TW200925336A - Non-cyanogen type electrolytic gold plating bath for bump forming - Google Patents

Non-cyanogen type electrolytic gold plating bath for bump forming Download PDF

Info

Publication number
TW200925336A
TW200925336A TW097129689A TW97129689A TW200925336A TW 200925336 A TW200925336 A TW 200925336A TW 097129689 A TW097129689 A TW 097129689A TW 97129689 A TW97129689 A TW 97129689A TW 200925336 A TW200925336 A TW 200925336A
Authority
TW
Taiwan
Prior art keywords
gold
bump
film
plating bath
hardness
Prior art date
Application number
TW097129689A
Other languages
Chinese (zh)
Other versions
TWI477660B (en
Inventor
Yuki Nakamura
Koichiro Inoue
Original Assignee
N E Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N E Chemcat Corp filed Critical N E Chemcat Corp
Publication of TW200925336A publication Critical patent/TW200925336A/en
Application granted granted Critical
Publication of TWI477660B publication Critical patent/TWI477660B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

The invention discloses non-cyanogens-like electrolysis golden electroplate liquid used for forming protrusion, in which comprises 5 g/L to 150 g/L of conductive salt consisting of sulfurous acid gold alkali salt or sulfurous acid gold ammonium as the gold source, a crystal regulator, and potassium sulfite, 1 mg/L to 6 g/L of polyalkylene glycol with molecular weight 200 to 6000 and/or 0.1 mg to 1 g/L of ampholytic active agent, water-soluble amine and/or buffering agent; after electroplate gold plating on a patterned wafer by used of the gold electroplate liquid of the invention, protrusion with film hardness at 50 Hv to 90 Hv, and surface height difference less than 1.8 microns is formed after heat treatment at 200 degrees centigrade to 400 degrees centigrade for 5 min.

Description

200925336 九、發明說明 【發明所屬之技術領域】 本發明係關於一種半導體晶圓之凸塊成形用非氰系的 電解鍍金浴。詳細而言,係關於一種形成具有平坦之表面 與所欲之硬度的凸塊之非氰系的電解鍍金浴。形成之凸塊 係適於使用異向性導電黏著劑之電路接合。 Ο 【先前技術】 非氰系電解鍍金浴一般係含有作爲金鹽之亞硫酸金鹼 鹽、或者亞硫酸金銨。已知基本浴係爲由此等金鹽、作爲 金錯合物之安定化劑的水溶性胺、作爲電鏟皮膜之結晶調 整劑的微量Tl、Pb、或As化合物、進而作爲電解質的亞 硫酸鈉或硫酸鈉以及緩衝劑所成者。(日本特願2005-286147 (申請專利範圍)' 特願2005-145767 (申請專利 範圍))。 © 使用鍍金浴於半導體晶圓上形成之金凸塊係近年來廣 泛利用作爲1C、LSI的電極。 _ 第3圖爲形成於半導體晶圓上之習知的金凸塊之剖面 圖。 於半導體晶圓上形成金凸塊之際,首先於半導體晶圓 1上以進行濺鏟等形成短軸柱狀之鋁(A1 )電極2。半導 體晶圓1上係使用砂晶圓或GaAs等之化合物晶圓。晶圓 1之表面係預先形成含有積體電路的電路層1’。接著,於 鈍化膜3進行圖型化。於鈍化膜3係A1電極2之上方形 -4- 200925336 成開口部3 a。 其後,藉由進行濺鍍形成由鈦·鎢(TiW) 濺鍍膜4 與金濺銨膜5所成的凸塊之底層金屬(Under Bump Metal )(UBM )層6。UBM層6係被覆露出在鈍化膜3及其開 口部3a之A1電極2。UBM層6上係於光阻膜8進行遮蔽 。於A1電極2之上方之光阻膜8上係形成有開口部8a。 接著,光阻膜8之開口部8a內,以電解鍍金形成金凸塊7 Ο 。其後,將光阻膜8、金濺鍍膜5的領域(未被金凸塊7 被覆的領域)及Tiw濺鍍膜4去除。其結果,鈍化膜3露 出,得到形成金凸塊7的晶圓。 形成金凸塊之半導體晶圓(亦即半導體晶片)係於其 後之步驟中安裝印刷配線基板。安裝之際,係將形成於印 刷配線基板上之配線圖型的基板電極、與形成於半導體晶 圓上之金凸塊之間予以連接。連接係有使用金屬線的打線 接合(wire bonding)、與不使用金屬線地將凸塊與基板 〇 電極接合的覆晶接合(flip chip bonding)法方式。 近年來,將半導體封裝之製造步驟簡略化、且以確實 地進行接合爲目的,於覆晶接合法多使用薄膜狀的異向性 導電黏著劑。異向性導電黏著劑爲使導電粒子均勻地分散 於環氧樹脂等者。作爲導電粒子,使用以丙烯酸樹脂所形 成之粒子表面依序被覆有鎳、金的導電粒子。 凸塊的形狀與硬度係對凸塊與基板的接合性大有影響 。金凸塊係於具導電性、耐氧化性等優異之外,尙要求具 有所欲之形狀、硬度。 -5- 200925336 第3圖中,7’係表示金凸塊表面(與基板電極之接合 面)。此表面7’係對於晶圓1之表面不爲平行的平面,係 爲中央上方突出的凸型。上述之外,亦有凸塊表面爲凹型 之形狀的情形、或切缺周緣部之形狀的情形。此等形狀之 凸塊與基板接合時,黏著劑中之導電粒子亦落入凸塊表面 之凹處或周緣部。因此導電粒子係無法均勻地分散配置於 凸塊表面,而偏在於表面的一部份。其結果、接合面積減 © 少且金凸塊與對向基板之接合力不強。此情形係於安裝步 驟後亦產生因斷線或接合不良的電氣缺陷。 又,與導電粒子相比凸塊的硬度低時,導電粒子係沒 入凸塊側。其結果,係於金凸塊與對向基板等之間無法熱 壓黏導電粒子,不能保持接合。 另一方面,凸塊硬度過高時僅導電粒子被壓壞而無法 接合,成爲斷線或接合不良而致產生電氣缺陷的原因。 ® 【發明內容】 發明所欲解決之課題 如上述地,凸塊表面爲不平坦且爲凸型或凹型的凸塊 形狀,凸塊之周緣切缺時,異向性導電黏著劑的導電粒子 無法均勻地分散配置於凸塊表面,而變成一部份局部化的 配置。其結果,介著粒子的接合面積減少而接合強度降低 〇 因此,使用異向性導電黏著劑進行接合時,如上述地 具有適度的硬度同時,接合面必需形成具有平滑性之高的 -6- 200925336 平面的金凸塊。 使用習用之電解鍍金浴形成凸塊的情形,係無法使金 凸塊硬度爲所欲的硬度。其結果,介由異向性導電黏著劑 的導電粒子使不產生電氣缺陷,但凸塊與基板電極之接合 進行變爲困難。 因此,本發明之目的係在提供凸塊成形用非氰系電解 鍍金浴,其可獲得適於使用異向性導電黏著劑之熱壓黏而 © 接合之具有硬度與形狀的金凸塊。 欲解決課題之手段 本發明人爲解決上述課題而進行硏討。其結果,藉由 調整對具有所定之分子量的烷二醇或兩性界面活性劑之電 鑛浴的添加量,發現可控制金凸塊之硬度在所欲的範圍內 。進而作爲傳導鹽,藉由合倂亞硫酸鉀與上述烷二醇或兩 面活性劑使用,發現可得接合面爲平坦的凸塊。 ® 達成上述目的的本發明係爲以下記載者。 〔1〕一種凸塊成形用非氰系電解鍍金浴,其特徵爲 含有亞硫酸金鹼鹽或亞硫酸金銨、結晶調整劑、亞硫酸鉀 5〜150g/L、分子量爲200〜6000之聚烷二醇lmg/L〜 6 g / L及/或兩性界面活性劑0 1 m g〜1 g / L與水溶性胺 及/或緩衝劑所成。 〔2〕如〔1〕記載之凸塊成形用非氰系電解鍍金浴, 其中兩性界面活性劑爲選自2-烷基-N-羧甲基-N-羥乙基咪 唑甜菜鹼、月桂酸醯胺丙基羥基磺基甜菜鹼、脂肪酸醯胺 200925336 乙基乙二胺鹼 電解鍍金浴, 或A s化合物 屬濃度。 經圖型化之晶 解鍍金浴進行 熱處理,而形 1 . 8 μ m以下的 刷配線基板上 半導體晶圓上 劑予以連接的 :爲 50 〜90Hv 丙基甜菜鹼、及脂肪酸醯基-N-羧乙基-N-羥 鹽之1種或2種以上。 〔3〕如〔1〕記載之凸塊成形用非氰系 其中結晶調整劑爲T1化合物、Pb化合物、 ’且慘合結晶調整劑0.1〜lOOmg/L作爲金 〔4〕一種凸塊成形方法,其特徵爲於 圓上使用〔1〕記載之凸塊成形用非氰系電 Ο 電解鍍金後,以200〜400 °C經由5分鐘以上 成皮膜硬度爲50〜90Hv、表面之高低差爲 凸塊。 〔5〕一種連接構造,其係將形成於印 之具有基板配線圖型之基板電極、與形成於 之積體電路的金凸塊,使用異向性導電黏著 連接構造,其特徵爲前述金凸塊的皮膜硬虔BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-cyanide electrolytic gold plating bath for bump formation of a semiconductor wafer. More specifically, it relates to a non-cyanide electrolytic gold plating bath which forms a bump having a flat surface and a desired hardness. The bumps formed are suitable for circuit bonding using an anisotropic conductive adhesive. Ο [Prior Art] The non-cyanide electrolytic gold plating bath generally contains a gold sulfite salt as a gold salt or a gold ammonium sulfite. It is known that the basic bath system is such a gold salt, a water-soluble amine as a stabilizer for the gold complex, a trace amount of Tl, Pb, or As compound as a crystal modifier of the electric shovel film, and further, sodium sulfite as an electrolyte or Sodium sulfate and buffers. (Japanese Patent Application No. 2005-286147 (Scope of Application for Patent Application)'--2005-145767 (Scope of Application for Patent)). © Gold bumps formed on a semiconductor wafer using a gold-plated bath have been widely used as electrodes for 1C and LSI in recent years. Figure 3 is a cross-sectional view of a conventional gold bump formed on a semiconductor wafer. When a gold bump is formed on a semiconductor wafer, first, a short-axis columnar aluminum (A1) electrode 2 is formed on the semiconductor wafer 1 by sputtering or the like. A compound wafer such as a sand wafer or GaAs is used on the semiconductor wafer 1. The surface of the wafer 1 is formed in advance with a circuit layer 1' including an integrated circuit. Next, the passivation film 3 is patterned. On the passivation film 3, the A1 electrode 2 is square -4-200925336 into an opening 3a. Thereafter, an under bump metal (UBM) layer 6 of a bump formed of a titanium-tungsten (TiW) sputter film 4 and a gold-sprayed film 5 is formed by sputtering. The UBM layer 6 is covered with the A1 electrode 2 exposed to the passivation film 3 and its opening portion 3a. The UBM layer 6 is attached to the photoresist film 8 for shielding. An opening 8a is formed in the photoresist film 8 above the A1 electrode 2. Next, in the opening 8a of the photoresist film 8, gold bumps 7 Ο are formed by electrolytic gold plating. Thereafter, the field of the photoresist film 8 and the gold sputtering film 5 (the region not covered by the gold bumps 7) and the Tiw sputtering film 4 are removed. As a result, the passivation film 3 is exposed, and a wafer on which the gold bumps 7 are formed is obtained. The semiconductor wafer (i.e., the semiconductor wafer) on which the gold bumps are formed is mounted in the subsequent step to mount the printed wiring substrate. At the time of mounting, the substrate electrode of the wiring pattern formed on the printed wiring board is connected to the gold bump formed on the semiconductor wafer. The connection is a flip chip bonding method in which wire bonding is performed using a metal wire and bonding the bump to the substrate 电极 electrode without using a metal wire. In recent years, in order to simplify the manufacturing steps of the semiconductor package and to perform the bonding reliably, a film-shaped anisotropic conductive adhesive is often used in the flip chip bonding method. The anisotropic conductive adhesive is one in which conductive particles are uniformly dispersed in an epoxy resin or the like. As the conductive particles, conductive particles having nickel or gold are sequentially coated on the surface of the particles formed of the acrylic resin. The shape and hardness of the bumps have a large influence on the bondability between the bumps and the substrate. The gold bumps are excellent in electrical conductivity and oxidation resistance, and are required to have a desired shape and hardness. -5- 200925336 In Fig. 3, 7' indicates the surface of the gold bump (the bonding surface with the substrate electrode). This surface 7' is a plane which is not parallel to the surface of the wafer 1, and is a convex shape which protrudes above the center. In addition to the above, there are cases where the surface of the bump is a concave shape or a shape in which the peripheral portion is cut. When the bumps of these shapes are bonded to the substrate, the conductive particles in the adhesive also fall into the concave or peripheral portion of the surface of the bump. Therefore, the conductive particles are not uniformly dispersed and disposed on the surface of the bump, but are biased in a part of the surface. As a result, the joint area is reduced by a small amount, and the bonding force between the gold bump and the counter substrate is not strong. This situation is caused by electrical defects due to wire breakage or poor joints after the installation step. Further, when the hardness of the bump is lower than that of the conductive particles, the conductive particles are not on the side of the bump. As a result, the conductive particles are not thermally bonded between the gold bumps and the counter substrate, and the bonding cannot be maintained. On the other hand, when the hardness of the bump is too high, only the conductive particles are crushed and cannot be joined, which causes disconnection or poor bonding, which causes electrical defects. SUMMARY OF THE INVENTION PROBLEM TO BE SOLVED BY THE INVENTION As described above, the surface of the bump is uneven and convex or concave, and when the periphery of the bump is cut, the conductive particles of the anisotropic conductive adhesive cannot be It is evenly distributed on the surface of the bump and becomes a partially localized configuration. As a result, the bonding strength of the particles is reduced and the bonding strength is lowered. Therefore, when bonding is performed using an anisotropic conductive adhesive, as described above, the bonding surface must have a high smoothness. 200925336 Flat gold bumps. In the case where a bump is formed by a conventional electrolytic gold plating bath, the hardness of the gold bump cannot be made to have a desired hardness. As a result, the conductive particles passing through the anisotropic conductive adhesive do not cause electrical defects, but the bonding of the bumps to the substrate electrodes becomes difficult. Accordingly, it is an object of the present invention to provide a non-cyanide electrolytic gold plating bath for forming a bump which is capable of obtaining a gold bump having a hardness and a shape suitable for thermal compression bonding using an anisotropic conductive adhesive. Means for Solving the Problem The present inventors have made a discussion to solve the above problems. As a result, it was found that the hardness of the gold bumps can be controlled within a desired range by adjusting the addition amount of the ore bath having an alkanediol or an amphoteric surfactant having a predetermined molecular weight. Further, as a conductive salt, by using potassium sulfite and the above alkanediol or a two-sided active agent, it was found that a bump having a flat joint surface was obtained. ® The present invention for achieving the above object is as described below. [1] A non-cyanide electrolytic gold plating bath for forming a bump, which comprises a gold sulfite base salt or a gold ammonium sulfite, a crystal modifier, a potassium sulfite 5 to 150 g/L, and a molecular weight of 200 to 6000. Alkanediol 1 mg / L ~ 6 g / L and / or amphoteric surfactant 0 1 mg ~ 1 g / L and water-soluble amine and / or buffer. [2] The non-cyanide electrolytic gold plating bath for forming a bump according to [1], wherein the amphoteric surfactant is selected from the group consisting of 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolium betaine, lauric acid Amidoxime hydroxysultaine, fatty acid decylamine 200925336 Ethyl ethylenediamine base electrolytic gold plating bath, or A s compound genus concentration. The heat treatment is performed by a patterned crystallizing gold bath, and the semiconductor wafer on the brush wiring substrate having a shape of 1.8 μm or less is connected: 50 to 90 Hv propyl betaine, and fatty acid sulfhydryl-N- One or two or more kinds of carboxyethyl-N-hydroxy salts. [3] The non-cyanide-based non-cyanide-forming method according to [1], wherein the crystal modifier is a T1 compound, a Pb compound, and a miscellaneous crystal modifier 0.1 to 100 mg/L is used as a gold [4] bump forming method. It is characterized in that the non-cyanide electroless gold plating for bump formation described in [1] is applied to the circle, and then the film hardness is 50 to 90 Hv at 200 to 400 ° C for 5 minutes or more, and the height difference of the surface is a bump. . [5] A connection structure in which a substrate electrode having a substrate wiring pattern formed on a substrate and a gold bump formed on the integrated circuit are used, and an anisotropic conductive adhesion connection structure is used, which is characterized by the aforementioned gold convex Block hard palate

發明效果 鹽其爲不使用 面活性劑或聚 或Ga/ As等 較佳的硬度, 皮膜所成的凸 本發明之非氰系電解鍍金浴係含有傳導 亞硫酸鈉而使用亞硫酸鉀,進而含有兩性界 烷二醇爲必須成分。藉此,於矽半導體晶圓 的化合物半導體晶圓上形成凸塊之際,具有 可製作由具不凹凸之平坦的表面的電解鍍金 l>4a 塊。 尤其,選擇聚烷二醇的分子量、添加量藉由與亞硫酸 200925336 鉀一起摻合於電鍍浴中,可控制在適於與異向性導電黏著 劑的熱壓黏的50〜90Hv的範圍之任意値的凸塊硬度。 藉由本發明的電鍍浴所形成的金凸塊係具有平坦的壓 黏面與所欲的硬度。因此,於半導體製造步驟中可容易地 介由使用之異向性導電膜、異向導電用黏著薄膜等的異向 性導電黏著劑進行電極接合。而且,產生斷線或接合不良 的比例極少。 〇 使用本發明之電鍍浴所形成之金凸塊係不僅接合面連 與光阻膜接觸之凸塊的側面亦不產生膨脹,故可形成仿照 光阻膜的開口部形狀的金凸塊。因此,側面及上面爲以平 面而構成角柱狀、多角柱狀的金凸塊或可形成均一徑的圓 柱狀金凸塊。 實施發明之最佳形態 本發明的電解鍍金浴爲非氰系的鍍金浴,係於由作爲 © 金源之亞硫酸金鹼鹽或亞硫酸金銨、作爲金錯鹽的安定化 劑之水溶性胺、微量的結晶調整劑與緩衝劑所成的浴中, 含有作爲傳導鹽之亞硫酸鉀、聚烷二醇及/或兩性界面活 性劑的電解鍍金浴。作爲傳導鹽係實質上不含亞硫酸鈉。 以下,就本發明的電解鍍金浴之必須成分,進行說明 每一成分。 (1)亞硫酸金鹼鹽、亞硫酸金銨(金源) 作爲本發明中使用之亞硫酸金鹼鹽,係不限制使用公 -9- 200925336 知的亞硫酸金鹼鹽。作爲亞硫酸金鹼鹽,可列舉如亞硫酸 金(I)鈉、亞硫酸金(I)鉀等。此等係可以單獨1種亦 或倂用2種以上。 本發明的電解鍍金浴中,作爲金源係使用上述之亞硫 酸金鹼鹽或亞硫酸金銨,其摻合量係作爲金量一般以1〜 20g/L、較佳爲8〜15g/L。亞硫酸金鹼鹽或亞硫酸金銨 的摻合量未達lg/L時,有電鑛皮膜之厚度不均一的情形 〇 。超過20g/ L時,電鍍皮膜的特性等雖沒有問題,但製 造成本變高且成經濟上的負擔。 (2 )水溶性胺(安定化劑) 作爲水溶性胺係可使用碳數2以上、較佳碳數2〜6 的二胺,可列舉如1,2-二胺基乙烷、l,2-二胺基丙烷、 1,6-二胺基己烷等。此等係可單獨1種使用,亦可倂用2 種以上。 水溶性胺的摻合量一般爲0.1〜30g/L、較佳爲1〜 12g/L。水溶性胺的摻合量超過3 0g/L時金錯鹽的安定 性增大,但另一方面,電鍍皮膜過度地緻密化且有關於接 .合性之不良的情形產生。未達o.lg/ L係界限電流密度降 低有變成燒焦電鍍的情形。 (3 ) T1化合物、Pb化合物、As化合物(結晶調整劑) 作爲本發明的電解鍍金浴中使用之結晶調整劑,可列 舉如甲酸鉈、丙二酸鉈、硫酸鉈、硝酸鉈等的T1化合物 -10- 200925336 :檸檬酸鉛、硝酸鉛、鏈烷磺酸鉛等的Pb化合物;三氧 化二砷等的As化合物。此等T1化合物、Pb化合物、As 化合物可單獨1種使用、亦可組合2種以上使用。 結晶調整劑的摻合量在不損及本發明的目的之範圍內 可作適宜設定,但金屬濃度一般爲〇.1〜l〇〇mg/ L、較佳 0.5〜50mg/ L、尤其較佳爲3〜25mg/ L。結晶調整劑的 摻合量未達O.lmg/ L時,電鍍附著性、電鍍浴安定性及 ❹ 耐久性惡化且有電鑛浴之構成成分分解的情形。超過 lOOmg/ L時,有電鍍附著性之惡化、及電鍍皮膜的外觀 不勻產生的情形。 (4)亞硫酸鉀(傳導鹽) 本發明的電解鍍金浴中,使用亞硫酸鉀作爲傳導鹽。 本發明的電解鍍金浴中之亞硫酸鉀的摻合量係在不損 及本發明之目的的範圍內可作適宜設定,但以下述之摻合 ⑩量爲佳。 亞硫酸鉀的摻合量一般爲5〜150g/L,但較佳爲10 〜150g/L、更佳爲 50〜100g/L、特佳爲 60〜90g/L。 亞硫酸鉀的摻合量未達5g/ L時,無法充分地抑制凸塊形 狀的膨脹而使凸塊表面平坦。進而,電鍍附著性及液安定 性惡化,且有電鍍浴之分解產生的情形。超過15 0g/ L時 ,有界限電流密度降低且變成燒焦電鍍的情形。 本發明的電鍍浴中,作爲傳導鹽作實質上不含亞硫酸 鈉、硫酸鈉等之鈉鹽。電鍍浴中所含之鈉係限定來自金源 -11 - 200925336 之亞硫酸金鈉者。 (5 )緩衝劑 作爲本發明中使用之緩衝劑,若爲一般電解鍍金浴所 使用者則無特別限定。例如,可將磷酸鹽、硼酸鹽等之無 機酸鹽、檸檬酸鹽、酞酸鹽、乙二胺四乙酸鹽等之有機酸 (2至5元的多元羧酸、羥基羧酸)鹽等單獨使用、亦可 〇 使用2種以上。 本發明的非氰系電解鍍金浴中之緩衝劑的摻合量,一 般爲1〜30g/L,較佳爲2〜15g/L、特佳爲2〜10g/L 。緩衝劑的摻合量未達1 g/ L時,因pH降低而液安定性 惡化’且有電鍍浴成分之分解產生的情形。超過3 0g/ L 時’界限電流密度降低有變成燒焦電鏟的情形。 (6)聚烷二醇、兩性界面活性劑 © 作爲本發明的非氰系電解鍍金浴中摻合之聚烷二醇, 可列舉聚乙二醇、聚丙二醇等。 兩性界面活性劑,可列舉2-烷基-N-羧甲基-N-羥乙基 咪唑甜菜鹼、月桂酸醯胺丙基羥基硫代甜菜鹼、脂肪酸醯 胺丙基甜菜鹼等的甜菜鹼系兩性界面活性劑;脂肪酸醯 酯-N-羧乙基-N-羥基乙基乙二胺鹼鹽等的胺基羧酸鹽系兩 性界面活性劑;咪唑啉衍生物系兩性界面活性劑等。 聚烷二醇的摻合量爲lmg/L〜6g/L,較佳爲20〜 3 000mg/L、特佳爲1〇〇〜l〇〇〇mg/L。另一方面,兩性界 -12- 200925336 面活性劑的摻合量一般爲0.1mg/L〜lg/L,較佳爲 500mg/L、特佳爲1〇〜300mg/L。聚烷二醇與兩性 活性劑的摻合量皆比上述範圍少的情形,熱處理後之 的皮膜硬度爲低於50Hv,且進而無法使凸塊的表面 坦的形狀。超過上述範圍的情形,熱處理後之凸塊的 硬度成爲90Hv以上無法獲得適於接合的硬度。 聚烷二醇與兩性界面活性劑係亦可僅使用其中一 〇 或倂用兩者亦可。倂用兩者時,兩者的摻合量係以於 各範圍內,配合目的作適宜調節。 使用聚烷二醇時,爲使熱處理後之金凸塊的皮膜 適於異向導電用黏著薄膜的接合的50〜90Hv,使用 量爲200〜6000、較佳爲 400〜2000、更佳爲400〜 者。分子量超過6000時,爲使熱處理後的皮膜硬度| 〜90Hv,必需使摻合量爲低於lmg/L之極低的濃度 此低濃度之摻合量的電鍍液係濃度管理困難而不實用. ® 藉由調整分子量6000以下的聚烷二醇的摻合量 由電鍍所形成之皮膜的硬度可調整在50〜90Hv之範 所期望之値。低分子量之聚烷二醇的情形係藉由增多 量,而高分子量的情形係藉由使摻合量減少,則可得 90Hv的皮膜硬度。於任一者的分子量中,藉由使摻 增多皮膜硬度變高且可得近90Hv之比較高的硬度。 例如,使熱處理後的皮膜硬度爲70Hv的情形, 量6000以下的聚烷二醇的摻合量爲lmg/L〜6g/L 佳係藉由使爲20〜300 Omg/L可達成。進而,此時兩 界面 凸塊 爲平 皮膜 者, 上述 硬度 分子 1000 i 50 。如 3 ,經 圍於 摻合 50〜 合量 分子 、較 性界 -13- 200925336 面活性劑的摻合量以10〜3 OOmg/ L爲佳。 一般,藉由使聚烷二醇或兩性界面活性劑的摻合量增 多,減少因熱處理而致皮膜硬度之降低。進而,摻合亞硫 酸鉀而不摻聚烷二醇或兩性界面活性劑的情形,係無法充 分地使凸塊表面之高低差減小。只有加入亞硫酸鉀、聚烷 二醇或兩性界面活性劑之兩者的情形時,凸塊表面之高低 差及皮膜硬度之兩者可成爲所期望之値。 © 本發明的非氰系電解鍍金浴中,在不損及本發明之目 的的範圍內亦可適宜使用pH調整劑等之其它成分。 作爲pH調整劑,可列舉如酸之硫酸、亞硫酸水、磷 酸等;鹼之氫氧化鉀、氨水等。 使用本發明的非氰系電解鍍金浴經由電鏟朝半導體晶 圓形成凸塊之際,係依照常法進行電鍍操作則佳。例如, 作爲UBM層使用Ti-W濺鍍膜,對其上形成Au濺鍍膜等 的晶圓使用光罩材進行遮蔽。其後,以晶圓作爲被鍍物進 ® 行電解鍍金。接著,有使光罩材溶解於溶劑中以除去的方 法等。除去光罩材後,未被UBM層之金凸塊被覆的部分 藉由蝕刻來除去且進行晶圓的熱處理。 光罩材方面係可使用酚醛清漆系正型光阻。市售品方 面,可列舉如 LA-900、HA-900 (以上,東京應化工業股 份有限公司製)等。 電鑛溫度一般爲40〜70 °C,較佳爲50〜65 °C。電鍍浴 的溫度脫離40〜70°C的範圍,則有電鍍皮膜難析出的情形 、或電鍍浴變不安定且電鍍浴成分之分解產生的情形。 -14- 200925336 電鑛時使用之設定電流密度係依電鍍液的組成、溫度 等之條件而有適當之範圍不同,故難以一個意思來決定。 金濃度於8〜15g/ l、6(TC之電鑛浴溫度的條件下,係一 般爲2_0A/dm2以下、較佳爲〇·2〜1.2A/dm2。設定電流 密度脫離上述範圍,則有作業性差的情形、或電鍍皮膜外 觀、電鏟皮膜特性產生異常的情形,或則明顯地電鍍浴變 不安定且電鍍浴成分之分解產生的情形。 ® 作爲本發明的非氰系電解鍍金浴的pH,一般爲7.0以 上、較佳爲7.2〜1〇.〇。非氰系電解鍍金浴的pH未達7.0 ,則明顯地有電鍍浴變不安定且分解產生的情形。另一方 面,pH超過10.0,則光罩材溶解且無法形成所期望的金 凸塊等。 金凸塊的熱處理溫度爲200〜400 °C,較佳使爲200〜 300 °C。熱處理時間使爲5分鐘以上,較佳爲30〜60分鐘 。熱處理係使用可將室(chamber)内部保持一定時間以 © 在設定溫度內的精密恆溫器(Fine Oven )等來進行。 本發明的非氰系電解鍍金浴係藉由補充管理其構成金 源及電鍍浴的其它成分,可達成2 turn (消耗所有電鍍浴 中之金量於電鑛時作爲1 turn )以上的使用。 本發明的非氰系電解鏟金浴,係若質地被金屬化( metallize)能導通者,則不選擇被鍍物。光罩材係使用酚 醛清漆系正型光阻,於經圖型化之矽晶圓上或Ga/ As晶 圓等化合物晶圓上,特別適合於形成凸塊之際時使用。 第1圖爲使用本發明的鍍金浴於半導體晶圓上形成金 -15- 200925336 凸塊的一例的剖面圖。第1圖中,1爲半導體晶圓、〗,爲 含有形成於半導體晶圓上之積體電路的電路層、2爲A1電 極、3爲鈍化膜、3a爲鈍化膜的開口部、4爲TiW溺鍍膜 、5爲金濺鍍膜、6爲由TiW濺鑛膜4與金濺鑛膜5所成 的UBM層、7爲金凸塊' 7’爲金凸塊的表面、8爲光阻膜 的開口部、8a爲光阻膜的開口部。金凸塊的表面7,平坦 地形成,接觸中央部7’a與光阻膜之周端部7,b的高低差 〇 (從晶圓1起的距離差)爲1·8μιη以内,以1·7μπι以内爲 佳、1 · 6 μιη以内更佳、1 . 5 μιη以内特佳。 第2圖爲將形成第1圖所示之金凸塊的半導體晶片安 裝於印刷配線基板的狀態的剖面圖。與第1圖同樣的部分 附加同樣符號而省略其說明。 印刷配線基板1 〇的硬質基板1 1上形成有以銅等之導 電性材料所形成的基板配線圖型1 2。於基板配線圖型1 2 形成有以金等之導電性材料所形成的基板電極14。另一方 ® 面,於與印刷配線基板1 〇平行地安裝於基板1 〇的半導體 晶片16,係形成有與基板電極14對向的金凸塊7。上述 基板電極14與金凸塊7係藉由異向性導電黏著劑20所接 合。硬質基板11與半導體晶圓1之間,藉由密封材I8 來密封。 硬質基板1 1的材質係若爲硬質印刷配線基板所使用 者,則無特別限制,可列舉玻璃繊維強化環氧樹脂、陶瓷 等。作爲密封材1 8,一般可使用半導體晶片之密封所使用 的公知的樹脂。朝向硬質基板11上的基板配線圖型10、 -16- 200925336 基板電極14的形成,係藉由蒸鍍、電鑛、金屬薄膜之蝕 刻、導電塗料之塗佈等來進行。 朝向印刷配線基板1 〇上之半導體晶片1 6的安裝方法 ,係如下述地來進行。首先,於基板電極14的上方配置 金凸塊7位置而決定半導體晶片16位置’且隔著薄膜狀 異向性導電黏著劑20放置半導體晶片1 6於印刷配線基板 10上。接著,介由異向性導電黏著劑20熱壓黏金凸塊7 〇 與基板電極14。藉由朝向印刷配線基板1〇的半導體晶片 16的安裝,形成於電路層1’內之積體電路的電極的金凸 塊7,與形成於基板配線圖型12上的基板電極14係介由 異向性導電黏著劑20被連接。 【實施方式】 實施例 以表1〜4所示之配合調製非氰系電解鍍金浴。各原 © 料的摻合濃度之單位無特別說明下爲 g/L。但’ Na3Au(S03)2、亞硫酸金銨係表示對於Au量的濃度。 作爲被鍍物係使用以酚醛清漆系正型光阻經圖型化之 具有凸塊開口部的矽晶圓(質地剖面組成係金濺鍍膜/ TiW/Si02)。調製之非氰系電解鍍金浴1L中浸漬被鍍物 ,藉由施予通電而形成具有15 μιη之膜厚的鍍金皮膜。又 ,非氰系電解鍍金浴的電流效率係在正常的電鍍操作條件 下,一般爲1 〇 0 %。 形成具有所定膜厚的皮膜之後,除去光罩材,對於形 -17- 200925336 成之凸塊的形狀、浴安定性、電鍍皮膜外觀'皮膜硬度( 未熱處理及300 °C 30分鐘熱處理後)、經au濺鍍膜的碘 系触刻劑的触刻性’以下述方法及基準進行評估。合倂結 果示於表1〜4。 〔凸塊表面的高低差(μιη);] 如圖1所示地’矽晶圓丨上使用酚醛清漆系正型光阻 © 8,進行具有長邊80〜20 μιη、短邊80〜20 μιη的長方形狀 開口部的圖型化。使用電解鍍金浴施予電鍍後,將酚醛清 漆系正型光阻溶解於爲溶劑之甲基乙基酮中。對所得之凸 塊使用KEYENCE公司製雷射顯微鏡VK_9710測量凸塊上 面之最高點與上面外側之最低點的差作爲高低差且作成平 滑的指標。又’一般於凸塊電鍍用途中所求得的高低差爲 3μιη以下,但較佳爲2μιη以下,進而較佳爲1 .5μιη以下。 Ο 〔浴安定性〕 觀察朝被鍍物施予電鍍後的電鍍浴的樣子,以下述基 準進行評估。 分解:電鍍浴中的成分分解。 X :觀察到電鑛浴中金的沈澱係爲以肉眼可判斷的程度。 △:確認電鍍浴中少許金的沈灑。爲可以〇·2μιη膜濾器過 濾觀察的程度。 〇:沒有觀察到電鑛浴中有金的沈澱。 -18- 200925336 〔電鍍皮膜外觀〕 觀察形成於被鑛物上的凸塊的表面皮膜外觀,以下述 基準進行評估。 X :看見色調爲紅色且樹枝狀析出,確認不勻,又有產生 燒焦的情形。 △:沒有異常析出,爲光澤外觀。 〇:色調爲檸檬黃色且爲無〜半光澤均勻之外觀。 ❹ 〔皮膜硬度(維氏(Vickers)硬度;Hv)〕 使用形成於被銨物上之特定的凸塊部位,其皮膜硬度 (未熱處理及300 °C 30分鐘熱處理後)以維氏硬度計進行 測定。於中硬度用途的凸塊所求得之特性係退火後的皮膜 硬度爲70Hv左右。又,測定條件係以測定壓頭於25 gf荷 重下保持1 〇秒的條件。 © 〔經Au測鍍膜的碘系蝕刻劑的蝕刻性〕 將被鍍物浸漬於常溫下經充分攪拌的碘系蝕刻劑中90 秒,於酒精系沖洗液中洗滌後,噴灑乙醇以吹風機乾燥。 其後,使用金屬顯微鏡以50〜200倍的倍率觀察形成於被 鍍物上的全凸塊的表面狀態,且以下述基準進行評估。 X :觀察到50%以上之凸塊的表面有不勻。 △:觀察到只有一部份的區域之凸塊的表面有不句。 〇:沒觀察到被鍍物上之全凸塊的表面有不勻。 -19- 200925336 〔總合評估〕 由上述各評估結果,以下述評估基準進行評估。 X :關於所形成之鍍金皮膜(金凸塊)及電鍍處理後之非 氰系電解鍍金浴的上述評估結果中,包含了不良的結果》 △:關於所形成的鏟金皮膜(金凸塊)及電鏟處理後之非 氣系電解鍍金浴的上述評估結果中,大致良好者中包含部 分不良的結果。 〇 〇:關於所形成的鍍金皮膜(金凸塊)及電鍍處理後之非 氰系電解鍍金浴的上述評估結果中,皆爲良好的結果。 ❹ -20- 200925336EFFECTS OF THE INVENTION The salt is a non-cyanide electrolytic gold plating bath which does not use a surfactant or a preferable hardness such as poly or Ga/As. The non-cyanide electrolytic gold plating bath of the present invention contains sodium sulfite and contains a bisexual boundary. Alkanediol is an essential component. Thereby, when a bump is formed on the compound semiconductor wafer of the semiconductor wafer, an electrolytic gold plating layer > 4a block having a flat surface having no unevenness can be produced. In particular, the molecular weight and the added amount of the selected polyalkylene glycol can be controlled in the range of 50 to 90 Hv suitable for thermocompression bonding with the anisotropic conductive adhesive by blending with the sulfuric acid 200925336 potassium in the electroplating bath. The hardness of any 値 bump. The gold bumps formed by the electroplating bath of the present invention have a flat compressive surface and a desired hardness. Therefore, electrode bonding can be easily performed by an anisotropic conductive adhesive such as an anisotropic conductive film or an anisotropic conductive adhesive film used in the semiconductor manufacturing step. Moreover, the proportion of broken wires or poor joints is extremely small.金 The gold bump formed by using the plating bath of the present invention is not only expanded on the side surface of the bump which is in contact with the photoresist film on the bonding surface, so that a gold bump which is shaped like the opening of the photoresist film can be formed. Therefore, the side surface and the upper surface are gold bumps having a columnar shape or a polygonal column shape formed by a flat surface or a cylindrical gold bump which can form a uniform diameter. BEST MODE FOR CARRYING OUT THE INVENTION The electrolytic gold plating bath of the present invention is a non-cyanide gold plating bath, which is water-soluble as a stabilizer for gold sulfite or gold ammonium sulfite as a gold source. An electrolytic gold plating bath containing potassium sulfite, polyalkylene glycol and/or an amphoteric surfactant as a conductive salt in a bath composed of an amine and a trace amount of a crystal modifier and a buffer. The conductive salt system is substantially free of sodium sulfite. Hereinafter, each component of the electrolytic gold plating bath of the present invention will be described. (1) Gold sulfite alkali salt, gold ammonium sulfite (gold source) The gold sulfite salt used in the present invention is not limited to the use of the gold sulfite salt known from the publication -9-200925336. Examples of the gold sulfite base salt include sodium (I) sulfite and potassium (I) sulfite. These may be used alone or in combination of two or more. In the electrolytic gold plating bath of the present invention, the above-mentioned gold sulfite salt or gold ammonium sulfite is used as a gold source, and the blending amount thereof is generally 1 to 20 g/L, preferably 8 to 15 g/L. . When the blending amount of the gold sulfite alkali salt or the gold ammonium sulfite is less than lg/L, the thickness of the electrodeposited film is not uniform 〇. When it exceeds 20 g/L, there is no problem in the characteristics of the plating film, etc., but the production becomes high and becomes an economical burden. (2) Water-soluble amine (anti-setting agent) As the water-soluble amine, a diamine having 2 or more carbon atoms and preferably 2 to 6 carbon atoms can be used, and examples thereof include 1,2-diaminoethane and 1,2. - Diaminopropane, 1,6-diaminohexane, and the like. These systems can be used alone or in combination of two or more. The blending amount of the water-soluble amine is usually from 0.1 to 30 g/L, preferably from 1 to 12 g/L. When the blending amount of the water-soluble amine exceeds 30 g/L, the stability of the gold-salt salt increases, but on the other hand, the plating film is excessively densified and a problem of poor adhesion is caused. When the o.lg/L system limit voltage density is lowered, it may become a case of burnt plating. (3) T1 compound, Pb compound, and As compound (crystal modulating agent) The crystal adjusting agent used in the electrolytic gold plating bath of the present invention may, for example, be a T1 compound such as cesium formate, strontium malonate, barium sulfate or strontium nitrate. -10- 200925336 : Pb compound such as lead citrate, lead nitrate or lead alkane sulfonate; As compound such as arsenic trioxide. These T1 compounds, Pb compounds, and As compounds may be used alone or in combination of two or more. The blending amount of the crystal modifier may be appropriately set within a range not detracting from the object of the present invention, but the metal concentration is generally 0.1 to 1 mg/L, preferably 0.5 to 50 mg/L, particularly preferably. It is 3~25mg/L. When the blending amount of the crystal modifier is less than 0.1 mg/L, the plating adhesion, the plating bath stability, and the 耐久性 durability are deteriorated, and the constituent components of the electric ore bath are decomposed. When it exceeds 100 mg/L, there is a case where the plating adhesion is deteriorated and the appearance of the plating film is uneven. (4) Potassium sulfite (conductive salt) Potassium sulfite is used as the conductive salt in the electrolytic gold plating bath of the present invention. The blending amount of potassium sulfite in the electrolytic gold plating bath of the present invention can be suitably set within the range not impairing the object of the present invention, but it is preferably the following blending amount. The blending amount of potassium sulfite is usually 5 to 150 g/L, preferably 10 to 150 g/L, more preferably 50 to 100 g/L, particularly preferably 60 to 90 g/L. When the blending amount of potassium sulfite is less than 5 g/L, the expansion of the bump shape cannot be sufficiently suppressed to flatten the surface of the bump. Further, plating adhesion and liquid stability are deteriorated, and decomposition of the plating bath occurs. When it exceeds 150 g/L, there is a case where the limit current density is lowered and it becomes a burnt plating. In the electroplating bath of the present invention, as the conductive salt, a sodium salt substantially free of sodium sulfite, sodium sulfate or the like is contained. The sodium contained in the electroplating bath is limited to gold sodium sulfite from Jinyuan -11 - 200925336. (5) Buffering agent The buffering agent used in the present invention is not particularly limited as long as it is a user of a general electrolytic gold plating bath. For example, an organic acid such as a mineral acid salt such as a phosphate or a borate, a citrate salt, a citrate salt or an ethylenediaminetetraacetate salt (a polyvalent carboxylic acid of 2 to 5 or a hydroxycarboxylic acid) may be used alone. Two or more types can be used or used. The blending amount of the buffering agent in the non-cyanide electrolytic gold plating bath of the present invention is generally 1 to 30 g/L, preferably 2 to 15 g/L, particularly preferably 2 to 10 g/L. When the amount of the buffer is less than 1 g/L, the liquid stability deteriorates due to a decrease in pH, and there is a case where decomposition of the plating bath component occurs. When it exceeds 30 g/L, the limit current density is lowered to become a burnt shovel. (6) Polyalkylene glycol and amphoteric surfactant The polyalkylene glycol blended in the non-cyanide electrolytic gold plating bath of the present invention may, for example, be polyethylene glycol or polypropylene glycol. Examples of the amphoteric surfactant include beta-alkyl-N-carboxymethyl-N-hydroxyethylimidazolium betaine, guanamine propyl hydroxythiobetaine, and fatty acid amidinopropyl betaine. An amphoteric surfactant; an aminocarboxylate-based amphoteric surfactant such as a fatty acid oxime ester-N-carboxyethyl-N-hydroxyethylethylenediamine base salt; an imidazoline derivative-based amphoteric surfactant. The blending amount of the polyalkylene glycol is from 1 mg/L to 6 g/L, preferably from 20 to 3,000 mg/L, particularly preferably from 1 to 10 mg/L. On the other hand, the blending amount of the surfactant -12-200925336 surfactant is generally 0.1 mg/L to lg/L, preferably 500 mg/L, particularly preferably 1 Torr to 300 mg/L. When the blending amount of the polyalkylene glycol and the amphoteric active agent is less than the above range, the hardness of the film after the heat treatment is less than 50 Hv, and further the shape of the surface of the bump cannot be made. When it exceeds the above range, the hardness of the bump after the heat treatment becomes 90 Hv or more, and the hardness suitable for joining cannot be obtained. The polyalkylene glycol and the amphoteric surfactant may also be used alone or in combination. When both are used, the blending amount of the two is suitably adjusted within the respective ranges for the purpose of blending. When the polyalkylene glycol is used, the film of the gold bump after the heat treatment is suitable for the bonding of the adhesive film for the anisotropic conductive film to 50 to 90 Hv, and the amount of use is 200 to 6000, preferably 400 to 2000, more preferably 400. ~ By. When the molecular weight exceeds 6,000, in order to make the hardness of the film after heat treatment | 〜90Hv, it is necessary to make the blending amount to be extremely low concentration of less than 1 mg/L. The concentration of the plating solution of the low concentration is difficult to manage. The hardness of the film formed by electroplating by adjusting the blending amount of the polyalkylene glycol having a molecular weight of 6,000 or less can be adjusted to be in the range of 50 to 90 Hv. The case of a low molecular weight polyalkylene glycol is increased by an amount, and in the case of a high molecular weight, by reducing the blending amount, a film hardness of 90 Hv can be obtained. In any of the molecular weights, a relatively high hardness of approximately 90 Hv can be obtained by increasing the hardness of the doped film. For example, when the film hardness after heat treatment is 70 Hv, the blending amount of the polyalkylene glycol having a quantity of 6000 or less is preferably 1 mg/L to 6 g/L, and it is preferably 20 to 300 Omg/L. Further, at this time, the two interface bumps are flat films, and the above hardness molecules are 1000 i 50 . For example, the blending amount of the active agent is preferably 10~3 OOmg/L, and the blending amount of the active agent is -10-200925336. Generally, by increasing the blending amount of the polyalkylene glycol or the amphoteric surfactant, the decrease in the hardness of the film due to the heat treatment is reduced. Further, in the case where potassium sulfite is blended without polyalkylene glycol or an amphoteric surfactant, the height difference of the surface of the bump is not sufficiently reduced. When only potassium sulfite, a polyalkylene glycol or an amphoteric surfactant is added, both the height difference of the surface of the bump and the hardness of the film can be desired. In the non-cyanide electrolytic gold plating bath of the present invention, other components such as a pH adjuster may be suitably used insofar as the object of the present invention is not impaired. Examples of the pH adjuster include sulfuric acid, sulfurous acid water, phosphoric acid, and the like; alkali potassium hydroxide, ammonia water, and the like. When the non-cyanide electrolytic gold plating bath of the present invention is used to form bumps on the semiconductor wafer via the electric shovel, the plating operation is preferably carried out in accordance with a usual method. For example, a Ti-W sputter film is used as the UBM layer, and a wafer on which an Au sputter film or the like is formed is masked with a photomask. Thereafter, the wafer is used as a substrate to be electroplated. Next, there is a method of dissolving the photomask in a solvent to remove it. After the photomask is removed, the portion not covered by the gold bumps of the UBM layer is removed by etching and heat treatment of the wafer is performed. In the case of the photomask, a novolak-based positive photoresist can be used. For example, LA-900, HA-900 (above, manufactured by Tokyo Yinghua Chemical Co., Ltd.) and the like can be cited. The temperature of the ore is generally 40 to 70 ° C, preferably 50 to 65 ° C. When the temperature of the plating bath is out of the range of 40 to 70 ° C, there is a case where the plating film is hard to be precipitated, or the plating bath is unstable, and decomposition of the plating bath component occurs. -14- 200925336 The set current density used in the electric ore is different depending on the composition of the plating solution, the temperature, etc., and it is difficult to determine it by one meaning. The gold concentration is generally 8 to 15 g/dm2 or less, preferably 〇2 to 1.2 A/dm2 under the condition of the electric ore bath temperature of TC. When the current density is out of the above range, there is In the case where the workability is poor, or the appearance of the plating film or the characteristics of the electric shovel film is abnormal, or the plating bath becomes unstable and the decomposition of the plating bath component is caused. ® As the non-cyanide electrolytic gold plating bath of the present invention The pH is generally 7.0 or more, preferably 7.2 to 1 〇. 〇. When the pH of the non-cyanide electrolytic gold plating bath is less than 7.0, there is a case where the plating bath becomes unstable and decomposes. On the other hand, the pH exceeds 10.0, the photomask is dissolved and the desired gold bumps and the like cannot be formed. The heat treatment temperature of the gold bumps is 200 to 400 ° C, preferably 200 to 300 ° C. The heat treatment time is 5 minutes or longer. It is preferably 30 to 60 minutes. The heat treatment is carried out by using a precision thermostat (Fine Oven) or the like which can hold the inside of the chamber for a certain period of time at a set temperature. The non-cyanide electrolytic gold plating bath of the present invention is used. Supplementary management of its constituent gold source and electroplating bath The other components can be used for 2 turns (consumption of the amount of gold in all electroplating baths as 1 turn) in the electroplating bath. The non-cyanide electrowinning gold bath of the present invention can be metallized to be electrically conductive. If the material is not selected, the photomask is made of a novolac-based positive photoresist, which is particularly suitable for forming bumps on patterned wafers or on compound wafers such as Ga/As wafers. Fig. 1 is a cross-sectional view showing an example of forming a gold-15-200925336 bump on a semiconductor wafer using the gold plating bath of the present invention. In Fig. 1, 1 is a semiconductor wafer, and is formed to contain The circuit layer of the integrated circuit on the semiconductor wafer, 2 is an A1 electrode, 3 is a passivation film, 3a is an opening of a passivation film, 4 is a TiW溺 plating film, 5 is a gold sputtering film, and 6 is a TiW sputtering film. 4, the UBM layer formed by the gold splash film 5, 7 is the gold bump '7' is the surface of the gold bump, 8 is the opening of the photoresist film, and 8a is the opening of the photoresist film. Gold bump The surface 7, which is formed flat, contacts the height difference 中央 of the central portion 7'a and the peripheral end portions 7 and b of the photoresist film (the distance from the wafer 1) It is preferably within 1·8 μm, preferably within 1·7 μm, preferably within 1·6 μm, and preferably within 1.5 μm. Fig. 2 is a semiconductor wafer in which the gold bumps shown in Fig. 1 are formed In the same manner as in the first embodiment, the same reference numerals will be given to the same portions as those in the first embodiment, and the description thereof will be omitted. The printed wiring board 1 has a substrate wiring formed of a conductive material such as copper. The pattern type 12 is formed on the substrate wiring pattern 1 2 with the substrate electrode 14 formed of a conductive material such as gold. On the other side, a semiconductor bump 16 mounted on the substrate 1 in parallel with the printed wiring board 1 is formed with gold bumps 7 opposed to the substrate electrodes 14. The substrate electrode 14 and the gold bump 7 are bonded by the anisotropic conductive adhesive 20. The hard substrate 11 and the semiconductor wafer 1 are sealed by a sealing material I8. The material of the hard substrate 1 1 is not particularly limited as long as it is used for a hard printed wiring board, and examples thereof include glass reinforced epoxy resin and ceramics. As the sealing material 18, a known resin used for sealing a semiconductor wafer can be generally used. The formation of the substrate wiring pattern 10, -16-200925336 toward the hard substrate 11 is performed by vapor deposition, electroplating, etching of a metal thin film, application of a conductive coating, or the like. The method of attaching the semiconductor wafer 16 to the printed wiring board 1 is performed as follows. First, the position of the gold bumps 7 is placed above the substrate electrodes 14, and the position of the semiconductor wafer 16 is determined, and the semiconductor wafer 16 is placed on the printed wiring board 10 via the film-shaped anisotropic conductive adhesive 20. Next, the gold bumps 7 〇 and the substrate electrode 14 are thermally pressed via the anisotropic conductive adhesive 20. The gold bumps 7 formed on the electrodes of the integrated circuits in the circuit layer 1' are attached to the substrate electrodes 14 formed on the substrate wiring pattern 12 by mounting the semiconductor wafers 16 facing the printed wiring board 1'. The anisotropic conductive adhesive 20 is joined. [Embodiment] Example A non-cyanide electrolytic gold plating bath was prepared by mixing as shown in Tables 1 to 4. The unit of the blending concentration of each raw material is g/L unless otherwise specified. However, 'Na3Au(S03)2 and ammonium ammonium sulfite indicate the concentration for the amount of Au. As the object to be plated, a ruthenium wafer having a bump opening portion (a texture cross-section composition of gold sputter film / TiW/SiO 2 ) patterned with a novolac-based positive resist was used. The plated material was immersed in 1 L of the prepared non-cyanide electrolytic gold plating bath, and a gold plating film having a film thickness of 15 μm was formed by applying electricity. Further, the current efficiency of the non-cyanide electrolytic gold plating bath is generally 1 〇 0% under normal plating operation conditions. After forming a film having a predetermined film thickness, the photomask is removed, and the shape of the bumps of the shape -17-200925336, the bath stability, the appearance of the plating film, the film hardness (after heat treatment and heat treatment at 300 ° C for 30 minutes), The etchability of the iodine-based etchant by the au sputtering film was evaluated by the following method and standard. The combined results are shown in Tables 1 to 4. [The height difference of the surface of the bump (μιη);] As shown in Fig. 1, the phenolic varnish-based positive photoresist is used on the wafer, and the long side is 80 to 20 μm and the short side is 80 to 20 μm. The pattern of the rectangular opening is formed. After electroplating using an electrolytic gold plating bath, a novolac-based positive photoresist was dissolved in methyl ethyl ketone as a solvent. Using the laser microscope VK_9710 manufactured by KEYENCE, the obtained bump was used to measure the difference between the highest point on the upper surface of the bump and the lowest point on the upper side as the height difference and to make a smoothness index. Further, the height difference obtained in general for bump plating applications is 3 μm or less, preferably 2 μm or less, and more preferably 1.5 μm or less. 〔 [Bath stability] The appearance of the plating bath after plating on the object to be plated was observed and evaluated on the basis of the following criteria. Decomposition: decomposition of components in the electroplating bath. X: The precipitation of gold in the electric ore bath was observed to the extent that it was judged by the naked eye. △: Confirm a little gold spill in the plating bath. The degree of observation can be filtered by a 〇2μιη membrane filter. 〇: No precipitation of gold in the electric mine bath was observed. -18- 200925336 [Appearance of plating film] The appearance of the surface film of the bump formed on the mineral was observed and evaluated on the following basis. X: The color tone is red and the dendrites are precipitated, and unevenness is confirmed, and scorching occurs. △: There was no abnormal precipitation, and it was a glossy appearance. 〇: The hue is lemon yellow and has no ~ semi-gloss uniform appearance. 〔 [Film hardness (Vickers hardness; Hv)] Using a specific bump portion formed on the ammonium material, the film hardness (after heat treatment and heat treatment at 300 ° C for 30 minutes) is performed on a Vickers hardness tester. Determination. The characteristics obtained for the bumps for medium hardness use are about 70 Hv after annealing. Further, the measurement conditions were such that the indenter was maintained at a load of 25 gf for 1 sec. © [Etching property of iodine-based etchant by Au plating method] The object to be plated was immersed in an iodine-based etchant which was sufficiently stirred at room temperature for 90 seconds, washed in an alcohol-based rinsing liquid, and then sprayed with ethanol to dry with a hair dryer. Thereafter, the surface state of the full bump formed on the object to be plated was observed with a metal microscope at a magnification of 50 to 200 times, and evaluated based on the following criteria. X: It was observed that the surface of the bumps of 50% or more was uneven. △: It was observed that only a part of the area of the bump had a surface. 〇: No unevenness in the surface of the full bump on the object to be plated was observed. -19- 200925336 [Total Evaluation] The above evaluation results are evaluated on the basis of the following evaluation criteria. X: The above evaluation results of the formed gold plating film (gold bump) and the non-cyanide electrolytic gold plating bath after the plating treatment included a bad result △: Regarding the formed gold film (gold bump) In the above evaluation results of the non-gas-based electrolytic gold plating bath after the shovel treatment, the results of the partial improvement include some unfavorable results. 〇 〇: The results of the above evaluations of the formed gold plating film (gold bump) and the non-cyanide electrolytic gold plating bath after the plating treatment were all good results. ❹ -20- 200925336

m _ 1 2 3 4 5 6 7 8 9 10 摻合濃度(g/L) Na3Au(S03)2 as Au 10 10 10 10 10 12 12 12 12 12 K2S〇3 75 75 75 75 75 75 75 75 75 75 N32S03 1,2-二胺基乙胺 4 4 4 4 4 4 4 4 4 4 磷酸 5 5 5 5 5 乙二胺四乙酸二鈉 10 10 10 10 10 Tl(mg/L) 15 15 15 15 15 15 15 15 15 15 聚乙二醇A(mg/L) 5000 — — — — 2000 — — — — 聚乙二醇B(mg/L) — 300 - — — — 100 — — — 聚乙二醇C(mg/L) — — 20 — — — — 5 — — 兩性界面活性A(mg/L) — — — 700 — — - — 150 — 兩性界面活性B(mg/L) — — — — 300 — — — — 50 pH 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 電鍍條件 電鍍溫度(。。) 60 60 60 60 60 60 60 60 60 60 電流密度(A/dm2) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 膜厚(― 15 15 15 15 15 15 15 15 15 15 凸塊形狀 高低差(μιη) 1.43 1.47 1.39 1.52 1.47 1.19 1.16 1.01 1.47 1.36 浴安定性 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 電鍍皮膜外觀 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 蝕刻性 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 皮膜硬度 未熱處理(Ην) 95 93 92 92 101 103 105 101 99 107 300°C熱處理後(Ην) 67 69 76 73 64 62 70 75 68 60 總合評估 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 •21 - 200925336 表2m _ 1 2 3 4 5 6 7 8 9 10 Blending concentration (g/L) Na3Au(S03)2 as Au 10 10 10 10 10 12 12 12 12 12 K2S〇3 75 75 75 75 75 75 75 75 75 75 N32S03 1,2-diaminoethylamine 4 4 4 4 4 4 4 4 4 4 Phosphate 5 5 5 5 5 Disodium edetate 10 10 10 10 10 Tl (mg/L) 15 15 15 15 15 15 15 15 15 15 Polyethylene glycol A (mg/L) 5000 — — — 2000 — — — — Polyethylene glycol B (mg/L) — 300 — — — — 100 — — — Polyethylene glycol C ( Mg/L) — — 20 — — — — 5 — — Sexual interfacial activity A (mg/L) — — — 700 — — — — 150 — Sexual interfacial activity B (mg/L) — — — — 300 — — — — 50 pH 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 Plating conditions Plating temperature (..) 60 60 60 60 60 60 60 60 60 60 Current density (A/dm2) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Film thickness (― 15 15 15 15 15 15 15 15 15 15 Bump shape height difference (μιη) 1.43 1.47 1.39 1.52 1.47 1.19 1.16 1.01 1.47 1.36 Bath stability 〇〇〇〇〇〇〇〇〇〇 Coating appearance 〇〇〇〇〇〇〇〇〇〇 etchability 〇〇〇〇〇〇〇〇〇〇 film hardness without heat treatment (Ην) 95 93 92 92 101 103 105 101 99 107 After heat treatment at 300 ° C (Ην) 67 69 76 73 64 62 70 75 68 60 Aggregate assessment〇〇〇〇〇〇〇〇〇〇•21 - 200925336 Table 2

實S _ 11 12 13 14 15 16 17 18 19 20 摻合濃度(g/L) Na3Au(S03)2 as Au 10 10 10 10 10 12 12 12 12 12 亞硫酸金銨 K2S〇3 75 75 75 75 75 75 75 75 75 75 Na2S03 1,2-二胺基乙胺 4 4 4 4 4 磷酸 乙二胺四乙酸二鈉 10 10 10 10 10 Tl(mg/L) 15 15 15 15 15 10 10 10 10 10 聚乙二醇A(mg/L) 3000 — — — — 500 — — — — 聚乙二醇B(mg/L) — 200 - — — — 20 — — — 聚乙二醇C(mg/L) 10 1 兩性界面活性A(mg/L) — — — 400 — — — — 30 — 兩性界面活性B(mg/L) — — — — 100 — — — — 10 PH 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 電鑛條件 電鍍雛ΓΟ 60 60 60 60 60 60 60 60 60 60 電流密度(A/dm2) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 膜厚(μιη) 15 15 15 15 15 15 15 15 15 15 凸塊形狀 高低差(μιη) 1.36 1.34 1.23 1.50 1.45 1.34 1.27 1.21 1.53 1.56 浴安定性 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 電鑪皮膜外觀 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 蝕刻性 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 皮膜硬度 未熱處理(Ην) 96 93 97 94 100 95 99 92 89 94 300。。熱處理後(Ην) 65 69 72 75 69 77 79 78 75 70 總合評估 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 -22- 200925336Real S _ 11 12 13 14 15 16 17 18 19 20 Blending concentration (g/L) Na3Au(S03)2 as Au 10 10 10 10 10 12 12 12 12 12 Gold ammonium sulfite K2S〇3 75 75 75 75 75 75 75 75 75 75 Na2S03 1,2-diaminoethylamine 4 4 4 4 4 Disodium edetate 10 10 10 10 10 Tl(mg/L) 15 15 15 15 15 10 10 10 10 10 Glycol A (mg/L) 3000 — — — 500 — — — — Polyethylene glycol B (mg/L) — 200 — — — — 20 — — — Polyethylene glycol C (mg / L) 10 1 Amphoteric interface activity A (mg/L) — — — 400 — — — — 30 — Amphiphilic interfacial activity B (mg/L) — — — — 100 — — — — 10 PH 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 Electro-minening conditions electroplating ΓΟ 60 60 60 60 60 60 60 60 60 60 Current density (A/dm2) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Film thickness (μιη) 15 15 15 15 15 15 15 15 15 15 Bump Shape height difference (μιη) 1.36 1.34 1.23 1.50 1.45 1.34 1.27 1.21 1.53 1.56 Bath stability The appearance of the furnace film 〇 〇 〇 〇 〇 〇 〇 〇 蚀刻 蚀刻 蚀刻 蚀刻 〇 〇 〇 〇 〇 〇 〇 皮 Film hardness Unheated (Ην) 96 93 97 94 100 95 99 92 89 94 300. . After heat treatment (Ην) 65 69 72 75 69 77 79 78 75 70 Total evaluation 〇 〇 〇 〇 〇 〇 〇 〇 〇 -22 -22- 200925336

表3 實施例 21 22 23 24 25 26 27 摻合濃度(g/L) Na3Au(S03)2 as Au 10 10 10 10 10 - — 亞硫酸金銨 — — — 一 — 1 20 K2S〇3 5 150 75 75 75 75 75 Na2S03 — 一 — — — — — 1,2-二胺基乙胺 4 4 4 4 4 — — 1,6-二胺基已烷 — — - — — 0.1 30 磷酸 5 5 5 5 5 — — 乙二胺四乙酸二鈉 — — — — — 10 10 Tl(mg/L) 15 15 15 15 15 15 15 聚乙二醇A(mg/L) 5000 5000 — — 500 500 — 聚乙二醇B(mg/L) — 200 — - — — 1000 聚乙二醇C(mg/L) 兩性界面活性A(mg/L) — — 5 900 — — — 兩性界面活性B(mg/L) — — — — 10 — — pH 7.8 7.8 7.8 7.8 7.8 7.8 7.8 電鍍條件 電鑛溫度rc) 60 60 60 60 60 60 60 電流密度(A/dm2) 0.3 0.5 0.5 0.5 0.5 0.2 0.8 膜厚(μιη) 15 15 15 15 15 15 15 凸塊形狀 高低差(μπι) 1.62 1.56 1.44 1.56 1.34 1.53 1.33 浴安定性 〇 〇 〇 〇 〇 〇 〇 電鍍皮膜外觀 Δ 〇 〇 Δ 〇 Δ 〇 蝕刻性 〇 〇 〇 〇 〇 〇 〇 皮膜硬度 未熱處理(Ην) 96 90 104 91 95 90 101 300。(3熱處理後(Ην) 68 71 51 86 75 70 61 總合評估 Δ 〇 〇 Δ 〇 Δ 〇 -23- 200925336 表4Table 3 Example 21 22 23 24 25 26 27 Blending concentration (g/L) Na3Au(S03)2 as Au 10 10 10 10 10 - — Gold ammonium sulfite — — — 1 — 1 20 K2S〇3 5 150 75 75 75 75 75 Na2S03 — I — — — — — 1,2-Diaminoethylamine 4 4 4 4 4 — —1,6-Diaminohexane——— — — 0.1 30 Phosphoric acid 5 5 5 5 5 — — Disodium edetate — — — — — 10 10 Tl(mg/L) 15 15 15 15 15 15 15 Polyethylene glycol A (mg/L) 5000 5000 — — 500 500 — Polyethylene glycol B(mg/L) — 200 — — — — 1000 Polyethylene glycol C (mg/L) Amphoteric interface activity A (mg/L) — — 5 900 — — — Sexual interface activity B (mg/L) — — — — 10 — — pH 7.8 7.8 7.8 7.8 7.8 7.8 7.8 Plating conditions Electrowinning temperature rc) 60 60 60 60 60 60 60 Current density (A/dm2) 0.3 0.5 0.5 0.5 0.5 0.2 0.8 Film thickness (μιη) 15 15 15 15 15 15 15 Bump shape height difference (μπι) 1.62 1.56 1.44 1.56 1.34 1.53 1.33 Bath stability 〇〇〇〇〇〇〇 plating appearance Δ 〇〇Δ 〇Δ 〇 etch 〇 〇 〇 〇 〇 〇 皮 Film hardness Unheated (Ην) 96 90 104 91 95 90 101 300. (3 After heat treatment (Ην) 68 71 51 86 75 70 61 Total evaluation Δ 〇 〇 Δ 〇 Δ 〇 -23- 200925336 Table 4

比較例 1 2 3 4 5 6 7 8 9 10 摻合濃度(g/L) Na3Au(S03)2 as Au 10 10 10 10 10 10 10 12 12 12 K2S〇3 75 Na2S03 — 60 60 60 60 60 60 60 60 60 1,2-二胺基乙胺 4 4 4 4 4 4 4 4 4 4 磷酸 5 5 5 5 5 5 5 — — 一 乙二胺四乙酸二鈉 10 10 10 Tl(mg/L) 15 15 15 15 15 15 15 15 15 15 聚乙二醇A(mg/L) — — 5000 — — — - 2000 — — 聚乙二醇B(mg/L) — — — 300 — — — — 100 一 聚乙二醇C(mg/L) — — — — 20 — — — — 5 兩性界面活性A(mg/L) — — - — — 700 — — — — 兩性界面活性B(mg/L) — — - — — — 300 — — 一 PH 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 電鑛條件 電鍍溫度(。〇 60 60 60 60 60 60 60 60 60 60 電流密度(A/dm2) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 膜厚(μιη) 15 15 15 15 15 15 15 15 15 15 凸塊形狀 高低差(μιη) 1.83 3.11 2.48 2.48 2.20 2.63 2.58 2.04 1.98 1.85 浴安定性 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 電鑛皮膜外觀 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 蝕刻性 Δ Δ 〇 〇 〇 〇 〇 〇 〇 〇 皮膜硬度 未熱處理(Hv) 106 105 91 89 90 87 99 100 102 101 300。。熱處理後(Hv) 45 43 66 71 78 70 65 65 71 76 總合評估 Δ X X X X X X X △ Δ -24- 200925336 表5Comparative Example 1 2 3 4 5 6 7 8 9 10 Blending Concentration (g/L) Na3Au(S03)2 as Au 10 10 10 10 10 10 10 12 12 12 K2S〇3 75 Na2S03 — 60 60 60 60 60 60 60 60 60 1,2-diaminoethylamine 4 4 4 4 4 4 4 4 4 4 Phosphoric acid 5 5 5 5 5 5 5 —-disodium monoethylenediaminetetraacetate 10 10 10 Tl(mg/L) 15 15 15 15 15 15 15 15 15 15 Polyethylene glycol A (mg/L) — — 5000 — — — — 2000 — — Polyethylene glycol B (mg/L) — — — 300 — — — — 100 One poly Glycol C (mg/L) — — — — 20 — — — — 5 Sexual interfacial activity A (mg/L) — — — — — 700 — — — — Sexual interfacial activity B (mg/L) — — — — — — 300 — — — — — — — — — — — — — — — — — — — — — — — — 0.5 0.5 Film thickness (μιη) 15 15 15 15 15 15 15 15 15 15 Bump shape height difference (μιη) 1.83 3.11 2.48 2.48 2.20 2.63 2.58 2.04 1.98 1.85 Bath stability 〇〇〇〇〇〇〇 〇〇〇Electric acid film appearance 〇〇〇〇〇〇〇〇〇〇 etchability Δ Δ 〇〇〇〇〇〇〇〇 film hardness not heat treated (Hv) 106 105 91 89 90 87 99 100 102 101 300. Heat treatment After (Hv) 45 43 66 71 78 70 65 65 71 76 Total evaluation Δ XXXXXXX △ Δ -24- 200925336 Table 5

比較例 11 12 13 14 摻合濃度(g/L) Na3Au(S03)2 as Au 12 12 10 10 k2so3 — — 75 75 N32SO3 60 60 — — 1,2-二胺基乙胺 4 4 4 - 磷酸 — — 5 — 乙二胺四乙酸二鈉 10 10 — 10 Tl(mg/L) 15 15 15 15 聚乙二醇A(mg/L) — — 10000 一 聚乙二醇B(mg/L) — — — - 聚乙二醇C(mg/L) — — — - 兩性界面活性A(mg/L) 150 — — 2000 兩性界面活性B(mg/L) — 50 — - pH 7.8 7.8 7.8 7.8 電鑛條件 電鍍溫度CC) 60 60 60 60 電流密度(A/dm2) 0.5 0.5 0.5 0.5 膜厚㈣ 15 15 15 15 凸塊形狀 高低差(μπι) 2.39 2.22 1.56 1.59 浴安定性 〇 〇 〇 〇 電鑛皮膜外觀 〇 〇 Δ X 蝕刻性 〇 〇 〇 〇 皮膜硬度 未熱處理(Ην) 97 105 98 102 300°C熱處理後(Ην) 65 66 96 100 總合評估 X X X XComparative Example 11 12 13 14 Blending concentration (g/L) Na3Au(S03)2 as Au 12 12 10 10 k2so3 — — 75 75 N32SO3 60 60 — 1,2-diaminoethylamine 4 4 4 -phosphoric acid — — 5 — Disodium edetate 10 10 — 10 Tl (mg/L) 15 15 15 15 Polyethylene glycol A (mg/L) — — 10000 Polyethylene glycol B (mg/L) — — — — Polyethylene glycol C (mg/L) — — — — Amphiphilic interfacial activity A (mg/L) 150 — — 2000 Sexual interfacial activity B (mg/L) — 50 — — pH 7.8 7.8 7.8 7.8 Electron ore conditions Plating temperature CC) 60 60 60 60 Current density (A/dm2) 0.5 0.5 0.5 0.5 Film thickness (4) 15 15 15 15 Bump shape height difference (μπι) 2.39 2.22 1.56 1.59 Bath stability 〇〇〇〇Electric acid film appearance〇 〇Δ X Etching film hardness not heat treated (Ην) 97 105 98 102 300°C after heat treatment (Ην) 65 66 96 100 Total evaluation XXXX

聚乙二醇A:平均分子量400 聚乙二醇B :平均分子量1000 聚乙二醇C :平均分子量6000 兩性界面活性Λ :日本油脂股份有限公司製、NISSAN ANON BDL (羧基甜菜鹼系) 兩性界面活性B :花王股份有限公司製、AMPHITOL20YB(羧基甜 菜鹼系) -25- 200925336 藉由比較實施例、比較例,係清楚明白爲如下所述之 〇 (1 )亞硫酸鉀係以使凸塊表面之高低差減低的效果 爲原則。含有亞硫酸鉀的實施例1〜20之高低差1.01〜 1.56係與取代亞硫酸鉀之爲含有亞硫酸鈉的比較例2〜12 的高低差1 . 8 5〜3 .1 1相比,凸塊表面的高低差係明顯爲小 的。 〇 ( 2 )聚烷二醇、兩性界面活性劑係以使於3 00 °C熱處 理後之皮膜硬度降低減少的效果爲原則。含有聚烷二醇或 兩性界面活性劑的實施例1〜20,係於3 00 °c熱處理後之 皮膜硬度爲適當(50〜90Hv)。相對於此,不含聚烷二醇 與兩性界面活性劑的比較例1 、2的硬度係爲 45Hv、 43Hv之低的。 (3)但是,僅只添加亞硫酸鉀係不足以使凸塊表面 的高低差減小。儘管比較例1係與實施例1〜20 —樣添加 © 了同量的亞硫酸鉀,但高低差仍是大(1.83)。於亞硫酸 鉀藉由添加聚烷二醇或兩性界面活性劑,開始高低差變成 爲1 .56以下(實施例1〜20 )。 【圖式簡單說明】 第1圖表示使用本發明之鍍金浴所形成之金凸塊的一 例的剖面圖。 第2圖表示將第1圖所示之具有金凸塊的半導體晶片 安裝於印刷配線基板上的狀態之一例的剖面圖。 -26- 200925336 第3圖表示使用習知之鍍金浴所形成的金凸塊的剖面 圖。 【主要元件符號說明】 1 :半導體晶圓 1 ’ :電路層 2 : A1電極 〇 3 :鈍化膜 3 a :鈍化膜的開口部 4 : TiW濺鍍膜 5 :金濺鍍膜 6: UBM 層 7 :金凸塊 7’ :金凸塊的表面 8 :光阻膜 © 8a :光阻膜的開口部 1 〇 :印刷配線基板 Η :硬質基板 1 2 :基板配線圖型 1 4 :基板電極 1 6 :半導體晶片 1 8 :密封材 2 0 :異向性導電黏著劑 -27-Polyethylene glycol A: Average molecular weight 400 Polyethylene glycol B: Average molecular weight 1000 Polyethylene glycol C: Average molecular weight 6000 Amphoteric interface activity Λ: Made by Nippon Oil & Fat Co., Ltd., NISSAN ANON BDL (carboxybetaine) Activity B: manufactured by Kao Co., Ltd., AMPHITOL20YB (carboxybetaine system) -25- 200925336 By comparison of the comparative examples and comparative examples, it is clear that the following is the 〇(1) potassium sulfite system to make the surface of the bump The effect of reducing the height difference is the principle. The height difference of Examples 1 to 20 containing potassium sulfite was 1.01 to 1.56, and the height of the bumps was compared with that of Comparative Examples 2 to 12 containing sodium sulfite, which was 1. 8 5 to 3.11. The height difference is obviously small. 〇 (2) The polyalkylene glycol and the amphoteric surfactant are based on the effect of reducing the hardness of the film after heat treatment at 300 °C. Examples 1 to 20 containing a polyalkylene glycol or an amphoteric surfactant are suitable for film hardness after heat treatment at 300 ° C (50 to 90 Hv). On the other hand, the hardness of Comparative Examples 1 and 2 which did not contain a polyalkylene glycol and an amphoteric surfactant was as low as 45 Hv and 43 Hv. (3) However, the addition of only potassium sulfite is not sufficient to reduce the height difference of the surface of the bump. Although Comparative Example 1 was added with the same amount of potassium sulfite as in Examples 1 to 20, the height difference was still large (1.83). By adding a polyalkylene glycol or an amphoteric surfactant to potassium sulfite, the difference in height was changed to 1.56 or less (Examples 1 to 20). BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing an example of a gold bump formed by using the gold plating bath of the present invention. Fig. 2 is a cross-sectional view showing an example of a state in which a semiconductor wafer having gold bumps shown in Fig. 1 is mounted on a printed wiring board. -26- 200925336 Figure 3 shows a cross-sectional view of a gold bump formed using a conventional gold plating bath. [Main component symbol description] 1 : Semiconductor wafer 1 ' : Circuit layer 2 : A1 electrode 〇 3 : Passivation film 3 a : Passivation film opening 4 : TiW sputtering film 5 : Gold sputtering film 6 : UBM layer 7 : Gold Bump 7': surface 8 of gold bump: photoresist film © 8a: opening portion 1 of photoresist film 〇: printed wiring substrate Η : hard substrate 1 2 : substrate wiring pattern 1 4 : substrate electrode 1 6 : semiconductor Wafer 18: Sealing Material 20: Anisotropic Conductive Adhesive-27-

Claims (1)

200925336 十、申請專利範圍 1· 一種凸塊成形用非氰系電解鑛金浴,其特徵爲含 有亞硫酸金鹼鹽或亞硫酸金銨、結晶調整劑、亞硫酸鉀5 〜150g/L、分子量爲200〜6000之聚烷二醇lmg/L〜6g / L及/或兩性界面活性劑〇 . 1 m g〜1 g / L與水溶性胺及 /或緩衝劑所成。 2.如申請專利範圍第1項之凸塊成形用非氰系電解 Ο 鍍金浴’其中兩性界面活性劑爲選自2-烷基-N-羧甲基-N-羥乙基咪唑甜菜鹼、月桂酸醯胺丙基羥基磺基甜菜鹼、脂 肪酸醯胺丙基甜菜鹼、及脂肪酸醯基-N-羧乙基-N-羥乙基 乙二胺鹼鹽之1種或2種以上。 3 ·如申請專利範圍第1項之凸塊成形用非氰系電解 鍍金浴,其中結晶調整劑爲T1化合物、Pb化合物、或As 化合物,且摻合結晶調整劑0 . 1〜1 0 0 m g / L作爲金屬濃度 〇 Ο 4 —種凸塊成形方法,其特徵爲於經圖型化之晶圓 上使用申請專利範圍第1項之凸塊成形用非氰系電解鍍金 浴進行電解鍍金後,以200〜400 °C經由5分鐘以上熱處理 ,而形成皮膜硬度爲50〜90Hv、表面之高低差爲1.8μιη 以下的凸塊。 5. —種連接構造,其係將形成於印刷配線基板上之 具有基板配線圖型之基板電極、與形成於半導體晶圓上之 積體電路的金凸塊,使用異向性導電黏著劑予以連接的連 接構造,其特徵爲前述金凸塊的皮膜硬度爲50〜90Ην。 -28-200925336 X. Patent application scope 1. A non-cyanide electrolytic gold bath for forming a bump, which is characterized by containing gold alkali sulfite or gold ammonium sulfite, crystal modifier, potassium sulfite 5 to 150 g/L, molecular weight It is made up of 200~6000 polyalkylene glycol 1mg/L~6g / L and / or amphoteric surfactant 〇. 1 mg~1 g / L with water-soluble amine and / or buffer. 2. The non-cyanide electrolytic ruthenium gold plating bath for bump forming according to the first aspect of the patent application, wherein the amphoteric surfactant is selected from the group consisting of 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolium betaine, One or more of melamine propyl hydroxy sulfobetaine, a fatty acid guanamine propyl betaine, and a fatty acid sulfhydryl-N-carboxyethyl-N-hydroxyethylethylenediamine base salt. 3 · A non-cyanide electrolytic gold plating bath for bump forming according to item 1 of the patent application, wherein the crystal modifier is a T1 compound, a Pb compound, or an As compound, and a crystal modifier is blended. 0~1 0 0 mg / L as a metal concentration 〇Ο 4 - a bump forming method, characterized in that after electroplating is performed on a patterned wafer using a non-cyanide electrolytic gold plating bath for bump forming in the first application of the patent scope, The heat treatment is carried out at 200 to 400 ° C for 5 minutes or more to form a bump having a film hardness of 50 to 90 Hv and a surface height difference of 1.8 μm or less. 5. A connection structure for a substrate electrode having a substrate wiring pattern formed on a printed wiring substrate and a gold bump formed on an integrated circuit formed on the semiconductor wafer, using an anisotropic conductive adhesive The connection structure of the connection is characterized in that the hardness of the gold bump is 50 to 90 Ην. -28-
TW097129689A 2007-08-07 2008-08-05 Non cyanide gold plating bath for bump TWI477660B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007205410 2007-08-07

Publications (2)

Publication Number Publication Date
TW200925336A true TW200925336A (en) 2009-06-16
TWI477660B TWI477660B (en) 2015-03-21

Family

ID=40389722

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097129689A TWI477660B (en) 2007-08-07 2008-08-05 Non cyanide gold plating bath for bump

Country Status (4)

Country Link
JP (1) JP5336785B2 (en)
KR (1) KR20090014992A (en)
CN (1) CN101363128B (en)
TW (1) TWI477660B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI475620B (en) * 2012-01-20 2015-03-01 Fujitsu Ltd Electronic device, method of manufacturing, and electronic device manufacturing apparatus

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5442400B2 (en) * 2009-11-13 2014-03-12 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor integrated circuit device
CN102753732A (en) * 2010-03-26 2012-10-24 美泰乐科技(日本)股份有限公司 Cyanide based electrolytic gold plating solution and plating method using same
JP5620798B2 (en) * 2010-12-01 2014-11-05 メタローテクノロジーズジャパン株式会社 Non-cyan electrolytic gold plating bath for gold bump formation and gold bump formation method
CN102254891A (en) * 2011-08-01 2011-11-23 三星半导体(中国)研究开发有限公司 Flip chip packaging structure and manufacturing method thereof
CN103290440B (en) * 2012-02-22 2016-12-14 美泰乐科技(日本)股份有限公司 Au bump formation non-cyanogen type electrolytic gold plating bath and au bump forming method
KR101464343B1 (en) * 2013-04-02 2014-11-28 한밭대학교 산학협력단 Non cyanide gold plating bath for bump and preparation method of bump
JP6393526B2 (en) * 2014-06-11 2018-09-19 メタローテクノロジーズジャパン株式会社 Cyan-based electrolytic gold plating bath and bump forming method using the same
JP6659247B2 (en) 2015-06-16 2020-03-04 デクセリアルズ株式会社 Connecting body, manufacturing method of connecting body, inspection method
CN105401180A (en) * 2015-12-23 2016-03-16 苏州市金星工艺镀饰有限公司 Electroplating liquid of wear-resistant gold-plated film and electroplating method thereof
CN105401181A (en) * 2015-12-23 2016-03-16 苏州市金星工艺镀饰有限公司 Electroplating method of environmentally-friendly cyanide-free gold-plating electroplating fluid
CN113913879B (en) * 2021-09-30 2022-08-09 深圳市联合蓝海黄金材料科技股份有限公司 Cyanide-free electrogilding solution, use thereof, method for producing gold bumps by electrogilding, gold bumps and electronic components
JP7017664B1 (en) * 2021-11-11 2022-02-08 松田産業株式会社 Nosian electrolytic gold plating solution
CN115244221A (en) * 2021-11-11 2022-10-25 松田产业株式会社 Cyanide-free electrolytic gold plating solution

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511589B1 (en) * 2001-08-17 2003-01-28 Electroplating Engineers Of Japan Limited Gold plating solution and gold plating method using thereof
CN100412236C (en) * 2002-03-13 2008-08-20 三菱化学株式会社 Gold plating solution and gold plating method
JP2006322037A (en) * 2005-05-18 2006-11-30 Electroplating Eng Of Japan Co Gold-plating solution
JP4713290B2 (en) * 2005-09-30 2011-06-29 エヌ・イーケムキャット株式会社 Forming method of gold bump or gold wiring
JP4713289B2 (en) * 2005-09-30 2011-06-29 エヌ・イーケムキャット株式会社 Non-cyan electrolytic gold plating bath for bump formation
JP2009062584A (en) * 2007-09-06 2009-03-26 Ne Chemcat Corp Cyanide-free electrolytic gold plating bath for bump formation, and method for forming bump
JP2009071093A (en) * 2007-09-14 2009-04-02 Ne Chemcat Corp Bump and bump forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI475620B (en) * 2012-01-20 2015-03-01 Fujitsu Ltd Electronic device, method of manufacturing, and electronic device manufacturing apparatus

Also Published As

Publication number Publication date
JP5336785B2 (en) 2013-11-06
KR20090014992A (en) 2009-02-11
TWI477660B (en) 2015-03-21
JP2009057631A (en) 2009-03-19
CN101363128B (en) 2011-12-14
CN101363128A (en) 2009-02-11

Similar Documents

Publication Publication Date Title
TW200925336A (en) Non-cyanogen type electrolytic gold plating bath for bump forming
TW200836278A (en) Non-cyanogen-based gold electroplating bath for forming gold bump or gold wiring
JP6083921B2 (en) Silver-tin alloy electroplating bath
TWI326717B (en) Metal duplex and method
TWI385281B (en) Gold bump or gold wiring formation method
JP2009062584A (en) Cyanide-free electrolytic gold plating bath for bump formation, and method for forming bump
TWI390086B (en) Non-cyanide electrolytic gold plating bath for bump formation
TWI617707B (en) Cyanide based electrolytic gold plating bath and bump forming method using same
KR101783393B1 (en) Gold plating bath for electrode and preparation method of electrode
JP2009071093A (en) Bump and bump forming method
JP4925792B2 (en) Non-cyan electrolytic gold plating bath for bump formation
JP5620798B2 (en) Non-cyan electrolytic gold plating bath for gold bump formation and gold bump formation method
TW201831064A (en) Method of forming a solderable solder deposit on a contact pad
TWI513864B (en) Preparation method of non - cyanide electrolytic gold plating bath and gold bump for forming gold bump
JPS61214454A (en) Bonding wire for semiconductor device
TW201033404A (en) Method for forming projection electrode and substituted gold plating solution
KR20130095481A (en) Non cyanide gold plating bath for bump and forming method of gold bump
Yang et al. The impact of zincation on the electroless nickel UBM for low cost flip chip technology
JP2001185836A (en) Wiring board, method and device for producing wiring board
TW201546337A (en) Electroplating baths of silver and tin alloys