更為嚴重。光學存取裝置為了讀取BD光學儲存媒體與 HD-DVD光學儲存媒體的資料則必須採用更為複雜的資料回復 (data recovery)方法’例如Viterbi,以降低因符際干擾加重所導 5 200929177 致的資料回復錯誤率增加。同樣地在射頻信號的處理上,例如射 頻信號等化器,也會更加複雜。舉例來說,射頻信號等化器可視 需要採用數位等化器(digital equalizer ),或甚至於適應等化器 (adaptive equalizer) ° 光學存取裝置若為了同時支援多種光學儲存媒體資料的讀取, 例如CD光學儲存媒體、DVD光學儲存媒體、BD光學儲存媒體與 iiD-DVD光學儲存媒體等,其射頻信號等化器勢必為了 BD光學 儲存媒體與HD-DVD光學儲存媒體的資料回復而採取較為複雜的 © 設計,而此複雜的射頻信號等化器對於低資料密度光學儲存媒 體,如CD光學儲存媒體,不見得有幫助,可能還會有電力消費量 (power consumption )增加的問題,尤其在高倍速資料回復時會 更加嚴重。因此光學存取裝置在讀取不同資料密度的光學儲存媒 體時,射頻信號等化器必須採用不同的設定,以同時兼顧資料回 復的準確性以及光學存取裝置的效能,例如電力消費量。 更進一步來說,除了光學儲存媒體資料密度不同而導致其射頻 信號具不同的特性外,即使是相同資料密度的光學儲存媒體,也 〇 會因為其凹洞(pit)產生的方式不同而造成其射頻信號特性不同。 當回復記錄於光學儲存媒體上的資料時,光學存取裝置内的光學 讀寫頭會產生雷射光束並聚焦(focus)於光學儲存媒體上的軌道 (track )。當雷射光束的光點聚焦在軌道上的凹洞時,反射率便會 下降,當雷射光束的光點聚焦在軌道上的平面(land )時,反射率 便會增加(隨不同的光學儲存媒體可能有所不同)。此時光學讀寫 頭的光感測器(photo detector )所輸出射頻信號的位準便會反映 出執道上凹洞與平面所造成的反射率變化。因此,光學儲存媒體 6 200929177 凹洞的產生方式便會影響到射頻信號的品質,例如信號時基偏移 (jitter )。 舉例來說’第1圖為測量DVD-ROM以及DVD+RW光學儲存媒 體的射頻k號分佈圖(histogram ),其中橫軸代表射頻信號位準, 縱轴代表射頻信號於每個位準出現的機率或頻率(frequency )。如 果射頻信號的分布愈對稱並且每一分支越集中,則代表此光學儲 存媒體射頻信號的品質越好,在資料回復時的錯誤率越低。在第1 圖中’可以明顯的看出DVD-ROM光學儲存媒體的射頻信號是比 © 較對稱且各分支較為集中,而DVD+RW光學儲存媒體的射頻信號 號則是比較不對稱且分支比較分散。造成此現象的原因便是凹洞 產生的方式不同。DVD-ROM光學儲存媒體凹洞的產生是利用光 學儲存媒體刻版(stamper)與射出成型機所產生,因此其「凹洞 到平面」(pit to land)或「平面到凹洞」(iand to pit)的接面較為 平整且一致,因此當雷射光束光點通過接面時,凹洞與平面造成 的反射率變化自然較為明確,自然地其射頻信號的時基偏移 (jitter)較低。射頻信號分佈圖的分支也較為集中、對稱,自然 Ό 其資料回復時的錯誤率也較低。相反地,DVD+RW光學儲存媒體 其凹洞的產生是藉由光學讀寫頭以高功率雷射將小區域的合金物 資融化’然後凝結成非結晶的組織,使該區域無法像原先那樣擁 有良好的反射性,而產生反射率的變化。相較於DVD-ROM光學 儲存媒體’ DVD+RW光學儲存媒體「凹洞到平面」或「平面到凹 洞」的接面較不平整’且一致性較差,進而導致其射頻信號的時 基偏移較高’射頻信號分佈圖在凹洞部分的分支較為分散且與平 面分支不對稱。因此若為了要降低DVD+RW光學儲存媒體在資料 7 200929177 回復時的錯誤率,射頻等化器便必須採用與DVD-ROM不同的設 定,以適當地補償射頻信號的對稱性與時基偏移。 除了光學儲存媒體資料密度與凹洞產生方式會影響到射頻信號 的特性,對於多資料層光學儲存媒體而言,不同資料層上的資料 也可會產生不同特性的射頻信號。以第2圖為例,其為雙層DVD+R 光學儲存媒體的射頻信號分佈圖,如圖所示,雙層DVD+R光學儲 存媒體第0層的射頻信號是比較對稱且分支比較集中,雙層 DVD+R碟片第1層的射頻信號是比較不對稱且分支比較不集中。 Ο 因此若為了要降低雙層DVD+R光學儲存媒體在資料回復時的錯 誤率,射頻等化器在讀取第1層資料時便必須採用與第0層不同 的設定。 即使是相同資料密度且相同資料層,射頻信號的特性也可能會 隨著光學儲存媒體徑向位置產生不同。以DVD+R光學儲存媒體為 例,目前大部分的光碟記錄器都已經可以高速(16倍線速度)記 錄資料於DVD+R光學儲存媒體上,其原理是利用高雷射功率加熱 造成光學儲存媒體小區域的有機染料改變性質受熱溶解形成凹 0 洞。在高速記錄DVD+R光學儲存媒體時,由於加熱溶解凹洞的時 間非常短,若此時雷射功率控制不穩或雷射光束聚焦位置發生變 動等,都會造成凹洞溶解不完全,當回復該區域資料時,射頻信 號變會因為凹洞溶解不完全產生較大的變異,例如射頻信號位準 較小與時基偏移較大等,間接也會增加資料回復時的錯誤率。當 光碟記錄器以高速記錄資料於DVD+R光學儲存媒體上時,受限於 主轴馬達(spindle motor )轉速限制所影響,並無法以高線速度記 錄資料於整張光學儲存媒體,當記錄資料於光學儲存媒體内圈(離 8 200929177 媒體中心較近輕向位置)時,通常記錄的線速度較低, =艰者㈣位置離光學錯存媒财心越遠,資料記錄速度才能 ^漸增加,最後在光學儲存外圈時此會到達真正的16倍線速 又记錄資料。當記錄資料於光學儲存媒體内圈時,並無法達到直 正的高倍線速度資料記錄,通常只能達到㈠倍的線速度左/,、 =加熱冷解凹洞的時間較長’因此凹洞成型通常較為完全,射 號品質也較好。如第3_示,7倍線速度記錄之射頻信號比 ❹=對稱且广支比較集中。但是當記錄資料於光學儲存媒體外圈 由於疋真正的16倍線速度記錄資料,因此加熱溶解凹洞的時 間較短,凹洞成型不完全的機率也增加,產生之射頻信號也較不 對無、集中。在回復以高倍線速度資料記錄的dvd+r光學儲存媒 體時,便很容“絲學儲相體_與光學職媒體外圈射頻 k號的特性差異很大,而且通常越外圈射頻信號品質越差。因此, 在回復此類光學儲存媒體資料時,射頻信號等化器必須採用不同 的設定,在回復光學儲存媒體外圈資料時,才可以降低因凹洞成 Q 型不完全所造成的錯誤率增加。 綜上所述,為了支援各種光學儲存媒體狀態之資料回復, 頻信號的處理上勢必需要採取較為複雜的方式。在回復記錄於光 學儲存媒體上之資料時’要同時能確歸料回復的準確性 學存取裝置的效能,實為重要的課題。 【發明内容】 本發明之-目的在於提供一種射頻信號處理裝置,用以— 光學儲存媒體於資料回復時所產生之—射頻信號。該:: 理裝置包含-等化器及一等化器控繼。該等化器可料= 9 200929177 種設定以等化該射頻作缺 m栌 Q虎 專化器控制器則根據存取該光學儲 存媒體之—狀態決定該Μϋ所❹之設定。 錯 本發明之另一目的在於提供—種射頻信號處理方法 一光學儲存媒體於資料 處理 彳π復時所產生之—射頻信號。該 頻 信號。 處理方法包含下列步驟:判斷存取該光學儲存媒體之—狀態= =根據錢態決定一等化器之一設定以及根據該設定等化該射 Ο 因此’本發明之射頻信號處理裝置及射頻信號處理方法可 光學儲存媒體之不同,網敕义 調正内。卩參數,以適應不同狀態的光學儲 存媒體,解決了習知_頻信號纽裝置只能處理單-格式或少 數袼式之光學儲存媒體之射頻信號的問題。 在參閱圖式及隨後描述之實施方式後,所屬技術領域中具有通 常知識者便可瞭解本發明之其他目的,以及本發明之技術手段及 實施態樣。 【實施方式】 本發明之第-實施例如第4圖所示,係為一種光學存取裝置卜 用以擷取儲存於-光學料㈣3之_㈣信號3Q。此鮮存取 裝置1包含一處理器u、—射頻信號處理裝置13、一位置控制單 元丨5、光本磧寫頭17、一放大器19、一時序回復單元2〗、一 資料回復單元23及-資料解碼單元25。射頻信號處理裝置】3則 更包含-類比等化器13卜—類比,數位轉換器133、一數位等化器 135及一等化器控制器137。 處理器11用以判斷光學儲存媒體3之一狀態,其狀態包含了碟 片種類、寫入模式、通道位元長度、層數以及碟片在光學存取裝 200929177 置1中的旋轉速;t、存取速度、切線速度等,處理器u並將該狀 態以一狀態信號ίο傳送給等化器控制器丨37,且該處理器u判斷 光子存取裝置1之一狀態並將該狀態以一位置控制信號Μ傳送給 位置控制單元15。位置控制單元15接收處理器u所傳送之位置 控制信號22,並產生—定位信號24以控制光學讀寫頭17讀取光 學儲存媒體3的位置。光學讀取頭單元17則是用以操取光學健存 媒體3的光學信號轉換成—初步射頻信號28,並以定位信號 決定其讀取光學儲存媒體3的資料層以及儲存區。放大器Η則是 ❹將初步射頻信號28放大成為射頻信號3〇,並傳送給類比等化器 131處理。 本發明中所述之各式等化器可具有不同之設定,並根據光學儲 存媒體之狀態來決定各等化器之設定’包含該等化器之一結點係 數(tap coefficient)、該等化器内含之乘法器以及移位暫存器之使 用個數以及等化器所使用之—增益及偏移值之調整。其中類比等 化器⑶用以擷取射頻信號3G,並轉換成—類比信號12。類比/ Ο數位轉換器133則將類比信號12轉換成一數位信號M。數位等化 器135則因應數位信號14並將其轉換成一等化信號16。時序回復 單元21則是產生-時脈信號26。f料回復單元23將等化信號^ 回復為電腦可讀取之信號20。最後,資料解碼單元“接收電腦可 讀取之信號20及時脈信號26並進行解碼,以產生使用者資料仏 數位等化器135則如第5圖所繪示,包含複數個乘法器咖及 複數個移位暫存器Π53,以將數位信號Μ轉換成-等化㈣16, 供下-級單元(通常為資料回復單元23)進行資料處理。 每個乘法器咖係由-乘法器暫止信號135〇所控制,每個移 200929177 位暫存器1353亦由一移位暫存器暫止信號1352所控制。同時參 考第4圖及第5圖’等化器控制器m根據狀態信號川來輸出一 拴制彳5號18’其包含複數個乘法器暫止信號135〇以及複數個移位 暫存暫止信號1352,分別用以致能(enabie)或禁能(disable) 複數個乘法裔U51及複數個移位暫存器1353。藉由判斷光學儲存 媒體3之狀態’等化器控制器137輸出控制信號1乂決定乘法 m 1351及移位暫存器1353被暫止的個數,如此光學存取裴置j 之效能可依據不_需求做適#的調整,達到最佳的運作狀態並 β 降低電源消耗。 舉例來說’當處理器η判斷^種類為高密度數位影訊光學儲 存媒體時’由於其儲存之資料密度較高,需要較佳的重建信號能 力(reproduction signal performance),s 此需致能 9 個乘法器咖 及8個移位暫存器1353(意即暫止較少數量的乘法器i35i及移位 暫存器1353 ),以得到品質較好的等化信號16。當處理器u判斷 碟片種類為中低資料密度的數位影訊光學儲存媒體及cd碟片 〇.時,僅致能3個乘法器1351及2個移位暫存器1353 (意即暫止較 多數量的乘法器咖及移位暫存器出3)。當處理器u判斷碟片 種類為藍光光學儲存媒體時,由於其特殊的信號格式,故需致能4 個乘法器⑽及3個移位暫存器1353。藉由控制暫止乘法器^ 及移位暫存器1353之個數,便可在;^地u 了躲不㈣〇議的光學儲存媒 體3,同時亦可降低光學存取裝置丨的耗電。 類比等化器131如第6圖所綠示,更包含-低通遽波器仙及 -增盈器uu(b_r),低通渡波器1311用以消除射頻”』 之高頻雜訊,增益器加用以於特定頻寬改變增益值。當^料 200929177 11判斷碟片種類為藍光来風枝六丄甘诚 媒體其中之-時,Hrr 度數位胸1光學儲存 信號能力,因此等㈣;密度較高’需要較佳的重建 、対哭n" « 控制以37輸出控制信號18’以致能低通 ==,益器1313,料犯咖好的類比信號12。 :处π ”斷碟片種類為㈣料密度的數位影訊光學 時,㈣信號18僅致能低職波器仙並且禁能增益請3 :處理& 11判斷碟片種類為—低資料密度的⑶碟片時,由於宜 ❹ 貝^度I低,不需特別加強重建信號能力,故控制信號18同時 不此低通慮波為1311及增益器1313,藉以控制光學存取農置1的 耗電。 當處理器11判斷光學儲存媒體3之碟片種類為數位影訊光學儲 存媒體時,處理器u更進—步地判斷該數位影訊光學儲存媒體之 寫入棋S 疋因為由於可燒錄模式碟片與唯讀模式碟片之射頻 信號30不盡相同,會影響類比等化器i3i的信號處理。例如,當 處理器判斷光學儲存媒體3之寫入模式為唯讀模式時,控制: ❹:18便降低增益器1313之增益值,當處理器^判斷光學儲存媒 體3之寫入模式為可燒錄模式時’控制信號】8則提高增益器1313 之增益值,藉此存取不同寫入模式之光學儲存媒體3,同時亦可降 低光學存取裝置1的耗電。 田心里nD 1〗判斷碟片種類為藍光光學儲存媒體時,處理器】】 更進-步地判斷藍光光學儲存媒體之通道位元長度。這是因°為藍 光光學儲存媒體之通道位元長度的不同也會影響增益器⑶3之增 益值。目前市面上藍光光學儲存媒體之通道位元長度分^ 80nm(BD_RE 23G)、74.5 nm(BD-RE 25G)以及 69 nm(BD-RE 27G) 13 200929177 這三種。-般來說,通道位元長度愈小,藍光光學儲存媒體所能 儲存的資料越多’但這也造成了射頻信號3〇愈不容易被重建。因 此當處理器11判斷通道位元長度小於術m _,即光學儲存媒體 3為BD RE 27G之藍光光學儲存媒體,控制信號a提高增益器 1313之增益值,以加強其重建信號能力。 由於光學儲存媒體3内圈以及外圈的燒錄速度會不-樣,因此 其射頻信號30的特性也會隨之不同。光學儲存媒體3外圈的燒錄 速度比較快,所以操取之射頻信號3〇比較不對稱也比較不容易被 重建。因此當處理益U判斷光學讀寫頭η位於光學儲存媒體3 的外圈時,則等化器控制器137產生控制信號18提高類比等化器 1之增4 1313的增盈值’以加強光學儲存媒體3外圈之重建 信號能力。 向光學儲存媒體 、切線速度不同的時候,也會造成射頻信號 〇特f生的列。舉例來說’當光學讀寫頭η相對於光學儲存媒體 3的切線速度發生改變,由3 49m/s(DvD i倍速)提升到^為^ ❹ 七速)Λ時射頻信號3〇中的頻率由4.%赫兹提升到 赫絲;s此時類比等化器131之增益器m的增益頻率仍 =為〇6赫1⑼未提升到_赫茲,則實際的射頻信號30將 ^員比4化11 Π1錯誤的設定而導致錯誤。因此增益器13U之增 =紳也必須隨之提升至69·76赫兹。同理,此時低通渡波器ΐ3ιι 日车射料也必須提高’以補償光學儲存媒體3的切線速度改變 時’對射頻信號30所造成的影響。 是第二實施例亦為光學存取^置,與第—實施例不同的 數位等化器135為—適應等化器(却_料㈣其如第 ]4 200929177 圖所示母個乘法器1351對應有一係數(tap coefficient),用 來控制相對應之乘法器1351。更詳細來說,此適應等化器包含一 等化器係數調變器71,等化器係數調變器71包含一理想射頻信號 產生器711、一減法器713以及一係數更新器715。波形產生器711 產生一理想射頻信號71〇。減法器713比較等化信號16及理想射 頻信號710後,產生一等化射頻誤差信號712,此等化射頻誤差信 號712為等化信號16及理想射頻信號71〇之差值^係數更新器715 至夕根據等化射頻誤差信號712及數位信號14產生係數更新信號 ® 714來更新係數。如前所述’當處理器11判斷光學儲存媒體3之 碟片種類犄,此適應等化器亦會調整所要致能的乘法器135丨及移 位暫存器1353之個數。此外,由於適應等化器更包含等化器係數 5周變益7卜因此會隨著接收愈多的數位信號14,而自行調整係數, 使其重建信號的能力更為加強。 第三實施例之係數更新器715更接收一適應等化器初始係數信 號爪,來初始設定係數。當係數收敏至一最佳值時,係數之初始 〇值會被更新為最佳值’以節省下次讀取相同格狀光學儲存媒體 的前置時間。 等化器係數調變器71更包含一限制單元(未綠示),其預設有一 限制區間’當等化射頻誤差信號712第—次落入限制區間後,便 破限制於限制區間中’以㈣突然的雜訊影響結點係數收斂至最 佳值。 本發明之第三實施例係為一種射頻信號處理方法光學儲存媒體 方法。光學存取裝置包含前述之類比等化器、數位等化器及處理 為專。光學儲存媒體具有複數個f料層,每—财料層具有複數 15 200929177 個儲存區。此實施例如第8圖,在執行步驟801時,載入一光學 儲存媒體。接著執行步驟803,處理器判斷載入之光學儲存媒體是 否為一 CD格式之光學儲存媒體。若載入之光學儲存媒體不是CD 格式之光學儲存媒體,則執行步驟805,處理器判斷載入之光學儲 存媒體是否為一 DVD格式之光學儲存媒體。若載入之光學儲存媒 體不是DVD格式之光學儲存媒體,則接著執行步驟807,處理器 判斷載入之光學儲存媒體是否為一藍光光學儲存媒體。載入之光 學儲存媒體不是藍光光學儲存媒體,則執行步驟809,進行數位等 〇 化器係數之校正,接著執行步驟811,儲存最佳化之數位等化器係 數。 若於步驟803中,處理器判斷載入之光學儲存媒體係為一 CD 格式之光學儲存媒體,則接著執行步驟813,暫止類比等化器以及 數位等化器之複數個乘法器及複數個移位暫存器。若於步驟805 中,處理器判斷載入之光學儲存媒體係為一 DVD格式之光學儲存 媒體,則接著執行步驟815,暫止數位等化器之複數個乘法器及複 數個移位暫存器。若於步驟807中,處理器判斷載入之光學儲存 媒體係為一藍光光學儲存媒體,則接著執行步驟817,暫止數位等 化器之複數個乘法器及複數個移位暫存器。 而前述暫止數位等化器之複數個乘法器及複數個移位暫存器的 數量是隨著光學儲存媒體的種類不同有所變化。例如’當光學儲 存媒體係為一 CD格式之光學儲存媒體,其暫止乘法器及移位暫存 器的數目較多,當光學儲存媒體係為一藍光光學儲存媒體,其暫 止乘法器及移位暫存器的數目必須較少,以得到正確的射頻信 號,若光學儲存媒體係為一 DVD格式之光學儲存媒體,其暫止乘 16 200929177 '移位暫存A的數目則介於CD袼式之光學儲存媒體與藍光 光學儲存媒社間’以維持射頻㈣的正確性麟低光學存取裝 置的耗電。 述可矣應'用本發明之射頻信號處理裝置係可調整内部參 數來分別讀取不同狀態的光學儲存媒體,如此即可讀取現今市面 上大部分常用的光學儲存媒體,解決了習知只能讀取單—種格式 或者僅Μ取少數格式光學儲存媒體之問題。此外,藉由調整等 化器中之乘法單元及移位暫存器之個數,Μ其他㈣的使用或 © 暫止’亦可同時達到省電的目的。 上述所列舉之實施例僅用來例示說明本發明之實施態樣,以及 闡釋本發明之技術特徵,並非用來限制本發明之範•。任何熟悉 ;員技&之人士均可在不違背本發明之技術原理及精神的情況 子述貫鈿例進行修改及變化。本發明之權利保護範圍應以 下述申請專利範圍所主張之内容為依據。 【圖式簡單說明】 弟1圖為DVD-ROM碟片及DVD+RW碟片之射頻信號偏移量比 # 較圖; 第2圖為雙層則則片之㈣層及第1層之射頻信號偏移量 比較圖; =3圖為光學儲存媒體於16倍速旋轉時及於7倍速旋轉時之射 頻k號偏移量比較圖; 第圖為本發明之第一實施例之電路方塊圖; 第5圖為本發明之第一實施例之數位等化器之方塊圖; 第6圖為本發明之第一實施例之類比等化器之方塊圖; 17 200929177 第7圖為本發明之第二實施例之之適應等化器之方塊圖;以及 第8圖為本發明之第三實施例之流程圖。 【主要元件符號說明】200929177 IX. Description of the Invention: [Technical Field] The present invention relates to a radio frequency signal processing device and a radio frequency signal processing method, and more particularly to a method for applying to an optical access device, and according to the accessed A device and method for changing the number of multipliers and shift registers used in an equalizer in an RF signal processing device in one state of an optical storage medium. [Prior Art] The optical storage medium or optical storage medium currently used in the market has a very large format, and the read-only optical storage medium includes CD-ROM, DVD-ROM, BD-ROM, HD-DVD-ROM, and non- The read-only optical storage media can be divided into CD-R, DVD-R, DVD+R, BD-R, HD-DVD-R, and rewritable CD-RW and DVD-RW. , DVD+RW, DVD-RAM, BD-RE, HD-DVD-RW, etc. The biggest difference between CD optical storage media, DVD optical storage media, optical storage media and HD-DVD optical storage media lies in the difference in data recording density. BD optical storage media and HD-DVD optical storage media have higher data density. The optical density of the CD optical storage medium is the lowest. The optical storage medium with different data density has different characteristics of the RF h number. For example, the degree of inter_Symb〇l interference (ISI) is different, and the more serious the inter-symbol interference, the higher the probability of error in data recovery. In optical storage media with higher data recording densities, such as BD optical storage media and HD-DVD optical storage media, the inter-frequency interference of radio frequency signals is more serious. In order to read the data of the BD optical storage medium and the HD-DVD optical storage medium, the optical access device must adopt a more complicated data recovery method such as Viterbi to reduce the increase due to inter-symbol interference. The data response error rate increased. Similarly, the processing of radio frequency signals, such as radio frequency signal equalizers, is also more complicated. For example, the RF signal equalizer may need to use a digital equalizer, or even an adaptive equalizer. If the optical access device supports simultaneous reading of multiple optical storage media materials, For example, CD optical storage media, DVD optical storage media, BD optical storage media, and iiD-DVD optical storage media, etc., the RF signal equalizer is bound to be more complicated for data recovery of BD optical storage media and HD-DVD optical storage media. © design, and this complex RF signal equalizer is not helpful for low data density optical storage media, such as CD optical storage media, and may have increased power consumption, especially at high The double speed data will be more serious when replying. Therefore, when the optical access device reads optical storage media of different data densities, the radio frequency signal equalizer must adopt different settings to simultaneously take into account the accuracy of the data recovery and the performance of the optical access device, such as power consumption. Furthermore, in addition to the different density of optical storage media, the RF signal has different characteristics, even optical storage media of the same data density will be caused by the way the pits are generated. The RF signal characteristics are different. When responsive to data recorded on an optical storage medium, the optical pickup within the optical access device produces a laser beam and focuses on a track on the optical storage medium. When the spot of the laser beam is focused on a hole in the orbit, the reflectivity decreases. When the spot of the laser beam is focused on the plane of the track, the reflectivity increases (along with different optics). The storage media may vary). At this time, the level of the RF signal output from the photo detector of the optical head reflects the change in reflectivity caused by the pit and the plane on the road. Therefore, the optical storage medium 6 200929177 the way the cavity is generated affects the quality of the RF signal, such as the signal time base offset (jitter). For example, 'Figure 1 is a measurement of the radio frequency k number of DVD-ROM and DVD+RW optical storage media, where the horizontal axis represents the RF signal level and the vertical axis represents the RF signal at each level. Probability or frequency (frequency). If the distribution of the RF signal is more symmetrical and the more concentrated each branch, the better the quality of the RF signal representing the optical storage medium, the lower the error rate at the time of data recovery. In Figure 1, it can be clearly seen that the RF signal of the DVD-ROM optical storage medium is more symmetrical and the branches are more concentrated, while the RF signal number of the DVD+RW optical storage medium is more asymmetric and branch comparison. dispersion. The reason for this phenomenon is that the way the pits are produced is different. DVD-ROM optical storage media cavities are generated by optical storage media stampers and injection molding machines, so they are "pit to land" or "plane to recess" (iand to The junction of the pit is relatively flat and uniform, so when the spot of the laser beam passes through the junction, the change in the reflectivity caused by the cavity and the plane is naturally clear, and naturally the time-base jitter of the RF signal is low. . The branches of the RF signal distribution map are also concentrated and symmetrical, and naturally the error rate when the data is recovered is also low. Conversely, the DVD+RW optical storage media has a cavity created by the optical head that melts the alloy material in a small area with a high-power laser and then condenses into an amorphous structure, making the area incapable of beinghave as before. Good reflectivity, resulting in changes in reflectivity. Compared with the DVD-ROM optical storage medium, the DVD+RW optical storage medium has a relatively uneven "concave-to-plane" or "planar to concave" junction and is inconsistent, resulting in a time-base bias of its RF signal. The branch of the higher RF signal distribution in the cavity portion is more dispersed and asymmetrical with the planar branch. Therefore, in order to reduce the error rate of the DVD+RW optical storage medium when replying to data 7 200929177, the RF equalizer must adopt a different setting from the DVD-ROM to properly compensate the symmetry and time base offset of the RF signal. . In addition to the optical storage media data density and pit generation methods will affect the characteristics of the RF signal, for multi-data layer optical storage media, the data on different data layers can also produce RF signals with different characteristics. Taking Figure 2 as an example, it is a radio frequency signal distribution diagram of a dual-layer DVD+R optical storage medium. As shown in the figure, the RF signal of the 0th layer of the dual-layer DVD+R optical storage medium is relatively symmetrical and the branches are relatively concentrated. The RF signal of the first layer of the dual-layer DVD+R disc is relatively asymmetrical and the branches are less concentrated. Ο Therefore, in order to reduce the error rate of the double-layer DVD+R optical storage medium during data recovery, the RF equalizer must use a different setting than the 0th layer when reading the first layer of data. Even with the same data density and the same data layer, the characteristics of the RF signal may vary with the radial position of the optical storage medium. Taking DVD+R optical storage media as an example, most of the current optical disk recorders can record data on DVD+R optical storage media at high speed (16 times linear velocity). The principle is to use high laser power heating to cause optical storage. The organic dye-changing properties of small areas of the medium are dissolved by heat to form a concave hole. When recording DVD+R optical storage media at high speed, the time for heating and dissolving the cavity is very short. If the laser power is unstable or the focus position of the laser beam changes, the cavity will be dissolved incompletely. In the data of this area, the RF signal will change due to the incomplete dissolution of the cavity, for example, the RF signal level is small and the time base offset is large, which indirectly increases the error rate when the data is recovered. When a disc recorder records data on a DVD+R optical storage medium at a high speed, it is limited by the spindle motor speed limitation, and cannot record data at a high line speed on the entire optical storage medium. When the inner circumference of the optical storage medium (close to 8 200929177 media center is lighter), the recorded line speed is usually lower, and the harder (four) position is farther away from the optical error medium, and the data recording speed can be gradually increased. Finally, when the optical storage outer ring is reached, this will reach the true 16x line speed and record the data. When recording data in the inner circumference of the optical storage medium, it is impossible to achieve a straight high-speed line speed data record, usually only up to (one) times the line speed left /, = = heating the cold solution hole for a longer time 'so the cavity is formed Usually more complete, the quality of the shot is also better. As shown in the third figure, the radio frequency signal recorded at 7 times the linear velocity is more symmetrical than ❹= and the wider branch is concentrated. However, when the recorded data is recorded on the outer circumference of the optical storage medium due to the true 16 times linear velocity, the time for heating and dissolving the cavity is shorter, the probability of incomplete cavity formation is also increased, and the generated RF signal is also less correct. concentrated. When replying to the dvd+r optical storage medium recorded at high linear speed data, it is very easy to distinguish the characteristics of the optical storage medium from the optical professional media outer ring RF k, and generally the outer ring RF signal quality The worse, therefore, when responding to such optical storage media data, the RF signal equalizer must use different settings, and when the optical storage media outer ring data is restored, the incompleteness of the Q-shaped void can be reduced. In view of the above, in order to support the data recovery of various optical storage media states, the processing of frequency signals is bound to take a more complicated approach. When replying to the data recorded on the optical storage medium, it must be confirmed at the same time. Accuracy of material recovery The efficiency of the access device is an important issue. SUMMARY OF THE INVENTION The present invention is directed to providing a radio frequency signal processing device for generating an RF storage medium when data is recovered. Signal: The:: device includes - equalizer and first equalizer control. The equalizer can be set = 9 200929177 settings to equalize the RF for the lack of m The Q tiger specializer controller determines the setting according to the state of accessing the optical storage medium. Another object of the invention is to provide a radio frequency signal processing method for optical storage media in data processing 彳π The RF signal generated by the complex time. The frequency signal includes the following steps: determining access to the optical storage medium - state = = determining one of the equalizers according to the money state and equalizing the shot according to the setting Ο Therefore, the RF signal processing device and the RF signal processing method of the present invention can be different from the optical storage medium, and the network parameter is adjusted to meet the optical storage medium of different states, and the conventional _frequency signal device is solved. The problem of radio frequency signals in a single-format or a few optical storage media can only be addressed. After reading the drawings and the embodiments described hereinafter, those skilled in the art can understand other objects of the present invention, and The present invention is a technical means and an embodiment thereof. [Embodiment] The first embodiment of the present invention is shown in FIG. The optical access device is configured to capture the _(four) signal 3Q stored in the optical material (4) 3. The fresh access device 1 includes a processor u, a radio frequency signal processing device 13, a position control unit 丨5, and a light source 碛The write head 17, an amplifier 19, a timing recovery unit 2, a data reply unit 23 and a data decoding unit 25. The RF signal processing device 3 further includes an analogy equalizer 13 - analog, digital converter 133 a digital equalizer 135 and an equalizer controller 137. The processor 11 is configured to determine a state of the optical storage medium 3, the state of which includes the disc type, the write mode, the channel bit length, the number of layers, and The rotational speed of the disc in the optical access device 200929177; t, the access speed, the tangential speed, etc., the processor u transmits the state to the equalizer controller 37 with a status signal ί 37, and the processing The device u judges a state of the photon access device 1 and transmits the state to the position control unit 15 with a position control signal 。. The position control unit 15 receives the position control signal 22 transmitted by the processor u and generates a positioning signal 24 for controlling the position at which the optical pickup 17 reads the optical storage medium 3. The optical pickup unit 17 converts the optical signal for operating the optical storage medium 3 into a preliminary RF signal 28, and determines the data layer and the storage area of the optical storage medium 3 by the positioning signal. The amplifier 是 amplifies the preliminary RF signal 28 into a RF signal 3〇 and transmits it to the analog equalizer 131 for processing. The various equalizers described in the present invention may have different settings, and determine the setting of each equalizer according to the state of the optical storage medium, including a tap coefficient of the equalizer, and the like. The number of multipliers included in the chemist and the number of shift registers used, as well as the gain and offset values used by the equalizer. The analog equalizer (3) is used to capture the RF signal 3G and convert it into an analog signal 12. The analog/digital converter 133 converts the analog signal 12 into a digital signal M. The digital equalizer 135 then converts the digital signal 14 into a equalized signal 16. The timing recovery unit 21 is a generation-clock signal 26. The material recovery unit 23 returns the equalization signal ^ to the computer readable signal 20. Finally, the data decoding unit "receives the computer readable signal 20 and the pulse signal 26 and decodes it to generate the user data. The digitizer 135 is as shown in FIG. 5, and includes a plurality of multipliers and plurals. A shift register Π53 is used to convert the digital signal - into an equalization (four) 16 for data processing by the lower-level unit (usually the data recovery unit 23). Each multiplier is terminated by a multiplier. Controlled by 135〇, each shift 200929177 bit register 1353 is also controlled by a shift register suspend signal 1352. Also refer to Fig. 4 and Fig. 5 'equalizer controller m according to the state signal The output unit 彳5#18' includes a plurality of multiplier suspend signals 135〇 and a plurality of shift temporary suspend signals 1352 for enabling (enabie) or disabling plural multiplicative U51 And a plurality of shift registers 1353. By determining the state of the optical storage medium 3, the equalizer controller 137 outputs a control signal 1 to determine the number of times the multiplication m 1351 and the shift register 1353 are suspended, The performance of the optical access device j can be based on Optimum adjustment to achieve optimal operation and reduce power consumption. For example, 'When the processor η determines that the type is a high-density digital optical storage medium', it is better because of the higher data density of the storage. Reproduction signal performance, s needs to enable 9 multipliers and 8 shift registers 1353 (meaning to suspend a smaller number of multipliers i35i and shift register 1353), In order to obtain a better quality equalization signal 16. When the processor u determines that the disc type is a medium and low data density digital optical storage medium and a cd disc, only three multipliers 1351 and two shifts are enabled. Bit register 1353 (meaning to suspend a larger number of multipliers and shift register 3). When the processor u determines that the disc type is a Blu-ray optical storage medium, due to its special signal format, It is necessary to enable 4 multipliers (10) and 3 shift registers 1353. By controlling the number of the temporary multipliers ^ and the shift register 1353, it is possible to hide in the ground. Optical storage medium 3, while also reducing the power consumption of the optical access device The analog equalizer 131 is green as shown in FIG. 6, and further includes a low-pass chopper and a gainer uu (b_r), and the low-pass waver 1311 is used to cancel the high-frequency noise of the radio frequency. The device is used to change the gain value for a specific bandwidth. When the material 200929177 11 judges that the disc type is blue light, and the Hrr degree chest 1 optical storage signal capability, so wait for (4); higher density 'needs better reconstruction, crying n" «Control outputs 37 with a control signal 18' so that low pass ==, the benefit device 1313, the analog signal 12 is ok. : When π ” breaks the disc type to (4) material density digital video optics, (4) signal 18 only enables low-level wave device and disable gain 3: processing & 11 judge disc type is - low data density (3) When the disc is low, since it is low, it is not necessary to strengthen the signal reconstruction capability. Therefore, the control signal 18 does not have the low-passing wave at 1311 and the gain device 1313, thereby controlling the optical access to the farm 1 When the processor 11 determines that the disc type of the optical storage medium 3 is a digital optical storage medium, the processor u further determines the writing of the digital optical storage medium by the processor S because of the burnable mode. The disc and the radio frequency signal 30 of the read-only mode disc are different, which affects the signal processing of the analog equalizer i3i. For example, when the processor determines that the write mode of the optical storage medium 3 is the read-only mode, the control: : 18 reduces the gain value of the gain device 1313. When the processor determines that the write mode of the optical storage medium 3 is in the burnable mode, the control signal 8 increases the gain value of the gain device 1313, thereby accessing different writes. Into optical storage medium Body 3 can also reduce the power consumption of the optical access device 1. Tian Xinli nD 1 judges that the disc type is a blue optical storage medium, the processor] further determines the channel bit of the blue optical storage medium. The length is different because the length of the channel bit of the blue optical storage medium also affects the gain value of the gain device (3) 3. Currently, the channel bit length of the blue optical storage medium on the market is divided into 80 nm (BD_RE 23G), 74.5 nm. (BD-RE 25G) and 69 nm (BD-RE 27G) 13 200929177 These three kinds. Generally speaking, the smaller the channel bit length, the more data can be stored by the Blu-ray optical storage medium, but this also causes the RF The signal 3 is not easily reconstructed. Therefore, when the processor 11 determines that the channel bit length is less than the m_, that is, the optical storage medium 3 is the Blu-ray optical storage medium of the BD RE 27G, the control signal a increases the gain value of the gain 1313. In order to enhance its ability to reconstruct signals. Since the burning speed of the inner and outer rings of the optical storage medium 3 will not be the same, the characteristics of the radio frequency signal 30 will also be different. The burning speed of the outer ring of the optical storage medium 3 is compared. Fast, so the RF signal 3操 is relatively uncomfortable to be reconstructed. Therefore, when the processing U determines that the optical pickup η is located on the outer circumference of the optical storage medium 3, the equalizer controller 137 generates control. The signal 18 increases the gain value of the analogizer 1 by 4 1313 to enhance the reconstructed signal capability of the outer ring of the optical storage medium 3. When the optical storage medium and the tangential speed are different, the RF signal is also generated. For example, 'when the tangential speed of the optical head η relative to the optical storage medium 3 changes, from 3 49 m / s (DvD i speed) to ^ ❹ 七 七 射频 射频 射频 RF signal 3 〇 The frequency in the rise is increased from 4.% Hertz to Hess; at this time, the gain frequency of the gainer m of the analog equalizer 131 is still = 〇6 Hz 1 (9) is not raised to _ Hertz, then the actual RF signal 30 will be An error is caused by a setting of 4 11 1 错误 1 error. Therefore, the increase of the gainer 13U = 绅 must also be increased to 69. 76 Hz. By the same token, at this time, the low-pass wave ΐ3ιι 车 射 射 射 射 射 射 射 射 射 射 射 射 射 射 射 射 射 射 射 射 射 射 射 射 射 射 射 射 射 射 射 射The second embodiment is also an optical access device, and the digital equalizer 135 different from the first embodiment is an adaptive equalizer (but the material (4) is as shown in the figure 4 200929177. The mother multiplier 1351 is shown. Corresponding to a tap coefficient for controlling the corresponding multiplier 1351. In more detail, the adaptive equalizer includes an equalizer coefficient modulator 71, and the equalizer coefficient modulator 71 includes an ideal. The RF signal generator 711, a subtractor 713 and a coefficient updater 715. The waveform generator 711 generates an ideal RF signal 71. The subtractor 713 compares the equalized signal 16 with the ideal RF signal 710 to generate an equalized RF error. The signal 712, the equalized RF error signal 712 is the difference between the equalized signal 16 and the ideal RF signal 71. The coefficient updater 715 updates the equalization RF error signal 712 and the digital signal 14 to generate the coefficient update signal ® 714. Coefficient. As described above, when the processor 11 determines the disc type of the optical storage medium 3, the adaptive equalizer also adjusts the number of multipliers 135 and shift register 1353 to be enabled. Due to adaptation The equalizer further includes an equalizer coefficient of 5 weeks. Therefore, the coefficient is adjusted by itself as the digital signal 14 is received, so that the ability to reconstruct the signal is further enhanced. The coefficient updater 715 of the third embodiment further Receiving an adaptive equalizer initial coefficient signal claw to initially set the coefficient. When the coefficient is sensitized to an optimal value, the initial value of the coefficient is updated to the optimal value 'to save the next reading of the same lattice optics The preamble time of the storage medium. The equalizer coefficient modulator 71 further includes a limiting unit (not shown in green), which is preset with a limiting interval 'when the equalized radio frequency error signal 712 falls into the restricted interval for the first time, The break is limited to the limit interval. The fourth embodiment of the present invention is an optical storage medium method for radio frequency signal processing method. The optical access device includes the aforementioned analogy. The equalizer, the digital equalizer and the processing are specialized. The optical storage medium has a plurality of f-layers, each of which has a plurality of 15 200929177 storage areas. This embodiment is shown in Figure 8, in the execution step. At 801, an optical storage medium is loaded. Then, in step 803, the processor determines whether the loaded optical storage medium is an optical storage medium in a CD format. If the loaded optical storage medium is not an optical storage medium in a CD format, In step 805, the processor determines whether the loaded optical storage medium is an optical storage medium in a DVD format. If the loaded optical storage medium is not an optical storage medium in the DVD format, then step 807 is executed, and the processor determines to load the optical storage medium. Whether the optical storage medium is a blue optical storage medium. If the loaded optical storage medium is not a blue optical storage medium, step 809 is performed to perform correction of the digital equalizer coefficients, and then step 811 is performed to store the optimized digits, etc. Regulator coefficient. If the processor determines that the loaded optical storage medium is an optical storage medium in a CD format, in step 803, step 813 is executed to suspend the plurality of multipliers and the plurality of multipliers of the analog equalizer and the digital equalizer. Shift register. If the processor determines that the loaded optical storage medium is an optical storage medium in a DVD format, in step 805, step 815 is executed to suspend the plurality of multipliers and the plurality of shift registers of the digital equalizer. . If the processor determines in step 807 that the loaded optical storage medium is a blue optical storage medium, then step 817 is executed to suspend the plurality of multipliers of the digital equalizer and the plurality of shift registers. The number of the plurality of multipliers and the plurality of shift registers of the temporary digital equalizer varies with the type of the optical storage medium. For example, when the optical storage medium is an optical storage medium of a CD format, the number of temporary multipliers and shift registers is large. When the optical storage medium is a blue optical storage medium, the temporary multiplier and The number of shift registers must be small to get the correct RF signal. If the optical storage medium is an optical storage medium in DVD format, its temporary multiplication is 16 200929177 'The number of shift temporary A is between CD The optical storage medium of the cymbal type and the blue optical storage medium are used to maintain the correctness of the radio frequency (4). The RF signal processing device of the present invention can adjust the internal parameters to separately read optical storage media of different states, so that most of the commonly used optical storage media on the market can be read, and the conventional only The ability to read a single format or to capture only a few formats of optical storage media. In addition, by adjusting the number of multiplying units and shift registers in the equalizer, the use of other (4) or © suspends can also achieve power saving. The embodiments described above are only intended to illustrate the embodiments of the present invention, and to explain the technical features of the present invention, and are not intended to limit the scope of the present invention. Any person skilled in the art and the skilled person can make modifications and changes without departing from the technical principles and spirit of the present invention. The scope of the invention should be based on what is claimed in the following claims. [Simple diagram of the diagram] The picture of the brother 1 is the RF signal offset ratio of the DVD-ROM disc and the DVD+RW disc. Figure 2 shows the RF of the (4) layer and the 1st layer of the double layer. The signal offset comparison chart; =3 is a comparison chart of the radio frequency k offset when the optical storage medium is rotated at 16 times speed and 7 times speed; the first figure is a circuit block diagram of the first embodiment of the present invention; Figure 5 is a block diagram of a digital equalizer according to a first embodiment of the present invention; Figure 6 is a block diagram of an analog equalizer of the first embodiment of the present invention; 17 200929177 Figure 7 is the first embodiment of the present invention A block diagram of an adaptive equalizer of the second embodiment; and FIG. 8 is a flow chart of a third embodiment of the present invention. [Main component symbol description]

1 :光學存取裝置 10 :狀態信號 12 :類比信號 14 :數位信號 16 :等化信號 18 :控制信號 20 :電腦可讀取之信號 22 :位置控制信號 24 :定位信號 26 :時脈信號 3〇 :射頻信號 131 :類比等化器 135 :數位等化器 1311 :低通濾波器 1350 :乘法器暫止信號 1352 :移位暫存器暫止信號 71 :等化器係數調變器 711 :波形產生器 713 ·減法器 715 :係數更新器 3:光學儲存媒體 11 :處理器 13 :射頻信號處理裝置 15 :位置控制單元 17 :光學讀寫頭 19 :放大器 21 :時序回復單元 23 :資料回復單元 25 .資料解碼單元 28 :初步射頻信號 32 :使用者資料 133 :類比數位轉換器 137 :等化器控制器 1313 :增益器- 1351 :乘法器 1353 :移位暫存器 710 :理想射頻信號 712 :等化射頻誤差信號 714 :係數更新信號 716 :適應等化器初始係數信號1 : Optical access device 10 : Status signal 12 : Analog signal 14 : Digital signal 16 : Equalization signal 18 : Control signal 20 : Computer readable signal 22 : Position control signal 24 : Positioning signal 26 : Clock signal 3 〇: RF signal 131: analog equalizer 135: digital equalizer 1311: low pass filter 1350: multiplier pause signal 1352: shift register suspend signal 71: equalizer coefficient modulator 711: Waveform generator 713 - Subtractor 715: coefficient updater 3: optical storage medium 11: processor 13: radio frequency signal processing device 15: position control unit 17: optical head 19: amplifier 21: timing recovery unit 23: data reply Unit 25. Data Decoding Unit 28: Preliminary RF Signal 32: User Data 133: Analog Digital Converter 137: Equalizer Controller 1313: Gainer - 1351: Multiplier 1353: Shift Register 710: Ideal RF Signal 712: equalize radio frequency error signal 714: coefficient update signal 716: adaptive equalizer initial coefficient signal

Claims (1)

200929177 十、申請專利範圍: 1. 一種射頻信號處理裝置’應用一光學存取裝置中以處理一光 學儲存媒體於資料回復時所產生之一射頻信號,該射頻信號 處理裝置包含: 專化器,用以根據複數種設定中之一種以等化該射頻 信號;以及 —等化器控制器,根據存取該光學儲存媒體之一狀態決 疋该等化器所使用之設定。 ❹2· *請求項!所述之射頻信號處理裝置,其中該狀態包含該光 學儲存媒體之種類、存取該光學儲存媒體之速度、以及存取 該光學儲存媒體之位置。 3·如請求項2所述之射頻信號處理裝置,其中該等化器之設定 包含該等化器之-結點係數(tap coefficiem )、該等化器内含 之乘法器以及移位暫存器之使用個數以及等化器所使用之一 增益及偏移值之調整。 ^ 4.如請求項3所述之射頻信號處理裝置,其中當該光學儲存媒 體之資料密度越高日該等化器控制器暫止該些乘法器及該 些移位暫存器之個數將越少。 5·如請求項3所述之射頻信號處理裝置,其中當資料密度相同 時上,該等化器控制器暫止該光學儲存媒體為唯讀型(r〇m) 之違些乘法H及該些移位暫存器之個數多於該光學儲存媒體 為非唯⑼型之⑦些乘法器及該些移位暫存器之個數。 6.如請求項3所述之射頻信號處理裳置,其中當回復該光學儲 存媒體上之資料之—位置發生改變時,該等化器控制器會根 19 200929177 Ο ❹ 據一預先決定之數值調整該等化器之—係數。 如請求項6所述之射頻信號處理裝置,其中該位置改變是指 新資料回復位置與原先㈣回復位置於該光學儲存媒體上係 為不同之徑向位置。 如請求項6所述之射頻信號處理裝置,其中當該光學儲存媒 體包含複數個資料層時,該位置改變是指新資料回復位置斑 原先資料回復位置於該光學儲存媒體上係為刊之資料層。 如請求項3所述之射頻信號處理裝置,更包含: 曰 :類比等化器’用以接收該射頻信號,細射頻信號 之π頻雜訊,以及放大一特定頻率範圍内的該射頻信號, 以產生一處理信號;以及 ° -類比數位轉換器’用以將該處理信號量化成_數位信 號; 其中,該等化器係一數位萁卟哭 m ㈣4化益1以接收並等化該數 位信號。 10,如請求項9所述之射頻信號處理裝置,1 學儲存媒體之種類,該等化哭栌制。 人〜'匕3該光 寺化叩栓制益根據該光學儲存媒體之 種類決疋是否暫止該類比等化器。 U· 項1〇所述之射頻信號處理裝置,其中當該光學儲存媒 體為低貪料岔度時,該類比等化器將被暫止。 12.=求項3所述之射頻信號處理裝置,其中該等化器為一適 =化器’該適應等化器更包含-等化器係數調變器,該等 化益係數調變器可以獨立地被暫 $止,虽叇等化器係數調變器 被暫止時,該等化器係數調變 D 頂无决疋之—初始係數 7. 8. 9. 20 Ο ❹ 16 17. 200929177 作為該適應等化器之係數;其 態決定是否暫止該等化器係數調㈣。"控制器根據該狀 13.如請求項12所述之射頻信號處理裝置,龙中 變器執行未被暫止之乘法器之係數計算Γ "係數調 A 所述之射頻信號處理裝置,其中該狀態包含-光 等化器係數調變器被暫止。 付在度時’该 15.如請求項12所述之射頻信號處理裝置,其中 根據該光學儲存媒體之資料#數 σ ^控制器 ㈣目與㈣位置將該光學儲在 媒體劃分成複數個區域,每一 子 ,. 母個£域對應一係數暫存器,哕 些係數暫存器儲存該初始係數。 μ 如凊求項15所述之射頻作,虛理肚$ 辦h Λ ㈣^處理m回復該光學儲存媒 的位置發生改變時’該等化器控制器將該等化 料益在原先貧料回復位置時之最終等化器係數儲存 =、原先資料回復位置龍之該係數暫存器中,並將與新資 2復位置對應之該係數暫存器㈣存的絲設定為該初始 你数。 …種射頻信號處理方法,用以處理—光學儲存媒體於資料回 斤產生之#頻化5虎’該射頻信號處理方法包含下列步 驟: 及 判斷該光學儲存媒體之一狀態; 根據該光學儲存媒體之狀態決定 等化器之一設定;以 等化該射頻信號。 21 200929177 18 19. 如叫求項17所述之射頻信號處理方法,其中 ::態包含該光學儲存媒體之種類、存取該光學儲:= 、又以及存取该光學儲存媒體之位置。 、 长項18所述之射頻信號處理方法,其中該等化器之 之一結點係數(一一)、該等二 之采法㈣及移位暫存器之使關數以及等化器所使用之— 增细及偏移值之調整。 20.❹ 如請求項19所述之射頻信號處理方 法,更包含下列步 回復s亥光學儲存媒體上之資料;以及 画回復該光學儲存媒體上之資料之-位置改變時,根撼 一預先衫讀值婦科化11之-結㈣數 K 21. ❹ 22. 如請求項19所述之射頻《處理方法,更包含下列步驟: 提供一類比等化器; 藉由該類比等化器接收該射頻信號; 濾除該射頻錢中之高㈣訊,並放大―特定頻 内的該射頻信號,以產生一處理信號; 將及處則5號$化成一數位信號;以及-藉由該等化器等化該數位信號。 月长員21所述之射頻信號處理方法’其巾判斷該光學 媒體之狀態之步驟更包含以下步驟: 判斷該光學儲存媒體之種類;以及 根據該光學儲存媒體之種類決定暫止該類比等化器。 月长員19所述之射頻信號處理方法,更包含下列步驟. k供一等化器係數調變器; 22 23. 200929177 根據該光學儲存媒體之狀態決定暫土兮 疋瞀止5亥專化器係數調變 器;以及 輸出預先決定之-初始係數作為該等化器之結點係數。 %如請求項23所述之射頻信號處理方法,其中判斷該光學儲存 媒體之狀態之步驟更包含以下步驟: 判斷該光學儲存媒體之種類;以及 根據該光學儲存媒體之_決定暫止該等化器係數調變 器。 25. 如請求項23所述之射頻信號處理方法,更包含下列步驟: 根據該光學儲存媒體之資料層數目與徑向位置將該光學 儲存媒體劃分成複數個區域; 提供複數個係數暫存器分別對應於每一個區域;以及 儲 存該初始係數至該些係數暫存器 ❹ 23200929177 X. Patent Application Range: 1. An RF signal processing device 'applies to an optical access device for processing an optical storage medium to generate a radio frequency signal when the data is recovered, the RF signal processing device comprising: a specializer, The method is configured to equalize the radio frequency signal according to one of a plurality of settings; and the equalizer controller determines a setting used by the equalizer according to a state of accessing the optical storage medium. ❹2· *Requests! The radio frequency signal processing device, wherein the state comprises a type of the optical storage medium, a speed of accessing the optical storage medium, and a location of accessing the optical storage medium. 3. The RF signal processing apparatus of claim 2, wherein the setting of the equalizer comprises a tap coefficient (tap coefficiem) of the equalizer, a multiplier included in the equalizer, and a shift register The number of uses and the adjustment of one of the gain and offset values used by the equalizer. 4. The radio frequency signal processing apparatus of claim 3, wherein the higher the data density of the optical storage medium, the equalizer controller suspends the number of the multipliers and the shift register The less will be. 5. The radio frequency signal processing apparatus according to claim 3, wherein when the data density is the same, the equalizer controller suspends the optical storage medium as a read-only type (r〇m) of the multiplication H and the The number of shift registers is greater than the number of the seven multipliers of the non-only (9) type of the optical storage medium and the number of shift registers. 6. The radio frequency signal processing apparatus according to claim 3, wherein when the position of the data on the optical storage medium is changed, the equalizer controller will generate a predetermined value according to a predetermined value of 200929177 Ο Adjust the coefficient of the equalizer. The radio frequency signal processing device of claim 6, wherein the position change means that the new data recovery position is different from the original (four) recovery position on the optical storage medium. The radio frequency signal processing device of claim 6, wherein when the optical storage medium comprises a plurality of data layers, the location change refers to a new data recovery location, the original data recovery location, and the information on the optical storage medium. Floor. The radio frequency signal processing device of claim 3, further comprising: 曰: an analog equalizer' for receiving the radio frequency signal, π-frequency noise of the fine radio frequency signal, and amplifying the radio frequency signal in a specific frequency range, To generate a processing signal; and an analog-to-digital converter to quantize the processed signal into a _ digital signal; wherein the equalizer is a digital crying m (four) 4 yiyi 1 to receive and equalize the digit signal. 10. The radio frequency signal processing apparatus according to claim 9, wherein the type of the storage medium is the same. Person ~ '匕 3 The light Temple 叩 叩 制 制 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据U. The radio frequency signal processing device of item 1, wherein the analog equalizer is to be suspended when the optical storage medium is low. 12. The radio frequency signal processing device of claim 3, wherein the equalizer is a suitable processor, the adaptive equalizer further comprises an equalizer coefficient modulator, and the equalization coefficient modulator Can be independently suspended for a while, although the equalizer coefficient modulator is temporarily suspended, the equalizer coefficient modulation D is inconclusive - initial coefficient 7. 8. 9. 20 Ο ❹ 16 17. 200929177 as the coefficient of the adaptation equalizer; its state determines whether to suspend the equalizer coefficient adjustment (4). " controller according to the shape 13. The RF signal processing device according to claim 12, the dragon transformer performs the calculation of the coefficient of the multiplier that is not suspended, and the RF signal processing device described in the coefficient adjustment A, The state includes a -light equalizer coefficient modulator that is suspended. The radio frequency signal processing device of claim 12, wherein the optical storage medium is divided into a plurality of regions according to the data # σ ^ controller (4) and (4) positions of the optical storage medium Each sub-domain corresponds to a coefficient register, and the coefficient registers store the initial coefficients. μ If the radio frequency is as described in Item 15, the operation of the optical storage medium is changed. (4) When the position of the optical storage medium is changed, the equalizer controller benefits the chemical material in the original poor material. When the position is restored, the final equalizer coefficient is stored, and the original data is restored in the coefficient register of the dragon, and the coefficient stored in the coefficient register (4) corresponding to the new resource 2 complex position is set as the initial number. . A method for processing a radio frequency signal for processing - an optical storage medium for generating a frequency of 5 data. The radio frequency signal processing method comprises the following steps: and determining a state of the optical storage medium; according to the optical storage medium The state determines one of the equalizer settings to equalize the RF signal. 19. The radio frequency signal processing method of claim 17, wherein the :: state comprises a type of the optical storage medium, accessing the optical storage: =, and accessing the optical storage medium. The radio frequency signal processing method according to the item 18, wherein one of the equalizer coefficients (one), the second method (four), and the number of the shift register and the equalizer Use - adjustment of the thinning and offset values. 20. The method for processing radio frequency signals according to claim 19, further comprising the steps of: replying to the data on the optical storage medium; and drawing back the data on the optical storage medium. Reading the value of gynecological 11 - knot (four) number K 21. ❹ 22. The radio frequency "processing method according to claim 19, further comprising the steps of: providing an analog equalizer; receiving the radio frequency by the analog equalizer Signaling; filtering out the high (four) signal of the RF money, and amplifying the RF signal in a specific frequency to generate a processing signal; converting the number 5 into a digital signal; and - by using the equalizer Equalize the digital signal. The step of determining the state of the optical medium by the method of RF signal processing by the squad 21 includes the steps of: determining the type of the optical storage medium; and determining to suspend the analogization according to the type of the optical storage medium Device. The RF signal processing method described by the Moonman 19 further includes the following steps. k for the equalizer coefficient modulator; 22 23. 200929177 According to the state of the optical storage medium, the temporary land is limited to 5 Hai specialization a coefficient modulator; and outputting a predetermined - initial coefficient as a coefficient of the node of the equalizer. The radio frequency signal processing method of claim 23, wherein the step of determining the state of the optical storage medium further comprises the steps of: determining a type of the optical storage medium; and determining to suspend the optical storage medium based on the optical storage medium Factor coefficient modulator. 25. The radio frequency signal processing method of claim 23, further comprising the steps of: dividing the optical storage medium into a plurality of regions according to a data layer number and a radial position of the optical storage medium; providing a plurality of coefficient registers Corresponding to each of the regions; and storing the initial coefficients to the coefficient registers ❹ 23
TW96149689A 2007-12-24 2007-12-24 Radio frequency signal processing apparatus and radio frequency signal processing method TW200929177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96149689A TW200929177A (en) 2007-12-24 2007-12-24 Radio frequency signal processing apparatus and radio frequency signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96149689A TW200929177A (en) 2007-12-24 2007-12-24 Radio frequency signal processing apparatus and radio frequency signal processing method

Publications (1)

Publication Number Publication Date
TW200929177A true TW200929177A (en) 2009-07-01

Family

ID=44864413

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96149689A TW200929177A (en) 2007-12-24 2007-12-24 Radio frequency signal processing apparatus and radio frequency signal processing method

Country Status (1)

Country Link
TW (1) TW200929177A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI420299B (en) * 2011-02-24 2013-12-21 Sunplus Technology Co Ltd Data recovery method and associated apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI420299B (en) * 2011-02-24 2013-12-21 Sunplus Technology Co Ltd Data recovery method and associated apparatus

Similar Documents

Publication Publication Date Title
JP4045269B2 (en) Recording method and optical disc apparatus
JP5042236B2 (en) Information recording medium evaluation method, information recording medium, information recording medium manufacturing method, signal processing method, and access control apparatus
US8913475B2 (en) Data detecting device, reproducing device, and data detecting method
KR100869299B1 (en) Data reproduction method, data reproduction apparatus, optical disk, and data recording/reproduction apparatus
US7826323B2 (en) Reproducing apparatus and method with reduced bit error rate
JP5170819B2 (en) Information reproducing apparatus, information recording / reproducing apparatus, and information reproducing method
JP5766281B2 (en) Signal processing apparatus, signal processing method, and optical disc apparatus
JP3897118B2 (en) Information reproducing method and information reproducing apparatus
TW200929177A (en) Radio frequency signal processing apparatus and radio frequency signal processing method
JP4095487B2 (en) Information reproducing method and information reproducing apparatus using the same
JP4877933B2 (en) Information playback device
JP2005317194A (en) Optical recording medium, recording/reproducing method, and recording/reproducing device
JP7236392B2 (en) Decryption device, decryption method
JP3797303B2 (en) Disc player
WO2019244550A1 (en) Information recording device, information reproduction device, information recording medium, method, and program
JP4030862B2 (en) Multilevel recording wobble signal detection method and optical information recording apparatus
JP2006277885A (en) Information-recording method, information-reproducing method, and information-recording/reproducing device
JP3958673B2 (en) Multilevel recording servo signal detection method and optical information recording / reproducing apparatus
JP4978940B2 (en) Information recording apparatus and method, and computer program
JP2000228013A (en) Methods of reproducing and recording optical information, and information recording medium
JP2019160370A (en) Information recording/reproducing device and information recording/reproducing method
JP2011165245A (en) Decoding device, reproducing device, and decoding method
CN101471090A (en) Radio frequency signal processing equipment and radio frequency signal processing method
JP2008287839A (en) Digital data reproducing unit
TW200527409A (en) Information recording medium and playing device thereof