TW200926108A - Display method of emission display apparatus - Google Patents

Display method of emission display apparatus Download PDF

Info

Publication number
TW200926108A
TW200926108A TW097131939A TW97131939A TW200926108A TW 200926108 A TW200926108 A TW 200926108A TW 097131939 A TW097131939 A TW 097131939A TW 97131939 A TW97131939 A TW 97131939A TW 200926108 A TW200926108 A TW 200926108A
Authority
TW
Taiwan
Prior art keywords
pixel
display method
display
sub
pixels
Prior art date
Application number
TW097131939A
Other languages
Chinese (zh)
Inventor
Junichi Ihata
Koichi Fukuda
Original Assignee
Canon Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Kk filed Critical Canon Kk
Publication of TW200926108A publication Critical patent/TW200926108A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests

Abstract

Sticking of a Pixel is suppressed to improve the life of a display panel. In an emission display apparatus with a display panel in which a plurality of pixels each having at least one subpixel (11a, 11b, 11c) are disposed, a first display method of emitting light with only a pixel P(I, j) serving as an emission center and a second display method of allocating luminance of the pixel P(i, j) serving as an emission center to nearby pixels surrounding the pixel are combined in a controllable manner. A high-resolution mode with a high ratio of the first display method and a long-life mode with a high ratio of the second display method are switched therebetween depending on a spatial change or time change of image input data, an emission time, a degradation rate, a temperature, an emission luminance, and a display time.

Description

200926108 九、發明說明 【發明所屬之技術領域】 本發明與使用有機EL裝置之發光顯示設備的顯示方 法有關,且更特定地說,與以像素結構之控制方法爲特色 之發光顯示設備的顯示方法有關。 【先前技術】 © 在諸如有機EL顯示器的平面影像顯示設備(平面顯 示器)中,當長時間顯示相同的靜止影像時,發生了所謂 “殘影”的現象。本文中使用的“殘影”一詞,意指僅部分的 顯示螢幕退化(發光亮度下降)而產生視覺可識別的殘留 影像(後影像)。殘影易發生於靜止影像的邊緣部或類似 部分。 在具有複數個發光波長不同之子像素的有機EL顯示 器中,有很多情況使每一發光顏色的退化特性並不完全相 ® 同。此外,由於顯示在顯示幕上之影像的內容並不一致, 退化易於局部地持續進行。在此情況,由於每一顏色之發 光亮度降低的程度不同,發生其中白平衡被偏移之所謂的 “色偏”,因而使白色影像呈現出顏色。 此外,使退化加速之因素的例子包括顯示固定的圖案 、各個子像素的發光時間不一致、發光的時間周期、環境 溫度、及發光亮度的大小,這些都是殘影現象的原由。 爲了抑制殘影現象,較佳是增進構成材料的發光壽期 。不過,僅藉由改進材料,很難說可以充分地抑制殘影現 -4- 200926108 象。以下描述揭示用來抑制殘影現象之技術的文件。 第一,提前公開的日本專利申請案No. 2000-356981 揭示根據累積的發光時間來控制每一顏色之發光亮度的技 術,以確保各個顏色之退化的進程一致,從而使殘影不明 顯。 第二,提前公開之日本專利申請案No. 2001-175221 揭示的技術係偵測由於高亮度發光所導致之像素亮度的退 © 化,並將其它像素之亮度調整到該退化之像素的亮度,從 而使殘影不明顯。 不過,按照提前公開之日本專利申請案No. 2000-3 5 698 1中所揭示的技術,係根據顯示的時間長度僅降低整 個顯示幕的亮度,且因此無法實質上避免“殘影”現象的發 生。此外,由於其它像素之亮度被調整到由於高亮度發光 所導致之像素退化的亮度,因此,提前公開之日本專利申 請案No. 200卜175221中所揭示的技術具有抑制色偏的效 © 果。不過,沒有抑制該等像素其本身亮度退化的效果。此 外,爲偵測亮度需要額外的感測器,因而致使製造成本增 加及解析度降低。 在有機EL顯示器中,當長時間顯示相同的靜止影像 時,顯示幕中僅部分退化,因而造成殘影現象。此外’在 具有複數個不同發光波長之子像素的有機EL顯示器中’ 由於每種發光顏色的退化特性並不一致’此在很多情況中 造成色偏。 -5· 200926108 【發明內容】 由於以上的問題而完成了本發明。因此,本發明的目 的是提供發光顯示設備的顯示方法,其可抑制像素的殘影 以增進顯示面板的壽命。 爲達成上述目的,本發明包括以下的特定特徵。本發 明提供一包括有顯示面板之發光顯示設備的顯示方法,該 顯示面板中配置有每一都具有至少一個子像素的複數個像 ® 素。假設座標在垂直方向以“i”表示,且在水平方向以“j” 表示。於是,實施構成位於位置(i,j )處之像素P ( i,j ) 且具有顯示顏色“a”之子像素Spa ( i,j )之影像輸入資料 Da(i,j)的顯示。在此情況中有兩種顯示方法。第一顯示 方法藉由僅使用該子像素Spa ( i,j )來實施該影像輸入資 料Da ( i,j )之顯示。第二顯示方法以附近子像素群Spa ( 來實施影像輸入資料Da(i,j)的顯示,附近子像素 群Spa (i',j')係每一個都具有顯示顏色“a”,且包括在配 V 置於該像素P(i,j)四周之附近像素群P(i’,j')中之的子 像素群。在按照本發明的發光顯示設備中,結合第一顯示 . 方法與第二顯示方法來實施顯示控制,且兩方法間的組合 . 比係以可控制的方法來改變。 在按照本發明之發光顯示設備的顯示方法中,在第一 顯示方法之比例高的高解析模式與第二顯示方法之比例高 的長壽模式之間切換,以使得像素的殘影可被抑制,以增 進顯示面板的壽命。 從以下參考附圖對例示性實施例的描述中,將可明瞭 -6- 200926108 本發明進一步的特徵。 【實施方式】 在後文中,將參考附圖描述按照本發明之例示性實施 例之發光顯示設備的顯示方法。 應用按照本發明之例示性實施例之顯示方法的每一發 光顯示設備,包括其中配置有每一都具有至少一個子像素 ® 之複數個像素的顯示面板。假設在垂直方向中的座標以“iv 來表示,及在水平方向中的座標以“j”來表示。於是,對應 於構成位於位置(i,j )處之像素P ( i,j )且具有顯示色“a” 之子像素Spa ( i,j )實施影像輸入資料Da ( i J )的顯示。 在此時’有兩種顯示方法。第一顯示方法係僅使用子像素 Spa(i,j)來顯示影像輸入資料Da(i,j)。第二顯示方法 係藉由使用附近子像素群Spa(i',j·)來顯示影像輸入資料 Da(i,j),附近子像素群Spa(i’,j·)係每一都具有顯示色 ® “a”且包括在配置於像素P(i,j)四周之附近像素群P( 中的子像素群。在按照本發明的發光顯示設備中, 結合第一顯示方法與第二顯示方法來實施顯示控制,且兩 者之間的組合比以可控制的方法來改變。此外,在顯示面 板中’第一顯示方法與第二顯示方法之間的組合比可被控 制,以便爲每一影像輸入資料Da ( i,j )來改變。 (第一實施例) 圖1至15的每一槪圖係說明本發明之第一實施例中 200926108 所使用之發光顯不設備的像素結構。 圖1至9中所說明的各個發光顯示設備都以3列乘3 行(3x3)的配置來顯示像素11。每一像素包括紅、綠、 及藍色子像素11a、lib、及11c。在垂直方向中的座標以 “i”來表示’及在水平方向中的座標以“j,,來表示。構成位 於位置(i,j)處之像素P(i,j)且具有顯示色“a”的子像素 Spa ( i,j )實施對應之影像輸入資料Da ( i,j )的顯示。 ® 本文中所使用的“子像素Spa ( i,j ) ”一詞,意指例如 構成像素p (i,j)的紅色子像素、綠色子像素、或藍色子 像素。此外,本文中所使用的“附近像素群P ( i', j ·),,一 詞,意指例如由圍繞於像素P(i,j)四周之像素P(i-l,j )、P(i + l,j) 、P(i,j-l)、及 P(i,j + 1)所構成的群。 此外,本文中所使用的“附近子像素群Spa ( i’,j’)”一詞, 意指由分別包含在構成附近像素群P( i’,j’)之附近像素 群 P ( i-l,j ) 、P ( i+l,j ) 、P ( i,j-l )、及 P ( i,j + l )中 β 之紅色子像素、綠色子像素、或藍色子像素所構成的群。 圖1說明高解析顯示模式,其中僅使用第一顯示方法 來顯示影像輸入資料Da(i,j)。在圖1所說明的顯示模 式中,做爲發光中心的每一子像素S pa ( i,j )都以1 〇 〇 %的 亮度來發光,且僅做爲發光中心的每一子像素Spa ( i,j ) 才發光,以致可顯示輪廓清晰的銳利影像。不過,以高密 度的電流僅集中在單一個像素上,有可能由於退化因而造 成殘影。 在此,當子像素Spa ( i J )的發光亮度以La ( i,j )表 200926108 示,其最大發光亮度以LaMAX ( i,j )表示’且其階度以 (i,j) {0^c〇a(i,j) $1}表示時,在僅使用第一顯示方法來 顯示的情況中’發光亮度La(i,j)可用式(1)來表示: La(i,j) = Qa(i,j) χ LaMAx(i,j) *··(1) 圖5說明長壽顯示模式,其中僅使用第二顯示方法來 ' 顯示影像輸入資料Da ( i,j )。在圖5所說明的顯示模式 中,做爲發光中心的像素P ( i,j )並不發光,而是由毗鄰 ❹ 於該像素P(u)的各個附近像素P(i-U) 、P(i+i,j) 、P ( i,j-l )、及p ( U + l )以25%的亮度來發光。 在此顯示模式中,由於施加於做爲發光中心之像素P (i,j )的電流密度平均地分配到毗鄰於其的附近像素P ( i-lj ) 、p ( i + l,j ) 、P ( i,j-l )、及 P ( i,j + l ),因此減 少了像素P ( i,j )的退化。此外,在圖5所說明的顯示模 式中,由於發光亮度藉由毗鄰於像素P(i,j)之附近像素 P ( i-l,j ) 、P ( i+l,j ) 、P ( i,j-l )、及 P ( i,j + l )而被 ® 調平,因此,外形的邊界變得平滑,其結果是不容易識別 出由於亮度退化所造成的改變。亦即,經由減少退化之效 果與平滑外形邊界之效果的協力合作,顯示面板的殘影被 抑制。 圖3顯示高解析模式與長壽模式之間的中間模式,其 中’影像輸入資料Da(i,j)係藉由第一顯示方法跑第二 顯示方法以50%之組合比的組合來顯示。在圖3所說日月@ 顯示模式中,做爲發光中心的像素P ( i,j )以5〇%的亮度 發光,且毗鄰於其的各個附近像素P(i-l,j) 、P(i + lj 200926108 )、P ( i,j -1 ) ' 及 P ( i,j + 1 )以 1 2 · 5 % 的亮度來發光。 在圖3所說明的顯示模式中,像素P(i,j)的發光亮 度降到50% ’且對應於其所降低的亮度,被均勻地分配到 毗鄰於其的附近像素P(i-l,j) 、P(i + l,j) 、P(i,j-l) 、及+ 。因此,與高解析模式相較,殘影被抑制 。不過,影像的銳利度多少有些降低。 在中間模式中,第一顯示方法與第二顯示方法之間的 組合比並不限於圖3中所說明的比例,且可視意欲的使用 加以調整。圖2說明的中間模式係第一顯示方法與第二顯 示方法使用第一顯示方法之比例爲8 0 %的組合比來顯示影 像輸入資料Da(i,j)。圖4說明的中間模式係第一顯示 方法與第二顯示方法使用第一顯示方法之比例爲20%的組 合比來顯示影像輸入資料Da(i,j)。 使用第一顯示方法的比例愈高,可顯示外形愈清晰的 銳利影像。不過’將較大的電流密度施加於做爲發光中心 的像素P ( i,j ) ’以致易於發生殘影。此外,在顯示面板 之解析度低的情況中’有可能造成其所顯示之斜線有鋸齒 或類似的缺陷。反之’使用第一顯示方法的比例愈低,可 實施外形邊界較平滑且退化較小之較長壽命的顯示,但所 顯示的整個影像多少有些模糊。不過,在低解析度之顯示 面板的情況中’也有使輪廓平滑及增進解析度的效果。 當結合第一顯示方法與第二顯示方法來實施顯示時, 需要滿足下式(2)及(3)。順帶一提,式中的α指示像 素P ( i,j )與各附近像素之間的亮度配置(或分配)比。 -10- 200926108200926108 IX. Description of the Invention The present invention relates to a display method of a light-emitting display device using an organic EL device, and more particularly to a display method of a light-emitting display device featuring a control method of a pixel structure related. [Prior Art] In a flat-panel display device (flat display) such as an organic EL display, when the same still image is displayed for a long time, a phenomenon of "image sticking" occurs. The term "afterimage" as used herein means that only part of the display is degraded (lower luminance) to produce a visually identifiable residual image (rear image). The afterimage is likely to occur at the edge or the like of the still image. In an organic EL display having a plurality of sub-pixels having different emission wavelengths, there are many cases in which the degradation characteristics of each of the illumination colors are not completely identical. Further, since the contents of the images displayed on the display screen are not uniform, the degradation is apt to continue locally. In this case, since the degree of decrease in the luminance of each color is different, a so-called "color shift" in which the white balance is shifted occurs, thereby causing the white image to appear in color. Further, examples of the factors for accelerating the degradation include displaying a fixed pattern, inconsistent illumination time of each sub-pixel, time period of illumination, ambient temperature, and magnitude of luminance, which are the causes of the afterimage phenomenon. In order to suppress the image sticking phenomenon, it is preferred to increase the luminescence lifetime of the constituent material. However, it is difficult to say that the residual image can be sufficiently suppressed only by improving the material. The following description discloses a document for techniques for suppressing image sticking. First, Japanese Laid-Open Patent Publication No. 2000-356981 discloses a technique of controlling the luminance of each color based on the accumulated lighting time to ensure that the progress of degradation of each color is uniform, so that the afterimage is not made apparent. Secondly, the technique disclosed in Japanese Laid-Open Patent Publication No. 2001-175221 discloses the degradation of pixel brightness due to high-intensity illumination, and adjusts the brightness of other pixels to the brightness of the degraded pixel. Thus the afterimage is not obvious. However, according to the technique disclosed in Japanese Laid-Open Patent Publication No. 2000-3 5 698 1, only the brightness of the entire display screen is lowered according to the length of time displayed, and thus the "afterimage" phenomenon cannot be substantially avoided. occur. Further, since the brightness of the other pixels is adjusted to the brightness of the pixel degradation due to the high-intensity light emission, the technique disclosed in Japanese Patent Application Laid-Open No. Hei No. 200-175221, which is incorporated by reference, has the effect of suppressing the color shift. However, there is no effect of suppressing the degradation of brightness of the pixels themselves. In addition, additional sensors are required to detect brightness, resulting in increased manufacturing costs and reduced resolution. In the organic EL display, when the same still image is displayed for a long time, only a part of the display screen is degraded, thereby causing image sticking. Further, 'in the organic EL display having a plurality of sub-pixels of different light-emitting wavelengths', since the deterioration characteristics of each of the light-emitting colors are not uniform, this causes color shift in many cases. -5· 200926108 SUMMARY OF THE INVENTION The present invention has been accomplished in view of the above problems. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a display method of a light-emitting display device which can suppress image sticking of a pixel to enhance the life of the display panel. To achieve the above objects, the present invention includes the following specific features. The present invention provides a display method of a light-emitting display device including a display panel in which a plurality of images each having at least one sub-pixel are disposed. It is assumed that the coordinates are represented by "i" in the vertical direction and "j" in the horizontal direction. Thus, display of the image input material Da(i,j) constituting the pixel P(i,j) at the position (i,j) and having the sub-pixel Spa (i,j) of the display color "a" is implemented. There are two display methods in this case. The first display method implements display of the image input material Da (i, j) by using only the sub-pixel Spa (i, j). The second display method performs display of the image input material Da(i, j) by the nearby sub-pixel group Spa (the adjacent sub-pixel group Spa (i', j') each has a display color "a", and includes a sub-pixel group in which the V is placed in the vicinity of the pixel P(i', j') around the pixel P(i, j). In the light-emitting display device according to the present invention, the first display is combined. The second display method performs display control, and the combination between the two methods is changed in a controllable manner. In the display method of the light-emitting display device according to the present invention, the high resolution in the first display method is high. The long-life mode in which the ratio of the mode is higher than the second display method is switched so that the afterimage of the pixel can be suppressed to enhance the life of the display panel. From the following description of the exemplary embodiments with reference to the accompanying drawings, it will be clear -6- 200926108 Further Features of the Invention [Embodiment] Hereinafter, a display method of an illuminating display device according to an exemplary embodiment of the present invention will be described with reference to the accompanying drawings. Application According to an exemplary embodiment of the present invention Each of the illuminating display devices of the method includes a display panel in which a plurality of pixels each having at least one sub-pixel® are disposed. It is assumed that coordinates in the vertical direction are represented by "iv" and coordinates in the horizontal direction are It is represented by "j". Thus, the image input material Da (i J) is implemented corresponding to the sub-pixel Spa (i,j) constituting the pixel P(i,j) at the position (i,j) and having the display color "a" Display at this time. There are two display methods at this time. The first display method uses only the sub-pixel Spa (i, j) to display the image input data Da(i, j). The second display method is by using nearby The sub-pixel group Spa(i', j·) displays the image input data Da(i, j), and the nearby sub-pixel group Spa(i', j·) each has a display color ® "a" and is included in the configuration. a sub-pixel group in the vicinity of the pixel P(i,j). In the light-emitting display device according to the present invention, display control is implemented in combination with the first display method and the second display method, and both The combination between the two is changed in a controllable way. In addition, the first display in the display panel The combination ratio between the method and the second display method can be controlled to change for each image input material Da(i,j). (First Embodiment) Each of Figs. 1 to 15 illustrates the present invention. The pixel structure of the luminescence display device used in the first embodiment 200926108. Each of the illuminating display devices illustrated in Figures 1 to 9 displays the pixels 11 in a configuration of 3 columns by 3 rows (3x3). The red, green, and blue sub-pixels 11a, lib, and 11c are included. The coordinates in the vertical direction are represented by "i" and the coordinates in the horizontal direction are represented by "j,". The composition is located at the position (i The pixel P(i,j) at j) and the sub-pixel Spa (i,j) having the display color "a" implement display of the corresponding image input material Da(i,j). The term "sub-pixel Spa (i,j)" as used herein means, for example, a red sub-pixel, a green sub-pixel, or a blue sub-pixel constituting a pixel p (i, j). Further, the term "near pixel group P (i', j ·)," as used herein means, for example, a pixel P(il,j), P(i) surrounded by pixels P(i,j). + l,j) , P(i,jl), and P(i,j + 1). In addition, the term "near sub-pixel group Spa (i',j')" used in this article , meaning the nearby pixel groups P ( il,j ), P ( i+l,j ) , P ( i,jl ), and P ( i ) respectively included in the nearby pixel group P( i',j') , j + l ) a group of red sub-pixels, green sub-pixels, or blue sub-pixels of β. Figure 1 illustrates a high-resolution display mode in which only the first display method is used to display image input data Da(i, j) In the display mode illustrated in FIG. 1, each sub-pixel S pa ( i, j ) as a center of illumination emits light with a luminance of 1 〇〇%, and is only used as each of the illuminating centers. The pixel Spa ( i,j ) emits light so that sharp images with sharp outlines can be displayed. However, the high-density current is concentrated on a single pixel, which may cause image sticking due to degradation. Here, when the sub-pixel spaThe luminance of ( i J ) is shown by La ( i,j ) table 200926108, and its maximum luminance is represented by LaMAX ( i,j ) and its degree is (i,j) {0^c〇a(i, j) When $1} is expressed, the 'luminance luminance La(i,j) can be expressed by the equation (1) in the case where only the first display method is used for display: La(i,j) = Qa(i,j) χ LaMAx(i,j) *··(1) Figure 5 illustrates the longevity display mode in which only the second display method is used to 'display the image input data Da(i,j). In the display mode illustrated in Fig. 5, The pixel P ( i,j ) which is the center of illumination does not emit light, but is adjacent to each of the nearby pixels P(iU) , P(i+i,j) , P ( i,jl adjacent to the pixel P(u). And p ( U + l ) emit light with a brightness of 25%. In this display mode, the current density applied to the pixel P (i, j ) as the center of illumination is evenly distributed adjacent to the vicinity thereof Pixels P ( i-lj ) , p ( i + l, j ) , P ( i, jl ), and P ( i, j + l ), thus reducing the degradation of the pixel P ( i, j ). In the display mode illustrated in FIG. 5, since the luminance of the light is emitted by the pixel P (il,j) adjacent to the pixel P(i,j) , P ( i+l,j ) , P ( i,jl ), and P ( i,j + l ) are leveled by ®, so the boundary of the shape becomes smooth, and as a result, it is not easy to recognize the brightness The changes caused by degradation. That is, the image sticking of the display panel is suppressed by cooperating with the effect of reducing the effect of degradation and smoothing the boundary of the outline. Fig. 3 shows an intermediate mode between the high resolution mode and the long life mode, in which the 'image input data Da(i, j) is displayed by the combination of the first display method and the second display method with a combination ratio of 50%. In the day of the month @ display mode shown in Fig. 3, the pixel P (i, j) as the center of illumination emits light with a brightness of 5〇%, and adjacent pixels P(il,j), P(i) adjacent thereto + lj 200926108 ), P ( i,j -1 ) ' and P ( i,j + 1 ) emit light with a brightness of 1 2 · 5 %. In the display mode illustrated in FIG. 3, the luminance of the pixel P(i, j) is reduced to 50%' and corresponding to the reduced luminance thereof, is uniformly distributed to the adjacent pixel P adjacent thereto (il, j) ), P(i + l, j) , P(i, jl) , and + . Therefore, the afterimage is suppressed compared to the high resolution mode. However, the sharpness of the image is somewhat reduced. In the intermediate mode, the combination ratio between the first display method and the second display method is not limited to the ratio illustrated in Fig. 3, and can be adjusted as desired. The intermediate mode illustrated in Fig. 2 is a combination of the first display method and the second display method using the first display method at a ratio of 80% to display the image input material Da(i, j). The intermediate mode illustrated in Fig. 4 is a combination of the first display method and the second display method using a ratio of the first display method of 20% to display the image input material Da(i, j). The higher the ratio using the first display method, the sharper the sharper image. However, a larger current density is applied to the pixel P(i,j) as the center of luminescence so that image sticking tends to occur. Further, in the case where the resolution of the display panel is low, there is a possibility that the oblique line displayed thereon has a sawtooth or the like. Conversely, the lower the ratio of using the first display method, the longer the life of the display with a smoother outline and less degradation, but the entire image displayed is somewhat blurred. However, in the case of a low-resolution display panel, there is also an effect of smoothing the contour and increasing the resolution. When the display is performed in combination with the first display method and the second display method, it is necessary to satisfy the following formulas (2) and (3). Incidentally, α in the equation indicates the luminance configuration (or allocation) ratio between the pixel P (i, j ) and each nearby pixel. -10- 200926108

LaU,力=®a(i,力 x I (aa(i, j : i,,j·,,丨)),..(2) Jaa(i, J : = 1 ---(3) 此外’在第二顯示方法中,被配置發光亮度的像素並 不限於附近像素 P ( i -1 ,j ) 、p ( i + 1,j ) 、P ( i,j -1 )、及 • P ( U +1 )。例如,如圖6所示’發光亮度可配置給位於 像素P ( i,j )之斜向位置處的像素P ( ) 、P ( Φ i+l,j-l ) 、p ( + l )、及 p ( i+l,j + l )。此外,在第 二顯示方法中,只要滿足上式(2)及(3),配置發光亮 度之像素的位置與數量並無限制。例如,圖7A、7B、8A 、及8B中之說明,以第二顯示方法配置發光亮度之像素 的總數量爲任意,且如圖9之說明,在第二顯示方法中可 爲每一個像素改變亮度配置比。 以第二顯示方法配置發光亮度的像素,那些像素並不 限於按3列乘3行(3 X 3 )排列,也可如圖1 〇之說明,那 〇 些像素按5列乘5行(5x5 )排列,或如圖1 1之說明,那 些像素按三角形排列。 當結合第一顯示方法與第二顯示方法來實施顯示時, 有一種情況是會有像素被要求以大於100%的亮度來發光 。例如,圖12說明3x4個像素,且位於位置(i,j )的像 素及位於位置(i,j + l)的像素,每一個都以100 %的亮度 發光。如圖13之說明,當對於位在位置(i,j )處之像素 僅應用40%之比例的第二顯示方法時,每一像素p ( i,j_i )、P ( i-l,j )、及 P ( i+l,j )以 10%的亮度發光,而 P ( Μ + 1)需要以的亮度發光。不過,像素無法以超過 -11 - 200926108 100 %的亮度來發光,以致於其必須修正發光亮度。修正發 光亮度之方法的例子如圖14之說明,其允許所有需要以 超過100%之亮度發光的像素以100%的亮度發光。當採用 此方法時,藉由修正而將亮度降至100%的像素以低於正 常亮度之亮度實施顯示。特別是,當使用第二顯示方法的 比例大時,亮度降低的缺點也跟著變大。 修正發光亮度之方法的另一例係將100%以上的額外 © 亮度分配給四周的像素。例如圖13之說明,假設第二顯 示方法對於位在位置(i,j)與+ 處且每一以100% 之亮度發光之像素中位在位置(i,j )處之像素僅施加40% 的比例。在此情況,各個像素P ( i,j -1 ) 、P ( i-1,j )、及 P ( i+l,j )以10%的亮度發光,且像素P ( i,j + l )需要以 110%的亮度發光。在此,像素?(丨,〗+ 1)的亮度超過 10 0%,以致於要做修正以將10%的額外亮度分配給四周的 像素。如圖15之說明,像素P ( i,j + l )之10%的額外亮 ® 度被配置給四周每一個像素各2.5%。在此情況中,像素P (i,j + l )以100%的亮度發光,且每一個像素P ( + l )、P ( i,j + 2 )、及 P ( i + l,j + l )以 2.5%的亮度發光。像 素P ( i,j )以62.5%的亮度發光。當使用此方法時,與上 述允許所有需要以超過100%之亮度發光的像素以100%之 亮度發光的修正方法相較,其可以顯示較銳利的影像,且 亮度下降較小。 還有另一發光亮度修正法的例子係以預定之低亮度來 發光的方法。在此方法中,事先將顯示面板的最大亮度設 -12- 200926108 定在一低値。因此,即使當亮度被分配時,也能防止像素 以高於100%的亮度發光。例如,如圖13之說明,當亮度 分配的結果是像素P(i,j + 1)需要以110%的亮度發光時 ,其需要做到滿足像素p ( i,j + l )以100%之亮度發光的 修正。換言之,例如藉由將初始亮度設定到大約9 0 %,即 使當實施此亮度分配時,也可避免亮度超過100%。此方 法可使用按照本發明的顯示方法來實施。不過,問題是顯 © 示面板其本身的亮度會降低。 按照本發明,藉由依據意欲之用途或環境,以可切換 的方法使用高解析模式、長壽模式、或中間模式,可減少 像素的殘影以增進顯示面板的壽命。 例如,以隨著像素之影像輸入資料Da ( i ,j )之空間 改變的增加,隨著像素之影像輸入資料Da(i,j)之時間 改變的縮短’或隨著像素之影像輸入資料Da(i,j)之發 光時間的增加而增加第二顯示方法的使用比例爲較佳。此 ® 外,對於每一子像素之第二顯示方法的組合比,隨著子像 素的退化率增加而增加,且對於每一子像素之第—顯示方 法的組合比,隨著子像素的退化率減小而增加爲較佳。此 外,較佳是隨著溫度之上升、隨著最大發光亮度之增加、 或隨著顯示時間之增加,也增加第二顯示方法的組合比。 亦即’對於影像輸入資料Da ( i, j )之空間改變較大 的像素’增加對應子像素Spa(i,j)之第二顯示方法的比 例。此外,對於影像輸入資料Da ( i,j )之時間改變較小 的像素’增加對應子像素Spa(i,j)之第二顯示方法的比 -13- 200926108 例。此外,對於影像輸入資料Da ( i,j )之發光時間較長 的像素,也增加第二顯示方法的比例。此外,在每一像素 包括兩或多個子像素的情況中,當一子像素的退化率高於 另一子像素的退化率時,增加該子像素之第二顯示方法的 組合比,而當一子像素的退化率低於另一子像素的退化率 時,增加該子像素之第一顯示方法的組合比。此外,關於 至少一個子像素之第一顯示方法與第二顯示方法之間的組 © 合比,隨著溫度的上升而增加第二顯示方法的組合比。此 外’關於至少一個子像素之第一顯示方法與第二顯示方法 之間的組合比,隨著最大發光亮度的增加而增加第二顯示 方法的組合比。此外,關於至少一個子像素之第一顯示方 法與第二顯示方法之間的組合比,隨著顯示時間的增加而 增加第二顯示方法的組合比。順帶一提,在至少一個子像 素中’第一顯示方法與第二顯示方法之間的組合比例如是 1:2° ® 特別說明’例如,當在高解析度顯示面板上顯示影像 時’或當顯示快速移動的影像時,以使用發光中心像素之 發光比爲100%的高解析模式爲較佳。當顯示固定圖案時 ’或當不需要高解析度時,以使用各個像素都分配到發光 比的長壽模式爲較佳,藉以抑制像素殘影。此外,在一般 操作中,以使用中間模式並依據意欲的用途或環境來切換 顯示模式爲較佳。 藉由不僅根據所要顯示的影像,還根據所累積的發光 量、溫度、或發光亮度之大小,在高解析模式、長壽模式 -14- 200926108 、及中間模式之間切換顯示模式,顯示面板的壽命可獲增 進。亦即,藉由依據影像輸入資料Da ( i,j )之空間改變 與時間改變、子像素的發光時間、退化率、溫度、發光亮 度、及顯示時間,在高解析模式、長壽模式、及中間模式 之間實施切換,顯示面板的壽命可獲增進。順帶一提,本 文中所使用之“累積的發光量”一詞,意指藉由沿著X軸取 發光時間及沿著y軸取發光亮度積分所獲得到的値。 在各個子像素的退化特性依照累積之發光量而改變的 情況中,藉由在退化率高之時域中增加第二顯示方法的比 例,顯示面板的壽命可獲增進。例如,退化率通常隨著累 積之發光量的增加而降低。因此,當累積之發光量小時, 在所施加的顯示模式中,發光中心像素的發光比低,而附 近像素的發光比高。隨著累積之發光量變得較大,顯示模 式切換到發光中心像素的發光比高,而附近像素之發光比 低的模式。因此,可長時間顯示高解析度的影像。 在各個子像素的退化特性依照環境溫度而改變的情況 中,當環境溫度變爲退化率高的溫度時,可將第二顯示方 法的比例設定到一較大的値,藉以增進顯示面板的壽命。 例如,像素的退化率通常隨著溫度上升而增加。因此,當 環境溫度低時,在所施加的顯示模式中,以發光中心像素 的發光比高而附近像素的發光比低爲較佳。當環境溫度上 升時,顯示模式以切換到發光中心像素的發光比低而附近 像素的發光比高爲較佳。 此外’在各個子像素的退化特性依照發光亮度之大小 200926108 而改變的情況中,藉由爲處於退化率高之發光亮度的像素 增加第二顯示方法的比例,顯示面板的壽命可獲增進。例 如,通常考慮當發光亮度高時,像素的退化率高。因此, 以發光中心像素的發光比高而附近像素的發光比低的顯示 模式施加於發光亮度低之影像輸入資料爲較佳。另一方面 ,以發光中心像素之發光比低而附近像素之發光比高的顯 示模式施加於發光亮度高的影像輸入資料爲較佳。 ® 接下來描述藉由控制第一顯示方法與第二顯示方法來 實施顯示的控制方法。 圖30的方塊圖說明按照本發明之實施例之發光顯示 設備的結構。如圖30所示,按照本發明之實施例之發光 顯示設備包括信號輸入部1、亮度分配單元2、A/D轉換 部3、及顯示部4。信號輸入部1接收影像信號。亮度分 配單元2對輸入到信號輸入部1的影像信號實施亮度分配 處理,並將經處理的信號輸出給A/D轉換部3。A/D轉換 ® 部3對從亮度分配單元2輸出的影像信號實施A/D轉換。 顯示部4根據從A/D轉換部3輸出的影像信號來顯示影像 〇 按照本發明之實施例的發光顯示設備,另包括用以偵 測環境溫度的熱偵測部5,用以獲得到顯示部4之發光亮 度的電流偵測部6,以及用以測量累積之發光時間的累積 發光時間測量部7。 亮度分配單元2係用來調整第一顯示方法與第二顯示 方法之間的比例,並依據所意欲的用途或環境,在高解析 -16- 200926108 模式、長壽模式、及中間模式之間選擇所想要之模式的轉 換部。 熱偵測部5係用來感測溫度及用來測量發光顯示設備 之溫度的感測器。當發光顯示設備的溫度到達退化率高的 溫度時,增加第二顯示方法的比例,以便抑制殘影。 電流偵測部6係用來測量發光顯示設備所消耗的電流 。藉由爲以高亮度發光之部分像素增加第二顯示方法的比 例’殘影可被抑制。累積發光時間測量部7測量累積的發 光時間。藉由對明顯退化部分中的像素應用第二顯示方法 ,殘影可被抑制。 (第二實施例) 接下來將描述本發明之第二實施例中所使用的發光顯 示設備。圖16至18的槪圖說明本發明之第二實施例中所 使用之發光顯示設備的像素結構。 圖16說明高解析顯示模式中的像素結構,其中僅以 第一顯示方法來顯示影像輸入資料Da(i,j)。該像素結 構具有3x3個像素11。每一個像素u分別包括紅、綠、 及藍色子像素11a、lib、及11c。在垂直方向中的座標以 “i”表示,及在水平方向中的座標以“j”表示。實施關於構 成位於位置(i,j )處之像素P ( i,j )且具有顯示色“a”之子 像素Spa ( i,j )之影像輸入資料Da ( i,j )的顯示。 在具有不同發光波長之複數個子像素彼此間退化特性 不一致的情況中’當包括在一像素中的紅、綠、及藍色子 -17- 200926108 像素被允許以固定的亮度發光時,退化率高之子像素與其 它退化率低之子像素的發光亮度終將彼此不同’以致發生 色偏。按照本實施例,藉由爲發光中心像素及附近像素的 各個子像素調整第一顯示方法與第二顯示方法之間的組合 比,由於退化所導致之顯示面板的色偏可被抑制。 在圖16所說明的高解析顯示模式中,包括在做爲發 光中心之像素P ( i,j )中之做爲紅、綠、及藍色子像素的 子像素8?3(1」),以100%的亮度均勻地發光,以致於可 顯示輪廓清晰的銳利影像。不過,當紅、綠、及藍各個顏 色的退化特性不同時,由於3個顏色的子像素都分別被允 許以1 00%的亮度發光而將發生由於亮度退化所導致的色 偏。 當假設像素P(i,j)之顯示色“a”的發光亮度以La( i,j)表不’其最大發光亮度以LaMAX ( i,j )表示,且其階 度以o>a(i,j)表示時,在僅使用第一顯示方法來顯示的情 ® 況中,發光亮度La(i,j)可藉由下式(4) 、(5) 、(6 )來表示: L (i,j) = cor(i,j) X I/max (i, j ) ...(4)LaU, force =®a(i, force x I (aa(i, j : i,,j·,,丨)),..(2) Jaa(i, J : = 1 ---(3) 'In the second display method, the pixels to which the light emission luminance is arranged are not limited to the nearby pixels P ( i -1 , j ) , p ( i + 1, j ) , P ( i, j -1 ), and • P ( U +1 ). For example, as shown in FIG. 6 'the luminance of the light is configurable to the pixels P ( ), P ( Φ i+l, jl ) , p ( + ) located at the oblique position of the pixel P ( i, j ) l), and p (i+l, j + l ) Further, in the second display method, as long as the above formulas (2) and (3) are satisfied, the position and number of pixels in which the light-emitting luminance is arranged are not limited. 7A, 7B, 8A, and 8B, the total number of pixels in which the light-emitting luminance is configured by the second display method is arbitrary, and as illustrated in FIG. 9, the brightness can be changed for each pixel in the second display method. Configuring the ratio. The pixels of the illuminating brightness are configured by the second display method, and those pixels are not limited to being arranged by 3 columns by 3 rows (3 X 3 ), or as illustrated in FIG. 1 , the pixels are multiplied by 5 columns. Lines (5x5) are arranged, or as illustrated in Figure 11, those pixels are triangular When the display is implemented in combination with the first display method and the second display method, there is a case where a pixel is required to emit light with a luminance greater than 100%. For example, FIG. 12 illustrates 3x4 pixels and is located at a position (i) , j ) pixels and pixels at position (i, j + l), each emitting with 100% brightness. As illustrated in Figure 13, when only 40 is applied to pixels at position (i, j) In the second display method of the ratio of %, each pixel p ( i,j_i ), P ( il,j ), and P ( i+l,j ) emits light with a luminance of 10%, and P ( Μ + 1) The brightness needs to be illuminated. However, the pixel cannot emit light with a brightness exceeding -11 - 200926108 100%, so that it must correct the brightness of the light. An example of a method of correcting the brightness of the light is illustrated in Figure 14, which allows all needs to be exceeded. 100% of the luminance-emitting pixels emit light at 100% brightness. When this method is used, the pixels whose brightness is reduced to 100% by correction are displayed at a brightness lower than the normal brightness. In particular, when the second display is used When the proportion of the method is large, the disadvantage of brightness reduction is also changed. Another example of the method of correcting the brightness of the light is to assign more than 100% of the additional brightness to the surrounding pixels. For example, as illustrated in Fig. 13, it is assumed that the second display method is at the position (i, j) and + and each A pixel that emits light at 100% brightness has a 40% ratio of pixels at the position (i, j). In this case, each pixel P ( i,j -1 ) , P ( i-1,j ), and P ( i+l,j ) emit light with a luminance of 10%, and the pixel P ( i,j + l ) It needs to emit light at 110% brightness. Here, the pixel? The brightness of (丨, 〗 + 1) exceeds 10 0%, so that corrections are made to assign 10% of the extra brightness to the surrounding pixels. As illustrated in Figure 15, an additional 10 degrees of brightness for the pixel P (i, j + l ) is configured to 2.5% each of the surrounding pixels. In this case, the pixel P (i, j + l ) emits light with 100% brightness, and each pixel P ( + l ), P ( i, j + 2 ), and P ( i + l, j + l ) emits light at a brightness of 2.5%. The pixel P (i, j) emits light at a luminance of 62.5%. When this method is used, it can display a sharper image with less sharpness reduction than the above-described correction method that allows all pixels that need to emit light with a luminance of more than 100% to emit light at 100%. Still another example of the illumination luminance correction method is a method of emitting light with a predetermined low luminance. In this method, the maximum brightness of the display panel is set to -12-200926108 in advance. Therefore, even when the luminance is assigned, the pixel can be prevented from emitting light with a luminance higher than 100%. For example, as illustrated in FIG. 13, when the result of the luminance distribution is that the pixel P(i, j + 1) needs to emit light with a luminance of 110%, it needs to satisfy the pixel p (i, j + l ) by 100%. Correction of brightness illumination. In other words, for example, by setting the initial luminance to about 90%, even when this luminance distribution is implemented, the luminance can be prevented from exceeding 100%. This method can be carried out using the display method according to the present invention. However, the problem is that the brightness of the display panel itself will decrease. According to the present invention, by using a high resolution mode, a long life mode, or an intermediate mode in a switchable manner depending on the intended use or environment, the image sticking of the pixels can be reduced to enhance the life of the display panel. For example, with the increase of the spatial change of the image input data Da (i, j) with the pixel, the time change of the image input data Da(i, j) of the pixel is shortened' or the image is input with the image of the pixel Da It is preferable to increase the light-emitting time of (i, j) and increase the use ratio of the second display method. In addition to this, the combination ratio of the second display method for each sub-pixel increases as the degradation rate of the sub-pixel increases, and the combination ratio of the first-display method for each sub-pixel decreases with the sub-pixel The rate is reduced and the increase is preferred. Further, it is preferable to increase the combination ratio of the second display method as the temperature rises, as the maximum luminance is increased, or as the display time increases. That is, the ratio of the second display method of the sub-pixel Spa(i, j) is increased by the pixel 'with a large spatial change in the image input data Da (i, j). Further, the pixel 'with a small change in the time of the image input data Da (i, j ) is increased by the ratio of the second display method of the sub-pixel Spa(i, j) -13-200926108. In addition, the ratio of the second display method is also increased for pixels in which the image input data Da (i, j ) has a long light-emitting time. In addition, in the case where each pixel includes two or more sub-pixels, when the degradation rate of one sub-pixel is higher than the degradation rate of the other sub-pixel, the combination ratio of the second display method of the sub-pixel is increased, and when When the degradation rate of the sub-pixel is lower than the degradation rate of the other sub-pixel, the combination ratio of the first display method of the sub-pixel is increased. Further, the combination ratio of the first display method and the second display method of the at least one sub-pixel increases the combination ratio of the second display method as the temperature rises. Further, the combination ratio between the first display method and the second display method with respect to at least one sub-pixel increases the combination ratio of the second display method as the maximum light-emitting luminance increases. Further, with respect to the combination ratio between the first display method and the second display method of at least one sub-pixel, the combination ratio of the second display method is increased as the display time is increased. Incidentally, in the at least one sub-pixel, the combination ratio between the first display method and the second display method is, for example, 1:2° ® special description 'for example, when displaying an image on a high-resolution display panel' or when When displaying a fast moving image, it is preferable to use a high resolution mode in which the light emission ratio of the light emitting center pixel is 100%. When a fixed pattern is displayed ‘or when high resolution is not required, it is preferable to use a long life mode in which each pixel is assigned to a light-emitting ratio, thereby suppressing pixel sticking. Further, in normal operation, it is preferable to switch the display mode by using the intermediate mode and depending on the intended use or environment. The display panel is switched between the high resolution mode, the long life mode-14-200926108, and the intermediate mode according to not only the image to be displayed but also the accumulated amount of light, temperature, or brightness of the light. Can be improved. That is, in the high-resolution mode, the long-life mode, and the middle by the spatial change and time change according to the image input data Da (i, j ), the light-emitting time of the sub-pixel, the degradation rate, the temperature, the light-emitting brightness, and the display time. Switching between modes allows the life of the display panel to be improved. Incidentally, the term "cumulative illuminance" as used herein means the enthalpy obtained by taking the illuminating time along the X axis and the illuminating brightness integral along the y axis. In the case where the degradation characteristics of the respective sub-pixels are changed in accordance with the accumulated luminescence amount, the life of the display panel can be improved by increasing the ratio of the second display method in the time domain where the degradation rate is high. For example, the degradation rate generally decreases as the amount of accumulated luminescence increases. Therefore, when the accumulated luminescence amount is small, in the applied display mode, the luminescence ratio of the luminescence center pixel is low, and the luminescence ratio of the nearby pixel is high. As the accumulated amount of luminescence becomes larger, the display mode is switched to a mode in which the illuminance ratio of the illuminating center pixel is high and the illuminance ratio of the nearby pixels is low. Therefore, a high-resolution image can be displayed for a long time. In the case where the degradation characteristics of the respective sub-pixels change according to the ambient temperature, when the ambient temperature becomes a temperature at which the degradation rate is high, the ratio of the second display method can be set to a larger 値, thereby enhancing the life of the display panel. . For example, the degradation rate of a pixel generally increases as the temperature rises. Therefore, when the ambient temperature is low, in the applied display mode, it is preferable that the light-emitting ratio of the light-emitting center pixel is high and the light-emitting ratio of the nearby pixels is low. When the ambient temperature rises, the display mode is preferably such that the light-emitting ratio of the pixels switched to the center of the light is low and the light-emitting ratio of the nearby pixels is high. Further, in the case where the degradation characteristic of each sub-pixel is changed in accordance with the magnitude of the luminance of the luminance 200926108, the lifetime of the display panel can be improved by increasing the ratio of the second display method for the pixel having the luminance of the luminance having a high degradation rate. For example, it is generally considered that when the luminance of the light is high, the degradation rate of the pixel is high. Therefore, it is preferable to apply a display mode in which the light-emitting ratio of the light-emitting center pixel is high and the light-emitting ratio of the nearby pixels is low to the image input data having a low light-emitting luminance. On the other hand, it is preferable to apply a display mode in which the light-emitting ratio of the light-emitting center pixel is low and the light-emitting ratio of the nearby pixels is high to the image input data having a high light-emitting luminance. ® Next, a control method for performing display by controlling the first display method and the second display method will be described. Figure 30 is a block diagram showing the construction of an illuminating display device in accordance with an embodiment of the present invention. As shown in Fig. 30, a light-emitting display device according to an embodiment of the present invention includes a signal input unit 1, a brightness distribution unit 2, an A/D conversion unit 3, and a display unit 4. The signal input unit 1 receives an image signal. The brightness distribution unit 2 performs brightness distribution processing on the video signal input to the signal input unit 1, and outputs the processed signal to the A/D conversion unit 3. The A/D conversion section 3 performs A/D conversion on the video signal output from the luminance distribution unit 2. The display unit 4 displays an image according to the image signal output from the A/D conversion unit 3, and the light-emitting display device according to the embodiment of the present invention further includes a heat detecting portion 5 for detecting the ambient temperature for obtaining the display. The current detecting portion 6 of the light-emitting luminance of the portion 4, and the cumulative light-emitting time measuring portion 7 for measuring the accumulated light-emitting time. The brightness distribution unit 2 is configured to adjust the ratio between the first display method and the second display method, and select between the high resolution-16-200926108 mode, the longevity mode, and the intermediate mode according to the intended use or environment. The conversion part of the desired mode. The heat detecting portion 5 is a sensor for sensing temperature and for measuring the temperature of the light-emitting display device. When the temperature of the light-emitting display device reaches a temperature at which the degradation rate is high, the ratio of the second display method is increased to suppress image sticking. The current detecting unit 6 is for measuring the current consumed by the light-emitting display device. The residual image can be suppressed by increasing the ratio of the second display method for a portion of the pixels that emit light with high luminance. The cumulative lighting time measuring section 7 measures the accumulated lighting time. By applying a second display method to pixels in the significantly degraded portion, the afterimage can be suppressed. (Second Embodiment) Next, a light-emitting display device used in the second embodiment of the present invention will be described. 16 to 18 are views showing the pixel structure of the light-emitting display device used in the second embodiment of the present invention. Fig. 16 illustrates a pixel structure in the high resolution display mode in which the image input material Da(i, j) is displayed only in the first display method. This pixel structure has 3 x 3 pixels 11. Each of the pixels u includes red, green, and blue sub-pixels 11a, lib, and 11c, respectively. The coordinates in the vertical direction are indicated by "i", and the coordinates in the horizontal direction are indicated by "j". A display is performed on the image input material Da(i,j) constituting the sub-pixel Spa (i,j) of the pixel P(i,j) located at the position (i,j) and having the display color "a". In the case where a plurality of sub-pixels having different illuminating wavelengths do not have degenerate characteristics with each other, 'when the red, green, and blue sub--17-200926108 pixels included in one pixel are allowed to emit light at a fixed luminance, the degradation rate is high. The luminances of the sub-pixels and the sub-pixels having other degradation rates will eventually be different from each other' such that color shift occurs. According to this embodiment, by adjusting the combination ratio between the first display method and the second display method for each of the sub-pixels of the illuminating center pixel and the nearby pixels, the color shift of the display panel due to the degradation can be suppressed. In the high-resolution display mode illustrated in FIG. 16, the sub-pixels 8?3(1") which are red, green, and blue sub-pixels in the pixel P(i,j) as the light-emitting center are included, It emits light uniformly with 100% brightness, so that sharp images with sharp outlines can be displayed. However, when the degradation characteristics of the respective colors of red, green, and blue are different, since the sub-pixels of the three colors are respectively allowed to emit light at a luminance of 100%, a color shift due to luminance degradation occurs. When it is assumed that the luminance of the display color "a" of the pixel P(i,j) is represented by La(i,j), its maximum luminance is represented by LaMAX(i,j), and its gradation is o>a( When i, j) is expressed, in the case of displaying using only the first display method, the light-emitting luminance La(i, j) can be expressed by the following formulas (4), (5), (6): L (i,j) = cor(i,j) XI/max (i, j ) ...(4)

Lg(i,j) = cog(i,j) x LgMax(i,j) ...(5) L (i,j) = <ab(i,j) >: LbMAx (i,j ) . · · (6) 圖18說明長壽顯示模式的像素結構,在此模式中, 僅藍色子像素以第二顯示方法來顯示影像輸入資料Da( i,j )。如圖1 8之說明,包括在做爲發光中心之像素p ( i,j)中之紅色子像素Sp^CU)與綠色子像素Spg(i,j) -18- 200926108 各個以100%之亮度發光,而包括在其中的藍色子像素Spb (iJ )則不發光。取而代之的是分別包括在毗鄰於像素P (U )之附近像素 P ( i-l,j ) 、P ( i+l,j ) 、P ( i,j-l )、 及 P ( i,j + l )中的各個子像素 SPb ( i-l,j ) 、Spb ( i+l,j ) 、Spb ( i,j-l ) 、Spb ( i,j + l )以25%的亮度發光。對僅藍 色子像素而言,發光亮度被分配到附近像素。因此,施加 於藍色子像素Spb ( i,j )的電流密度可被調平,藉以抑制 ® 退化。此顯示模式在藍色子像素之退化率較其它紅與綠色 子像素之退化率特別高的情況中有效。藉由使藍色子像素 的退化率接近於其它紅與綠色子像素的退化率,可獲得抑 制由於殘影所導致之色偏的效果。 圖17說明中間模式的像素結構,在此模式中,僅藍 色子像素使用第一顯示方法與第二顯示方法以50%的組合 比來顯示影像輸入資料Da(i,j)。如圖17之說明,包括 在做爲發光中心之像素P ( i,j )中之紅色子像素Spr ( V )與綠色子像素Spg ( i,j )各個以100%之亮度發光,且僅 包括在其中的藍色子像素Spb(i,j)以50%的亮度發光。 在此情況中,分別包括在毗鄰於像素P ( i,j )之附近像素 P ( i-l,j ) 、P ( i+l,j ) 、P (以」)、及 p ( iJ + 1 )中的 每一藍色子像素 SpbCi-ij) 、Spb(i + 1J) )' Spb ( i,j + l )以12.5%的亮度發光。藍色子像素Spb ( i,j)的發光亮度降低50%,且其中降低的亮度被平均分配 到毗鄰於其的附近子像素Spb(i-l,j) 、SPb(i+l,j)、 Spb ( i,j-l ) 、Spb ( i,j + 1 )。因此,相較於高解析模式, -19- 200926108 殘影被抑制。不過,影像的銳利度降低。此顯示模式在藍 色子像素之退化率較其它紅色與綠色子像素之退化率特別 高的情況中有效。藉由使藍色子像素的退化率接近於其它 紅色與綠色子像素的退化率,由於殘影所導致的色偏可被 抑制。 當結合第一顯示方法與第二顯示方法在具有顯示色 “a”的子像素上顯示時,發光亮度La ( i,j )需要滿足以下 © 描述的式(7) 、(8) 、(9) 、 (10) 、 (11)、及( 12)。在此’像素P(i,j)之顯示色“a”的發光亮度以La ()表示,其最大發光亮度以LaMAX ( i,j )表示,其階 度以(〇a ( i,j )表示,且aa ( i,j )表示像素p ( i,j )與該等 附近像素的亮度配置比。Lg(i,j) = cog(i,j) x LgMax(i,j) (5) L (i,j) = <ab(i,j) >: LbMAx (i,j ) (6) FIG. 18 illustrates the pixel structure of the long-life display mode in which only the blue sub-pixel displays the image input material Da(i,j) in the second display method. As illustrated in FIG. 18, the red sub-pixel Sp^CU in the pixel p(i,j) as the illuminating center and the green sub-pixel Spg(i,j)-18-200926108 each have a brightness of 100%. Light is emitted, and the blue sub-pixel Spb (iJ) included therein does not emit light. Instead, they are respectively included in the neighboring pixels P ( il,j ), P ( i+l,j ) , P ( i,jl ), and P ( i,j + l ) adjacent to the pixel P (U ). Each of the sub-pixels SPb ( il,j ), Spb ( i+l,j ) , Spb ( i,jl ), and Spb ( i,j + l ) emits light at a luminance of 25%. For blue sub-pixels only, the luminance of the illumination is assigned to nearby pixels. Therefore, the current density applied to the blue sub-pixel Spb (i, j ) can be leveled, thereby suppressing ® degradation. This display mode is effective in the case where the degradation rate of the blue sub-pixel is particularly high than that of the other red and green sub-pixels. By making the degradation rate of the blue sub-pixel close to the degradation rate of the other red and green sub-pixels, the effect of suppressing the color shift due to the afterimage can be obtained. Fig. 17 illustrates the pixel structure of the intermediate mode in which only the blue sub-pixel displays the image input material Da(i, j) at a combination ratio of 50% using the first display method and the second display method. As illustrated in FIG. 17, the red sub-pixel Spr (V) and the green sub-pixel Spg (i, j) included in the pixel P (i, j) as the illuminating center each emit light at 100%, and only include The blue sub-pixel Spb(i, j) therein emits light with a luminance of 50%. In this case, respectively included in the neighboring pixels P ( il,j ) , P ( i+l,j ) , P (with "), and p ( iJ + 1 ) adjacent to the pixel P ( i,j ) Each of the blue sub-pixels SpbCi-ij), Spb(i + 1J) )' Spb (i, j + l ) emits light at a luminance of 12.5%. The luminance of the blue sub-pixel Spb (i, j) is reduced by 50%, and the reduced luminance is equally distributed to the adjacent sub-pixels Spb(il,j), SPb(i+l,j), Spb adjacent thereto ( i, jl ), Spb ( i, j + 1 ). Therefore, the -19-200926108 afterimage is suppressed compared to the high resolution mode. However, the sharpness of the image is reduced. This display mode is effective in the case where the degradation rate of the blue sub-pixel is particularly high than that of the other red and green sub-pixels. By making the degradation rate of the blue sub-pixel close to the degradation rate of the other red and green sub-pixels, the color shift due to the residual image can be suppressed. When displayed in combination with the first display method and the second display method on the sub-pixel having the display color "a", the luminance L (i,j) needs to satisfy the following equations (7), (8), (9). ), (10), (11), and (12). Here, the luminance of the display color "a" of the pixel P(i,j) is represented by La(), and its maximum luminance is represented by LaMAX (i,j), and its gradation is (〇a (i,j) Representation, and aa (i,j) represents the luminance configuration ratio of the pixel p ( i,j ) to the nearby pixels.

Lr(ir j) = ω^ί, j) x Σ (ar(if j : i- , f ) x i^(i' , f )). . . (7)Lr(ir j) = ω^ί, j) x Σ (ar(if j : i- , f ) x i^(i' , f )). . . (7)

Lg(if j) = ag[i, j) x J (ag(it j : i· , j' ) x L^(i- , j' )) · · · (8) oLg(if j) = ag[i, j) x J (ag(it j : i· , j' ) x L^(i- , j' )) · · · (8) o

Lb(i, j) = j) x 2 («1 j : , J·' ) x , j’ )) · · ·(9) Σ ar{i, j : j')= =1 · ·. (10) X ag(ir j : 1' , J')= =1 …(11) Σ ab(i, j : i\ f )= :1 ... (12) 包括在做爲發光中心之像素P(i,j)中之子像素Spr (i,j ) 、Spg ( i,j )、及Spb ( i,j )的發光比愈低,則愈多 -20- 200926108 的電流密度被分散以抑制亮度的退化。不過,發光比 紅、綠、與藍的退化特性來調整,以避免白平衡偏移 中間模式中之第一顯示方法與第二顯示方法間的 比並不限於圖1 8中所說明的値,且適當的比例以依 個顔色之子像素的退化特性或依據環境條件來選擇爲 〇 例如’當要顯示固定的圖案時,以增加第二顯示 的比例爲較佳,在第二顯示方法中,具有高退化率之 素的發光亮度被分散。此外,當要顯示紅、綠、與藍 示色與白色之間的顏色(在後文中稱爲“中間色”)時 於子像素之退化所導致之色偏的影響顯著。因此,當 示中間色時,以增加第二顯示方法的比例爲較佳。 此外,第二顯示方法並不限於單一顏色的子像素 也可應用於兩或多個顏色的子像素。例如,當退化率 、綠、與藍(最高)之顯示色次序增加時,顯示藍色 用第二顯示方法,顯示綠色可適用第一顯示方法與第 示方法之間的中間模式,而顯示紅色可適用第一顯示 ’藉以使得各色的退化率彼此間一致,以便抑制色偏 顯示面板的壽命,不僅可藉由視所要顯示的影像 變第一顯示方法與第二顯示方法之間的組合比加以增 還可藉由根據累積之發光量、溫度、及發光亮度的大 切換顯示模式而加以增進。 在每一子像素的退化特性依照累積之發光量而變 況中’藉由在退化率高之時域中增加第二顯示方法的 需視 〇 組合 據各 較佳 方法 子像 之顯 ,由 要顯 ,且 按紅 可適 二顯 方法 〇 來改 進, 小來 的情 比例 -21 - 200926108 ’色偏可獲抑制。例如,當累積之發光量小時,藍色子像 素的退化率高於其它色的子像素。當累積之發光量大時, 紅色子像素的退化率高於其它色的子像素。因此,爲抑制 裝置的色偏’當累積之發光量小時,以第二顯示方法之比 例高的顯示模式施加於子像素B。隨著累積之發光量增加 ,可爲紅色子像素增加第二顯示方法的比例,藉以抑制由 於亮度退化所導致的色偏。Lb(i, j) = j) x 2 («1 j : , J·' ) x , j' )) · · · (9) Σ ar{i, j : j')= =1 · ·. ( 10) X ag(ir j : 1' , J')= =1 (11) Σ ab(i, j : i\ f )= :1 (12) Included as the pixel P as the illuminating center The lower the illuminance ratio of the sub-pixels Spr (i,j ), Spg ( i,j ), and Spb ( i,j ) in (i,j), the more the current density of -20-200926108 is dispersed to suppress the luminance Degradation. However, the illuminance is adjusted by the degradation characteristics of red, green, and blue to avoid the ratio between the first display method and the second display method in the white balance shift intermediate mode is not limited to the 値 illustrated in FIG. And the appropriate ratio is selected according to the degradation characteristics of the sub-pixels of the color or according to the environmental conditions, for example, 'when the fixed pattern is to be displayed, it is preferable to increase the ratio of the second display, and in the second display method, The luminance of the high degradation rate is dispersed. Further, when the color between red, green, and blue color and white (hereinafter referred to as "intermediate color") is to be displayed, the influence of the color shift caused by the degradation of the sub-pixel is remarkable. Therefore, when the intermediate color is shown, it is preferable to increase the ratio of the second display method. Further, the second display method is not limited to a single color sub-pixel or may be applied to two or more color sub-pixels. For example, when the display order of the degradation rate, green, and blue (highest) is increased, the display blue is displayed by the second display method, and the green display is applicable to the intermediate mode between the first display method and the first display method, and the display is red. The first display can be applied to make the degradation rates of the colors consistent with each other, so as to suppress the life of the color-shifted display panel, not only by changing the ratio of the first display method and the second display method depending on the image to be displayed. The increase can also be enhanced by a large switching display mode based on the accumulated amount of luminescence, temperature, and illuminance. In the case where the degraded characteristic of each sub-pixel is in accordance with the accumulated amount of luminescence, 'by the time-dependent combination of the second display method in the time domain where the degradation rate is high, according to the preferred method sub-images, Obvious, and according to the red can be adapted to the two methods to improve, the small proportion of the situation - 21 - 26,2688 'color shift can be suppressed. For example, when the accumulated amount of luminescence is small, the degradation rate of the blue sub-pixel is higher than that of the other color. When the accumulated amount of luminescence is large, the degradation rate of the red sub-pixel is higher than that of the other color. Therefore, in order to suppress the color shift of the device, when the accumulated amount of light emission is small, a display mode having a higher ratio of the second display method is applied to the sub-pixel B. As the cumulative amount of luminescence increases, the ratio of the second display method can be increased for the red sub-pixels, thereby suppressing the color shift due to luminance degradation.

當每一子像素的退化特性依照環境溫度而變時,藉由 增加由於環境溫度導致退化率高之子像素之第二顯示方法 的比例,由於亮度退化所導致的色偏可獲抑制。例如,假 設在高溫環境中,紅色子像素的退化率高於其它色子像素 ,且在低溫環境中,藍色子像素的退化率高於其它色子像 素的情況。在此情況中,在高溫環境中,紅色子像素使用 第二顯示方法之比例高的顯示模式,且在低溫環境中,藍 色子像素使用第二顯示方法之比例高的顯示模式,藉以抑 制由於亮度退化所導致的色偏》 當每一子像素的退化特性依照發光亮度之大小而變時 藉由增加由於高發光亮度導致退化率高之子像素之第二 顯示方法的比例,由於亮度退化所導致的色偏可獲抑制。 例如,假設在高亮度發光中,紅色子像素的退化率高,而 在低亮度發光中,藍色子像素之退化率高的情況。在此情 況中,在以高亮度發光之時,紅色子像素使用第二顯示方 法之比例高的顯示模式,且在以低亮度發光之時,藍色子 像素使用第二顯示方法之比例高的顯示模式,藉以抑制由 -22- 200926108 於亮度退化所導致的色偏。 按照本發明的顯示方法’藉由每個子像素各自獨立地 應用尚解析模式、長壽模式、或中間模式,由於與紅、綠 、與藍之各個顏色相關之退化特性所導致的色偏被抑制。 例如’在藍色子像素之退化率明顯高於紅色與綠色子像素 的情況中,藉由僅對藍色子像素應用長壽模式,並對紅色 與綠色子像素應用一般的高解析模式,即可實現沒有色偏 ® 的長壽顯不面板。 (本顯示方法應用於實際設備的特例) 接下來描述按照本發明實施例之發光顯示設備的顯示 方法應用於實際設備的特例。圖19至22的情況是按照本 發明實施例之發光顯示設備的顯示方法應用於實際設備的 亮度退化曲線。 圖19係說明在紅、綠、與藍色子像素都被點亮以顯 灣 示白色的情況中,以與時間相依的正常化亮度來表示每一 顏色之正常化退化時間資料的例示性曲線。如圖1 9之說 明,當假定當毗鄰像素間的亮度差超過1 0%時將導致殘影 ,紅色在經過4 5小時後,綠色在經過2 8小時後,藍色在 經過5小時後,殘影可被識別。當所有子像素都僅以第一 顯示方法點亮時,藍色子像素在經過5小時後造成殘影, 而綠色子像素在經過28小時後造成殘影,以致於在顯示 面板中發生色偏。在此情況中,顯示面板的壽命爲藍色子 像素之殘影被辨識出之5小時的時間周期。 -23- 200926108 因此,使用及調整第一顯示方法與第二顯示方法結合 的顯示模式,使得各個顏色之子像素的退化率彼此間一致When the degradation characteristic of each sub-pixel is changed in accordance with the ambient temperature, the color shift due to the luminance degradation can be suppressed by increasing the proportion of the second display method of the sub-pixel having a high degradation rate due to the environmental temperature. For example, it is assumed that in a high temperature environment, the degradation rate of the red sub-pixel is higher than that of the other color sub-pixels, and in the low-temperature environment, the degradation rate of the blue sub-pixel is higher than that of the other color sub-pixels. In this case, in a high temperature environment, the red sub-pixel uses a display mode with a high ratio of the second display method, and in a low temperature environment, the blue sub-pixel uses a display mode with a high ratio of the second display method, thereby suppressing Color shift caused by luminance degradation" When the degradation characteristic of each sub-pixel is changed according to the magnitude of the light-emitting luminance, the ratio of the second display method of the sub-pixel having a high degradation rate due to high luminance is increased due to luminance degradation The color shift can be suppressed. For example, it is assumed that in the high-intensity light emission, the degradation rate of the red sub-pixel is high, and in the low-luminance light emission, the degradation rate of the blue sub-pixel is high. In this case, when the light is emitted with high luminance, the red sub-pixel uses a display mode in which the ratio of the second display method is high, and when the light is emitted at low luminance, the proportion of the blue sub-pixel using the second display method is high. The display mode is used to suppress the color shift caused by the brightness degradation by -22-200926108. According to the display method of the present invention, by applying the still analysis mode, the long life mode, or the intermediate mode independently for each sub-pixel, the color shift due to the deterioration characteristics associated with the respective colors of red, green, and blue is suppressed. For example, in the case where the degradation rate of the blue sub-pixel is significantly higher than that of the red and green sub-pixels, by applying the long-life mode only to the blue sub-pixel and applying the general high-resolution mode to the red and green sub-pixels, A long-life display panel without color shifting ® is achieved. (Special example in which the present display method is applied to an actual device) Next, a specific example in which the display method of the light-emitting display device according to the embodiment of the present invention is applied to an actual device will be described. The case of Figs. 19 to 22 is a luminance degradation curve applied to the actual device by the display method of the light-emitting display device according to the embodiment of the present invention. Figure 19 is a diagram showing an exemplary curve showing the normalized degradation time data of each color in the case where the red, green, and blue sub-pixels are all illuminated to show white. . As illustrated in Fig. 19, it is assumed that when the luminance difference between adjacent pixels exceeds 10%, the image sticking will be caused, after the red color is passed for 45 hours, the green color is after 28 hours, and after the blue color is passed for 5 hours. The afterimage can be identified. When all the sub-pixels are illuminated only by the first display method, the blue sub-pixels cause image sticking after 5 hours, and the green sub-pixels cause image sticking after 28 hours, so that color shift occurs in the display panel. . In this case, the life of the display panel is a period of 5 hours in which the afterimage of the blue sub-pixel is recognized. -23- 200926108 Therefore, the display mode combined with the first display method and the second display method is used and adjusted so that the degradation rates of the sub-pixels of the respective colors are consistent with each other.

在用來調整的計算中,應用如退化模型之模型,該模 型係根據由於電流以比例於大於測量電流値(即測量之電 流値的1.5次方)之値的速率繼續流動而導致裝置故障之 假設。下式(13)表示一實驗模型,其中裝置隨電流密度 的1.5次方而退化。在該式中,1:1與1:2各代表退化時間, Ιι與12各代表電流密度,及1^與L2各代表發光亮度。此 外,雖然假設電流密度與發光亮度實質上彼此成比例,但 較佳是從I-L特性上獲得到爲較佳。 £l = 主、 1.5 \^2 J \L2j 圖23說明按照本發明實施例之發光顯示設備的顯示 方法應用於實際設備之情況中的像素結構。在圖23所說 明的例中’包括在做爲發光中心之像素p ( i j )中的紅色 子像素Spr ( i,j )被允許以第—顯示方法來發光。此外, 綠色子像素Spg(i,j)被允許以比例爲7〇%的第—顯示方 法與比例爲30%的第一顯不方法來發光。此外,藍色子像 素Spb ( i,j )被允許以比例爲2〇%的第—顯示方法與比例 爲80%的第一顯不方法來發光。亦即,在圖23所說明的 例中’包括在做爲發光中心之像素p ( i,j )中的紅色子像 素Spr ( i,j)以100%的亮度發光,綠色子像素Spg ( ^) 以70°/。的亮度發光’藍色子像素Spb ( i,j )以2〇%的亮度 -24- 200926108 發光。分別包括在毗鄰於像素P(i,j)之附近像素?(卜 l,j) 、P(i+l,j) 、P(i,j-l)、及 p(i,j + l)中的每一綠 色子像素 Spg(i-l,j) 、Spg(i + l,j) 、Spg(i,j-1) 、Spg (1,』+ 1)以7.5%的亮度發光。此外,每一藍色子像素3?15 (i-l,j ) 、Spb ( i + l,j ) > Spb ( i,j-l ) 、Spb ( i,j + l )以 20%的亮度發光。包括在做爲發光中心之像素p(i,j)中 的每一藍色與緣色子像素的發光亮度被分配到四周的附近 子像素,藉以抑制退化。亮度分配程度高之藍色子像素的 退化獲進一步抑制。 圖2〇係在綠色子像素中結合比例爲30%之第二顯示 方法,而藍色子像素中結合比例爲80 %之第二顯示方法的 情況中’以與時間相依的正常化亮度來表示每一顏色的亮 度退化曲線。當藉由使用此顯不方法來顯示白色時,紅色 子像素在4 8小時後導致殘影,綠色子像素在4 7小時後導 致殘影’藍色子像素在50小時後導致殘影。在此顯示模 式中,所有的紅 '綠與藍色子像素都具有實質上相同的退 化時間,以致於在實施白色顯示之同時,很難由於亮度退 化而造成色偏。 圖21係在25 °C之環境與60 °C之環境下顯示白色的情 況中,以與時間相依的正常化亮度來表示每一顏色之正常 化退化時間資料。當假設當毗鄰像素之間的亮度差超過 1 〇 %將導致殘影時,在2 5 °c的環境中經過4 2小時後及在 6 0 °C的環境中經過3小時後,該殘影將被辨識出。 因此’使用結合第一顯示方法與第二顯示方法的顯示 -25- 200926108 模式並做調整,以使得在退化率高之60°C環境中的退化被 抑制。 圖22係在60°C之環境中以80%之比例結合第二顯示 方法的情況中,以與時間相依的正常化亮度來表示每一顏 色的亮度退化曲線。在此顯示模式中,做爲發光中心的像 素以20%的亮度發光,而剩餘的80%亮度被分配(配置) 到發光中心像素四周附近像素。當藉由使用此顯示方法來 顯示白色時,在60°C之環境中發生殘影的時間被延長到 40小時。因此,在環境溫度高的情況中,藉由應用其中結 合高比例之第二顯示方法的顯示模式,顯示面板的壽命可 被延長。 (本發明的特定效果) 接下來將詳細描述按照本發明之實施例之發光顯示設 備之顯示方法的效果。 圖24至29說明具體描述按照本發明實施例之發光顯 示設備之顯示方法之效果的像素結構。 圖24說明3x3個像素。在垂直方向中的座標以“i”表 示’在水平方向中的座標以“j”表示。假設位於位置(i,j )處的像素P(i,j)使用第一顯示方法點亮1〇〇小時。像 素P ( i,j )在被點亮100小時之前的亮度以1表示,在被 點亮100小時之後的亮度以1_α表示,其中α(〇<α<1)表 示亮度退化率。如圖25之說明,在像素P ( i,j )被點亮 100小時之後’當所有像素都被允許均勻地發光時,像素 -26- 200926108 P(i,j)的亮度L(i,j)爲l-α,而四周附近像素P(i:bl,j )與 P(i,j±l)的亮度 L(i±l,j)與 L(i,j±l)爲 1。因 此’當假設殘影可被辨識的亮度比以“X”(殘影辨識亮度 比)表示時,則在所有像素發光之時無法辨識出殘影的條 件可用下式(14)及(15)來表示。因此,在僅使用第一 顯示方法來顯示的情況中,由於殘影所導致的退化,在亮 度退化率變得高於殘影辨識亮度比“X”之時被辨識出。 ^ = 1-(1-α) = α ·· (14) ...(15) 在此’假設的情況是應用第二顯示方法,且像素p( i,j )被點亮1 00小時。圖26說明像素P ( i,j )所用的顯 示模式’其中’第一顯示方法以1 -4s的比例結合,且第 二顯示方法以4s的比例結合。亦即,該等像素在此顯示 模式中被點亮100小時,其中加諸於像素p ( i,】)的亮度 ’被以s的比例部分地配置給每一個附近像素p(i+1,j) Φ 、P(i,j + l)、及 。假設的情況是 該等像素在此顯示模式中被點亮1〇〇小時後,如圖27所 不’所有的像素被允許均勻地發光。在此情況中,像素p (i,j)的亮度L ( i,j)爲i_a (卜“)。附近像素p ( i + 1,j )、P(i-l,j) 、P(i,j + l)、及 PGj」)每一個的亮度 L ( i + l,j ) 、L ( i-l,j ) 、L ( υ + 1 )、及 L ( Μ」)爲 ^ sa。像素 P(i+1,j + 1) 、p(i+lj l) + '及 P ( )每一個的亮度 L ( i+l,j + i ) 、L ( )、 L(i_l,J + l)、及[(丨-丨小丨)爲},因此,當假設殘影被 辨識出的売度比以x表示時,則在所有像素發光之時無法 -27- 200926108 辨識出殘影的條件可藉由下式(16) 、(17)、及(18) 來表不。 δι = 1-sa- (1-a(l-4s)) = a{l-5s) .-.(16) §2 = 1~ (1-soc) = sa · · - (17) δι^χ δ2^χ . . - (18) ' 從上式(16) 、(17)、及(18)可看出,當δρδ;^ 時得到退化極難被辨識出的比例,亦即s = 1 /6。因此,其 0 可看成在整個表面發光時之退化極難被辨識出的顯示模式 中’第一顯示方法與第二顯示方法之間的比例爲1 : 2。此 外’亮度退化率a與殘影辨識亮度比X具有下式(19)所 表示的關係。 oc<6x · · · (19) 因此,如果第二顯示方法的比例增加,當亮度退化率 a大於6倍的殘影辨識亮度比X時,退化將被識出。 圖28說明在垂直方向中的座標以“i”表示,在水平方 © 向中的座標以“j”表示,且位於位置jhi之像素被點亮 1 00小時之情況中的像素結構。假設在像素點亮1 〇〇小時 前之每一像素的亮度爲1,並假設在該等像素點亮100小 時後之像素P ( i,j ) {〗>〇〇!}的亮度爲Ι-a。在此,a ( 〇<α<1)指示亮度退化率。如圖29中之說明,在點亮100 小時之後,區域{i^G)2}的像素被允許在第一顯示方法以1- 4s之比例結合及第二顯示方法以4s之比例結合的顯示模 式中發光。亦即,做爲發光中心的像素以1 -4s的比例發 光,且以比例爲s的電流密度配置(或分配)給位在上、 下、右、及左位置處的各個附近像素。在此’電流密度以 -28- 200926108 1之比例配置給在發光區域內之i<to2的像素,以l_s之比 例配置給i = (02的像素,並以S之比例配置給毗鄰於i = (〇2 之像素之i = c〇2 + l的像素。位於i = t〇2 + l之像素外側之 i^c〇2 + 2的像素,亦即’發光區域之外側不被允許發光的像 素。 因此,各個像素的亮度可藉由下式(20) 、(21)、 (22 ) 、( 23 ) 、( 24 )、及(25 )表示。 ❹ L (i, j ) {i=co2+l, j%} = s ...(20) L (i^ j ) {ϊ=ω2+1, = s (1-a) ...(21) L (i, j ) {ϊ=ω2, j<Qi} = 1-s -.-(22) L (i, j ) {ΐ=ω2, j^Qi) = (1-s) (1-a) ...(23) L (i,j ) {i<&)2, j<c〇i} = 1 .--(24) L (i, j ) {ί<ω2, j^i} = 1-a ..-(25) 在此,被點亮1 〇〇小時而退化之像素與其它像素之間 不被識別出殘影的條件藉由下式(26) 、(27) 、(28) 、及(29)來表示。此外,藉由應用第二顯示方法而可看 出均勻之發光區域的條件藉由下式(30) 、(31)、及( 32)來表示。按照式(26) 、(27) 、(28) ' 及(29) • ,電流密度配置(或分配)比s爲0<s< 1/4。因此’退化 之像素與未退化之像素間不被識別出殘影的條件爲aU。 此外,藉由應用第二顯示方法而可看出發光均勻之區域的 條件爲s^x。 δι = s-s (l-〇f) = sa • · (26) δ2 = 1-s- (1-s) (1-a)== a (1-s) …(27) 63 = 1- (l-〇c) = a …(28) δι<χ, δ2<Χ, δ3<Χ -29- …(29) …(30) 200926108 64 - 1- (1-s) = s 65 = l-a-(l-s) (1-a) = s (1-a) δ^χ, 5s<x 如前文描述,藉由使用第二顯 配置比S、亮度退化率a、及殘影: 係任意選擇電流密度配置比s,可 之殘影所導致的退化很難被識別出 〇 此外,按照本發明之發光顯示 具有高比例之第一顯示方法的高解 第二顯示方法的長壽模式,以及介 式之間實施切換。 在高解析模式中,可顯示輪廓 過,負載僅施加於單一個像素上, 另一方面,在長壽模式中,像素的 該像素的附近像素群。因此,施加 〇 調平,結果是獲得到抑制退化的效 光亮度,外形的邊界變得平滑,結 識出由於亮度退化所導致的改變。 因此,長壽模式被應用於顯示 僅當要顯示自然影像或高解析影像 式。因此,顯示面板的壽命可被延 此外,當每一發光顏色的退化 退化快速之發光顏色之第二顯示方 色偏的效果。 涉及像素之亮度退化的其它因 -30- •·.(31) …(32) 示方法,根據電流密度 痒識亮度比X之間的關 使得由於發光顯示設備 〇 設備的顯示方法,可在 析模式,具有高比例之 於該兩者之間的中間模 清晰之銳利的影像。不 以致於殘影繼續下去。 發光亮度被分配到圍繞 於該像素的電流密度被 果。此外,藉由調平發 果是得以避免輕易地辨 固定圖案或類似物,且 時材料切換到高解析模 go 特性不同時,藉由增加 法的比例,可獲致抑制 素例如包括發光時間、 200926108 溫度、最大發光亮度。當退化之進行的程度被這些因素改 變時,藉由調整第一顯示方法與第二顯示方法之間的組合 比,使得每一發光顏色之退化進行的程度一致,可實現具 有較長壽命的顯示面板。 雖然已參考例示性實施例描述了本發明,但須瞭解, 本發明並不限於所揭示的例示性實施例。以下申請專利範 圍的範圍,要按照最廣義的解釋,以便包含所有這類的修 ® 改與相等結構及功能。 【圖式簡單說明】 圖1的槪圖說明本發明之第一實施例中所使用之發光 顯示設備的像素結構。 圖2的槪圖說明本發明之第一實施例中所使用之發光 顯示設備的像素結構。 圖3的槪圖說明本發明之第一實施例中所使用之發光 ® 顯示設備的像素結構。 圖4的槪圖說明本發明之第一實施例中所使用之發光 ^ 顯示設備的像素結構。 圖5的槪圖說明本發明之第—實施例中所使用之發光 顯示設備的像素結構。 圖ό的槪圖說明本發明之第一實施例中所使用之發光 顯示設備的像素結構。 圖7Α及7Β每一的槪圖說明本發明之第一實施例中所 使用之發光顯示設備的像素結構。 -31 - 200926108 圖8A及8B每一的槪圖說明本發明之第一實施例中所 使用之發光顯示設備的像素結構。 圖9的槪圖說明本發明之第一實施例中所使用之發光 顯示設備的像素結構。 圖10的槪圖說明本發明之第一實施例中所使用之發 光顯示設備的像素結構。 圖11的槪圖說明本發明之第一實施例中所使用之發 © 光顯示設備的像素結構。 圖12的槪圖說明本發明之第一實施例中所使用之發 光顯示設備的像素結構。 圖13的槪圖說明本發明之第一實施例中所使用之發 光顯示設備的像素結構。 圖14的槪圖說明本發明之第一實施例中所使用之發 光顯示設備的像素結構。 圖15的槪圖說明本發明之第一實施例中所使用之發 ® 光顯示設備的像素結構。 圖16的槪圖說明本發明之第二實施例中所使用之發 光顯示設備的像素結構。 圖17的槪圖說明本發明之第二實施例中所使用之發 光顯示設備的像素結構。 圖18的槪圖說明本發明之第二實施例中所使用之發 光顯示設備的像素結構。 圖1 9係本發明之實施例中所使用的發光顯示設備應 用於實際裝置之情況中的亮度退化圖。 -32- 200926108 圖20係在按照本發明之實施例之發光顯示設備的顯 示方法應用於實際裝置之情況中的亮度退化圖。 圖21係在按照本發明之實施例之發光顯示設備的顯 示方法應用於實際裝置之情況中的亮度退化圖。 圖22係在按照本發明之實施例之發光顯示設備的顯 示方法應用於實際裝置之情況中的亮度退化圖。 圖23的槪圖說明在按照本發明之實施例之發光顯示 設備的顯示方法應用於實際裝置之情況中的像素結構。 圖24的槪圖說明用來具體解釋按照本發明之實施例 之發光顯示設備之顯示方法之效果的像素結構。 圖25的槪圖說明用來具體解釋按照本發明之實施例 之發光顯示設備之顯示方法之效果的像素結_。 圖26的槪圖說明用來具體解釋按照本發明之實施例 之發光顯示設備之顯示方法之效果的像素。 圖27的槪圖說明用來具體解釋按照本發明之實施例 之發光顯示設備之顯示方法之效果的像素。 圖28的槪圖說明用來具體解釋按照本發明之實施例 之發光顯示設備之顯示方法之效果的像素。 圖29的槪圖說明用來具體解釋按照本發明之實施例 之發光顯示設備之顯示方法之效果的像^ 圖3〇的方塊圖說明本發明之實施例中所用發光顯示 設備的結構。 【主要元件之符號說明】 -33- 200926108 1 1 :像素 1 :信號輸入部 2 :亮度分配單元 3 : A/D轉換部 4 :顯示部 5 :熱偵測部 6 :電流偵測部 © 7 :累積發光時間測量部In the calculation used for the adjustment, a model such as a degraded model is applied, which is caused by the failure of the device due to the current flowing at a rate greater than the measured current 値 (ie, the measured power 値 1.5 power). Assumption. The following formula (13) represents an experimental model in which the device degrades with a power density of 1.5. In the formula, 1:1 and 1:2 each represent a degradation time, Ιι and 12 each represent a current density, and 1^ and L2 each represent a luminance. Further, although it is assumed that the current density and the light-emitting luminance are substantially proportional to each other, it is preferable to obtain it from the I-L characteristic. £l = main, 1.5 \^2 J \L2j Fig. 23 illustrates a pixel structure in the case where the display method of the light-emitting display device according to the embodiment of the present invention is applied to an actual device. In the example illustrated in Fig. 23, the red sub-pixel Spr(i,j) included in the pixel p(i j ) as the illuminating center is allowed to emit light in the first display method. Further, the green sub-pixel Spg(i, j) is allowed to emit light in a first display method with a ratio of 7〇% and a first display method with a ratio of 30%. Further, the blue sub-pixel Spb (i, j) is allowed to emit light in a first display method of a ratio of 2% and a first display method of a ratio of 80%. That is, in the example illustrated in FIG. 23, the red sub-pixel Spr (i, j) included in the pixel p (i, j) as the light-emitting center emits light with a luminance of 100%, and the green sub-pixel Spg (^ ) at 70°/. The luminance illuminating 'blue sub-pixel Spb (i, j) illuminates with a brightness of -2 - 200926108. Are included in adjacent pixels adjacent to pixel P(i,j)? (b, i, l, j), P (i, jl), and p (i, j + l) each of the green sub-pixels Spg (il, j), Spg (i + l, j), Spg(i, j-1), and Spg (1, 』+ 1) emit light with a brightness of 7.5%. Further, each of the blue sub-pixels 3?15 (i-l,j), Spb(i+l,j)> Spb(i,j-l), and Spb(i,j+1) emits light with a luminance of 20%. The luminance of each of the blue and edge sub-pixels included in the pixel p(i, j) as the center of illumination is distributed to the surrounding sub-pixels around, thereby suppressing degradation. Degradation of blue sub-pixels with a high degree of luminance distribution is further suppressed. 2 is a second display method in which the binding ratio is 30% in the green sub-pixel, and in the case of the second display method in which the blue sub-pixel is combined in a ratio of 80%, 'in terms of time-dependent normalized brightness The brightness degradation curve for each color. When white is displayed by using this display method, the red sub-pixels cause afterimages after 48 hours, and the green sub-pixels cause afterimages after 47 hours. The blue sub-pixels cause afterimages after 50 hours. In this display mode, all of the red 'green and blue sub-pixels have substantially the same de-retarding time, so that it is difficult to cause color shift due to luminance degradation while performing white display. Fig. 21 shows the normalized degradation time data of each color in a time-dependent normalized brightness in a case where white is displayed in an environment of 25 ° C and 60 ° C. When it is assumed that when the luminance difference between adjacent pixels exceeds 1 〇%, the afterimage will be caused, after 3 hours in the environment of 25 ° C and 3 hours in the environment of 60 ° C, the afterimage Will be recognized. Therefore, the display of the combination of the first display method and the second display method -25-200926108 mode is used and adjusted so that degradation in a 60 ° C environment with a high degradation rate is suppressed. Fig. 22 is a graph showing the luminance degradation curve of each color in a time-dependent normalized luminance in the case where the second display method is combined at a ratio of 80% in an environment of 60 °C. In this display mode, the pixel as the center of illumination emits light with a brightness of 20%, and the remaining 80% of the brightness is distributed (configured) to pixels near the periphery of the center pixel of the light. When white is displayed by using this display method, the time during which image sticking occurs in an environment of 60 ° C is extended to 40 hours. Therefore, in the case where the ambient temperature is high, the life of the display panel can be extended by applying the display mode in which the second display method of a high ratio is combined. (Specific effects of the present invention) Next, the effects of the display method of the light-emitting display device according to the embodiment of the present invention will be described in detail. 24 to 29 illustrate a pixel structure which specifically describes the effect of the display method of the light-emitting display device according to the embodiment of the present invention. Figure 24 illustrates 3x3 pixels. The coordinates in the vertical direction are denoted by "i" and the coordinates in the horizontal direction are denoted by "j". It is assumed that the pixel P(i, j) located at the position (i, j) is lit for 1 hour using the first display method. The luminance of the pixel P (i,j) before being illuminated for 100 hours is indicated by 1, and the luminance after being illuminated for 100 hours is represented by 1_α, where α(〇<α<1) represents the luminance degradation rate. As illustrated in FIG. 25, after the pixel P(i,j) is lit for 100 hours 'when all the pixels are allowed to uniformly emit light, the brightness L(i,j) of the pixel -26-200926108 P(i,j) ) is l-α, and the luminances L(i±l,j) and L(i,j±l) of the pixels P(i: bl,j ) and P(i,j±l) near the periphery are 1. Therefore, when the brightness ratio at which the residual image can be recognized is expressed as "X" (afterimage recognition luminance ratio), the condition that the image sticking cannot be recognized when all the pixels emit light can be obtained by the following equations (14) and (15). To represent. Therefore, in the case where only the first display method is used for display, the deterioration due to the afterimage is recognized when the luminance degradation rate becomes higher than the afterimage recognition luminance ratio "X". ^ = 1-(1-α) = α ·· (14) (15) In this case, the second display method is applied, and the pixel p(i,j) is lit for 100 hours. Fig. 26 illustrates a display mode used by the pixel P (i, j ) where the first display method is combined in a ratio of 1 - 4 s and the second display method is combined in a ratio of 4 s. That is, the pixels are illuminated for 100 hours in this display mode, wherein the luminance 'applied to the pixel p(i, )) is partially allocated to each nearby pixel p(i+1, in a ratio of s. j) Φ , P(i, j + l), and . It is assumed that after the pixels are lit for 1 hour in this display mode, as shown in Fig. 27, all the pixels are allowed to uniformly emit light. In this case, the luminance L ( i, j) of the pixel p (i, j) is i_a (b "). The nearby pixels p ( i + 1, j ), P (il, j), P (i, j) + l), and PGj") The brightness L ( i + l, j ) , L ( il, j ) , L ( υ + 1 ), and L ( Μ ") are ^ sa. The luminance L ( i+l,j + i ), L ( ), L(i_l, J + of each pixel P(i+1, j + 1), p(i+lj l) + ' and P ( ) l), and [(丨-丨小丨) is }, therefore, when the resolution of the residual image is assumed to be represented by x, it is impossible to recognize the residual image at the time of illumination of all the pixels -27-200926108 The condition can be expressed by the following formulas (16), (17), and (18). Δι = 1-sa- (1-a(l-4s)) = a{l-5s) .-.(16) §2 = 1~ (1-soc) = sa · · - (17) δι^χ Δ2^χ . . - (18) ' As can be seen from the above equations (16), (17), and (18), when δρδ;^, the ratio at which degradation is extremely difficult to be recognized is obtained, that is, s = 1 / 6. Therefore, its 0 can be regarded as a display mode in which degradation is extremely difficult to be recognized when the entire surface is illuminated. The ratio between the first display method and the second display method is 1:2. Further, the brightness degradation rate a and the afterimage recognition luminance ratio X have the relationship expressed by the following formula (19). Oc<6x · · · (19) Therefore, if the ratio of the second display method is increased, when the brightness degradation rate a is greater than 6 times the afterimage recognition luminance ratio X, the degradation will be recognized. Fig. 28 illustrates the pixel structure in the case where the coordinates in the vertical direction are represented by "i", the coordinates in the horizontal direction © the direction are indicated by "j", and the pixels at the position jhi are lit for 100 hours. Suppose that the brightness of each pixel before the pixel is lit 1 hour ago is 1, and it is assumed that the brightness of the pixel P (i,j ) { ]>〇〇!} after the pixels are lit for 100 hours is Ι -a. Here, a ( 〇 < α < 1) indicates the luminance degradation rate. As illustrated in FIG. 29, after lighting for 100 hours, the pixels of the region {i^G) 2} are allowed to be combined in the ratio of 1 - 4 s in the first display method and 4 s in the ratio of the second display method. Illuminated in the mode. That is, the pixels which are the center of the illuminating light are emitted at a ratio of 1 - 4 s, and are arranged (or distributed) at a current density of a ratio of s to the respective nearby pixels at the upper, lower, right, and left positions. In this case, the current density is allocated to the ratio of -28-200926108 1 to the pixel of i<to2 in the light-emitting area, and is allocated to the ratio of l_s to the pixel of i = (02, and is arranged in the ratio of S to be adjacent to i = (pixels of i = c〇2 + l of pixels of 〇2. The pixels of i^c〇2 + 2 outside the pixel of i = t〇2 + l, that is, the 'outside of the light-emitting area is not allowed to emit light. Therefore, the brightness of each pixel can be expressed by the following equations (20), (21), (22), (23), (24), and (25). ❹ L (i, j ) {i=co2 +l, j%} = s ...(20) L (i^ j ) {ϊ=ω2+1, = s (1-a) ...(21) L (i, j ) {ϊ=ω2 , j<Qi} = 1-s -.-(22) L (i, j ) {ΐ=ω2, j^Qi) = (1-s) (1-a) ...(23) L (i , j ) {i<&)2, j<c〇i} = 1 .--(24) L (i, j ) {ί<ω2, j^i} = 1-a ..-(25) Here, the condition that the image is not recognized by the pixel that has been lit for 1 hour and other pixels is represented by the following equations (26), (27), (28), and (29). Further, the condition in which the uniform light-emitting region can be seen by applying the second display method is expressed by the following equations (30), (31), and (32). According to equations (26), (27), (28) ' and (29) •, the current density configuration (or distribution) ratio s is 0 < s < 1/4. Therefore, the condition that the image is not recognized between the degraded pixel and the undegraded pixel is aU. Further, by applying the second display method, it can be seen that the condition of the region where the light emission is uniform is s^x. Δι = ss (l-〇f) = sa • · (26) δ2 = 1-s- (1-s) (1-a)== a (1-s) (27) 63 = 1- (l -〇c) = a ...(28) δι<χ, δ2<Χ, δ3<Χ -29- ...(29) ...(30) 200926108 64 - 1- (1-s) = s 65 = la-(ls (1-a) = s (1-a) δ^χ, 5s<x As described above, by using the second display ratio S, the luminance degradation rate a, and the afterimage: arbitrarily selecting the current density configuration ratio s, the degradation caused by the residual image is difficult to be recognized. Further, the light-emitting display according to the present invention displays the long-life mode of the high-resolution second display method having the high ratio of the first display method, and switching between the modes . In the high-resolution mode, the outline can be displayed, the load is applied only to a single pixel, and on the other hand, in the long-life mode, the pixel group of the pixel is nearby. Therefore, the 〇 leveling is applied, and as a result, the brightness of the effect of suppressing the deterioration is obtained, the boundary of the shape is smoothed, and the change due to the deterioration of the brightness is known. Therefore, the longevity mode is applied to display only when natural images or high resolution images are to be displayed. Therefore, the life of the display panel can be extended, in addition, when the degradation of each illuminating color degrades the effect of the second display square of the fast illuminating color. Other factors involving the degradation of brightness of pixels -30- •·.(31) ...(32) show method, according to the current density itch, the brightness ratio X is related to the display method of the light-emitting display device , device, Mode, with a high proportion of sharp images sharply between the two intermediate modes. Do not let the afterimage continue. The luminance of the light is distributed to the current density around the pixel. In addition, by leveling the hair to avoid easily identifying the pattern or the like, and when the material is switched to the high-resolution mode, the characteristics of the method are increased, and by increasing the ratio of the method, the statin can be obtained, for example, including the luminescence time, 200926108 Temperature, maximum brightness. When the degree of progress of degradation is changed by these factors, by adjusting the combination ratio between the first display method and the second display method, the degree of degradation of each illuminating color is made uniform, and a display with a longer life can be realized. panel. While the invention has been described with reference to the preferred embodiments thereof, it is understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following patent applications is to be interpreted in the broadest sense so as to include all such modifications and equivalent structures and functions. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram showing a pixel structure of a light-emitting display device used in a first embodiment of the present invention. Fig. 2 is a block diagram showing the pixel structure of the light-emitting display device used in the first embodiment of the present invention. Fig. 3 is a block diagram showing the pixel structure of the luminescence ® display device used in the first embodiment of the present invention. Fig. 4 is a block diagram showing the pixel structure of the luminescence ^ display device used in the first embodiment of the present invention. Fig. 5 is a block diagram showing the pixel structure of the light-emitting display device used in the first embodiment of the present invention. The diagram of the figure illustrates the pixel structure of the light-emitting display device used in the first embodiment of the present invention. 7A and 7B are diagrams showing the pixel structure of the light-emitting display device used in the first embodiment of the present invention. -31 - 200926108 Each of Figs. 8A and 8B illustrates a pixel structure of a light-emitting display device used in the first embodiment of the present invention. Fig. 9 is a block diagram showing the pixel structure of the light-emitting display device used in the first embodiment of the present invention. Fig. 10 is a block diagram showing the pixel structure of a light-emitting display device used in the first embodiment of the present invention. Figure 11 is a cross-sectional view showing the pixel structure of a light-emitting display device used in the first embodiment of the present invention. Fig. 12 is a block diagram showing the pixel structure of a light-emitting display device used in the first embodiment of the present invention. Fig. 13 is a view showing the pixel structure of the light-emitting display device used in the first embodiment of the present invention. Fig. 14 is a view showing the pixel structure of the light-emitting display device used in the first embodiment of the present invention. Fig. 15 is a view showing the pixel structure of the light emitting light-emitting device used in the first embodiment of the present invention. Fig. 16 is a block diagram showing the pixel structure of a light-emitting display device used in the second embodiment of the present invention. Fig. 17 is a block diagram showing the pixel structure of a light-emitting display device used in the second embodiment of the present invention. Fig. 18 is a block diagram showing the pixel structure of a light-emitting display device used in the second embodiment of the present invention. Fig. 19 is a graph showing the luminance degradation in the case where the light-emitting display device used in the embodiment of the present invention is applied to the actual device. -32- 200926108 Fig. 20 is a graph showing the luminance degradation in the case where the display method of the light-emitting display device according to the embodiment of the present invention is applied to an actual device. Figure 21 is a graph showing the luminance degradation in the case where the display method of the light-emitting display device according to the embodiment of the present invention is applied to an actual device. Fig. 22 is a graph showing the luminance degradation in the case where the display method of the light-emitting display device according to the embodiment of the present invention is applied to an actual device. Fig. 23 is a view showing a pixel structure in the case where the display method of the light-emitting display device according to the embodiment of the present invention is applied to an actual device. Fig. 24 is a view showing a pixel structure for specifically explaining the effect of the display method of the light-emitting display device according to the embodiment of the present invention. Fig. 25 is a block diagram showing a pixel junction _ for specifically explaining the effect of the display method of the luminescent display device according to the embodiment of the present invention. Fig. 26 is a view showing a pixel for specifically explaining the effect of the display method of the light-emitting display device according to the embodiment of the present invention. Fig. 27 is a view showing a pixel for specifically explaining the effect of the display method of the light-emitting display device according to the embodiment of the present invention. Fig. 28 is a view showing a pixel for specifically explaining the effect of the display method of the light-emitting display device according to the embodiment of the present invention. Fig. 29 is a block diagram showing the structure of a light-emitting display device used in an embodiment of the present invention for explaining the effect of the display method of the light-emitting display device according to the embodiment of the present invention. [Description of Symbols of Main Components] -33- 200926108 1 1 : Pixel 1: Signal input unit 2: Brightness distribution unit 3: A/D converter 4: Display unit 5: Thermal detection unit 6: Current detection unit © 7 : Cumulative luminous time measurement unit

-34--34-

Claims (1)

200926108 十、申請專利範圍 1·—種發光顯示設備的顯示方法,該發光顯示設備 包括其中配置有每一都具有至少一個子像素之複數個像素 的顯示面板’該顯示方法包含: 當座標在垂直方向以“丨”表示且在水平方向以Ί”表示 時’且當實施關於一子像素Spa(i,j)之影像輸入資料Da (i,j )的顯示時’該子像素Spa ( i,j )構成該等像素在位 置(i,j)處之像素p(i,j)且具有顯示顔色“a”, 僅以該子像素Spa(i,j)來實施影像輸入資料Da(i,j )之顯不的第一顯示方法;以及 以每一個都具有顯示顏色“a”且包括在配置於該像素P (i,j)四周之附近像素群P ( i',j')中之附近子像素群Spa (ί',Γ)的子像素群來實施影像輸入資料Da(i,j)之顯示 的第二顯示方法。 2·如申請專利範圍第1項的顯示方法,其中該第一 顯示方法與該第二顯示方法之間的組合比被改變。 3. 如申請專利範圍第2項的顯示方法,其中該顯示 面板中之該第一顯示方法與該第二顯示方法之間的該組合 比依據該影像輸入資料Da(i,j)而改變。 4. 如申請專利範圍第2項的顯示方法,其中隨著該 像素之該影像輸入資料Da(i,j)的空間改變增加,對應 之子像素Spa ( i,j )之該第二顯示方法的比例隨之增加。 5. 如申請專利範圍第2項的顯示方法,其中隨著該 像素之該影像輸入資料Da ( i,j )的時間改變減小,對應 -35- 200926108 之子像素Spa ( i,j )之該第二顯示方法的比例隨之增加。 6,如申請專利範圍第2項的顯示方法,其中隨著該 影像輸入資料Da ( i,j )的發光時間增加,該第二顯示方 法的比例隨之增加。 7.如申請專利範圍第2項的顯示方法,其中該等像 素各個都具有至少兩個子像素,且其中該等子像素各個之 該第二顯示方法的組合比,隨著該子像素之劣化比的增加 © 而增加’且該子像素之該第一顯示方法的組合比,隨著該 子像素之劣化比的減少而增加。 8 ·如申請專利範圍第2項的顯示方法,其中關於該 等子像素之至少一子像素的該第一顯示方法與該第二顯示 方法之間的組合比’該第二顯示方法的組合比隨著溫度的 上升而增加。 9.如申請專利範圍第2項的顯示方法,其中關於該 等子像素之至少一子像素的該第一顯示方法與該第二顯示 ® 方法之間的組合比’該第二顯示方法的組合比隨著最大發 光亮度的增加而增加。 . 1〇.如申請專利範圍第2項的顯示方法,其中關於該 等子像素之至少一子像素的該第一顯示方法與該第二顯示 方法之間的組合比,該第二顯示方法的組合比隨著顯示時 間的增加而增加。 11.如申請專利範圍第2項的顯示方法,其中該等子 像素之至少一ί像素的該第—_示方法與該第1顯示方& 之間的組合比爲1 : 2。 -36- 200926108 ❹ 圓本本.1: 表' ' 代 定一二 (( , 七 第 明 說 圖單 }簡 C號 符 表 為代 圖件 表元 代之 定圖 指表 案代 以 素 向向像 方方: 直平 垂水 素 像 子 八、本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無 ❿ -3-200926108 X. Patent Application No. 1 - A display method for a light-emitting display device, the light-emitting display device comprising a display panel in which a plurality of pixels each having at least one sub-pixel are arranged. The display method comprises: when the coordinates are vertical The direction is represented by "丨" and is indicated by Ί" in the horizontal direction and when the display of the image input material Da (i, j ) for a sub-pixel Spa(i, j) is performed 'the sub-pixel Spa (i, j) constituting the pixel p(i,j) of the pixel at the position (i,j) and having the display color "a", and performing the image input data Da(i, only with the sub-pixel Spa(i,j) j) a first display method; and each having a display color "a" and included in a nearby pixel group P (i', j') disposed around the pixel P (i, j) A second display method for displaying the image input data Da(i, j) by the sub-pixel group of the nearby sub-pixel group Spa (ί', Γ). 2. The display method of the first aspect of the patent application, wherein the The combination ratio between a display method and the second display method is changed. The display method of the second item, wherein the combination ratio between the first display method and the second display method in the display panel is changed according to the image input data Da(i, j). The display method of the second item, wherein as the spatial change of the image input data Da(i, j) of the pixel increases, the proportion of the second display method of the corresponding sub-pixel Spa (i, j) increases. 5. The display method of claim 2, wherein the time of the image input data Da (i, j) of the pixel decreases, corresponding to the sub-pixel Spa (i, j) of -35-200926108 The ratio of the second display method is increased as follows. 6. The display method of claim 2, wherein the ratio of the second display method increases as the illumination time of the image input data Da(i,j) increases 7. The display method of claim 2, wherein the pixels each have at least two sub-pixels, and wherein a combination ratio of the second display methods of the sub-pixels, along with the sub-pixel Increase in degradation ratio © Increasing 'and the combination ratio of the first display method of the sub-pixels increases as the degradation ratio of the sub-pixel decreases. 8. The display method of claim 2, wherein at least the sub-pixels are The combination ratio between the first display method and the second display method of one sub-pixel increases as the combination ratio of the second display method increases with temperature. 9. The display method according to item 2 of the patent application scope, The combination ratio between the first display method and the second display method for at least one sub-pixel of the sub-pixels increases as the combination ratio of the second display method increases with the maximum luminance. 1. The display method of claim 2, wherein a combination ratio between the first display method and the second display method for at least one sub-pixel of the sub-pixels, the second display method The combination ratio increases as the display time increases. 11. The display method of claim 2, wherein a combination ratio of the first display method and the first display side & at least one ί pixel of the sub-pixels is 1:2. -36- 200926108 ❹ Round book.1: Table ' ' 代定一二(( , 七第明图图单} Jane C number table is the generation of map elements, the map is replaced by the prime map. Fang Fang: Straight sloping water is like a scorpion. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: no ❿ -3-
TW097131939A 2007-08-24 2008-08-21 Display method of emission display apparatus TW200926108A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007218370 2007-08-24
JP2008189273A JP2009075563A (en) 2007-08-24 2008-07-23 Display method of light emitting display device

Publications (1)

Publication Number Publication Date
TW200926108A true TW200926108A (en) 2009-06-16

Family

ID=40447720

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097131939A TW200926108A (en) 2007-08-24 2008-08-21 Display method of emission display apparatus

Country Status (4)

Country Link
JP (1) JP2009075563A (en)
KR (1) KR100949942B1 (en)
CN (1) CN101373575B (en)
TW (1) TW200926108A (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272300A (en) * 2009-05-20 2010-12-02 Canon Inc Method for manufacturing organic electroluminescent display apparatus
JP5313066B2 (en) * 2009-07-07 2013-10-09 レノボ・シンガポール・プライベート・リミテッド Electronic devices that prevent pixel burn-in
KR102031763B1 (en) 2013-01-11 2019-10-16 삼성디스플레이 주식회사 Organic light emitting display device
KR102132180B1 (en) * 2013-12-09 2020-07-09 엘지디스플레이 주식회사 The Controlling Method a Image in Stand-by Mode
CN103824520B (en) 2014-01-26 2016-08-31 北京京东方光电科技有限公司 Pel array and driving method, display floater and display device
KR102227632B1 (en) * 2014-10-28 2021-03-16 삼성디스플레이 주식회사 Display panel driving device, display device having the same, and method of driving the display device
CN105989799B (en) * 2015-02-12 2018-07-20 西安诺瓦电子科技有限公司 Image processing method and image processing apparatus
KR102334211B1 (en) * 2015-07-24 2021-12-02 삼성전자주식회사 A display apparatus and a display method
CN113192459A (en) * 2015-09-02 2021-07-30 天马微电子股份有限公司 Display device
CN105845079A (en) * 2016-03-31 2016-08-10 广东欧珀移动通信有限公司 Pixel control method and device
KR102516371B1 (en) * 2016-10-25 2023-04-03 엘지디스플레이 주식회사 Display device and method of driving the same
CN106847177B (en) 2017-03-13 2019-11-22 武汉华星光电技术有限公司 Display device and its service life extend method
CN109003577B (en) * 2017-06-07 2020-05-12 京东方科技集团股份有限公司 Driving method and assembly of display panel, display device, terminal and storage medium
TWI737842B (en) * 2017-10-27 2021-09-01 優顯科技股份有限公司 Luminance compensation method of light-emitting device
KR102536347B1 (en) * 2017-12-20 2023-05-24 엘지디스플레이 주식회사 Display Device and Method of Driving the same
CN110176209B (en) * 2018-02-27 2021-01-22 京东方科技集团股份有限公司 Optical compensation method and optical compensation apparatus for display panel
CN108648679B (en) 2018-05-18 2020-06-26 京东方科技集团股份有限公司 Display panel driving method and device and display equipment
JP7292835B2 (en) * 2018-08-22 2023-06-19 株式会社ジャパンディスプレイ Display device
JP7171323B2 (en) * 2018-09-05 2022-11-15 Tianma Japan株式会社 Display device and its control method
FR3087582B1 (en) * 2018-10-22 2021-09-03 Microoled DAY AND NIGHT DISPLAY DEVICE
CN110060629B (en) * 2019-04-26 2020-12-01 上海天马微电子有限公司 Driving method and device of display panel
JP7344068B2 (en) * 2019-09-27 2023-09-13 Tianma Japan株式会社 display device
US11244608B2 (en) * 2019-10-20 2022-02-08 Novatek Microelectronics Corp. Image processing method and image processing device
CN111026308B (en) * 2019-12-11 2021-02-12 深圳介子云图空间科技有限公司 Display method and device
CN113138735A (en) * 2020-01-20 2021-07-20 北京迈格威科技有限公司 Display control method, device and electronic system
WO2021220854A1 (en) * 2020-05-01 2021-11-04 ソニーグループ株式会社 Signal processing device, signal processing method, and display device
TWI773429B (en) * 2021-07-09 2022-08-01 敦泰電子股份有限公司 Display driving device with de-burn-in and display device having the same
CN114999332B (en) * 2022-06-02 2023-11-03 武汉华星光电半导体显示技术有限公司 Display panel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356981A (en) 1999-06-16 2000-12-26 Mitsubishi Electric Corp Display controller for display device
TW575855B (en) * 1999-08-05 2004-02-11 Sharp Kk Display device
JP3719590B2 (en) * 2001-05-24 2005-11-24 松下電器産業株式会社 Display method, display device, and image processing method
JP5031954B2 (en) * 2001-07-25 2012-09-26 パナソニック株式会社 Display device, display method, and recording medium recording display control program
JP2004240186A (en) 2003-02-06 2004-08-26 Toshiba Corp Flat panel display device, driving circuit for display, and driving method for display
JP2006018130A (en) 2004-07-05 2006-01-19 Sony Corp Burn-in correction device, display device, and image processing device and program
EP1798591B1 (en) * 2004-10-06 2013-07-24 Sharp Kabushiki Kaisha Liquid crystal display

Also Published As

Publication number Publication date
CN101373575A (en) 2009-02-25
JP2009075563A (en) 2009-04-09
CN101373575B (en) 2011-02-09
KR20090021080A (en) 2009-02-27
KR100949942B1 (en) 2010-03-30

Similar Documents

Publication Publication Date Title
TW200926108A (en) Display method of emission display apparatus
US8471787B2 (en) Display method of emission display apparatus
US20200193898A1 (en) Mura compensation method and device for curved screen
JP4872982B2 (en) Image processing circuit and image display device
JP5795821B2 (en) Pixel array, display and method for displaying an image on a display
JP5247885B2 (en) Image display device and image display method
KR101134269B1 (en) Luminance adjustment in a display device
JP5769493B2 (en) Display device and control method thereof
TW200828260A (en) Burn-in reduction apparatus, self-luminous display apparatus, image processing apparatus, electronic device, burn-in reduction method, and computer program
JP2007529778A (en) Active matrix display with improved non-uniformity between pixels at low brightness
CN109891486B (en) Display device and signal processing device
JP2006285235A (en) Light emitting display and method of driving the same
JP2022163115A (en) display device
JP2018005213A (en) Display device and peak luminance control method of the same
TWI436336B (en) Method for controlling organic light emitting diode display displaying images
KR102483946B1 (en) Organic light emitting display apparatus and driving method thereof
JP2007178837A (en) Organic el display apparatus
JP2011048037A (en) Display device
JP2012128813A (en) Display control unit and control method thereof
JP6648932B2 (en) Display device and control method thereof
JP2008185905A (en) Video display device
JP2009175415A (en) Liquid crystal display device
KR100645703B1 (en) Light emitting display and making method of the same
JP2006243576A (en) Liquid crystal display device
JP2010128218A (en) Image display device