TW200925342A - Method for production of nanofibres - Google Patents

Method for production of nanofibres Download PDF

Info

Publication number
TW200925342A
TW200925342A TW097138064A TW97138064A TW200925342A TW 200925342 A TW200925342 A TW 200925342A TW 097138064 A TW097138064 A TW 097138064A TW 97138064 A TW97138064 A TW 97138064A TW 200925342 A TW200925342 A TW 200925342A
Authority
TW
Taiwan
Prior art keywords
spinning
biopolymer
chitosan
weight
nanofibers
Prior art date
Application number
TW097138064A
Other languages
Chinese (zh)
Inventor
Jana Svobodova
Original Assignee
Elmarco Sro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elmarco Sro filed Critical Elmarco Sro
Publication of TW200925342A publication Critical patent/TW200925342A/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/425Porous materials, e.g. foams or sponges
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)
  • Materials For Medical Uses (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

The invention relates to the method for production of nanofibres through electrostatic spinning of polymer matrices prepared upon biopolymers of chitosan or collagen. The biopolymer before spinning is dissolved as clean or in mixture with auxiliary non-toxic polymer in solvent system, which comprises an organic or inorganic acid, selected from the group of acetic acid in concentration from 30% to 90% of weight, lactic acid, malic acid, trihydrogen-phosphoric acid and their mixtures, and this solution is brought into electrostatic field between the spinning electrode and collecting electrode, while the produced biopolymer nanofibres comprise more than 90% of weight of biopolymer in dry mass.

Description

200925342 六、發明說明: 【發明所屬之技術領域】 ' 本發明係有關通過聚合物基質之靜電紡紗而製造奈 米纖維之方法,該聚合物基質係由幾丁聚糖(chitosan)或膠 原蛋白(collagen)的生物聚合物(biopolymer)製備而成。 此外,本發明係有關包含至少一層奈米纖維之織物, , 該奈米纖維係通過幾丁聚糖或膠原蛋白的生物聚合物之靜 電紡紗所製造。 〇【先前技術】 生物聚合物由於具有多種獨特的特性而適合應用在 醫學上,首要應歸因於其生物相容性及無毒性。生物聚合 物的應用相當重要,例如用於製造繃帶及石膏,亦可用於 移植物及防黏連墊,其明顯地降低術後組織間黏連發生之 風險;生物聚合物亦可用來填補皮膚或骨骼的缺陷而應用 在牙科醫學、美容用品及外科整形上。某些生物聚合物具 0生物可降解性,其意指可藉由例如酵素的作用而分解。 生物聚合物的奈米纖維材料具高度多孔性及比表面 積,其允許氧穿透但不允許微生物穿透,同時其保有所使 用之生物聚合物的所有上述特性。生物聚合物奈米纖維適 用於例如燒傷之癒合,其確保癒合處最佳的溼度並且同時 移除來自傷口的分泌物;生物聚合物奈米纖維亦可用於繃 帶材料、石膏等。 重要的生物聚合物之一為幾丁聚糖,其係由沒-(1+4) 2-乙醯胺基-2-去氧-D-葡萄哌喃糖單元及2-胺基-2-去氧 3 94487 200925342 -D-葡萄哌喃糖單元所組成之聚陽離子多醣。至於其北學組 _ 成,幾丁聚糖非常相似於纖維素,且其係分佈第二廣泛的 : 可再生天然資源。幾丁聚糖係通過鹼性去乙醯化(alkaline deacetylation)而自幾丁質(chitin)萃取而來,幾丁質的來源 為曱殼類,例如貝類、貽貝類、蟹類及螯蝦,而昆蟲的外 殼及菇類中亦含有幾丁質。幾丁聚糖具生物可分解性、生 物相容性,且由於其在生理pH值時帶正電而具生物黏附 性(bioadhesive),此為傷口癒合的一大優點;幾丁聚糖具 〇有止血功效並因而使出血停止;幾丁聚糖亦具有抗菌功 效。目前,由於其吸附LDL膽固醇及重金屬的能力,幾丁 聚糖已被納入大部分的減重飲食中。由於此等特性,幾丁 聚糖被直接指定應用在醫學上,例如,用於已提及的繃帶 及石膏,亦用於置入體内的防黏連墊,或者在牙科醫學上 用來進行填補以使出血停止。幾丁聚糖亦在生物技術中用 來純化廢水或液體(如啤酒、葡萄酒或牛奶)。 ^ 大部分種類的幾丁聚糖不溶於水中,但可溶於溶液 Ό pH值低於5的有機酸中。最常使用乙酸、乳酸、蘋果酸、 草酸等作為溶劑。 目前有許多科學實驗室及研究所對幾丁聚糖進行研 究。為了獲得奈米纖維,係使用靜電紡紗的方法。目前, 自幾丁聚糖製得的奈米纖維係藉由具有針式紡紗電極或喷 射式紡紗電極的紡紗裝置製造。W02007093805A1揭示來 自幾丁聚糖及藻酸鹽的複合纖維之製法,其中,幾丁聚糖 的最大含量達到80%,而幾丁聚糖纖維包覆藻酸鹽纖維的 4 94487 200925342 表面。由於此等纖維的纖維直徑為50 y m,故此等纖維並 " 非奈米纖維。 WO2006133118A1大體上係關於奈米纖維形式的生 物聚合物,其中,交錯可溶於水中及不溶於水之聚合物的 奈米纖維層。所製造的奈米纖維直徑之範圍為i至25〇〇〇 nm,其不再是奈米級尺寸。KR100652469B係關於抗菌奈 米纖維,其係由幾丁聚糖混合聚對苯二甲酸乙二酯所製 成。三氟乙醇、六氟異丙醇或三氟乙酸係使用作為溶劑。 〇 另一個韓國專利案係關於通過使用喷嘴作為紡紗電 極的幾丁質或幾丁聚糖奈米纖維之製法。N-甲基嗎啉氧化 物、六氟-2-丙醇或六氟丙酮水合物及曱酸係使用作為溶 劑。 W02006048829專利案係關於應用在醫學上之奈米纖 維形式的新穎幾丁質衍生物,主要係應用在保護皮膚以及 作為皮下填充物。所使用的生物聚合物為氧基幾丁質 ❹(oxychitin)、甘醇酸幾丁質、玻糖醛酸幾丁質。該專利案 亦關於使用針式紡紗電極的奈米纖維製法。 W003042251A1專利案揭示含有奈米級尺寸纖維形 式的幾丁聚糖之複合物的製法,其目的為提高活性及溶解 度,且主要係用於美容用品。然而,所製造的奈米纖維之 長度受到相當的限制,該長度在5至200 nm的範圍中變 化,而其直徑範圍為5至30 nm,故其較符合奈米粒子的 尺寸而非奈米纖維的尺寸。 另一個專利案KR1020050048360AA係關於用於組織 5 94487 200925342 :工程的奈米纖維非織物之製法,其中,係使用選自幾丁聚 糖、膠原蛋白、藻酸所級成群組之天然聚合物以及合成聚 合物(例如乳酸之均聚物、乳酸及葡萄糖酸之共聚物、葡萄 糖酸之均聚物及其混合物)來製造奈米纖維,而天 然聚合物 對合成聚合物之比為4 : i至i : 4。 目前有相當大量的公開文獻,該等文獻中有某些係關 於幾丁聚糖混合聚裱氧乙烷(下文中有時簡稱為pE〇)的奈 米纖維之製法。此等文獻之一為Bin Duan的文章(Journal O of Biomaterial Science, P〇iymer Editiollj v〇l. 15, 2004, p.797-811),其中,最高比率的幾丁聚糖:pE〇為2 : j, 且係使用2%乙酸作為溶劑。奈米纖維係應用毛細管來製 造’且所完成的奈米纖維直徑為8〇至丨8〇 nm。 另一個 N.Bhattarai 的文獻(Bi〇materiais,ν〇ι 26, Iss.31, 2005,ρ.6176·6184)係關於由最高比例為9〇 : 1〇的幾丁聚 糖.PEO之混合物製造奈_米纖維之方法,其中,係使用非 〇離子性界面活性劑Triton X-ioo™作為溶劑。使用注射器 作為紡紗電極,施加電壓為20至25千伏特(kv),電極距 離為17至20公分(cm)。添加二甲亞砜作為共溶劑。 X. Geng等人的文早係關於在濃乙酸中的幾丁聚糖纺 紗法(Biomaterials,Vol.26, 2005, p.5427-5432 )。該文獻在 4 kV/cm的施加電壓使用於90%乙酸中的7%幾丁聚糖。在 較高的電壓中會使奈米纖維產生缺陷,當使用較低濃度的 酸時’會造成聚合物溶液之表面張力過高的問題。使用喷 嘴作為紡紗電極,且所完成的奈米纖維直徑為13〇nm。 94487 6 200925342 : 另一種由幾丁聚糖製造奈米纖維的可行方法為添加 聚乙騎(下文中㈣簡稱為PVA)以進行幾丁聚糖溶液的 一紡紗,如1^1^及其團隊所研究者(€^1)〇1^士£^1)〇汐11^3, Υ〇1·62,2006,p.142-158)。最初的溶液係由比例為83/17 (w/w)的PVA/幾丁聚糖混合物於2%乙酸中所組成,而所完 成的奈米纖維直徑為20至1 〇〇 nm。PVA係接著通過在 NaOH中瀝濾而去除。 另一種在醫學上最常用的生物聚合物為膠原蛋白,其 ©特別適用於燒傷癒合、作為移植物、用於人工牙科填充物、 人工皮膚、人工軟骨、脊椎骨等。膠原蛋白係内含於例如 皮膚、血管壁、軟骨、韌帶。已知有19種類型的膠原蛋白, 在此等膠原蛋白中,有些膠原蛋白可溶於乙酸。在醫學上 主要係使用第I、II及III型膠原蛋白。膠原蛋白係由三條 多肽所構成,其產生具有規則重複的胺基酸Gly_pro_HyP 之α-螺旋(a-helix)。膠原蛋白,不溶於水且可溶於數種溶 ❹劑’該等溶劑中最常用者為六氟異丙醇。通過化學降解或 熱降解可獲得膠原蛋白。. CN1944724專利案係關於幾丁聚糖及膠原蛋白的複 合物之製法。在此專利案中,係使用六氟異丙醇及三氟乙 酸或其混合物作為溶劑。關於第I型膠原蛋白之紡紗法的 公開文獻之一為 J.A. Matthews 的文章(Biomacromolecules Vol.3, 2002, p.232-238),其中,係應用六氟異丙醇作為溶 劑。 W02006068421A1揭示由聚羥基烷酸醋 94487 7 200925342 (polyhy droxyalkanoate)、跋原蛋白或明膠所構成的奈米纖 ' 維之製法。用來製造此等紊米纖維所應用的紡紗電極為噴 : 嘴或針式紡紗電極,且奈米纖維的直徑在50至2000 nm 之範圍内變化。 由前述專利案及公開夂獻清楚可知,尚未有生物聚合 物(特別是幾丁聚糖或膠廣蛋白)奈米纖維之連續製造方 法。經由構成紡紗電極的針之靜電紡紗在聚合物溶液滴注 耗盡之後即中斷。經由針威也細管(聚合物溶液輸送至其中) ❹的紡紗並非代表連續製程,此乃由於針或毛細管的小内徑 會被阻塞,因而在清潔期間必須中斷紡紗製程。再者,至 今為止通過前述方法所製造之奈求纖維仍不具有足夠的品 質,且奈米纖維層亦不均勻° 本發明之目的係提出通過靜電紡紗製造生物聚合物 奈米纖維之方法,其將改善先前技術之缺點。 【發明内容】 办本發明之原理200925342 VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a method for producing nanofibers by electrospinning of a polymer matrix, which is composed of chitosan or collagen (collagen) biopolymer prepared. Further, the present invention relates to a fabric comprising at least one layer of nanofibers produced by electrospinning of a biopolymer of chitosan or collagen. 〇[Prior Art] Biopolymers are suitable for medical applications due to their unique properties, primarily due to their biocompatibility and non-toxicity. The use of biopolymers is important, such as in the manufacture of bandages and plasters, as well as in grafts and anti-adhesive pads, which significantly reduce the risk of post-tissue adhesions; biopolymers can also be used to fill the skin or Bone defects are used in dental medicine, beauty products, and surgical plastic surgery. Some biopolymers have 0 biodegradability, which means that they can be decomposed by the action of, for example, an enzyme. The biopolymer nanofiber material is highly porous and has a specific surface area that allows oxygen to penetrate but does not allow microbial penetration while retaining all of the above characteristics of the biopolymer used. Biopolymer nanofibers are useful, for example, in the healing of burns, which ensure optimal humidity at the healing site and at the same time remove secretions from the wound; biopolymer nanofibers can also be used in bandage materials, plasters and the like. One of the important biopolymers is chitosan, which is derived from a-(1+4) 2-acetamido-2-deoxy-D-glucopyranose unit and 2-amino-2- Deoxy 3 94487 200925342 - Poly-cationic polysaccharide composed of D-glucopyranose units. As for its North Learning Group, chitosan is very similar to cellulose, and its distribution is the second most widely distributed: renewable natural resources. Chitosan is extracted from chitin by alkaline deacetylation. The source of chitin is clam shells, such as shellfish, mussels, crabs and crawfish. Insect shells and mushrooms also contain chitin. Chitosan is biodegradable, biocompatible, and bioadhesive due to its positive charge at physiological pH, which is a major advantage of wound healing; chitosan has a It has a hemostatic effect and thus stops bleeding; chitosan also has an antibacterial effect. Currently, chitosan has been incorporated into most weight loss diets due to its ability to adsorb LDL cholesterol and heavy metals. Due to these characteristics, chitosan is directly applied to medicine, for example, for the bandages and gypsum already mentioned, also for anti-adhesion pads placed in the body, or for use in dental medicine. Fill to stop bleeding. Chitosan is also used in biotechnology to purify wastewater or liquids (such as beer, wine or milk). ^ Most types of chitosan are insoluble in water, but are soluble in organic acids of solution Ό pH below 5. Acetic acid, lactic acid, malic acid, oxalic acid and the like are most often used as a solvent. There are many scientific laboratories and research institutes that have studied chitosan. In order to obtain a nanofiber, a method of electrospinning is used. Currently, nanofibers prepared from chitosan are produced by a spinning device having a needle spinning electrode or a spray spinning electrode. W02007093805A1 discloses a process for producing a composite fiber derived from chitosan and alginate, wherein the maximum content of chitosan is 80%, and the chitosan fiber covers the surface of the alginate fiber 4 94487 200925342. Since these fibers have a fiber diameter of 50 μm, these fibers are "non-nano fibers. WO2006133118A1 is generally directed to a biopolymer in the form of nanofibers in which a layer of nanofibers which are soluble in water and water-insoluble polymers are interlaced. The diameter of the manufactured nanofibers ranges from i to 25 〇〇〇 nm, which is no longer a nanometer size. KR100652469B is an antibacterial nanofiber made of chitosan mixed polyethylene terephthalate. Trifluoroethanol, hexafluoroisopropanol or trifluoroacetic acid is used as a solvent.另一个 Another Korean patent case relates to the production of chitin or chitosan nanofibers by using a nozzle as a spinning electrode. N-methylmorpholine oxide, hexafluoro-2-propanol or hexafluoroacetone hydrate and citric acid are used as a solvent. The W02006048829 patent relates to novel chitin derivatives in the form of medically applied nanofibers, primarily for the protection of the skin and as a subcutaneous filler. The biopolymer used is oxychitin, chitin of chitin, and chitin of viluconic acid. This patent also relates to a nanofiber process using a needle spinning electrode. The W003042251A1 patent discloses a process for the preparation of a complex of chitosan in the form of nano-sized fibers for the purpose of improving activity and solubility, and mainly for use in beauty products. However, the length of the manufactured nanofibers is considerably limited, and the length varies from 5 to 200 nm, and the diameter ranges from 5 to 30 nm, so it is more in line with the size of the nanoparticle than the nanometer. The size of the fiber. Another patent, KR1020050048360AA, relates to a method for fabricating a nanofiber nonwoven fabric for use in tissue 5 94487 200925342: a natural polymer selected from the group consisting of chitosan, collagen, and alginic acid. Synthetic polymers (such as homopolymers of lactic acid, copolymers of lactic acid and gluconic acid, homopolymers of gluconic acid, and mixtures thereof) to produce nanofibers, and the ratio of natural polymer to synthetic polymer is 4: i to i : 4. There is currently a considerable amount of published literature, some of which are related to the preparation of nanofibers of chitosan mixed polymethoxyethane (hereinafter sometimes abbreviated as pE〇). One such document is the article by Bin Duan (Journal O of Biomaterial Science, P〇iymer Editiollj v〇l. 15, 2004, p. 797-811), wherein the highest ratio of chitosan: pE〇 is 2 : j, and using 2% acetic acid as a solvent. The nanofiber system is made of a capillary tube and the finished nanofiber has a diameter of 8 〇 to 8 〇 nm. Another N.Bhattarai literature (Bi〇materiais, ν〇ι 26, Iss. 31, 2005, ρ.6176·6184) is made from a mixture of chitosan and PEO with a maximum ratio of 9〇: 1〇. A method of nanofibers in which a non-antimony ionic surfactant Triton X-iooTM is used as a solvent. Using a syringe as the spinning electrode, the applied voltage is 20 to 25 kilovolts (kv) and the electrode distance is 17 to 20 cm (cm). Dimethyl sulfoxide was added as a cosolvent. The text of X. Geng et al. is directed to the chitosan spinning process in concentrated acetic acid (Biomaterials, Vol. 26, 2005, p. 5427-5432). This document uses 7% chitosan in 90% acetic acid at an applied voltage of 4 kV/cm. At higher voltages, the nanofibers are defective, and when a lower concentration of acid is used, the surface tension of the polymer solution is too high. A nozzle was used as the spinning electrode, and the finished nanofiber was 13 〇 nm in diameter. 94487 6 200925342 : Another possible method for making nanofibers from chitosan is to add polyethylene (hereinafter referred to as PVA for short) to perform a spinning of chitosan solution, such as 1^1^ The researcher of the team (€^1)〇1^士£^1)〇汐11^3, Υ〇1·62, 2006, p.142-158). The initial solution consisted of a mixture of PVA/chitosan in a ratio of 83/17 (w/w) in 2% acetic acid, and the finished nanofibers were 20 to 1 〇〇 nm in diameter. The PVA system was then removed by leaching in NaOH. Another biopharmaceutical most commonly used in medicine is collagen, which is particularly useful for burn healing, as a graft, for artificial dental fillings, artificial skin, artificial cartilage, vertebrae, and the like. Collagen is contained in, for example, the skin, blood vessel walls, cartilage, and ligaments. There are 19 types of collagen known, and among these, some collagens are soluble in acetic acid. In the medical field, collagens of type I, II and III are mainly used. Collagen is composed of three polypeptides which produce an a-helix with a regularly repeating amino acid Gly_pro_HyP. Collagen, insoluble in water and soluble in several solvents ’ The most common of these solvents is hexafluoroisopropanol. Collagen can be obtained by chemical degradation or thermal degradation. The CN1944724 patent relates to a process for the preparation of a complex of chitosan and collagen. In this patent, hexafluoroisopropanol and trifluoroacetic acid or a mixture thereof is used as a solvent. One of the publications on the spinning method of type I collagen is J.A. Matthews's article (Biomacromolecules Vol. 3, 2002, p. 232-238), in which hexafluoroisopropanol is used as a solvent. WO2006068421A1 discloses a method for preparing nanofibers composed of polyhydroxyalkanoic acid vinegar 94487 7 200925342 (polyhy droxyalkanoate), prion protein or gelatin. The spinning electrode used to make these glutinous rice fibers is a spray: nozzle or needle spinning electrode, and the diameter of the nanofibers varies from 50 to 2000 nm. It is apparent from the foregoing patents and publications that there has been no continuous production of biopolymers (especially chitosan or alginate) nanofibers. The electrospinning via the needle constituting the spinning electrode is interrupted after the polymer solution drip is exhausted. Spinning through the needle (the polymer solution is delivered to it) The spinning of the crucible does not represent a continuous process, since the small inner diameter of the needle or capillary is blocked, so the spinning process must be interrupted during cleaning. Furthermore, the fiber produced by the above method still does not have sufficient quality, and the nanofiber layer is not uniform. The object of the present invention is to provide a method for producing a biopolymer nanofiber by electrospinning. It will improve the shortcomings of the prior art. SUMMARY OF THE INVENTION The principle of the present invention

G 本發明之目的已藉由根據本發明之通過聚合物基質 之靜電紡紗而製造奈米纖維之方法而完成,該聚合物基質 係由幾丁聚糖或膠原蛋白的生物聚合物製備而成’本發明 之原理在於:將進行纺紗之前的生物聚合物以純質形式或 與輔助性無毒聚合物(auxiliary non-toxic p〇lymer)之混合 物形式溶解於溶劑系統中,該溶劑系統含有選自濃度為30 重量%至90重量%的乙酸、乳酸、蘋果:酸、正磷酸 (trihydrogen-phosphoric acid)及其混合物所成群組之有機 8 94487 200925342 • 或無機酸,並將此;谷液引至紡紗電極與集電極之間的靜電 • 場,而使所製造的生物聚合物奈米纖維包含乾重高於90 重量%的生物聚合物。 同時,生物聚合物奈米纖維較佳係包含乾重高於95 重量%的生物聚合物。 若溶劑系統包含乙酸,在紡紗時將達到品質固定的結 果。 為了製造幾丁聚糖奈米纖維,較佳係將分子量低於 〇 150千道耳吞(kDa)的幾丁聚糖在進行紡紗之前與輔助性 無毒聚合物PEO共同溶解於濃度高於5〇重量%的乙酸中。 亦可不添加PEO而製造幾丁聚糖纖維,如申請專利 範圍第5項所示者。 為了製造膠原蛋白奈米纖維,較佳係將膝原蛋白在進 行紡紗之前溶解於溶劑系統中,該溶劑系統包含稀釋乙酸 及岭於水中且具有1至3%的濃度之辅助性聚合物PEO或 ◎ PVA 〇 通過上述方法’將可實施奈米纖維的製造不中斷的前 述生物聚合物之靜電紡紗,其品質與其他可進行紡紗製程 的聚合物之靜電紡紗相當。 若'纺紗所用靜電場中的生物聚合物溶液係位在紡紗 電極的紡紗工具有效區(active z〇ne)表面,則將達到固定而 良好的紡紗結果。 同時’較佳者為生物聚合物溶液係通過紡紗電極表面 而輪送至紡紗所用靜電場。 9 94487 200925342 . 紡紗電極較佳係由長形(oblong shape)的旋轉式紡紗 、電極所構成,該旋轉式紡紗電極的周緣部分伸入生物聚合 一 物溶液中。 < σ 於較佳具體例中,該等紡紗電極包含一對由非導電性 材料所製成的端面,由金屬線所形成的紡紗元件係位於該 兩個端面之間,該等紡紗元件係平均地圍繞著周緣分佈並 與旋轉軸平行且彼此電性連接。 紡紗所用靜電場中的生物聚合物溶液較佳亦可位在 〇纺办、工具的有效紡紗區(active spinning zone)表面上。 在紡紗期間,導線(cord)的有效紡紗區具有面向集電 極的穩疋位置,且生物聚合物溶液係藉由沿其長度方面施 加或藉由導線沿著其長度方向的運動而輸送至導線的有效 紡紗區。 【實施方式】 單獨地溶解幾丁聚糖或是形成幾丁聚糖與辅助性無 〇毒聚合物的混合物,該輔助性無毒聚合物特別是可溶於水 中者’其理想上具生物相容性及生物可降解性。輔助性無 毒聚合物的實例為聚乙烯醇、聚環氧乙烷或聚乙烯^比咯啶 嗣。取決於溶劑系統’使用濃度為5至25重量%的 幾丁聚 糖’該溶劑系統係由有機或無機酸所組成,特別是乙酸, 而乙酸的濃度係高於30%且低於90%。再者,可使用乳酸、 顏果酸及正磷酸或其混合物。以奈米纖維的乾重而言,幾 丁聚糖的比例與辅助性聚合物的比例係高於90 : 10。對於 了此處於升’皿下之溶液添加網化劑agent),例如 10 94487 200925342 •二醛類、二羧酸颠、梔子素(genipin)、檸檬酸三鈉。該製 程係取決於幾丁聚糖的分子量、去乙醯化種度、濃度、或 黏度、表面張力、周圍環境的溫度與溼度、以及技術參數(如 電極的旋轉與類型、電極之間的距離、及施加電壓)。 於特定具體實例中,為了製備溶液,係使用於45〇 g 的65.7¼乙酸中之31.5 g幾丁聚糖,其最佳為混合24小時 的時間,並可短暫溫熱該溶液至5〇°c以增加幾丁聚糖的溶 解度。靜置之後,將混合物與112.5 g的3%聚環氧乙烷於 C)水的溶液混合。於100 g所製造的奈米纖維乾重中,幾丁 聚糖對PEO之比(w/w)為90.3 : 9.7。此幾丁聚糖含量可增 加至將近100% ’但同時會減低其性能。The object of the present invention has been achieved by a method for producing nanofibers by electrospinning of a polymer matrix prepared from a biopolymer of chitosan or collagen according to the present invention. The principle of the invention consists in dissolving the biopolymer before spinning in a pure form or in the form of a mixture with an auxiliary non-toxic p〇lymer, the solvent system containing a A concentration of 30% to 90% by weight of acetic acid, lactic acid, apple: acid, trihydrogen-phosphoric acid and mixtures thereof. Organic 8 94487 200925342 • or mineral acid, and this; To the electrostatic field between the spinning electrode and the collector, the biopolymer nanofibers produced comprise biopolymers with a dry weight of more than 90% by weight. At the same time, the biopolymer nanofibers preferably comprise a biopolymer having a dry weight of greater than 95% by weight. If the solvent system contains acetic acid, a quality-fixed result will be achieved during spinning. In order to produce chitosan nanofibers, it is preferred to co-dissolve chitosan having a molecular weight lower than 〇150 thousand auricular (kDa) with the auxiliary non-toxic polymer PEO at a concentration higher than 5 before spinning. 〇% by weight of acetic acid. It is also possible to manufacture chitosan fibers without adding PEO, as shown in item 5 of the patent application. For the production of collagen nanofibers, it is preferred to dissolve the protocortin in a solvent system prior to spinning, the solvent system comprising an auxiliary polymer PEO diluted with acetic acid and slaked in water and having a concentration of 1 to 3%. Or ◎ PVA 静电 The electrospinning of the above-mentioned biopolymer which can perform the production of nanofibers without interruption by the above method is equivalent to the electrospinning of other polymers which can be subjected to a spinning process. If the biopolymer solution in the electrostatic field used for spinning is tied to the active surface of the spinning electrode, a fixed and good spinning result will be achieved. At the same time, it is preferred that the biopolymer solution is transferred to the electrostatic field used for spinning through the surface of the spinning electrode. 9 94487 200925342 . The spinning electrode is preferably composed of an oblong shape rotary spinning machine and an electrode, and a peripheral portion of the rotary spinning electrode projects into the biopolymer solution. < σ In a preferred embodiment, the spinning electrodes comprise a pair of end faces made of a non-conductive material, and a spinning element formed of metal wires is located between the two end faces, and the spinning The yarn elements are distributed evenly around the circumference and are parallel to the axis of rotation and electrically connected to each other. Preferably, the biopolymer solution in the electrostatic field used in the spinning is also located on the surface of the active spinning zone of the tool. During spinning, the effective spinning zone of the cord has a stable position facing the collector, and the biopolymer solution is delivered by its length or by movement of the wire along its length to The effective spinning zone of the wire. [Embodiment] Dissolving chitosan alone or forming a mixture of chitosan and an auxiliary non-toxic polymer, which is particularly soluble in water, which is ideally biocompatible Sexual and biodegradable. Examples of auxiliary non-toxic polymers are polyvinyl alcohol, polyethylene oxide or polyethylene bromidium. Depending on the solvent system 'use of chitosan at a concentration of 5 to 25% by weight' The solvent system consists of an organic or inorganic acid, in particular acetic acid, while the concentration of acetic acid is above 30% and below 90%. Further, lactic acid, anaphoric acid and orthophosphoric acid or a mixture thereof can be used. In terms of the dry weight of the nanofibers, the ratio of chitosan to the auxiliary polymer is higher than 90:10. For the solution added to the solution under the dish, for example, 10 94487 200925342 • dialdehydes, dicarboxylic acid, genipin, trisodium citrate. The process depends on the molecular weight of chitosan, the degree of deacetylation, concentration, or viscosity, surface tension, temperature and humidity of the surrounding environment, and technical parameters (such as the rotation and type of the electrode, and the distance between the electrodes). And applying voltage). In a specific embodiment, for the preparation of a solution, 31.5 g of chitosan in 45 g of 65.71⁄4 acetic acid is used, which is preferably mixed for a period of 24 hours, and the solution can be briefly warmed to 5 〇 °. c to increase the solubility of chitosan. After standing, the mixture was mixed with a solution of 112.5 g of 3% polyethylene oxide in C) water. The ratio of chitosan to PEO (w/w) was 90.3: 9.7 in the dry weight of nanofibers produced by 100 g. This chitosan content can be increased to nearly 100%' while at the same time reducing its performance.

為了進行上述生物聚合物溶液的靜電纺紗,係使用包 含紡紗電極的聚合物溶液靜電紡紗裝置,該紡紗電極包含 可旋轉式設置的紡紗工具,該紡紗工具的周緣之一部分延 伸入存在於貯槽中的生物聚合物溶液中。該旋轉式纺紗工 ❹具經由其旋轉而將生物聚合物溶液攜帶至高強度靜電場 中’該靜電場係由紡紗電極以及與該紡紗電極相對配置的 集電極之間的電位差所形成’而該旋轉式纺紗工具表面位 在相對於該集電極之部分則代表該紡紗工具的有效紡紗 區。在進行紡紗時,生物聚合物溶液係在靜電場中存在於 紡紗電極的紡紗工具有效纺紗區表面。旋轉式紡紗工具可 根據專利CZ 294274戒根據CZ Pv 2006-545或cz PV 2007-485予以實施。 為了製造上述生物聚合物溶液的奈米纖維,亦可使用 11 94487 200925342 其他類型的紡紗電極,藉此使在紡紗所用靜電場中的生物 聚合物溶液存在於紡紗電極的紡紗工具有效紡紗區表面。 : 該等紡紗工具可由根據專利CZ294274或上述發明申請案 的其他類型旋轉式紡紗電極所構成。旋轉式紡紗工具的應 用並非是必要條件,因為生物聚合物溶液的紡紗亦可成功 地在根據CZ PV 2007-485的導線紡紗電極(cord spinning electrode)上進行,其中,在紡紗期間,導線的有效紡紗區 具有面向集電極的穩定位置,且生物聚合物溶液係藉由沿 Ο其長度方向施加或藉由導線沿著其長度方向的運動而輸送 至導線的有效紡紗區。於此情況中,在紡紗所用靜電場中 的生物聚合物溶液係存在於紡紗工具的有效區表面。 在進行上述幾丁聚糖溶液的紡紗時’將部分溶液倒入 配備有紡紗電極(特別是圓柱形紡紗電極或導線紡紗電極) 的貯槽中。該具有電極的槽係位於透過靜電紡紗而製造奈 米纖維的裝置中。使用表面重量為17克/平方公尺(g/m2) ◎且具有抗靜電表面加工的聚丙烯紡黏物(sPunb〇nd)作為基 材,並使用根據CZ PV 2006-477的#游離圓柱形電極 (non-ionising cylindric electrode)作為集電極。製程期間, 將紡紗電極上的電壓固定地設為60至75 kV’並將集電極 接地。電極間的距離為100至200公釐(mm)。紡紗電極的 轉速為3至10轉/分鐘(rot/min),且基讨的移動為20公分 /分鐘(cm/min)。在20的溫度,周圍空氣的相對溼度為 30% 〇 使用相同的方法並以類似的效果使下述溶液進行靜 12 94487 200925342 電紡紗。 ▲ 由第I型膠原蛋白在稀釋乙酸中的溶液進行纺紗,因 而,,,、須使用在醫學應用中可能造成問題的自 的乙酸可藉由短暫溫熱奈米纖維材料而去除 = 米纖維可藉由與幾丁聚糖相同的方式而形成網狀原戶 的膠原蛋白對辅助性聚合物之重量比高於9G: 1G。為了製 造膠原蛋白奈米纖維,上述導線纺紗電極係特別適用者, 施加電壓為6至7 k\7em。 ❹ 為了製備12 g的1〇%賸原蛋白於〇 5M乙酸的溶液, 0.5M乙酸溶液係混合6 g的挑乙酸與12名的抓腦 於水’亦即’相對於⑽g奈米纖維乾重為98 5%的膠原 蛋白。若減少膠原蛋白含量而有利於PE◦,則將增加製程 的性能。 所述技術的優點為奈米纖維中的生物聚合物含量高 以及奈米纖維的表面密度(surface density)範圍大(其為 ❹0.05至100 g/m2)。所製造的幾丁聚糖奈米纖維可具有1〇 至250 nm的直徑,膠原蛋白奈米纖維則可具有1〇至2〇〇 nm的直徑。在所有情況中,皆可達到長期連續的紡紗製程。 實施例1 將具有低分子量(低於150 kDa,在0.5%乙酸溶液中 具有介於5至30亳帕.秒(mpa.s)的溶液黏度)且去乙醯化 程度至少為75%之幾丁聚糖在進行、纺ΐ少之前溶解於濃度高 於50童量%的稀釋乙酸中,並使其混合至少12小時的時 間。待安定後,於溫度35°C及溼度60%,將其與分子量為 94487 13 200925342 - 300000至400000且濃度為1至3%之溶於水中的輔助性聚 合物(如PEO)之混合物進行混合,並將此溶液輸送至紡紗 電極與集電極之間的靜電場中。 實施例2 在進行紡紗之前,於溫度35°C及溼度60%,將膠原蛋 白溶解於包含87.5重量%乙酸、溶於水中的輔助性聚合物 (PEO或PVA)(濃度為1至3%)的溶劑系統中,並將此溶液 引至紡紗電極與集電極之間的靜電場中。 產業利用性 幾丁聚糖及膠原蛋白奈米纖維提供許多應用的可能 性’主要係應用在醫學上’且由於奈米纖維具可達到幾乎 任何表面密度的可能性’其亦可應,用於無基材料 (substrateless material)、防黏連墊、石膏、移植物、與所 ❾ 不欲的骨誠牙科缺陷之填充物4於幾了聚糖具有止血 功效、,其可祕手術巾或牙科醫料以使出血停止 ,並減 人二濟成本’同&加速傷口癒合。膠原蛋白奈米纖維則無 Γ顯現可單獨應用於代替受傷_帶、肌腱及軟骨,或 上, 』板)’或亦可應用於包覆移植物以 減少引入外來物件至體内 r内後的生物體負性免疫反應。 【圖式簡單說明】 無。 【主要元件符號說明】 無0 94487 14In order to perform the electrospinning of the above biopolymer solution, a polymer solution electrospinning device comprising a spinning electrode comprising a spinning device in which a peripheral portion of the spinning tool is partially extended is used Into the biopolymer solution present in the sump. The rotary spinning implement carries the biopolymer solution into the high-intensity electrostatic field via its rotation 'the electrostatic field is formed by the potential difference between the spinning electrode and the collector disposed opposite the spinning electrode' The surface of the rotary spinning tool, which is located relative to the collector, represents the effective spinning zone of the spinning tool. At the time of spinning, the biopolymer solution is present in the electrostatic field in the surface of the spinning zone of the spinning tool. Rotary spinning tools can be implemented according to patent CZ 294274 or according to CZ Pv 2006-545 or cz PV 2007-485. In order to manufacture the nanofiber of the above biopolymer solution, other types of spinning electrodes of 11 94487 200925342 can also be used, whereby the spinning tool for the biopolymer solution in the electrostatic field used in the spinning is present at the spinning electrode. The surface of the spinning zone. These spinning tools can be constructed from other types of rotary spinning electrodes according to patent CZ294274 or the above-mentioned invention application. The application of a rotary spinning tool is not a requirement, as the spinning of the biopolymer solution can also be successfully carried out on a cord spinning electrode according to CZ PV 2007-485, wherein during spinning The effective spinning zone of the wire has a stable position facing the collector, and the biopolymer solution is delivered to the effective spinning zone of the wire by application along the length of the crucible or by movement of the wire along its length. In this case, the biopolymer solution in the electrostatic field used for spinning is present on the effective surface of the spinning tool. When the spinning of the chitosan solution described above is carried out, a part of the solution is poured into a tank equipped with a spinning electrode (particularly a cylindrical spinning electrode or a wire spinning electrode). The groove having the electrodes is located in a device for producing nanofibers by electrospinning. A polypropylene spunbond (sPunb〇nd) having a surface weight of 17 g/m 2 and having an antistatic surface treatment was used as a substrate, and a #free cylindrical shape according to CZ PV 2006-477 was used. A non-ionising cylindric electrode is used as a collector. During the process, the voltage on the spinning electrode was fixedly set to 60 to 75 kV' and the collector was grounded. The distance between the electrodes is 100 to 200 mm. The spinning electrode was rotated at 3 to 10 rpm, and the movement was 20 cm/min. At a temperature of 20, the relative humidity of the surrounding air is 30%. 〇 The following solution is used in the same manner and similarly effected to effect the electrospinning of 12 94487 200925342. ▲ Spinning of a solution of type I collagen in diluted acetic acid, and therefore, the use of acetic acid, which may cause problems in medical applications, can be removed by briefly warming the nanofiber material = rice fiber The weight ratio of collagen to auxiliary polymer formed by the reticulated original can be higher than 9G: 1G by the same manner as chitosan. In order to produce collagen nanofibers, the above-mentioned wire spinning electrode system is particularly suitable for application of a voltage of 6 to 7 k\7em. ❹ In order to prepare 12 g of 1〇% residual protein in 〇5M acetic acid solution, 0.5M acetic acid solution is mixed with 6g of pick acetic acid and 12 of the brain is in water 'that is' relative to (10)g nanofiber dry weight It is 98% collagen. If the collagen content is reduced to favor PE ◦, the performance of the process will be increased. The advantage of the technique is that the biopolymer content in the nanofibers is high and the surface density of the nanofibers is large (which is ❹0.05 to 100 g/m2). The chitosan nanofibers produced may have a diameter of from 1 至 to 250 nm, and the collagen nanofibers may have a diameter of from 1 〇 to 2 〇〇 nm. In all cases, a long-term continuous spinning process can be achieved. Example 1 will have a low molecular weight (less than 150 kDa, a solution viscosity of 5 to 30 kPa (spo.s) in a 0.5% acetic acid solution) and a degree of deacetylation of at least 75% The butanose is dissolved in the diluted acetic acid at a concentration higher than 50% by volume before the spinning is performed, and mixed for at least 12 hours. After stabilization, mix with a mixture of a secondary polymer (such as PEO) dissolved in water at a temperature of 35 ° C and a humidity of 60% with a molecular weight of 94387 13 200925342 - 300000 to 400,000 and a concentration of 1 to 3%. And transporting this solution to the electrostatic field between the spinning electrode and the collector. Example 2 Prior to spinning, at a temperature of 35 ° C and a humidity of 60%, collagen was dissolved in an auxiliary polymer (PEO or PVA) containing 80.5% by weight of acetic acid and dissolved in water (concentration of 1 to 3%). In the solvent system, this solution is introduced into the electrostatic field between the spinning electrode and the collector. Industrially useful chitosan and collagen nanofibers offer many applications possibilities 'mainly applied in medicine' and because nanofibers have the potential to achieve almost any surface density' Substrateless material, anti-adhesive pad, gypsum, graft, and fillers of the undesired bone defects of dental defects 4 have a hemostatic effect on a few glycans, and its secretive surgical towel or dental doctor In order to stop the bleeding, and reduce the cost of the two people 'same & accelerated wound healing. Collagen nanofibers can be used alone to replace wounds, tendons and cartilage, or upper, "plates" or can be used to coat grafts to reduce the introduction of foreign objects into the body. Negative immune response in organisms. [Simple description of the diagram] None. [Main component symbol description] None 0 94487 14

Claims (1)

200925342 七、申請專利範圍: 1. 一種通過聚合物基質之靜電紡紗而製造奈米纖維之方 : 法,該聚合物基質係由幾丁聚糖或膠原蛋白的生物聚 合物製備而成,該方法之特徵在於:將進行紡紗之前 的生物聚合物以純質形式或以其與輔助性無毒聚合物 之混合物形式溶解於溶劑系統中,該溶劑系統包含濃 度為30重量%至90重量%的選自乙酸、乳酸、蘋果酸、 正磷酸及其混合物所成群組之有機或無機酸,並將此 〇 溶液引至紡紗電極與集電極之間的靜電場,而使所製 造的生物聚合物奈米纖維包含乾重高於90重量%的生 物聚合物。 2. 如申請專利範圍第1項之方法,其特徵在於該生物聚 合物奈米纖維包含乾重高於95重量%的生物聚合物。 3. 如申請專利範圍第1或2項之方法,其特徵在於該溶 劑系統包含乙酸。 π 4.如前述申請專利範圍中任一項之通過聚合物基質之靜 〇 電紡紗而製造奈米纖維之方法,其中,該聚合物基質 係由幾丁聚糖製備而成,該方法之特徵在於:將分子 量低於150 kDa的幾丁聚糖在進行纺紗之前與輔助性 無毒聚合物PEO共同溶解於濃度高於50重量%的乙酸 中。 5.如申請專利範圍第1至4項中任一項之通過聚合物基 質之靜電紡紗而製造奈米纖維之方法,其中,該聚合 物基質係由幾丁聚糖製備而成,該方法之特徵在於: 15 94487 200925342 將分子量低於150 kDa的幾丁聚糖在進行紡紗之前溶 : 解於濃度高於50重量%的乙酸中。 6.如前述申請專利範圍中任一項之通過聚合物基質之靜 電紡紗而製造奈米纖維之方法,其中,該聚合物基質 係由膠原蛋白製備而成,該方法之特徵在於:將膠原 蛋白在進行紡紗之前溶解於溶劑系統中,該溶劑系統 包含稀釋乙酸,及溶於水中且具有1至3%的濃度之輔 助性聚合物PEO或PVA。 〇 7.如前述申請專利範圍中任一項之方法,其特徵在於紡 紗所用靜電場中的該生物聚合物溶液係位在該紡紗電 極的紡紗工具有效區表面。 8. 如申請專利範圍第7項之方法,其特徵在於該生物聚 合物溶液係在該紡紗電極表面輸送至紡紗所用靜電 場。 9. 如申請專利範圍第8項之方法,其特徵在於該紡紗電 二 極係由長形的旋轉式紡紗電極所構成,該旋轉式紡紗 〇 電極的周緣部分係延伸入該生物聚合物溶液中。 10. 如申請專利範圍第9項之方法,其特徵在於該旋轉式 紡紗電極包含一對由非導電性材料所製成的端面,由 金屬線所形成的紡紗元件係位於該兩個端面之間,該 等紡紗元件係平均地圍繞著周緣分佈並與旋轉轴平行 且彼此電性連接。 11. 如申請專利範圍第7項之方法,其特徵在於紡紗所用 靜電場中的該生物聚合物溶液係位在紡紗工具的有效 16 94487 200925342 紡紗區之導線表面。 * 12.如申請專利範圍第11項之方法,其特徵在於在紡紗期 間’該導線的有效纺紗區具有面向該集電極的穩定位 置,且該生物聚合物溶液係藉由沿長度方向施加或藉 由該導線沿著其長度方向的運動而輸送至該導線的有 效紡紗區。 13. —種包含至少一層奈米纖維之織物,該奈米纖維係通 過幾丁聚糖或膠原蛋白的生物聚合物之靜電紡紗所製 〇 造,該織物之特徵在於:該由生物聚合物奈米纖維所 製造之奈米纖維層具有範圍為0.05至100 g/m2的表面 密度。 17 94487 200925342 四、指定代表圖:本案無圖式。 " (一)本案指定代表圖為:第( )圖。 二 (二)本代表圖之元件符號簡單說明: 〇 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 益。 〇 2 94487 200925342 七、申請專利範圍:200925342 VII. Scope of application: 1. A method for producing nanofibers by electrospinning of a polymer matrix: the polymer matrix is prepared from a biopolymer of chitosan or collagen, The method is characterized in that the biopolymer before spinning is dissolved in a solvent system in a pure form or as a mixture with an auxiliary non-toxic polymer, the solvent system comprising a concentration of 30% to 90% by weight An organic or inorganic acid grouped from acetic acid, lactic acid, malic acid, orthophosphoric acid, and mixtures thereof, and the cerium solution is introduced to an electrostatic field between the spinning electrode and the collector to produce a biopolymer Nanofibers comprise a biopolymer having a dry weight of greater than 90% by weight. 2. The method of claim 1, wherein the biopolymer nanofiber comprises a biopolymer having a dry weight of greater than 95% by weight. 3. The method of claim 1 or 2, wherein the solvent system comprises acetic acid. The method for producing a nanofiber by a static electrospinning of a polymer matrix according to any one of the preceding claims, wherein the polymer matrix is prepared from chitosan, the method It is characterized in that chitosan having a molecular weight of less than 150 kDa is co-dissolved with the auxiliary non-toxic polymer PEO in acetic acid having a concentration higher than 50% by weight before being spun. 5. The method of producing nanofibers by electrospinning of a polymer matrix according to any one of claims 1 to 4, wherein the polymer matrix is prepared from chitosan, the method It is characterized by: 15 94487 200925342 Chitosan having a molecular weight of less than 150 kDa is dissolved prior to spinning: it is dissolved in acetic acid at a concentration higher than 50% by weight. 6. A method of producing nanofibers by electrospinning of a polymer matrix according to any one of the preceding claims, wherein the polymer matrix is prepared from collagen, the method being characterized by: collagen The protein is dissolved in a solvent system prior to spinning, the solvent system comprising dilute acetic acid, and an auxiliary polymer PEO or PVA dissolved in water and having a concentration of from 1 to 3%. The method of any of the preceding claims, wherein the biopolymer solution in the electrostatic field used in the spinning is tied to the surface of the spinning tool active area of the spinning electrode. 8. The method of claim 7, wherein the biopolymer solution is transported to the surface of the spinning electrode to an electrostatic field used in the spinning. 9. The method of claim 8, wherein the spinning electric pole is formed by an elongated rotary spinning electrode, and a peripheral portion of the rotary spinning electrode extends into the biopolymer In the solution. 10. The method of claim 9, wherein the rotary spinning electrode comprises a pair of end faces made of a non-conductive material, and the spinning elements formed by the wires are located at the two end faces. Between these, the spinning elements are distributed evenly around the circumference and are parallel to the axis of rotation and electrically connected to each other. 11. The method of claim 7, characterized in that the biopolymer solution in the electrostatic field used in the spinning is tied to the surface of the wire of the spinning zone of the spinning tool. * 12. The method of claim 11, characterized in that during the spinning, the effective spinning zone of the wire has a stable position facing the collector, and the biopolymer solution is applied by the length direction. Or by the movement of the wire along its length to the effective spinning zone of the wire. 13. A fabric comprising at least one layer of nanofibers, the nanofibers being made by electrospinning of a biopolymer of chitosan or collagen, the fabric characterized by: the biopolymer The nanofiber layer produced by the nanofiber has a surface density ranging from 0.05 to 100 g/m2. 17 94487 200925342 IV. Designated representative map: There is no schema in this case. " (1) The representative representative of the case is: (). (2) A brief description of the symbol of the representative figure: 〇 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: 〇 2 94487 200925342 VII. Patent application scope: 第97138064號專利申請案 (98年1月22曰) ❹ 一種通過聚合物基質之靜電紡紗而製造奈米纖維之方 法,該聚合物基質係由幾丁聚糖或膠原蛋白的生物聚 合物製備而成,該方法之特徵在於:將進行紡紗之前 的生物聚合物以純質形式或以其與輔助性無毒聚合物 之混合物形式溶解於溶劑系統中,該溶劑系統包含濃 度為30重量%至90重量%的選自乙酸、乳酸、蘋果酸、 正磷酸及其混合物所成群組之有機或無機酸,並將此 溶液引至紡紗電極與集電極之間的靜電場,而使所製 造的生物聚合物奈米纖維包含乾重高於90重量%的生 物聚合物。 2. 3. 如申請專利範圍第1項之方法,其特徵在於該生物聚 合物奈米纖維包含乾重高於95重量%的生物聚合物。 如申請專利範圍第1或2項之方法,其特徵在於該溶 劑系統包含乙酸。 ❹ 4.如申請專利範圍第1至3項中任一項之方法,其中, 該聚合物基質係由幾丁聚糖製備而成,該方法之特徵 在於:將分子量低於150 kDa的幾丁聚糖在進行紡紗 之前與輔助性無毒聚合物PEO共同溶解於濃度高於50 重量%的乙酸中。 如申請專利範圍第1至4項中任一項之方法,其中, 該聚合物基質係由幾丁聚糖製備而成,該方法之特徵 在於:將分子量低於150 kDa的幾丁聚糖在進行紡紗 之前溶解於濃度高於50重量%的乙酸中。 15 94487(修正版) 5. 200925342 6.如申請專利範圍第!至5項中任一項之方法,其中, 、 該聚合物基質係由膠原蛋白製備而成,該方法之特徵 在於:將膠原蛋白在進行纺紗之前溶解於溶劑系統 中,該溶劑系統包含稀釋乙酸,及溶於水中且具有^ 至3%的濃度之輔助性聚合物pE〇或pvA。 ^ 7. Μ請專利範圍第!至6項中任—項之方法,其特徵 '在於紡紗所用靜電場中的該生物聚合物溶液係位在該 》 紡紗電極的紡紗工具有效區表面。 8. ^申π專利⑱圍第7項之方法其特徵在於該生物聚 。物溶液係在該紡紗電極表面輸送至紡紗所用靜 場。 电 9. 如申請專·圍第《狀方法,具㈣在於該纺紗電 ^糸由長形的旋轉式紡紗電極所構成,該旋轉式纺紗 電極的周緣部分係延伸人該生物聚合物溶液中。 ❹ 10. =申請專郷圍第9項之方法,其特徵在於 包含一對由非導電性材料所製成的端面,: 金屬線所形成的紡紗元件係位於該兩個端面之間,談 2紗元件係平均地著料分佈並與旋轉轴/ 且被此電性連接。 範圍第7項之方法,其特徵在於纺紗所用 t電场中㈣生物聚合物料係位在㈣1具的有效 、、方舲區之導線表面。 12:申=:第11項之方法,其特徵在於在紡紗期 ¥線的有效坊紗區具有面向該集電極的穩定位 】6 94487(修正版) 200925342 置,且該生物聚合物溶液係藉由沿長度方向施加或藉 由該導線沿著其長度方向的運動而輸送至該導線的有 • 效紡紗區。 13. —種包含至少一層奈求纖維之織物,該奈米纖維係通 過幾丁聚糖或膠原蛋白的生物聚合物之靜電紡紗所製 L 造,該織物之特徵在於:該由生物聚合物奈米纖維所 \ 製造之奈米纖維層具有範圍為0.05至100 g/m2的表面 密度。 〇Patent Application No. 97,314,064 (January 22, 1998) ❹ A method for producing nanofibers by electrospinning of a polymer matrix prepared from a biopolymer of chitosan or collagen The method is characterized in that the biopolymer before spinning is dissolved in a solvent system in a pure form or in a mixture with an auxiliary non-toxic polymer, the solvent system comprising a concentration of 30% by weight to 90% % by weight of an organic or inorganic acid selected from the group consisting of acetic acid, lactic acid, malic acid, orthophosphoric acid, and mixtures thereof, and the solution is introduced to an electrostatic field between the spinning electrode and the collector, so that the manufactured The biopolymer nanofibers comprise a biopolymer having a dry weight of greater than 90% by weight. 2. The method of claim 1, wherein the biopolymer nanofiber comprises a biopolymer having a dry weight of greater than 95% by weight. The method of claim 1 or 2, wherein the solvent system comprises acetic acid. The method of any one of claims 1 to 3, wherein the polymer matrix is prepared from chitosan, the method characterized by: a molecular weight of less than 150 kDa The glycans are co-dissolved in the acetic acid at a concentration higher than 50% by weight with the auxiliary non-toxic polymer PEO before spinning. The method of any one of claims 1 to 4, wherein the polymer matrix is prepared from chitosan, the method characterized by: chitosan having a molecular weight of less than 150 kDa It is dissolved in acetic acid at a concentration higher than 50% by weight before spinning. 15 94487 (Revised Edition) 5. 200925342 6. If you apply for a patent scope! The method of any one of the items 5, wherein the polymer matrix is prepared from collagen, the method is characterized in that the collagen is dissolved in a solvent system prior to spinning, the solvent system comprising a dilution Acetic acid, and an auxiliary polymer pE〇 or pvA dissolved in water and having a concentration of from 3% to 3%. ^ 7. Please ask for the scope of patents! The method of any of the six items, characterized in that the biopolymer solution in the electrostatic field used for spinning is located on the surface of the spinning tool effective area of the spinning electrode. 8. The method of claim 7 of claim 18 is characterized by the biopolymerization. The solution is transported to the surface of the spinning electrode to the static field used for spinning. Electricity 9. If the application method is as follows, the method (4) consists in that the spinning electric wire is composed of an elongated rotary spinning electrode, and the peripheral portion of the rotary spinning electrode is extended to the human biopolymer. In solution. ❹ 10. The method for applying the ninth item is characterized in that it comprises a pair of end faces made of a non-conductive material, and the spinning element formed by the metal wire is located between the two end faces. The 2 yarn elements are evenly distributed and are electrically connected to and/or electrically coupled to the rotating shaft. The method of item 7 is characterized in that (4) the biopolymer material in the t electric field used for spinning is in the effective surface of the (four) one, and the surface of the wire in the square region. 12: The method of claim 11 is characterized in that in the spinning period, the effective square yarn area of the strand has a stable position facing the collector] 6 94487 (revision) 200925342, and the biopolymer solution is The effective spinning zone is delivered to the wire by application in the length direction or by movement of the wire along its length. 13. A fabric comprising at least one layer of fibers, the nanofibers being made by electrospinning of a biopolymer of chitosan or collagen, the fabric characterized by: the biopolymer The nanofiber layer produced by the nanofibers has a surface density ranging from 0.05 to 100 g/m2. 〇 17 94487(修正版)17 94487 (revised edition)
TW097138064A 2007-10-15 2008-10-03 Method for production of nanofibres TW200925342A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CZ20070716A CZ2007716A3 (en) 2007-10-15 2007-10-15 Process for producing nanifibers

Publications (1)

Publication Number Publication Date
TW200925342A true TW200925342A (en) 2009-06-16

Family

ID=40567834

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097138064A TW200925342A (en) 2007-10-15 2008-10-03 Method for production of nanofibres

Country Status (12)

Country Link
US (1) US20100244331A1 (en)
JP (1) JP2011500980A (en)
CN (1) CN101903568A (en)
AU (1) AU2008314287A1 (en)
BR (1) BRPI0818424A2 (en)
CA (1) CA2702368A1 (en)
CZ (1) CZ2007716A3 (en)
IL (1) IL205093A0 (en)
MX (1) MX2010004085A (en)
PH (1) PH12010500803A1 (en)
TW (1) TW200925342A (en)
WO (1) WO2009049565A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11013827B2 (en) 2016-04-30 2021-05-25 Bvw Holding Ag Microstructured haptotaxic implant
TWI731967B (en) * 2016-04-30 2021-07-01 瑞士商Bvw控股公司 Microstructured haptotaxic implant
TWI751943B (en) * 2021-04-21 2022-01-01 明志科技大學 Biodegradable material and its preparation method

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077958A1 (en) * 2009-12-25 2011-06-30 東洋紡績株式会社 Aggregates of collagen fibers, and process for production thereof
EP2394670A1 (en) * 2010-06-04 2011-12-14 Université de Liège Chitosan-based biomimetic scaffolds and methods for preparing the same
JP5453690B2 (en) * 2010-06-18 2014-03-26 国立大学法人東京工業大学 Collagen / chitosan composite fibrous porous body and method for producing the same
RU2468129C2 (en) * 2010-12-30 2012-11-27 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный университет им. Н.Г. Чернышевского" Biopolymeric fibre, composition of forming solution for its obtaining, method of forming solution preparation, linen of biomedical purpose, biological bandage and method of wound treatment
RU2487701C2 (en) * 2011-07-26 2013-07-20 Общество с ограниченной ответственностью "Инмед" Solution for preparing chitosan material, method for preparing haemostatic material of this solution (versions) and medical device with using chitosan fibres
CN102877147A (en) * 2012-09-24 2013-01-16 四川大学 Method for preparing nanofiber by electrostatic spinning of collagen aqueous solution
CZ201398A3 (en) * 2013-02-12 2014-07-09 Univerzita Pardubice Process for preparing fibers of chitin/chitosan-glucan complex, fibers and wound cover
GB2514592A (en) * 2013-05-30 2014-12-03 Medtrade Products Ltd Degradable haemostat composition
GB2514597A (en) 2013-05-30 2014-12-03 Medtrade Products Ltd Degradable haemostat composition
CN104007040B (en) * 2014-06-05 2016-05-18 广州纺织服装研究院有限公司 A kind of method that detects collagen content in cover type collagen modification fabric
GB201501334D0 (en) 2015-01-27 2015-03-11 Medtrade Products Ltd Composition for a wound dressing
GB201501333D0 (en) 2015-01-27 2015-03-11 Medtrade Products Ltd Composition for a wound dressing
CN105401232B (en) * 2015-11-02 2017-09-29 浙江纺织服装科技有限公司 A kind of preparation method of biological dressing composite micro-nano rice tunica fibrosa
CN105350105A (en) * 2015-11-30 2016-02-24 莫程 Apple cider vinegar fiber and preparing method thereof
CN105839407B (en) * 2016-04-19 2018-05-08 东南大学 A kind of surface biological functional method of medical macromolecular materials nanofiber
CZ309165B6 (en) * 2016-10-20 2022-04-06 Ústav Struktury A Mechaniky Hornin Av Čr, V. V. I. Preparation of a nanocomposite layer based on collagen nanofibers
CN108404213B (en) * 2018-05-14 2023-05-09 上海交通大学医学院附属第九人民医院 Method for preparing tendon scaffold by utilizing three-dimensional printing and electrostatic spinning technology
CN111455496A (en) * 2019-01-20 2020-07-28 泽塔纳米科技(苏州)有限公司 Antibacterial biodegradable nanofiber and preparation method thereof
DE102019104561A1 (en) 2019-02-22 2020-08-27 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Method for producing a composite layer, electrochemical unit and use of the composite layer
CN113445155B (en) * 2021-07-22 2022-11-08 东北师范大学 Chitosan-based nanofiber and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043085A (en) 1998-08-27 2000-03-28 Research Development Foundation Ehrlichia canis 120-kDa immunodominant antigenic protein and gene
US20020090725A1 (en) * 2000-11-17 2002-07-11 Simpson David G. Electroprocessed collagen
GB0126923D0 (en) 2001-11-09 2002-01-02 Procter & Gamble Chitosan compositions
CZ20032421A3 (en) 2003-09-08 2004-11-10 Technická univerzita v Liberci Process for producing nanofibers of polymer solution by electrostatic spinning and apparatus for making the same
ITRM20040539A1 (en) 2004-11-02 2005-02-02 Mavi Sud S R L PREPARE WITH CHITIN OR ITS DERIVATIVES FOR COSMETIC OR MEDICAL USE.
WO2006068421A1 (en) 2004-12-22 2006-06-29 Kyungpook National University Industry-Academic Cooperation Foundation Nanofiber mesh for cell culture
US7531503B2 (en) * 2005-03-11 2009-05-12 Wake Forest University Health Sciences Cell scaffold matrices with incorporated therapeutic agents
WO2006133118A1 (en) 2005-06-07 2006-12-14 The University Of Akron Nanofiber structures for supporting biological materials
GB0603122D0 (en) 2006-02-16 2006-03-29 Univ Bolton Higher Education C Improvements in and relating to composites
CZ304742B6 (en) 2006-07-24 2014-09-17 Elmarco S.R.O. Collecting electrode of a device for producing nanofibers by electrostatic spinning of polymer solutions
CZ299549B6 (en) 2006-09-04 2008-08-27 Elmarco, S. R. O. Rotary spinning electrode
CN100535212C (en) 2006-10-11 2009-09-02 东华大学 Method for preparing collagen protein and chitosan composite nano fibre and film electro static spinning
CZ300345B6 (en) 2007-07-17 2009-04-22 Elmarco, S. R. O. Method for spinning the liquid matrix, device for production of nanofibers through electrostatic spinning of liquid matrix and spinning electrode for such device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11013827B2 (en) 2016-04-30 2021-05-25 Bvw Holding Ag Microstructured haptotaxic implant
TWI731967B (en) * 2016-04-30 2021-07-01 瑞士商Bvw控股公司 Microstructured haptotaxic implant
US11298440B2 (en) 2016-04-30 2022-04-12 Bvw Holding Ag Microstructured haptotaxic implant
US11844875B2 (en) 2016-04-30 2023-12-19 Bvw Holding Ag Microstructured haptotaxic implant
TWI751943B (en) * 2021-04-21 2022-01-01 明志科技大學 Biodegradable material and its preparation method

Also Published As

Publication number Publication date
MX2010004085A (en) 2010-06-02
BRPI0818424A2 (en) 2015-04-22
CZ2007716A3 (en) 2009-04-29
WO2009049565A2 (en) 2009-04-23
PH12010500803A1 (en) 2009-04-23
CN101903568A (en) 2010-12-01
JP2011500980A (en) 2011-01-06
AU2008314287A1 (en) 2009-04-23
WO2009049565A3 (en) 2010-02-25
IL205093A0 (en) 2010-11-30
US20100244331A1 (en) 2010-09-30
CA2702368A1 (en) 2009-04-23

Similar Documents

Publication Publication Date Title
TW200925342A (en) Method for production of nanofibres
Wang et al. Advances in electrospinning of natural biomaterials for wound dressing
RU2468129C2 (en) Biopolymeric fibre, composition of forming solution for its obtaining, method of forming solution preparation, linen of biomedical purpose, biological bandage and method of wound treatment
Naseri et al. Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing
Ebrahimi-Hosseinzadeh et al. In vivo evaluation of gelatin/hyaluronic acid nanofiber as Burn-wound healing and its comparison with ChitoHeal gel
CN101502671B (en) Method for preparing silk fibroin/ P(LLA-CL) compound nano fiber structure repair stand
CN106390177B (en) Chitosan-based multilayer nanofiber membrane dressing and preparation method and application thereof
JP4821004B2 (en) Chitosan / sericin composite nanofiber and its application to artificial skin
RU2487701C2 (en) Solution for preparing chitosan material, method for preparing haemostatic material of this solution (versions) and medical device with using chitosan fibres
Datta et al. Oleoyl-chitosan-based nanofiber mats impregnated with amniotic membrane derived stem cells for accelerated full-thickness excisional wound healing
US11801328B2 (en) Electrospun nanofibers and membrane
JP2007236551A (en) Chitin derivative composite material and medical material
Sandri et al. Electrospinning technologies in wound dressing applications
Salehi et al. Kaolin-loaded chitosan/polyvinyl alcohol electrospun scaffold as a wound dressing material: In vitro and in vivo studies
CN104013995A (en) Oxidation chitosan graft modified porcine dermal collagen micro-nano fiber membrane and preparation method thereof
WO2019040850A1 (en) Topical silk compositions and methods of using
JP2011167237A (en) Bio-applicable material
Hosseini Ravandi et al. Application of electrospun natural biopolymer nanofibers
Li et al. A native sericin wound dressing spun directly from silkworms enhances wound healing
Singh et al. Chitin, chitosan, and silk fibroin electrospun nanofibrous scaffolds: a prospective approach for regenerative medicine
Deshmukh et al. A review on biopolymer-derived electrospun nanofibers for biomedical and antiviral applications
Tamilarasi et al. Advances in electrospun chitosan nanofiber biomaterials for biomedical applications
JP6090160B2 (en) Stimulus responsive material and medical material using the same
Vega-Cázarez et al. Overview of electrospinned chitosan nanofiber composites for wound dressings
Davis et al. Passive and interactive dressing materials