TW200928911A - Touch panel and displaying device using the same - Google Patents

Touch panel and displaying device using the same Download PDF

Info

Publication number
TW200928911A
TW200928911A TW96151274A TW96151274A TW200928911A TW 200928911 A TW200928911 A TW 200928911A TW 96151274 A TW96151274 A TW 96151274A TW 96151274 A TW96151274 A TW 96151274A TW 200928911 A TW200928911 A TW 200928911A
Authority
TW
Taiwan
Prior art keywords
touch screen
carbon nanotube
display device
electrodes
conductive layer
Prior art date
Application number
TW96151274A
Other languages
Chinese (zh)
Other versions
TWI423084B (en
Inventor
Kai-Li Jiang
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96151274A priority Critical patent/TWI423084B/en
Publication of TW200928911A publication Critical patent/TW200928911A/en
Application granted granted Critical
Publication of TWI423084B publication Critical patent/TWI423084B/en

Links

Landscapes

  • Position Input By Displaying (AREA)

Abstract

The present invention relates to a touch panel. The touch panel includes a base, and a plurality of electrodes. The transparent conductive layer is disposed on a surface of the base. The electrodes are separately disposed and electrically connected to the transparent conductive layer. The transparent conductive layer includes a carbon nanotube layer. The carbon nanotube layer includes a plurality of carbon nanotube yarns parallel arranged and separately disposed. Two opposite ends of each carbon nanotube yarn are respectively connected with two opposite electrodes, and each electrode is electrically connected with one end of at least one carbon nanotube yarn. Further, the present invention also relates to a displaying device. The displaying device includes a displaying unit and a touch panel.

Description

200928911 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種觸摸屏及顯示裝置,尤其涉及一種採用奈 - 米碳管作透明導電層的觸摸屏及使用該觸摸屏的顯示裝置。 【先前技術】 近年來’伴隨著移動電話與觸摸導航系統等各種電子設備 的高性能化和多樣化的發展,在液晶等顯示設備的前面安裝透 光性的觸摸屏的電子設備逐步增加。這樣的電子設備的利用杳 〇 通過觸摸屏’ 一邊對位於觸摸屏背面的顯示設備的顯示内容進 行視覺確認’一邊利用手指或筆等方式按壓觸摸屏來進行梯 作°故,可以操作電子設備的各種功能。 按照觸摸屏的工作原理和傳輸介質的不同,先前技術中的 觸摸屏分爲四種類型,分別爲電阻式、電容式、紅外錢式以及 表面聲波式。其中電容式觸摸屏因準確度較高、抗幹擾能力强 應用較爲廣泛。 先前技術中的電容式觸摸屏(請參見“連續薄膜電容式觸 ❹摸屏的研究”,李樹本等,光電子技術,Vol· 15, P62(1995))包栝 一玻璃基板,一透明導電層,以及多個金屬電極❶在該電容式 觸摸屏中,玻璃基板的材料爲納两玻璃。透明導電層爲例如姻 錫氧化物(ITO)或銻錫氧化物(AT0)等透明材料二電極爲通 過印製具有低電阻的導電金屬(例如銀)形成。 置 在透明導電層的各個角處。此外,透明導電層成上塗 該防護層由液體玻璃材料通過硬化或緻密化工藝,並進行熱處 理後,硬化形成。 费 … 當手指等觸摸物觸摸在觸摸屏表面上時,由於人體電場, 7 200928911 手指等觸摸物和觸摸屏中的透明導電層之間形成一個耦合電 容。對於高頻電流來說,電容爲直接導體,手指等觸摸物的觸 摸將從接觸點吸走一個很小的電流。這個電流分別從觸摸屏上 - 的電極中流出,並且流經這四個電極的電流與手指到四角的距 離成正比,觸摸屏控製器通過對這四個電流比例的精確計算, 得出觸摸點的位置。 故,透明導電層對於觸摸屏爲一必需的部件,先前技術中 透明導電層通常采用ITO層,然,ITO層作爲透明導電層具有 ❹機械和化學耐用性不够好等缺點。進一步地,採用ITO層作透 明導電層存在電阻阻值分布不均勻的現象,導致先前技術中的 電容式觸摸屏存在觸摸屏的分辨率低、精確度不高等問題。 有鑒於此,確有必要提供一種分辨率高、精確度高及耐用 的觸摸屏,以及使用該觸摸屏的顯示裝置。 【發明内容】 一種觸摸屏,該觸摸屏包括一基體;一透明導電層, 該透明導電層設置於上述基體的表面;以及多個電極, ❹該多個電極分別間隔設置,並與該透明導電層電連接。 其中,所述透明導電層進一步包括一奈米碳管層,該奈 米碳管層包括平行且間隔設置的多個奈米碳管長線,所 述每個奈米碳管長線的兩端分別與兩個相對的電極電連 接,且所述每個電極與至少一個奈米碳管長線的一端電 連接。 一種顯示裝置,其包括一觸摸屏,該觸摸屏包括一基 體;一透明導電層,該透明導電層設置於上述基體的表 面;以及多個電極,該多個電極分別間隔設置,並與該 8 200928911 透明導電層電連接;一顯示設備,該顯示設備正對且靠 近觸摸屏的基體遠離透明導電層的一個表面設置。其 中其所述透明導電層進一步包括一奈米碳管層,該奈米 •,管1包括平行且間隔設置的多個奈米碳管長線,所述 母個不米碳管長線的兩端分別與兩個相對的電極電連 接,且所述每個電極與至少一個奈米碳管長線的一端電 連接。 與先前技術的觸摸屏及顯示裝置相比較,本技術方案 〇提供的觸摸屏及顯示裝置具有以下優點:其一,由於透 明導電層中的多個奈米碳管長線平行且間隔設置,因 此,所述透明導電層具有較好的力學性能,從而使得上 述的透明導電層具有較好的機械强度和韌性,故,採用 上述的奈米碳管長線作透明導電層,可以相應的提高觸 摸屏的耐用性,進而提高了使用該觸摸屏的顯示裝置的 耐用性;其二,上述透明導電層中的多個奈米碳管長線 平行且間隔設置,從而使得透明導電層具有均勻的阻值 ❹分布和透光性,且所述每個電極與其所在透明導電層中 的至少一個奈米碳管長線的一端電連接,故可以通二探 測觸摸點處的與奈米碳管長線相連接的兩個電極之間的 電流變化來更精確地確定觸摸點的位置,從而有利於提 高觸摸屏及使用該觸摸屏的顯示裝置的分辨率和精確 度。 【實施方式】 以下將結合附圖對本技術方案作進一步的詳細說明。 請參閱圖1、圖2及圖3,觸摸屏20包括一基體22、一透 9 200928911 明導電層24、防護層26及多個電極28。基體2 一 表面221以及與第-表面221相對的第二表面從。透^ 24設置在基體22的第一矣而办 逐月等電層 们弟表面221上;上述多個電極2 隔設置,且與透明導電層24形成電連接,用以在透 上形成等電位面。防護層26可直接設置在透明導電層Μ上。 優選地,所述多個電極28分別_錄在所述透料電層% 相對的兩端 ❹ 所,基體22爲—曲面型或平面型的結構。該基體μ由玻 璃、石央、金剛石或塑料等硬性材料或柔性材料形成。所述基 體22主要起支撑的作用。 所述透明導電層24包括平行且間隔設置的多個奈米碳管長 線240,所速設置有多個奈米碳管長線24()的透明導電層^上 對應設置有多個電極,所述每個奈来碳管長線的兩端分別 與兩個相對的電極電連接,且所述每個電極與所述透明導電層 24中的至少一個奈米碳管長線的一端電連接。具體地,所述多 個電極一一對應設置於奈米碳管長線20的兩端並電連接。所述 奈米碳管長線240包括多個平行的首尾相連的奈米碳管束組成 的束狀結構或由多個首尾相連的奈米碳管束組成的絞線結構。 該相鄰的奈米破管束之間通過凡德瓦爾力緊密結合,該奈米碳 管束包括多個長度相等且平行排列的奈米碳管。所述奈米碳管 長線240的直徑爲〇.5奈米〜1〇〇微米❶所述奈来破管長線240 之間的設置間距爲1〇奈米〜1毫米。 本技術方案實施例中,所述透明導電層24包括多個平行且 等間距設置的奈米碳管長線,從而使得所述透明導電層24具有 200928911 均勻的阻值分布和透光特性,且所述每個電極與所述透明導電 層24中的至少一個奈米碳管長線的一端電連接,故可以通過探 測觸摸點處的奈米碳管長線上的電流變化來更精確地確定觸摸 • 點在奈米碳管長線上的位置進而結合該奈米碳管長線在觸摸屏 20上的位置,來確定觸摸點在觸摸屏20上的觸摸位置。故本技 術方案實施例提供的觸摸屏有利於提高觸摸屏20的分辨率和準 確率。 本實施例中’該奈米碳管長線的尺寸可根據實際需求製 ❹得。本實施例中採用4英寸的基底生長超順排奈米碳管陣列, 該奈米碳管長線的直徑可爲0.5奈米〜100微米,其長度不限。 其中’奈米後管長線中的奈米碳管可以為單壁奈米碳管、雙壁 奈米碳管和多壁奈米碳管中的一種或多種。該單壁奈米碳管的 直徑爲0.5奈米〜50奈米;該雙壁奈米碳管的直徑爲奈米〜5〇 奈米;該多壁奈米碳管的直徑爲15奈米~50奈米。 可以理解’爲了使得觸摸屏2〇具有更加均一的透明度,可 ❹以在所述間隔設置的奈米碳管帶狀膜24〇之間設置有光學補償 膜。 本技術方案實施例透明導電層24的製備方法,主要包括以 下步驟: 步驟一.知:供一奈米碳管陣列形成於一基底,優選地,該 陣列爲超順排奈米碳管陣列。 本技術方案實施例提供的奈米碳管陣列爲單壁奈米碳管陣 列、雙壁奈米碳官陣列及多壁奈米破管陣列中的一種。該奈米 碳管陣列的製備方法採用化學氣相沈積法,其具體步竭包括: 11 200928911 (a)提供一平整基底,該基底可選用P型或n型矽基底,或選 用形成有氧化層的矽基底,本實施例優選爲採用4英寸的砍基 底,(b)在基底表面均勻形成一催化劑層,該催化劑層材料可 ' 選用鐵(Fe)、鈷(Co)、鎳(Ni)或其任意組合的合金之一;(c) 將上述形成有催化劑層的基底在700°C〜9〇〇〇c的空氣中退火約 .30分鐘〜90分鐘;(d)將處理過的基底置於反應爐中,在保護 * 氣體環境下加熱到500。〇740。〇,然後通入碳源氣體反應約5 分鐘〜30分鐘’生長得到奈米碳管陣列,其高度爲1〇〇微米左 ©右。該奈米碳管陣列爲多個彼此平行且垂直於基底生長的奈米 碳管形成的純奈米碳管陣列。該奈米碳管陣列與上述基底面積 基本相同。通過上述控製生長條件,該超順排奈米碳管陣列中 基本不含有雜質’如無定型碳或殘留的催化劑金屬顆粒等。 本實施例中碳源氣可選用乙炔、乙烯、曱烷等化學性質較 活潑的碳氣化合物’本實施例優選的碳源氣爲乙炔;保護氣體 爲氮*氣或惰性氣體,本實施例優選的保護氣體爲氬氣。 〇 可以理解,本技術方案實施例提供的奈米碳管陣列不限於 上述製備方法’也可爲石墨電極恒流電弧放電沈積法、鐳射蒸 發沈積法等等。 :採用一拉伸工具從奈米碳管陣列中拉取奈米碳管 獲得-奈米碳管薄膜或一奈米碳管絲。 胃&米碳管薄膜或者奈米碳管絲的製備具體包括以下步 (a)從上述奈米碳管陣列中選定一定寬度的多個奈米碳管 片斷’本實施例優選爲採用具有一定寬度的膠帶接觸奈米碳管 陣列以選定一定寬度的多個奈米碳管束;(b)以一定速度沿基 12 200928911 本垂直n唉管陣列生長方向拉伸多個該奈米礙管束,以形 成-連續的Μ碳管薄_者奈米碳管絲。 在上述拉伸過程中該多個奈米碳管束在拉力作用下沿拉 1方2逐漸脫離基底的同時,由於凡德瓦爾力作用,該選定的 個奈米碳管束分別與其他奈米破管束首尾相連地連續地被拉 2從而形成-奈米碳管薄膜或者一奈米碳管絲。該奈米碳管 =膜或者奈米碳管絲包❹個平行的奈㈣管束。該奈米碳管 Ο 〇 2或者奈米碳管絲中奈米碳管的排财向基本平行於奈米碳 站膜或者不米碳管絲的拉伸方向。本實施例所獲得的奈米複 Β薄膜的微觀結構可參見圖4。 步驟一·通過使用有機溶劑或者施加機械外力處理該奈米 碳管薄膜或者奈錢管絲❹卜奈米碳管長線。 _L述步驟—製傷的奈米碳管薄膜或者奈米碳管絲可使用有 谷劑處理得到-奈米碳管長線。其具體處理過程包括:通過 敕二將有機溶劑滴落在奈来碳管薄膜或者奈米碳管絲表面浸潤 不米碳管薄贱者奈米碳管絲。該有機_爲揮發性有機 1 ’如乙醇、^、㈣、二氣乙烧或氣仿,本實施例中優 、,用乙醇。該奈米碳管薄膜或者奈米碳管絲經有機溶劑浸潤 ,後’在揮發性有機溶_表面張力的作用下,奈米碳管薄 =者奈米碳管㈣的平行的奈米碳“斷會部分聚集成奈米 &束’因此’該奈米碳管薄膜收縮成長線。該奈米碳管長線 ^體積比小’無H且具有良好的機械强度及祕,應用 ^機溶劑處理後的奈米碳管薄膜或者奈米碳管長線能方便地應 用於宏觀領域。 13 200928911 上述步驟—製備的奈米碳管薄膜或者奈米碳管絲也可通過 施加機械外力處理得到—奈米碳管長線。該奈米碳管長線為由 多個首尾相連的奈米碳管歧成的絞線結構。其具體處理過程 包括·提供-個尾部可⑽住奈米碳管薄膜或者奈米碳管絲的 紡紗轴。將該纺紗軸的尾部與奈米複管薄膜或者奈米碳管絲結 合後’將該紡紗軸以旋轉的方式㈣該奈米碳管薄膜或者奈米 碳管絲,形成-奈米碳管長線。可以理解,上述紡紗軸的旋轉 方式不限m轉m反轉,或者正轉和反轉相結合。 上述步驟-製備的奈米碳管陣列也可通過施加機械外力處 理得到-奈米碳管長線。該奈米碳f長線為由多個首尾相連的 奈米碳管束組成的絞線結構。其具體處理過程包括:提供一個 尾部可以祕奈米碳管陣列的纺紗軸。將該紡紗軸的尾部與奈 米複官陣列結合後,奈来碳管開始纏繞在軸的周圍。將該紡紗 轴以旋轉的方式旋出並向遠離奈米碳管陣列的方向運動。這時 奈米奴管陣列相對於該紡紗軸移動時,奈米碳管長線開始紡 成’其它的奈米碳管可以纏繞在奈米碳管長線的周圍,增加奈 米碳管長_長度。可以理解,i述紡紗轴的旋轉方式不限, 可以正轉,也可以反轉,或者正轉和反轉相結合。 可以理解,也可以採用一拉伸工具從步驟G)的奈米碳管陣 列中直接拉取奈米碳管獲得一奈米碳管長線。 步驟四:製備多個上述奈米碳管長線平行且間隔鋪設在所 述基體22的表面,形成所述透明導電層24。 所述奈米碳管長線240之間的設置間距爲1〇奈米〜i毫米, 具體可根據觸摸屏20的透光性進行選擇。 200928911 所述每個奈米碳管長線的兩端分別與兩個相對的電 接,且所述每個電極與所述導電層中的至少—個奈 = 的一端電連接。具體地,所述奈米碳管長線的兩端分別盘^ 在透明導電廣24上的兩個電極電連接。所述每個電極與= 電層中的一個奈米碳管長_—端電連接。優義,所述透^ 導電層24中的奈米碳管長線作且等間距設置。所述多 28爲塊狀電極。所述多個電極28通過電極引線(圖未 接電路相連接。 ^BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a touch panel and a display device, and more particularly to a touch panel using a carbon nanotube as a transparent conductive layer and a display device using the same. [Prior Art] In recent years, with the development of high performance and diversification of various electronic devices such as mobile phones and touch navigation systems, electronic devices in which a translucent touch panel is mounted on the front surface of a display device such as a liquid crystal are gradually increasing. The use of such an electronic device 视觉 视觉 visually confirms the display content of the display device located on the back surface of the touch panel by the touch panel ‘ while pressing the touch panel with a finger or a pen to perform a ladder operation, thereby operating various functions of the electronic device. According to the working principle of the touch screen and the transmission medium, the touch screens in the prior art are divided into four types, namely, resistive, capacitive, infrared, and surface acoustic waves. Among them, the capacitive touch screen is widely used due to its high accuracy and strong anti-interference ability. Capacitive touch screens of the prior art (see "Research on Continuous Film Capacitive Touch Screens", Li Shuben et al., Optoelectronics Technology, Vol. 15, P62 (1995)), a glass substrate, a transparent conductive layer, and A plurality of metal electrodes are disposed in the capacitive touch screen, and the material of the glass substrate is two glasses. The transparent conductive layer is a transparent material such as an oxidized tin oxide (ITO) or a bismuth tin oxide (AT0). The two electrodes are formed by printing a conductive metal (e.g., silver) having a low electrical resistance. Placed at each corner of the transparent conductive layer. Further, the transparent conductive layer is coated with the protective layer by a hardening or densification process of the liquid glass material, followed by heat treatment to form a hardened layer. Fee... When a touch object such as a finger touches the surface of the touch screen, a coupling capacitor is formed between the touch object such as a finger and the transparent conductive layer in the touch screen due to the human body electric field. For high-frequency currents, the capacitor is a direct conductor, and the touch of a finger or the like picks up a small current from the contact point. This current flows from the electrodes on the touch screen, respectively, and the current flowing through the four electrodes is proportional to the distance from the finger to the four corners. The touch screen controller calculates the position of the touch point by accurately calculating the ratio of the four currents. . Therefore, the transparent conductive layer is an essential component for the touch screen. In the prior art, the transparent conductive layer usually adopts an ITO layer. However, the ITO layer as a transparent conductive layer has disadvantages such as insufficient mechanical and chemical durability. Further, the use of the ITO layer as the transparent conductive layer has a phenomenon in which the resistance value distribution is uneven, resulting in the problem that the capacitive touch screen of the prior art has low resolution and low precision of the touch screen. In view of this, it is indeed necessary to provide a touch screen having high resolution, high precision, and durability, and a display device using the touch screen. SUMMARY OF THE INVENTION A touch screen includes a substrate, a transparent conductive layer disposed on a surface of the substrate, and a plurality of electrodes, wherein the plurality of electrodes are spaced apart from each other and electrically connected to the transparent conductive layer connection. Wherein, the transparent conductive layer further comprises a carbon nanotube layer, wherein the carbon nanotube layer comprises a plurality of carbon nanotube long lines arranged in parallel and spaced apart, and the two ends of each of the nano carbon tubes are respectively Two opposing electrodes are electrically connected, and each of the electrodes is electrically coupled to one end of at least one long line of carbon nanotubes. A display device comprising a touch screen, the touch screen comprising a substrate; a transparent conductive layer disposed on a surface of the substrate; and a plurality of electrodes respectively spaced apart and transparent with the 8 200928911 The conductive layer is electrically connected; a display device is disposed opposite to a surface of the transparent conductive layer facing the substrate of the touch screen. Wherein the transparent conductive layer further comprises a carbon nanotube layer, the tube 1 comprises a plurality of long carbon nanotubes arranged in parallel and spaced apart, and the two ends of the long non-meter carbon tube are respectively Electrically coupled to two opposing electrodes, and each of the electrodes is electrically coupled to one end of at least one of the long lines of carbon nanotubes. Compared with the prior art touch screen and display device, the touch screen and the display device provided by the present technical solution have the following advantages: First, since a plurality of carbon nanotube long lines in the transparent conductive layer are parallel and spaced apart, the The transparent conductive layer has better mechanical properties, so that the above transparent conductive layer has better mechanical strength and toughness. Therefore, by using the above-mentioned nano carbon tube long line as a transparent conductive layer, the durability of the touch screen can be correspondingly improved. Further improving the durability of the display device using the touch screen; second, the plurality of carbon nanotube long lines in the transparent conductive layer are parallel and spaced apart, so that the transparent conductive layer has a uniform resistance ❹ distribution and light transmittance. And each of the electrodes is electrically connected to one end of a long line of at least one of the carbon nanotubes in the transparent conductive layer, so that the two electrodes at the touch point connected to the long line of the carbon nanotube can be detected. The current changes to more accurately determine the position of the touch point, thereby facilitating the improvement of the touch screen and the display device using the touch screen Resolution and accuracy. [Embodiment] Hereinafter, the technical solution will be further described in detail with reference to the accompanying drawings. Referring to FIG. 1, FIG. 2 and FIG. 3, the touch screen 20 includes a substrate 22, a transparent layer 24, a protective layer 26, and a plurality of electrodes 28. The base 2 has a surface 221 and a second surface opposite to the first surface 221. The transparent electrode 24 is disposed on the first surface of the base 22 and is disposed on the surface 221 of the monthly isoelectric layer; the plurality of electrodes 2 are disposed apart from each other and electrically connected to the transparent conductive layer 24 for forming an equipotential on the transparent surface surface. The protective layer 26 can be disposed directly on the transparent conductive layer. Preferably, the plurality of electrodes 28 are respectively recorded on opposite ends of the dielectric layer, and the substrate 22 is a curved surface or a planar structure. The substrate μ is formed of a hard material such as glass, stone, diamond or plastic or a flexible material. The substrate 22 serves primarily as a support. The transparent conductive layer 24 includes a plurality of carbon nanotube long wires 240 arranged in parallel and spaced apart, and a transparent conductive layer provided with a plurality of carbon nanotube long wires 24 ( ) is disposed correspondingly with a plurality of electrodes. Each of the two ends of each of the long carbon nanotubes is electrically connected to two opposite electrodes, and each of the electrodes is electrically connected to one end of the long line of at least one of the transparent conductive layers 24. Specifically, the plurality of electrodes are disposed one-to-one correspondingly at both ends of the carbon nanotube long line 20 and electrically connected. The carbon nanotube long line 240 comprises a bundle of a plurality of parallel end-to-end connected carbon nanotube bundles or a strand structure consisting of a plurality of end-to-end connected carbon nanotube bundles. The adjacent nanotube bundles are tightly coupled by a van der Waals force, and the bundle of carbon nanotubes includes a plurality of carbon nanotubes of equal length and arranged in parallel. The diameter of the long carbon wire 240 of the carbon nanotubes is 〇.5 nm~1 〇〇micron. The spacing between the long lines 240 of the Nylon tube is 1 〇 nanometer ~ 1 mm. In the embodiment of the technical solution, the transparent conductive layer 24 includes a plurality of parallel and equally spaced carbon nanotube long lines, so that the transparent conductive layer 24 has a uniform resistance distribution and light transmission characteristics of 200928911, and Each of the electrodes is electrically connected to one end of the long line of at least one of the transparent conductive layers 24, so that the touch can be more accurately determined by detecting the current change on the long carbon nanotube line at the touch point. The position on the long line of the carbon nanotubes in turn combines the position of the long carbon nanotube line on the touch screen 20 to determine the touch location of the touch point on the touch screen 20. Therefore, the touch screen provided by the embodiment of the technical solution is advantageous for improving the resolution and accuracy of the touch screen 20. In the present embodiment, the size of the long carbon nanotube line can be obtained according to actual needs. In this embodiment, a 4-inch substrate is used to grow a super-sequential carbon nanotube array, and the diameter of the long carbon nanotubes may be from 0.5 nm to 100 μm, and the length thereof is not limited. The carbon nanotubes in the long line of the nanotube can be one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The diameter of the single-walled carbon nanotube is 0.5 nm to 50 nm; the diameter of the double-walled carbon nanotube is nanometer ~ 5 〇 nanometer; the diameter of the multi-walled carbon nanotube is 15 nm~ 50 nm. It can be understood that in order to make the touch screen 2 〇 have a more uniform transparency, an optical compensation film may be disposed between the carbon nanotube film films 24 设置 disposed at the intervals. The method for preparing the transparent conductive layer 24 of the embodiment of the present invention mainly comprises the following steps: Step 1. Knowing that an array of carbon nanotubes is formed on a substrate, preferably, the array is a super-sequential carbon nanotube array. The carbon nanotube array provided by the embodiment of the present technical solution is one of a single-walled carbon nanotube array, a double-walled nano carbon official array, and a multi-walled nanotube array. The method for preparing the carbon nanotube array adopts a chemical vapor deposition method, and the specific steps include: 11 200928911 (a) providing a flat substrate, the substrate may be selected from a P-type or n-type germanium substrate, or an oxide layer may be formed. The crucible substrate is preferably a 4-inch chopped substrate, (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material can be selected from iron (Fe), cobalt (Co), nickel (Ni) or One of the alloys of any combination thereof; (c) annealing the substrate on which the catalyst layer is formed in air at 700 ° C to 9 ° C for about 30 minutes to 90 minutes; (d) placing the treated substrate In a reaction furnace, heat to 500 in a protective* atmosphere. 〇 740. 〇, then pass the carbon source gas reaction for about 5 minutes ~ 30 minutes to grow to obtain a carbon nanotube array with a height of 1 〇〇 micron left © right. The carbon nanotube array is a plurality of pure carbon nanotube arrays formed of a plurality of carbon nanotubes that are parallel to each other and perpendicular to the substrate. The carbon nanotube array is substantially the same area as the above substrate. By controlling the growth conditions as described above, the super-aligned carbon nanotube array contains substantially no impurities such as amorphous carbon or residual catalyst metal particles. In the present embodiment, the carbon source gas may be selected from a chemically active carbon gas compound such as acetylene, ethylene or decane. The preferred carbon source gas in the present embodiment is acetylene; the shielding gas is nitrogen* gas or an inert gas, which is preferred in this embodiment. The shielding gas is argon. 〇 It can be understood that the carbon nanotube array provided by the embodiments of the present technical solution is not limited to the above preparation method' and may be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method or the like. : Pulling a carbon nanotube from the carbon nanotube array using a stretching tool to obtain a carbon nanotube film or a nano carbon tube wire. The preparation of the stomach & mC tube film or nano carbon tube wire specifically includes the following steps (a) selecting a plurality of carbon nanotube segments of a certain width from the above carbon nanotube arrays. Width of the tape contacts the carbon nanotube array to select a plurality of carbon nanotube bundles of a certain width; (b) stretches the plurality of nanotube bundles at a certain speed along the growth direction of the base 12 200928911 Forming - a continuous tantalum carbon tube thin _ Nylon carbon tube filament. During the above stretching process, the plurality of carbon nanotube bundles are gradually separated from the substrate by pulling under the pulling force, and the selected carbon nanotube bundles are respectively combined with other nanotube bundles due to the van der Waals force. The two are continuously pulled end to end to form a carbon nanotube film or a carbon nanotube wire. The carbon nanotubes = membrane or nanocarbon tube bundles of a parallel nep (four) tube bundle. The carbon nanotubes in the carbon nanotubes Ο 或者 2 or the carbon nanotubes are substantially parallel to the stretching direction of the carbon nanotube film or the carbon nanotube filament. The microstructure of the nano retanning film obtained in this embodiment can be seen in Fig. 4. Step 1. The long-term treatment of the carbon nanotube film or the nephron tube by using an organic solvent or applying a mechanical external force. _L Description Step - The damaged carbon nanotube film or the nano carbon tube wire can be treated with a cereal agent to obtain a long-term carbon nanotube tube. The specific treatment process includes: dropping the organic solvent on the surface of the carbon nanotube film or the surface of the nano carbon tube by infiltrating the non-carbon carbon nanotube thinner carbon nanotube wire. The organic _ is a volatile organic compound such as ethanol, hydride, (d), dioxane or gas, and is preferably used in the present embodiment. The carbon nanotube film or the nano carbon tube filament is infiltrated by an organic solvent, and then, under the action of volatile organic solvent_surface tension, the carbon nanotubes are thinner than the carbon nanotubes of the carbon nanotubes (four). Partially integrated into the nano & bundle 'so 'the carbon nanotube film shrinks the growth line. The nano carbon tube long line ^ volume ratio is small 'no H and has good mechanical strength and secret, application ^ machine solvent treatment The latter carbon nanotube film or nano carbon tube long wire can be conveniently applied to the macroscopic field. 13 200928911 The above steps—the prepared carbon nanotube film or the nano carbon tube wire can also be obtained by applying mechanical external force—nano Long carbon tube. The long carbon line of the carbon nanotube is a stranded structure composed of a plurality of carbon nanotubes connected end to end. The specific treatment process includes: providing a tail (10) to accommodate the carbon nanotube film or nano carbon The spinning shaft of the tube yarn. After the tail of the spinning shaft is combined with the nanotube film or the carbon nanotube wire, the spinning shaft is rotated (four) the carbon nanotube film or the carbon nanotube Silk, forming a long line of carbon nanotubes. Understandably, The rotation mode of the above-mentioned spinning shaft is not limited to m to m inversion, or combination of forward rotation and reverse rotation. The above-described prepared carbon nanotube array can also be processed by applying mechanical external force to obtain a long line of carbon nanotubes. The nano carbon f long line is a twisted wire structure composed of a plurality of carbon nanotube bundles connected end to end. The specific processing process includes: providing a spinning shaft with a tail carbon nanotube array. The tail of the spinning shaft After combining with the nano-revision array, the carbon nanotubes begin to wrap around the shaft. The spinning shaft is rotated in a rotating manner and moved away from the array of carbon nanotubes. When the spinning axis moves, the long carbon nanotubes begin to be spun. 'Other carbon nanotubes can be wrapped around the long line of the carbon nanotubes to increase the length of the carbon nanotubes. It can be understood that the spinning axis The rotation mode is not limited, it can be forward rotation, reverse rotation, or combination of forward rotation and reverse rotation. It can be understood that a stretching tool can also be used to directly pull the nano tube array from step G). The carbon tube obtains a long carbon nanotube line. Step 4: preparing a plurality of the above-mentioned carbon nanotube long lines in parallel and spacedly laid on the surface of the base 22 to form the transparent conductive layer 24. The spacing between the long carbon wires 240 of the carbon nanotubes is 1 〇 nanometer. 〜1 mm, specifically, can be selected according to the light transmittance of the touch screen 20. 200928911 The two ends of each of the nano carbon tube long wires are electrically connected to two opposite sides, and each of the electrodes and the conductive layer At least one end of the nanotube is electrically connected. Specifically, the two ends of the long line of the carbon nanotube are electrically connected to the two electrodes on the transparent conductive strip 24. Each of the electrodes and the = electric layer One of the carbon nanotubes is _-terminally electrically connected. In other words, the long carbon nanotubes in the transparent conductive layer 24 are arranged at equal intervals. The plurality of 28 are bulk electrodes. The plurality of electrodes 28 Through the electrode leads (the figure is not connected to the circuit. ^

可以理解,所述透明導電層24和基體22的形狀可以根據 觸摸屏2〇的觸摸區域的形狀進行選擇。例如觸摸屏的觸摸 區域可爲具有-長度的長線形觸摸區域、三角形觸摸區域及矩 形觸摸Q域等本實此例中,觸摸屏2〇的觸摸區域爲矩形觸摸 對於矩形觸摸區域,透明導電層24和基體22的形狀也可. 爲矩了在上述的透明導電層24上形成均勻的電阻網絡, 〇需在該透明導電層%的表面分別對稱設置多個電極28。該多個 電極28可由金屬材料形成。具體地,在本實施例中,基體22 爲玻璃基板’所述多個電極28爲由銀或銅等低電阻的導電金屬 链層或者金屬荡片組成的條狀電極28。所述多個電極28間隔設 在斤it的透明導電層24同一表面的相對的兩個邊上。可以理 解’上述的電極28也可以設置在透明導電層24的不同表面上, 其關鍵在於上述電極28的設置能使得在透明導電層24上形成 等電位面即可。本實施例中,所述電極28設置在透明導電層24 的遠離基_—個表面上。所述電極28可以採用騎、電鍵、 15 200928911 化學鍵等沈積方法直接形成在透明導電層24上。另外,也可用 銀膠等導電钻結劑將上述的電極28枯結在透明導電層24的一 個表面上。 可以理解,所述電極28亦可設置於透明導電層24與基體 22之間,且與透明導電層24電連接,並不限於上述的設置方式 和粘結方式。只要能使上述的電極28與透明導電層24上之間 形成電連接的方式都應在本發明的保護範圍内。 〇 進一步地,爲了延長透明導電層24的使用壽命和限製耦合 在接觸點與透明導電層24之間的電容,可以在透明導電層24 和電極之上設置一透明的防護層26,防護層26可由氮化矽、氧 化秒、苯並環丁婦(BCB)、聚酯膜或丙稀酸樹脂等形成。該防護 層26具有一定的硬度,對透明導電層24起保護作用。可以理 解,還可通過特殊的工藝處理,從而使得防護層26具有以下功 能’例如减小炫光、降低反射等。 在本實施例中’在形成有電極28的透明導電層24上設置 〇 一氧化石夕層用作防護層26,該防護層26的硬度達到7H ( Η 爲洛氏硬度試驗中,卸除主試驗力後,在初試驗力下壓痕殘留 的深度)。可以理解,防護層26的硬度和厚度可以根據需要進 行選擇。所述防護層26可以通過粘結劑直接粘結在透明導電層 24上。 此外,爲了减小由顯示設備産生的電磁幹擾,避免從觸摸 屏20發出的信號產生錯誤,還可在基體22的第二表面222上 没置一屏蔽層25。該屏蔽層25可由銦錫氧化物(ΙΤ〇)薄膜、 銻錫氧化物(ΑΤΟ)薄膜或奈米碳管薄膜等透明導電材料形成。 16 200928911 該不米碳&薄膜可以為定向排列的或其它結構的奈米碳管薄 膜f實施例中,該奈米碳管薄膜包括多個奈米碳管,所述多 個奈米碳官在上述的奈米碳管薄膜中定向排列,其具體結構可 與透明導電層24相同。該奈米碳管薄膜作爲電接地點,起到屏 蔽的作m使得觸摸屏2G能在綺擾的環境中工作。 請參閱圖5,並結合圖2,本技術方案實施例提供一顯示裝 置H)〇,該顯示裝置100包括一觸摸屏2〇,一顯示設備3〇。該 顯不设備30正對且靠近觸摸屏20設置。進一步地,上述的顯 示設備30正對且靠近觸摸屏2〇的基體22第二表面222設置。 上述的顯示設備30與觸摸屏20可間隔一預定距離設置或集成 設置。 顯不設備30可以爲液晶顯示器、場發射顯示器、電漿顯示 器、電致發光顯示器、真空螢光顯示器及陰極射線管等顯示設 備中的一種。 請參閱圖2及圖6,進一步地,當顯示設備30與觸摸屏2〇 〇間隔一定距離設置時,可在觸摸屏20的屏蔽層25遠離基體22 的一個表面上設置一鈍化層104,該鈍化層1〇4可由氮化石夕、氧 化矽、苯並環丁烯、聚酯膜、丙烯酸樹脂等材料形成。該鈍化 層104與顯示設備30的正面間隔一間隙1〇6設置。具體地,在 上述的鈍化層104與顯示設備30之間設置兩個支撑體1〇8。該 鈍化層104作爲介電層使用,所述鈍化層104與間隙1〇6可保 護顯示設備30不致於由於外力過大而損壞。 當顯示設備30與觸摸屏20集成設置時,觸摸屏2〇和顯示 設備30之間接觸設置。即將支撑體108除去後,上述鈍化層1〇4 17 200928911 無間隙地設置在顯示設備30的正面。 另外,上述的顯示裝置100進一步包括一觸摸屏控製器 40、一顯示設備控製器60及一中央處理器50。其中,觸摸屏控 製器40、中央處理器50及顯示設備控製器60三者通過電路相 互連接,觸摸屏控製器40連接觸摸屏20的電極28,顯示設備 控製器60連接顯示設備30。 本實施例觸摸屏20及顯示裝置100在應用時的原理如下: 觸摸屏20在應用時可直接設置在顯示設備30的顯示面上。觸 ©摸屏控製器40根據手指等觸摸物70觸摸的圖標或菜單位置來 定位選擇信息輸入,並將該信息傳遞給中央處理器50。中央處 理器50通過顯示器控製器6〇控製顯示設備30顯示。 具體地,在使用時,透明導電層24上施加一預定電壓。電 壓通過電極28施加到透明導電層24上,從而在該透明導電層 24上形成等電位面。使用者一邊視覺確認在觸摸屏20後面設置 的顯示設備30的顯示,一邊通過手指或筆等觸摸物70按壓或 ❹接近觸摸屏20的防護層26進行操作時,觸摸物70與透明導電 層24之間形成一耦合電容。對於高頻電流來說,電容為直接導 體’於為手指從接觸點吸走了一部分電流。這個電流分別從觸 摸屏20被觸摸的奈米碳管長線對應連接的兩個電極中流出,並 且流經14兩個電極的電流與手指到兩個電極的距離成正比,觸 摸屏控製器40通過對這兩個電流比例的精確計算,得出觸摸點 在被觸摸的奈米碳管長線上的位置,並和每個奈米碳管長線設 置在觸摸屏20上的位置數據結合,從而得出觸摸點在觸摸屏2〇 上的觸摸位置。之後’觸摸屏控製器40將數字化的觸摸位置數 18 200928911 據傳送給中央處理器50。然後,中央處理器5〇接受上述的觸摸 位置數據並執行。最後’中央處理器50將該觸摸位置數據傳輸 給顯示器控製器60 ’從而在顯示設備3〇上顯示接觸物%發出 ' 的觸摸信息。 本技術方案實施例提供的顯示裝置1〇〇具有以下優點:其 -,由於透明導電層中的多個奈米碳管長線平行且間隔設置了 因此,所述透明導電層具有較好的力學性能,從而使得上述的 透明導電層具有較好的機械强度和勃性,故,採用上述的夺米 ❹礙管長線作透明導電層,可以相應的提高觸摸屏的对用性,進 而提高了使用該觸摸屏的顯示蓑置的耐用性;其二,上述透明 導電層中的多個奈米碳管長線平行且間隔設置,從而使得透明 導電層具有均勻的阻值分布和透光性,且所述每個電極與其所 在透明導電層中的至少-個奈米碳管長線的一端電連接,故可 以通過探測觸摸點處電極之間的電流變化來更精確地確定觸摸 點的位置,從而有利於提高觸摸屏及使用該觸摸屏的顯示裝置 Q 的分辨率和精確度。 綜摘述’本發明確已符合發明專利之要件,遂依法提出 專利申明准,以上所述者僅為本發明之較佳實施例,自不於 =此限製本案之中請專利範圍。舉凡熟悉本案技藝之人士援^ ,明之精神所作之等效修飾或變化,皆應涵蓋於以 利範圍内。 β月寻 【圖式簡單說明】 圖1為本技術方案實施例的觸摸屏的結構示意圖。 圖2為沿圖1所示的線II-II的剖視圖。 19 200928911 圖3為本技術方案實施例的透明導電層的結構示意圖。 圖4為本技術方案實施例的透明導電層的奈米碳管薄膜的 掃描電鏡圖。 圖5為本技術方案實施例的顯示裝置的結構示意圖。 圖6為本技術方案實施例的顯示裝置的工作原理示意圖。 【主要元件符號說明】It can be understood that the shapes of the transparent conductive layer 24 and the base 22 can be selected according to the shape of the touch area of the touch screen 2A. For example, the touch area of the touch screen may be a long-line touch area having a length, a triangular touch area, and a rectangular touch Q field. In this example, the touch area of the touch screen 2 is a rectangular touch for a rectangular touch area, the transparent conductive layer 24 and The shape of the base 22 may also be such that a uniform resistance network is formed on the transparent conductive layer 24 as described above, and it is not necessary to symmetrically provide a plurality of electrodes 28 on the surface of the transparent conductive layer. The plurality of electrodes 28 may be formed of a metal material. Specifically, in the present embodiment, the base 22 is a glass substrate. The plurality of electrodes 28 are strip electrodes 28 composed of a low-resistance conductive metal chain layer such as silver or copper or a metal slab. The plurality of electrodes 28 are spaced apart on opposite sides of the same surface of the transparent conductive layer 24 of the pin. It can be understood that the above-mentioned electrodes 28 can also be disposed on different surfaces of the transparent conductive layer 24, the key point being that the electrodes 28 are disposed such that an equipotential surface is formed on the transparent conductive layer 24. In this embodiment, the electrode 28 is disposed on the surface of the transparent conductive layer 24 away from the base. The electrode 28 can be directly formed on the transparent conductive layer 24 by a deposition method such as riding, electric key, 15 200928911 chemical bond or the like. Alternatively, the electrode 28 described above may be dried on one surface of the transparent conductive layer 24 by a conductive cement such as silver paste. It can be understood that the electrode 28 can also be disposed between the transparent conductive layer 24 and the substrate 22, and is electrically connected to the transparent conductive layer 24, and is not limited to the above arrangement and bonding manner. Any manner in which the above-described electrode 28 and the transparent conductive layer 24 can be electrically connected is within the scope of the present invention. Further, in order to extend the service life of the transparent conductive layer 24 and limit the capacitance coupled between the contact point and the transparent conductive layer 24, a transparent protective layer 26 may be disposed over the transparent conductive layer 24 and the electrode, the protective layer 26 It may be formed of tantalum nitride, oxidized seconds, benzocyclobutene (BCB), a polyester film or an acrylic resin. The protective layer 26 has a certain hardness and protects the transparent conductive layer 24. It can be understood that it can also be processed by a special process so that the protective layer 26 has the following functions, such as reducing glare, reducing reflection, and the like. In the present embodiment, 'the SiO2 layer is provided on the transparent conductive layer 24 on which the electrode 28 is formed as the protective layer 26, and the hardness of the protective layer 26 reaches 7H (Η is the Rockwell hardness test, the main remover After the test force, the depth of the indentation remains under the initial test force). It will be appreciated that the hardness and thickness of the protective layer 26 can be selected as desired. The protective layer 26 can be directly bonded to the transparent conductive layer 24 by an adhesive. Furthermore, in order to reduce the electromagnetic interference generated by the display device and to avoid errors in the signal emitted from the touch screen 20, a shield layer 25 may not be placed on the second surface 222 of the substrate 22. The shielding layer 25 may be formed of a transparent conductive material such as an indium tin oxide (yttrium) film, a tantalum tin oxide (yttrium) film, or a carbon nanotube film. 16 200928911 The non-carbon & film may be an oriented or other structured carbon nanotube film f embodiment, the carbon nanotube film comprising a plurality of carbon nanotubes, the plurality of carbon carbon It is oriented in the above-mentioned carbon nanotube film, and its specific structure can be the same as that of the transparent conductive layer 24. The carbon nanotube film acts as an electrical grounding point and acts as a shield so that the touch screen 2G can operate in a disturbing environment. Referring to FIG. 5, and in conjunction with FIG. 2, the embodiment of the present invention provides a display device H). The display device 100 includes a touch screen 2A and a display device 3A. The display device 30 is facing and placed close to the touch screen 20. Further, the display device 30 described above is disposed adjacent to and adjacent to the second surface 222 of the base 22 of the touch screen 2A. The display device 30 described above and the touch screen 20 may be spaced apart by a predetermined distance or integrated. The display device 30 may be one of a display device such as a liquid crystal display, a field emission display, a plasma display, an electroluminescence display, a vacuum fluorescent display, and a cathode ray tube. Referring to FIG. 2 and FIG. 6 , further, when the display device 30 is disposed at a distance from the touch screen 2 , a passivation layer 104 may be disposed on a surface of the shielding layer 25 of the touch screen 20 away from the substrate 22 . 1〇4 may be formed of a material such as nitride nitride, cerium oxide, benzocyclobutene, a polyester film, or an acrylic resin. The passivation layer 104 is spaced apart from the front side of the display device 30 by a gap 1〇6. Specifically, two support bodies 1〇8 are provided between the above-described passivation layer 104 and the display device 30. The passivation layer 104 is used as a dielectric layer which protects the display device 30 from damage due to excessive external force. When the display device 30 is integrated with the touch screen 20, the contact setting between the touch screen 2A and the display device 30 is set. Immediately after the support body 108 is removed, the passivation layer 1〇4 17 200928911 is disposed on the front side of the display device 30 without a gap. In addition, the display device 100 further includes a touch screen controller 40, a display device controller 60, and a central processing unit 50. The touch screen controller 40, the central processing unit 50 and the display device controller 60 are mutually connected by a circuit, the touch screen controller 40 is connected to the electrode 28 of the touch screen 20, and the display device controller 60 is connected to the display device 30. The principle of the touch screen 20 and the display device 100 in this embodiment is as follows: The touch screen 20 can be directly disposed on the display surface of the display device 30 when applied. The touch panel controller 40 positions the selection information input based on an icon or menu position touched by the touch object 70 such as a finger, and transmits the information to the central processing unit 50. The central processor 50 controls the display of the display device 30 via the display controller 6. Specifically, a predetermined voltage is applied to the transparent conductive layer 24 when in use. The voltage is applied to the transparent conductive layer 24 through the electrode 28, thereby forming an equipotential surface on the transparent conductive layer 24. The user visually confirms the display of the display device 30 disposed behind the touch screen 20, and while pressing or touching the protective layer 26 of the touch screen 20 by a touch object 70 such as a finger or a pen, the touch object 70 and the transparent conductive layer 24 are operated. A coupling capacitor is formed. For high frequency currents, the capacitor is a direct conductor' to draw a portion of the current from the contact point for the finger. This current flows out from the two electrodes correspondingly connected to the long line of the carbon nanotube that is touched by the touch screen 20, and the current flowing through the two electrodes is proportional to the distance of the finger from the two electrodes, and the touch screen controller 40 passes this Accurate calculation of the ratio of the two currents, the position of the touch point on the long line of the touched carbon nanotubes is obtained, and combined with the position data of each nano carbon tube long line set on the touch screen 20, thereby obtaining a touch point on the touch screen 2 Touch position on the 。. Thereafter, the touch screen controller 40 transmits the digitized number of touched positions 18 200928911 to the central processing unit 50. Then, the central processing unit 5 accepts the above touch position data and executes it. Finally, the central processing unit 50 transmits the touch position data to the display controller 60' to display the touch information of the contact % issued on the display device 3'. The display device 1 provided by the embodiment of the present technical solution has the following advantages: since the plurality of carbon nanotubes in the transparent conductive layer are parallel and spaced apart, the transparent conductive layer has better mechanical properties. Therefore, the above transparent conductive layer has better mechanical strength and sturdiness. Therefore, by using the above-mentioned rice damper to prevent the long line of the tube from being used as a transparent conductive layer, the usability of the touch screen can be correspondingly improved, thereby improving the use of the touch screen. Displaying the durability of the device; second, the plurality of carbon nanotube long lines in the transparent conductive layer are parallel and spaced apart, so that the transparent conductive layer has a uniform resistance distribution and light transmittance, and each of the The electrode is electrically connected to one end of the long line of at least one of the carbon nanotubes in the transparent conductive layer, so that the position of the touched point can be more accurately determined by detecting the current change between the electrodes at the touched point, thereby facilitating the improvement of the touch screen and The resolution and accuracy of the display device Q using the touch screen. SUMMARY OF THE INVENTION The present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. The above is only a preferred embodiment of the present invention, and it is not limited to the scope of the patent. Equivalent modifications or changes made by those who are familiar with the skill of the case should be covered by the spirit of the invention.月月寻寻 [Simplified illustration of the drawings] Fig. 1 is a schematic structural view of a touch screen according to an embodiment of the present technical solution. Fig. 2 is a cross-sectional view taken along line II-II shown in Fig. 1. 19 200928911 FIG. 3 is a schematic structural diagram of a transparent conductive layer according to an embodiment of the present technical solution. 4 is a scanning electron micrograph of a carbon nanotube film of a transparent conductive layer according to an embodiment of the present technology. FIG. 5 is a schematic structural diagram of a display device according to an embodiment of the present technical solution. FIG. 6 is a schematic diagram of the working principle of the display device according to the embodiment of the present technical solution. [Main component symbol description]

顯示裝置 100 鈍化層 104 間隙 106 支撑體 108 觸摸屏 20 基體 22 第一表面 221 第二表面 222 透明導電層 24 奈米碳管長線 240 屏蔽層 25 防護層 26 電極 28 顯示設備 30 觸摸屏控製器 40 中央處理器 50 顯示設備控製器 60 觸摸物 70Display device 100 passivation layer 104 gap 106 support body 108 touch screen 20 substrate 22 first surface 221 second surface 222 transparent conductive layer 24 carbon nanotube long line 240 shielding layer 25 protective layer 26 electrode 28 display device 30 touch screen controller 40 central processing Device 50 display device controller 60 touch object 70

Claims (1)

200928911 、申請專利範圍 1. 〇 一種觸摸屏,其包括: :透明導電層,該透明導電層設置於上述基 署面’以及多個電極,該多個電極分別間隔設 明或带”該透明導電層電連接’其改良在於’所述透 層進:步包括—奈米碳管層’該奈米碳管層包 丰^且間隔設置的多個奈来碳管長線,所述每個奈 “厌二長線的兩端分別與兩個相對的電極電連接,且 :述母個電極與至少一個奈米碳管長線的一端電連 接0 如申明專利範圍第1項所述的觸摸屏,其中,所述多 個電極一一對應設置於奈米碳管長線的兩端。 .如申4專利範ffi第1項所述賴摸屏,其巾,所述奈 米碳管長線的直徑爲0.5奈米〜100微米。 4.如申請專利範圍第!項所述的觸摸屏,其中,所述奈 〇 米碳管長線之間的間距爲10奈米〜;L毫米。 5·如:請專利範圍帛卫項所述的觸摸屏,其中,所述奈 米石反管長線包括多個平行的首尾相連的奈米碳管束組 成的束狀結構或由多個首尾相連的奈米碳管束組成的 絞線結構。 6·如申請專利範圍第5項所述的觸摸屏,其中,所述相 鄰的奈米碳管束之間通過凡德瓦爾力緊密結合,每一 奈米碳管束包括多個長度相等且平行排列的奈米碳 管。 21 200928911 7. 如巾㈣利範圍第6項所述的龍屏,其巾,所述奈 米碳管包括單壁奈米後管、雙壁奈来碳管及多壁奈米 碳管中的一種或幾種。 8. 如申明專利範圍第7項所述的觸摸屏,其中,所述單 壁奈米被&的直控爲〇·5奈米〜5()奈米,雙壁奈米破管 的直徑爲1·0奈米〜50奈来’多壁奈米碳管的直徑爲 1.5奈米〜50奈米。200928911, Patent Application No. 1. A touch screen comprising: a transparent conductive layer disposed on the base surface and a plurality of electrodes, the plurality of electrodes being respectively spaced apart or banded. The layer electrical connection 'is improved in that the step: the step comprises: a carbon nanotube layer 'the carbon nanotube layer is enriched and spaced apart from a plurality of long carbon nanotubes, each of which is " The two ends of the long line of the anatomy are electrically connected to the two opposite electrodes, and the mother electrode is electrically connected to one end of the long line of at least one of the carbon nanotubes. The touch screen according to claim 1 of the patent scope, wherein The plurality of electrodes are arranged one-to-one correspondingly at both ends of the long line of the carbon nanotubes. For example, the diameter of the long carbon wire of the carbon nanotube is 0.5 nm to 100 μm. 4. If you apply for a patent scope! The touch screen of the item, wherein the spacing between the long lines of the carbon nanotubes is 10 nm~; L mm. 5: For example, the touch screen described in the scope of the patent protection, wherein the nanowire reverse tube long line comprises a plurality of parallel bundles of end-to-end connected carbon nanotube bundles or a plurality of end-to-end nai A twisted wire structure consisting of a bundle of carbon tubes. 6. The touch screen of claim 5, wherein the adjacent carbon nanotube bundles are closely coupled by a van der Waals force, and each of the carbon nanotube bundles comprises a plurality of equal lengths and parallel arrays. Carbon nanotubes. 21 200928911 7. In the case of the towel (4), the Longping, the towel, the carbon nanotubes include a single-walled nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. One or several. 8. The touch screen of claim 7, wherein the single-walled nanometer is directly controlled by 〇·5 nm to 5 () nm, and the diameter of the double-walled nanotube is 1·0 nm ~ 50 Nai's multi-walled carbon nanotubes with a diameter of 1.5 nm ~ 50 nm. 9·如申請專利範圍第1項所述的觸摸屏,其中,所述多 ln個電極間隔地設置在所述透明導電層相對的兩端。 2申請專利範圍第9項所述的觸摸屏,其中,所述多 個電極通過導電銀膠設置在透明導電層的遠離基體的 一個表面上。 =申明專利範圍第1〇項所述的觸摸屏,其中,所述 多個電極爲金屬鍍層或金屬箔片。 =申明專利範圍第1項所述的觸摸屏,其中,所述觸 、屏進#包括一防護層,該防護層設置在透明導電 層的遠離基體的一個表面上。 利範圍第12項所述的觸摸屏,其中,所述 防遵層爲氮化矽、氧化矽、贫 烯酸樹脂。 4并環丁婦、聚醋膜或兩 14.=!專利範圍第1項所述的觸摸屏,其中,所述觸 、為平面觸摸屏或者曲面觸摸屏。 專利範圍第1項所述的觸摸屏,其中,所述觸 、屏進-步包括-光學補償膜設置於所述奈米碳管長 22 200928911 線之間。 16· —種顯示裝置,包括: 一觸摸屏,該觸摸屏包括一基體;一透明導電層,該 透明導電層設置於上述基體的表面;以及多個電極, 該多個電極間隔設置,並與該透明導電層電連接; 一顯示設備,該顯示設備正對且靠近觸摸屏基體遠離 透明導電層的一個表面設置; ❹ 17.9. The touch panel of claim 1, wherein the plurality of ln electrodes are spaced apart from opposite ends of the transparent conductive layer. The touch panel of claim 9, wherein the plurality of electrodes are disposed on a surface of the transparent conductive layer away from the substrate by a conductive silver paste. The touch panel of claim 1, wherein the plurality of electrodes are metal plating or metal foil. The touch screen of claim 1, wherein the touch panel comprises a protective layer disposed on a surface of the transparent conductive layer remote from the substrate. The touch panel of item 12, wherein the anti-alignment layer is tantalum nitride, hafnium oxide, or urethane resin. The touch screen of the first aspect of the invention, wherein the touch is a flat touch screen or a curved touch screen. The touch screen of claim 1, wherein the touch-and-screen step-by-step optical compensation film is disposed between the carbon nanotube lengths 22 200928911 lines. a display device comprising: a touch screen comprising a substrate; a transparent conductive layer disposed on a surface of the substrate; and a plurality of electrodes, the plurality of electrodes being spaced apart from each other and transparent The conductive layer is electrically connected; a display device that is disposed opposite to and close to a surface of the touch screen substrate away from the transparent conductive layer; 18. 19.18. 19. 其改良在於’所述透明導電層進一步包括一奈米碳管 層,該奈米碳管層包括平行且間隔設置的多個奈米碳 管長線,所述每個奈米碳管長線的兩端分別與兩個相 對的電極電連接,且所述每個電極與至少一個奈米碳 管長線的一端電連接。 如申凊專利範圍第16項所述的顯示裝置,其中,所 述顯不设備爲液晶顯示器、場發射顯示器、電漿顯示 器、電致發光顯不器、真空螢光顯示器及陰極射線管 中的一種。 如申請專利範圍第16項所述的顯示裝置,其中,所 述顯示設備與觸摸屏間隔設置或集成設置。 如申請專利第16項所述的顯示裝置,其中,所 置進—步包括—鈍化層,該鈍化層設置於觸 讯倕=顯不成備之間’與觸摸屏相接觸設置,與顯示 0又備間隔一定距離設置。 =2利範圍第19項所述的顯示裝置,其中,所 純化層職㈣、氣切、笨并環丁稀、聚箱膜或 200928911 丙稀酸樹脂。 21.如申請專利範圍第2〇項所述的顯示裝置,其中,所 述顯示裝置進一步包括一觸摸屏控製器、一顯示設備 控製器及一中央處理器,其中,觸摸屏控製器、中央 處理器及顯示設備控製器三者通過電路相互連接,觸 摸屏控製器連接觸摸屏的電極,顯示設備控製器連接 顯示設備。 QThe improvement is that the transparent conductive layer further comprises a carbon nanotube layer comprising a plurality of carbon nanotube long lines arranged in parallel and spaced apart, and the two ends of each of the nano carbon tubes Each of the two electrodes is electrically connected to each other, and each of the electrodes is electrically connected to one end of at least one long carbon nanotube. The display device of claim 16, wherein the display device is a liquid crystal display, a field emission display, a plasma display, an electroluminescence display, a vacuum fluorescent display, and a cathode ray tube. One kind. The display device of claim 16, wherein the display device is spaced apart from or integrated with the touch screen. The display device of claim 16, wherein the step further comprises: a passivation layer, the passivation layer is disposed between the touch device and the display device, and is disposed in contact with the touch screen. Set at a certain distance. The display device according to item 19, wherein the purified layer (4), gas-cut, stupid and cyclobutyl, poly-box film or 200928911 acrylic resin. The display device of claim 2, wherein the display device further comprises a touch screen controller, a display device controller, and a central processing unit, wherein the touch screen controller, the central processing unit, and The display device controllers are connected to each other through a circuit, the touch screen controller is connected to the electrodes of the touch screen, and the display device controller is connected to the display device. Q 24twenty four
TW96151274A 2007-12-31 2007-12-31 Touch panel and displaying device using the same TWI423084B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96151274A TWI423084B (en) 2007-12-31 2007-12-31 Touch panel and displaying device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96151274A TWI423084B (en) 2007-12-31 2007-12-31 Touch panel and displaying device using the same

Publications (2)

Publication Number Publication Date
TW200928911A true TW200928911A (en) 2009-07-01
TWI423084B TWI423084B (en) 2014-01-11

Family

ID=44864291

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96151274A TWI423084B (en) 2007-12-31 2007-12-31 Touch panel and displaying device using the same

Country Status (1)

Country Link
TW (1) TWI423084B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489172B (en) * 2012-07-05 2015-06-21 Shih Hua Technology Ltd Hybrid touch panel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4325479B2 (en) * 2003-07-17 2009-09-02 セイコーエプソン株式会社 Organic transistor manufacturing method, active matrix device manufacturing method, display device manufacturing method, and electronic device manufacturing method
JP4470161B2 (en) * 2004-06-18 2010-06-02 エルピーダメモリ株式会社 Refresh counter circuit and refresh operation control method
US7535462B2 (en) * 2005-06-02 2009-05-19 Eastman Kodak Company Touchscreen with one carbon nanotube conductive layer
TWM284963U (en) * 2005-06-21 2006-01-01 Mei-Ying Chen Input/output device of a laptop computer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489172B (en) * 2012-07-05 2015-06-21 Shih Hua Technology Ltd Hybrid touch panel

Also Published As

Publication number Publication date
TWI423084B (en) 2014-01-11

Similar Documents

Publication Publication Date Title
TWI354921B (en) Touch panel and displaying device using the same
CN101458598B (en) Touch screen and display device
CN101464765B (en) Touch screen and display equipment
CN101470560B (en) Touch screen and display equipment
CN101458603B (en) Touch screen and display device
TWI416380B (en) Touch panel
CN101470565A (en) Touch screen and display equipment
TW200929638A (en) Touch panel, method for making the same, and displaying device adopting the same
CN101464764A (en) Touch screen and display equipment
TW200926471A (en) Touch panel and displaying device using the same
CN101458604B (en) Touch screen and display device
TWI386831B (en) Touch panel and displaying device using the same
CN101464766B (en) Touch screen and display equipment
TW200929649A (en) Touchable control device
TWI423083B (en) Touch panel and displaying device using the same
TWI408575B (en) Touch panel and displaying device using the same
TWI423084B (en) Touch panel and displaying device using the same
CN101458605B (en) Touch screen and display device
TWI436510B (en) Touch panel and displaying device using the same
TW200929636A (en) Touch panel and displaying device using the same
TWI354920B (en) Touch panel and displaying device using the same
TWI362776B (en) Touch panel and displaying device using the same
TWI412962B (en) Touch panel and displaying device using the same
TWI482324B (en) Touch panel and displaying device using the same
TW200929642A (en) Touch panel, method for making the same, and displaying device adopting the same