TW200925296A - High strength, high toughness rotating shaft material - Google Patents

High strength, high toughness rotating shaft material Download PDF

Info

Publication number
TW200925296A
TW200925296A TW097124031A TW97124031A TW200925296A TW 200925296 A TW200925296 A TW 200925296A TW 097124031 A TW097124031 A TW 097124031A TW 97124031 A TW97124031 A TW 97124031A TW 200925296 A TW200925296 A TW 200925296A
Authority
TW
Taiwan
Prior art keywords
alloy
carbon
molybdenum
inclusions
phosphorus
Prior art date
Application number
TW097124031A
Other languages
Chinese (zh)
Inventor
Paul Michael Novotny
Robert Wayne Krieble
William Joseph Martin
Thomas Constantine Zogas
Charles Bernard Adasczik
Original Assignee
Crs Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crs Holdings Inc filed Critical Crs Holdings Inc
Publication of TW200925296A publication Critical patent/TW200925296A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

An age hardenable, martensitic steel alloy that provides high strength, high toughness, and good low cycle fatigue life and a method of making same are disclosed. The alloy comprises a matrix having a weight percent composition consisting essentially of about Carbon 0.2-0.36 Manganese 0.20 max. Silicon 0.10 max. Phosphorus 0.01 max. Sulfur 0.004 max. Chromium 1.3-4 Nickel 10-15 Molybdenum 0.75-2.7 Cobalt 8-22 Aluminum 0.01 max. Titanium 0.02 max. Calcium 0.001 max. and the balance being iron and usual impurities. The alloy further contains a plurality of inclusions dispersed in the alloy matrix. The inclusions comprise calcium compounds that are about 0.4 μm to about 7.0 μm in major dimension, they have a median size of at least about 1.6 μm in major dimension, and the inclusions contain essentially no rare earth elements.

Description

200925296 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種可提供高強度及高韌性之鋼合金,特 別係關於一種具有改良之抗疲勞性之合金。 【先前技術】 ' 具有高強度與高韌性之優良結合之鋼合金為已知。該等 ' 合金之實例描述且主張於美國專利案第5,087,415號、美國 專利第5,268,044號、美國專利第5,866,〇66號以及美國專利 ❹ 申請公開案第2007/0113931號’該等揭示全部内容以引用 方式併入本文中。該等文件中所描述的該等合金原本係設 計用於結構航太應用領域,如飛機起落架元件、飛機結構 凡件,如支架、導板、支柱。該等已知的合金係採用下列 方法製得·該方法包括使用一種稀土處理法以控制所含内 谷物如硫化物、氧化物及氧硫化物之大小及形狀,否則 該等物質將不利地影響其所欲設計之結構應用方面的強度 及勤性。 由於上述合金之初步發展,該等合金已提出有新用途’ 即喷射引擎的旋轉桿。在由該等合金製成的旋轉桿的發展 ㉟帛中,已發現該等稀土處理的合金之疲勞壽♦,特別係 低循環疲勞壽命,有時仍非所需。然而,由該等合金所提 供之间強度及尚韌性對該旋轉轴應用仍係高度期望。因 此希望獲仔可提供由該等已知合金所提供之高強度及高 勤性與用於旋轉轴應用之改良疲勞壽命之組合之鋼合金。 【發明内容】 l325B7.doc 200925296 本發明係關於一可時效硬化之馬氏體鋼合金,該合金具 有經設計成以大幅度改良成品元件如適用於喷射引擎或燃 氣渦輪之旋轉轴之疲勞壽命之組成及微結構。下表總結的 係依據本發明之材料之較廣、中度及較佳化學物質。該表 中所述之值係重量百分比。 中度 較佳 0.20-0.33 0.21-0.27 0.15最多 0.10最多 0.1最多 0.1最多 0.008最多 0.008最多 0-0025最多 0.0020最多 2-4 2.9-4.0 10.5-15 11.0-13.0 0.75-1.75 1.0-1.5 8-17 10-14 0.02最多 0.02最多 0.01最多 〇·〇1最多 較廣 C 0.2-0.36 Μη 0.20最多 Si 0.1最多 P 0.01最多 S 0.0040最多 Cr 1.3-4 Ni 10-15 Mo 0.75-2.7 Co 8-22 Ti 0.02最多 A1 0.01最多 ❹200925296 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a steel alloy which can provide high strength and high toughness, and more particularly to an alloy having improved fatigue resistance. [Prior Art] A steel alloy having an excellent combination of high strength and high toughness is known. Examples of such 'alloys' are described in U.S. Patent No. 5,087,415, U.S. Patent No. 5,268,044, U.S. Patent No. 5,866, filed on Jun. The citations are incorporated herein by reference. The alloys described in these documents were originally designed for use in structural aerospace applications, such as aircraft landing gear components, aircraft structural components such as brackets, guides, and pillars. The known alloys are prepared by the following method: The method comprises the use of a rare earth treatment to control the size and shape of the inner grains, such as sulfides, oxides and oxysulfides, which would otherwise adversely affect The strength and flexibility of the structural application of the design. Due to the initial development of the above alloys, these alloys have been proposed for new applications, ie the rotating rod of the jet engine. In the development of rotating rods made of these alloys, it has been found that the fatigue life of these rare earth treated alloys, especially low cycle fatigue life, is sometimes undesirable. However, the strength and toughness imparted by these alloys is still highly desirable for the application of the rotating shaft. It is therefore desirable to provide steel alloys that combine the high strength and high performance offered by these known alloys with the improved fatigue life for rotary shaft applications. SUMMARY OF THE INVENTION The present invention relates to an age hardenable martensitic steel alloy having a fatigue life designed to greatly improve the finished component such as a rotating shaft for a jet engine or a gas turbine. Composition and microstructure. The following table summarizes the broader, moderate, and preferred chemicals of the materials in accordance with the present invention. The values stated in the table are percentages by weight. Moderately better 0.20-0.33 0.21-0.27 0.15 up to 0.10 up to 0.1 up to 0.1 up to 0.008 up to 0.008 up to 0-0025 up to 0.0020 up to 2-4 2.9-4.0 10.5-15 11.0-13.0 0.75-1.75 1.0-1.5 8-17 10 -14 0.02 up to 0.02 up to 0.01 up to 〇·〇1 up to wider C 0.2-0.36 Μη 0.20 up to Si 0.1 up to P 0.01 up to S 0.0040 up to Cr 1.3-4 Ni 10-15 Mo 0.75-2.7 Co 8-22 Ti 0.02 most A1 0.01 max.

該合金之其餘部分係鐵及常見雜f,包括其含量不_ 所需組合性質之其他元素。依據本發明之該合金之進一步 特徵為’合金基質中主要尺寸大小分佈在編降約7 μΓΠ之間微小内含物之分散。較佳的是’該中值内含物大 小至少為約1.6 μιη。該内含物之組成基本上不含稀土元素 如鈽及鑭。 、 高韌 法。 依據本發明之另一方面’提供一種改良高強度、 性、可時效硬化馬氏體鋼合金之低循環疲勞壽命之方 132587.doc 200925296 該方法包括之步驟為:熔化具有上述重量百分比組成之可 時效硬化馬氏體鋼合金。該方法進而包括之步驟為:向該 熔化合金中加入鈣’使其與該熔化合金中提供的硫及氧結 合形成可自該合金中移除之内含物。該方法還包括之步驟 為.加工該合金以將至少部分内含物自該合金移除且之後 固化該精練合金’因此,該固化合金中該基質合金内含有 受限分散之内含物。該殘留的内含物之主要尺寸大小分佈 約為0.4 μηι-約7 μηι且中值粒度至少約為1.6 μιη。可對該合 > 金進行機械操作及加工以形成有用的產品,如用於旋轉機 械之轴。 上述表列係提供作為便捷概述而不用以限制本發明之合 金之個別元素之範圍的下限值及上限值,僅用於相互結合 或僅用於相互結合以限制該等元素之較廣、中度的及較佳 範圍。因此’該較廣、中度及較佳範圍中的一個或多個可 與其餘元素之範圍之一個或多個聯合使用。此外,一種元The remainder of the alloy is iron and common impurities f, including other elements whose content is not the desired combination. A further feature of the alloy according to the present invention is that the major size distribution in the alloy matrix is such that the fine inclusions are dispersed between about 7 μΓΠ. Preferably, the median inclusion has a size of at least about 1.6 μηη. The composition of the inclusions is substantially free of rare earth elements such as lanthanum and cerium. High toughness method. According to another aspect of the invention, there is provided a method for improving the low cycle fatigue life of a high strength, ageing, age hardenable martensitic steel alloy 132587.doc 200925296 The method comprises the steps of: melting the composition having the above weight percentage Age hardened martensitic steel alloy. The method further includes the step of adding calcium ' to the molten alloy to combine with the sulfur and oxygen provided in the molten alloy to form inclusions that are removable from the alloy. The method also includes the step of processing the alloy to remove at least a portion of the contents from the alloy and thereafter curing the scouring alloy. Thus, the matrix alloy contains a constrained dispersed inclusion therein. The residual inclusions have a major size distribution of from about 0.4 μηη to about 7 μηι and a median particle size of at least about 1.6 μηη. The > gold can be mechanically manipulated and machined to form useful products such as shafts for rotating machinery. The above list is provided as a convenient summary and is not intended to limit the lower and upper limits of the range of the individual elements of the alloys of the present invention, and is used only for the purpose of combining them with each other or only for the purpose of limiting the broadness of the elements. Moderate and preferred range. Thus, one or more of the broader, medium and preferred ranges may be used in combination with one or more of the remaining elements. In addition, a kind of element

素之較廣、中度及較佳最小值或最大值可與該其餘範圍中 W 的一個最大值或最小值一起使用。此處以及整個說明書 中’除非另有說明,否則百分比(%)係指重量百分比。 【實施方式】 前述發明内容及下列詳細描述當配合圖式加以閱讀時將 更易於了解》 依據本發明之合金含有至少約0.2%,更佳至少約 0_20%,且較佳至少約〇 21%之碳,其係因為藉由與其他元 素如鉻及鉬組合以在熱處理時形成碳化物,有助於該合金 132587.doc 200925296 獲得良好的硬度能力及高抗拉強度之故。碳過多則不利地 影響該合金之斷裂韌性。據此,碳限於至多約〇 36%,但 較好不超過約0.33% ’較宜為不超過0 27%。 鈷有助於該合金之硬度及強度,且有助於降伏強度對抗 拉強度之比例(Y.S./U.T.S)。因此,該合金中存在至少約 8%,但較佳至少約10%,且最佳至少約11%之鈷。鈷若高 . 於22%則不利地影響該合金之斷裂韌性及延展至脆性轉變 μ度。較佳的疋,該合金中存在之銘不超過約Η%,且較 © 佳不超過約14%。 需嚴格平衡該合金中之鈷及碳以獲得該合金特徵之高強 度與高斷裂動性之良好組合。因此,為確保良好的斷裂勒 性,較宜依據以下之關係平衡碳及鈷: a) %Co<3 5-81.8(%C) 為確保該合金具備所期之高強度及硬度,較宜將碳與鈷 平衡為: ❹ b) %C〇225.5-70(%C);且最好是 c) %C〇>26.9-70%(%C) 鉻有助於該合金之良好可硬化度及硬度能力且利於獲 . 得該合金之所需低延性-脆性轉變溫度。因此,存在至少 . 1 ·3% ’較佳至少約2%,最佳至少約2 9%的鉻。絡超過 4%,則該合金^速老化,因此,以該較㈣經時硬化 熱處理,無法獲得高抗拉強度及高斷裂韌性之良好組合。 較佳的是,鉻限於不超過3.5%,且更加不超過33%。當該 合金含有大於3%的鉻時,需向上調整合金中碳的含量, I32587.doc 200925296 以確保該合金提供所期之高拉伸強度。 該合金中存在至少約〇.75%且較佳至少約1%的翻因為 鉬有助於獲得該合金所期之低延性_脆性轉變溫度之故。 鉬大於2.7。/。,,則該合金之斷裂韌性會受不利影響。較佳 的是,鉬限於不超過約〖.75%,且最好不超過約15^當 該合金中的翻大於約H,則需向下調整該合金中碳及/ - 或鈷的%以確保該合金提供所期之高斷裂韌性。據此,當 該合金所含之鉬超過約丨.5%,則對由方程式叻、…及勾^ ® 限定之既定鈷%而言’碳%不超過碳的中值%。 鎳有助於該合金之可硬化度,因此,可採用或不採用快 速淬火技術使該合金硬化。鎳有助於由該該合金所提供之 斷裂韌性及應力腐蝕開裂抗性且有助於所期之低延性脆 性轉變溫度。據此,存在有至少約1〇%,較好至少約 10.5%,且更好至少約u.0%的鎳。鎳大於約15% ,則可能 對該合金之斷裂韌性及衝擊韌性有不良影響,係因為該合 _ 金中碳的溶解度降低,其可能導致在以低速度冷卻該合金 時,例如鍛造之後進行空氣冷卻時,在晶界中碳化物析 出。較佳的是’鎳限於不超過約丨3.〇% ,較佳不超過約 . 12.0〇/〇 〇 _ 該合金中亦可含有不影響所期之合金性質之量的其他元 素。可存在不超過0.20%之錳,因錳不利地影響該合金之 斷裂韌性。較佳的是,錳限於最多約5%,且較佳約 〇·1〇°/。。最好是,該合金含猛不超過約〇.〇5%。可存在有至 多約0.1°/〇的矽,至多約〇·01%的鋁以及至多噱0 02。/〇的鈦, 132587.doc 200925296 因源自該合金去氧化所小量添佳之殘餘物之故。 該合金中存在有少量但有效㈣,以提供硫化物及氧化 物内3物形狀控制’其有益於改善飼合金之斷裂動性及低 疲勞牙纟據信,在該合金中使用與,有助於改善其低循 環疲勞(LCF)壽命’因為奸有利地影響加工過程中在該合 金基質中形成的内含物之大小及分佈。與美國專利第 5,087,415號、美國專利5,268,〇44號、美國專利第 5,866,066號以及美國專利中請公開案第⑴州號中 Ο 所描述的合金不同,本發明避免使用稀土元素處理。因 此,依據本發明製得之該合金或產品可含有僅微量該等元 素,如鈽、鑭及其他稀土元素。 除了對類似功能及用途所需之商品等級的合金中可發現 的常見雜質以外,依據本發明之合金之其他部分主要係鐵 疋素。需控制該等元素之含量以使其不至於對該合金之所 需性質有不利影響。例如,磷限於不超過約1 %,較好 ❹不超過約0.008%。硫將不利地影響該合金所提供之斷裂韌 性。據此’硫含量限於最多約〇 〇〇4〇0/〇,較佳最多約 0.0025%,且更佳最多約〇〇〇2〇%。該合金含有不超過約 . 〇.001%之硫時可獲得最佳結果。偶存元素如鉛、錫、砷及 銻含量限於各最多約0.003%,較好各最多約〇 〇〇2%,且更 佳各最多約0.001。/。。氧限於不超過約20每百萬份(ρριη), 且氮不超過約 40 ppm ° 可使用習知真空或惰性氣體熔化技術輕易地將本發明之 合金熔化。為取得最好結果,當需要進行另外的精煉時, 132587.doc 200925296 較佳進行多重熔化操作。該較佳操作是在一真空感應電爐 (VIM)中熔化一被加熱物,且將該被加熱物鑄造成電極。 用於上述所提及之硫化物形狀控制之合金添加較宜在該熔 化的VIM熱量鑄造之前製得。之後宜將該電極在真空電弧 爐(VAR)中重新熔化且重新鑄造成一個或多個鑄塊。預期 在該VAR處理之後,該合金將含有不超過約〇 〇〇1%的鈣。 在VAR之前,宜在約1250卞將該電極鑄塊進行4-16小時之 壓力釋放,之後進行空氣冷卻。在該VAR之後,較宜在約 2150-2250 F下將該(等)鎊塊進行6-24小時的均質化。也可 使用粉末冶金技術製備該合金,例如,VIM後進行惰性氣 體原子化。 可以約2250 F至1500卞對該合金進行熱加工。該較佳熱 加工操作是從約2150-2250T鍛造出鑄塊以使橫截面面積 減少至少30%。之後將該鑄塊再加熱至約18〇〇卞,且進一 步鍛造以使橫截面面積再減少至少3〇%。需瞭解,對有些 產品型態’也可使用單一縮減步驟對該合金進行熱加工。 對依據本發明之合金進行奥氏體化及時效硬化係如下。 在約1550-1800°F對該合金加熱約一小時,再對每英寸厚 度加熱約五分鐘,之後於油中淬冷,而進行該合金之奥氏 體化。該合金之可硬化度足夠良好至使用惰性氣體淬冷以 進行空氣冷卻或真空熱處理,該兩種處理之冷卻速度均小 於油泮冷。無論使用的是何種淬冷技術,淬冷速度較宜快 至足以使該合金在不超過約二小時内,自奥氏體化溫度降 低到約150°F。然而,當對該合金進行油淬冷時,較宜在 132587.doc -13· 200925296 約155(M_°F對其進行奥氏體化,而當該合金欲進行真 空處理或空氣硬化時,冑氏體化溫度較宜為約1575_1650 F °奥氏體化之後’較宜在約⑽至_32昨溫度下對該合 金進行1/2至1小時的深度冷卻,且之後在空氣中回溫。宜 在約850-950 F對該合金加熱約五小時進行時效硬化接著 於空氣中冷卻。 實施例 為證明本發明之合金所提供之相對於已知合金之疲勞壽 命之改良,進行了比較試驗。試驗樣品取自已知稀土元素 處理被加熱物(RE處理)材料及依據本發明之合金之鈣處理 被加熱物(Ca處理該二種被加熱物之化學物質重量百分 比如下表1所述。 表1 元素 經RE處理 經Ca處理 C 0.224 0.223 Μη <0.01 <0.01 Si 0.02 0.01 P 0.0014 0.0016 s 0.0008 <0.0005 Cr 3.01 3.01 Ni 11.14 11.07 Mo 1.18 1.17 Co 13.44 13.45 A1 0.003 0.011 Ti 0.010 0.009 Ce 0.009 _ _ La 0.006 —一 _ N <0.0010 <0.0010 0 <0.0010 <0.0010 Ca --- <0.005 132587.doc 200925296 各組成其餘成分是鐵及常見雜質。 獲得樣品材料之縱切面及橫切面。可從每個切面製備標 準拉伸及斷裂韌性樣本。該拉伸及斷裂韌性樣本在1625卞 加熱一小時而熱處理,之後在空氣中冷卻。接著該試驗樣 本在-100 F深度冷卻一小時,之後在空氣中回溫。接著在 900°F下加熱該樣本加熱五小時且之後經空氣冷卻以進 行時效硬化。該拉伸及斷裂韌性試驗的結果示於下表2, 包括以ksi表示之〇.2%偏移降伏強度及最終抗拉強度延 伸百分比、面積減小百分比以及以ksi/in表示之Κι。斷裂 韌性。 表2 樣品 方位 Y.S. (ksi) U.T.S ㈣ 伸長率 (%) R.A. (%) KIC (ksWin.) 經RE處理 縱向 253.0 286.0 16.0 65.0 136.3 橫向 251.0 281.0 13.0 46.0 109.9 經Ca處理 縱向 246.0 281.0 17.0 70.0 145.4 橫向 250.0 285.0 17.0 65.0 108.2 表2的數據表示依據本發明之經(^處理的合金提供至少如 已知的經稀土 tl素處理合金同樣優良的抗拉特性及斷裂韌 性。鈣處理對該合金之抗拉及斷裂韌性特性無不利作用。 自各被加熱物切下測得為3/4in平方x4_1/2in長之橫向對 照塊(blanks)。採用如上用於該抗拉及斷裂樣本之同樣的 熱處理處理該對照塊。該熱處理對照塊經低地應力研磨以 形成轴-轴疲勞試驗樣本。 132587.doc 200925296 用於室溫軸-軸疲勞試驗之光滑疲勞試驗樣本(Kt=1.0)係 依據ASTM E466-96製備。使用伺服液壓試驗設備與一20 Hz正弦波將該等樣本從零壓力循環至每個最大抗拉壓力, 1400 MPa、1200 MPa及 1100 MPa(分別為 203 ksi、174 ksi 及160 ksi)。各被加熱物的六個樣本在各壓力水準下試 驗。因此,該軸-軸疲勞試驗係在給定R=0&Kt=l的條件下 • 進行。為經濟起見,若該樣本試驗未在該時間内失效,則 在1,728,000次循環(24小時)時停止該樣本試驗。 Ο 表III A顯示對該經稀土元素處理之樣本的疲勞試驗結 果,且表IIIB顯示經鈣處理樣本的試驗結果。The broader, moderate, and preferred minimum or maximum values can be used with a maximum or minimum of W in the remaining range. Here and throughout the specification, the percentage (%) refers to the weight percentage unless otherwise stated. [Embodiment] The foregoing summary and the following detailed description will be more readily understood when read in conjunction with the drawings. The alloy according to the present invention contains at least about 0.2%, more preferably at least about 0-20%, and preferably at least about 21%. Carbon, which is formed by combining with other elements such as chromium and molybdenum to form carbides during heat treatment, contributes to the good hardness and high tensile strength of the alloy 132587.doc 200925296. Too much carbon adversely affects the fracture toughness of the alloy. Accordingly, carbon is limited to at most about 36%, but preferably not more than about 0.33%' is preferably no more than 027%. Cobalt contributes to the hardness and strength of the alloy and contributes to the ratio of the tensile strength to the tensile strength (Y.S./U.T.S.). Thus, at least about 8%, but preferably at least about 10%, and most preferably at least about 11% cobalt is present in the alloy. If the cobalt is high, 22% adversely affects the fracture toughness of the alloy and extends to a brittle transition μ degree. Preferably, the presence of the alloy does not exceed about Η%, and preferably does not exceed about 14%. It is necessary to strictly balance the cobalt and carbon in the alloy to obtain a good combination of high strength and high fracture dynamics of the alloy. Therefore, in order to ensure good fracture properties, it is better to balance carbon and cobalt according to the following relationship: a) %Co<3 5-81.8 (%C) To ensure the alloy has the high strength and hardness expected, it is better to The balance of carbon and cobalt is: ❹ b) %C〇225.5-70 (%C); and preferably c) %C〇>26.9-70% (%C) Chromium contributes to the good hardenability of the alloy And the hardness capability and the favorable low ductility-brittle transition temperature required for the alloy. Thus, there is at least 1. 1 3% 'preferably at least about 2%, and most preferably at least about 9% chromium. When the network exceeds 4%, the alloy is aged at a rapid rate. Therefore, a good combination of high tensile strength and high fracture toughness cannot be obtained by the (4) time-hardening heat treatment. Preferably, the chromium is limited to no more than 3.5%, and more preferably no more than 33%. When the alloy contains more than 3% chromium, the carbon content of the alloy needs to be adjusted upwards, I32587.doc 200925296 to ensure that the alloy provides the desired high tensile strength. The presence of at least about 0.75% and preferably at least about 1% of the molybdenum in the alloy contributes to the low ductility-brittle transition temperature desired for the alloy. Molybdenum greater than 2.7. /. , the fracture toughness of the alloy is adversely affected. Preferably, the molybdenum is limited to no more than about 〖.75%, and preferably no more than about 15^. When the tumbling in the alloy is greater than about H, the carbon and/or cobalt in the alloy is adjusted downward to Ensure that the alloy provides the desired high fracture toughness. Accordingly, when the alloy contains more than about 5% molybdenum, the carbon % does not exceed the median % of carbon for the predetermined cobalt % defined by the equations 叻, ..., and ^^. Nickel contributes to the hardenability of the alloy and, therefore, the alloy can be hardened with or without rapid quenching techniques. Nickel contributes to the fracture toughness and stress corrosion cracking resistance provided by the alloy and contributes to the desired low ductile brittle transition temperature. Accordingly, there is at least about 1%, preferably at least about 10.5%, and more preferably at least about 0. 0% nickel. Nickel greater than about 15% may have an adverse effect on the fracture toughness and impact toughness of the alloy because the solubility of carbon in the alloy is reduced, which may result in air being cooled at a low speed, such as after forging. At the time of cooling, carbides precipitate in the grain boundaries. Preferably, the nickel is limited to no more than about 丨3.〇%, preferably not more than about 12.0〇/〇 〇 _ The alloy may also contain other elements which do not affect the properties of the desired alloy. Manganese may be present in an amount of no more than 0.20%, which adversely affects the fracture toughness of the alloy. Preferably, manganese is limited to at most about 5%, and preferably about 〇·1〇°. . Preferably, the alloy contains no more than about 〇.〇5%. There may be 矽 up to about 0.1 ° / 〇, up to about 〇 01% of aluminum and up to 噱 0 02. /〇Titanium, 132587.doc 200925296 Due to the small amount of residue from the deoxidation of the alloy. There is a small amount in the alloy but it is effective (4) to provide control of the shape of the sulfide and the oxide. It is beneficial to improve the fracture dynamics of the alloy and the low fatigue of the gum. It is believed to be used in the alloy. In order to improve its low cycle fatigue (LCF) life, it is beneficial to influence the size and distribution of inclusions formed in the alloy matrix during processing. Unlike the alloys described in U.S. Patent No. 5,087,415, U.S. Patent No. 5,268, the disclosure of U.S. Patent No. 5,866,066, and U.S. Patent Application Serial No. (1). Thus, the alloy or product made in accordance with the present invention may contain only minor amounts of such elements, such as lanthanum, cerium and other rare earth elements. In addition to the common impurities found in alloys of commercial grades required for similar functions and uses, the remainder of the alloys according to the present invention are primarily tetronic. It is necessary to control the content of such elements so as not to adversely affect the desired properties of the alloy. For example, phosphorus is limited to no more than about 1%, preferably no more than about 0.008%. Sulfur will adversely affect the fracture toughness provided by the alloy. Accordingly, the sulfur content is limited to a maximum of about 〇4〇0/〇, preferably up to about 0.0025%, and more preferably up to about 〇2%. The best results are obtained when the alloy contains no more than about 0.001% sulfur. The content of incidental elements such as lead, tin, arsenic and antimony is limited to at most about 0.003% each, preferably up to about 2%, and more preferably up to about 0.001 each. /. . The oxygen is limited to no more than about 20 parts per million (ρριη), and the nitrogen does not exceed about 40 ppm. The alloy of the present invention can be easily melted using conventional vacuum or inert gas melting techniques. For best results, 132587.doc 200925296 is preferred for multiple melting operations when additional refinement is required. The preferred operation is to melt an object to be heated in a vacuum induction furnace (VIM) and cast the object to be an electrode. The alloy addition for the sulfide shape control mentioned above is preferably made prior to the melted VIM heat casting. The electrode is then remelted in a vacuum arc furnace (VAR) and recast into one or more ingots. It is expected that after this VAR treatment, the alloy will contain no more than about 1% calcium. Prior to the VAR, the electrode ingot is preferably subjected to a pressure release of 4-16 hours at about 1250 Torr, followed by air cooling. Preferably, after the VAR, the (equal) pounds are homogenized for 6-24 hours at about 2150-2250 F. The alloy can also be prepared using powder metallurgy techniques, for example, inert gas atomization after VIM. The alloy can be hot worked at about 2250 F to 1500 Torr. The preferred thermal processing operation is to forge the ingot from about 2150-2250T to reduce the cross-sectional area by at least 30%. The ingot is then reheated to about 18 Torr and further forged to reduce the cross-sectional area by at least 3%. It is to be understood that for some product types, the alloy can also be hot worked using a single reduction step. The austenitizing and ageing hardening of the alloy according to the present invention is as follows. The alloy is heated at about 1550-1800 °F for about one hour and then heated to a thickness of one inch for about five minutes, after which it is quenched in oil to effect austenitization of the alloy. The hardenability of the alloy is good enough to be quenched with an inert gas for air cooling or vacuum heat treatment, both of which have a cooling rate less than that of the oil. Regardless of the quenching technique used, the quenching speed is preferably fast enough to reduce the austenitizing temperature to about 150 °F in less than about two hours. However, when the alloy is oil quenched, it is preferably austenitized at 132587.doc -13.200925296 about 155 (M_°F, and when the alloy is to be vacuum treated or air hardened, 胄The austenitizing temperature is preferably about 1575_1650 F ° after austenitizing. Preferably, the alloy is subjected to deep cooling for about 1/2 to 1 hour at a temperature of about (10) to _32 yesterday, and then warmed up in air. Preferably, the alloy is heated for about five hours at about 850-950 F for age hardening followed by cooling in air.Examples To demonstrate the improvement in fatigue life provided by the alloy of the present invention relative to known alloys, comparative tests were conducted. The test sample is taken from a known rare earth element treated object to be heated (RE treatment) material and a calcium treated object to be heated according to the alloy of the present invention (the weight percentage of the chemical substance for treating the two objects to be heated by Ca is as described in Table 1 below. 1 Element treated with RE by Ca treatment C 0.224 0.223 Μη <0.01 <0.01 Si 0.02 0.01 P 0.0014 0.0016 s 0.0008 <0.0005 Cr 3.01 3.01 Ni 11.14 11.07 Mo 1.18 1.17 Co 13.44 13.45 A1 0.003 0.011 Ti 0.010 0.009 Ce 0.009 _ _ La 0.006 — 一 _ N <0.0010 <0.0010 0 <0.0010 <0.0010 Ca --- <0.005 132587.doc 200925296 The remaining components of each composition are iron and common impurities. Cut and cross-section. Standard tensile and fracture toughness samples can be prepared from each cut. The tensile and fracture toughness samples are heat treated at 1625 Torr for one hour and then cooled in air. The test specimen is then at -100 F depth. After cooling for one hour, it was then warmed in air. The sample was then heated at 900 °F for five hours and then air cooled for age hardening. The results of the tensile and fracture toughness tests are shown in Table 2 below, including Ksi represents 〇.2% offset drop strength and final tensile strength extension percentage, area reduction percentage, and Κι. fracture toughness expressed in ksi/in. Table 2 Sample orientation YS (ksi) UTS (iv) Elongation (%) RA (%) KIC (ksWin.) treated by RE longitudinal 253.0 286.0 16.0 65.0 136.3 transverse 251.0 281.0 13.0 46.0 109.9 treated by Ca longitudinal 246.0 281.0 17.0 70.0 145.4 transverse 250.0 285.0 1 7.0 65.0 108.2 The data in Table 2 indicates that the treated alloy according to the present invention provides at least the same excellent tensile properties and fracture toughness as the known rare earth treated alloy. Calcium treatment has no adverse effect on the tensile and fracture toughness characteristics of the alloy. The transversely-aligned blocks were measured to be 3/4 in square x 4_1/2 in length from each object to be heated. The control block was treated with the same heat treatment as described above for the tensile and fracture samples. The heat treated control block was ground by low geostress to form a shaft-axis fatigue test sample. 132587.doc 200925296 A smooth fatigue test specimen (Kt = 1.0) for room temperature shaft-axis fatigue test was prepared in accordance with ASTM E466-96. The samples were circulated from zero pressure to each of the maximum tensile pressures, 1400 MPa, 1200 MPa, and 1100 MPa (203 ksi, 174 ksi, and 160 ksi, respectively) using a servo hydraulic test apparatus with a 20 Hz sine wave. Six samples of each object to be heated were tested at each pressure level. Therefore, the shaft-axis fatigue test is performed under the condition of given R = 0 & Kt = 1. For the sake of economy, if the sample test does not fail within this time, the sample test is stopped at 1,728,000 cycles (24 hours). Ο Table III A shows the fatigue test results for the rare earth element-treated samples, and Table IIIB shows the test results for the calcium-treated samples.

表 IIIA 最大壓力 MPa ksi 樣品 循環 平均值 標準偏差 1400 203 1 36,310 1400 203 2 20,495 1400 203 3 34,727 1400 203 4 12,452 1400 203 5 15,521 1400 203 6 31,052 25,093 10 , 264 1200 174 1 54,333 1200 174 2 17,177 1200 174 3 12,178 1200 174 4 14,621 1200 174 5 39,475 1200 174 6 435,204 95,498 167,243 1100 160 1 26,684 1100 160 2 1,728,000 1100 160 3 1,728,000 1100 160 4 31,239 1100 160 5 44,192 1100 160 6 244,558 633,799 851,512 132587.doc 16 200925296Table IIIA Maximum Pressure MPa ksi Sample Cycle Mean Standard Deviation 1400 203 1 36,310 1400 203 2 20,495 1400 203 3 34,727 1400 203 4 12,452 1400 203 5 15,521 1400 203 6 31,052 25,093 10 , 264 1200 174 1 54,333 1200 174 2 17,177 1200 174 3 12,178 1200 174 4 14,621 1200 174 5 39,475 1200 174 6 435,204 95,498 167,243 1100 160 1 26,684 1100 160 2 1,728,000 1100 160 3 1,728,000 1100 160 4 31,239 1100 160 5 44,192 1100 160 6 244,558 633,799 851,512 132587.doc 16 200925296

表 IIIB 最大壓力 MPa ksi 樣品 循環 平均值 標準偏差 1400 203 1 103,467 1400 203 2 128,634 1400 203 3 338,054 1400 203 4 36,116 1400 203 5 48,048 1400 203 6 55,407 118,288 113,370 1200 174 1 312,529 1200 174 2 1,728,000 1200 174 3 59,719 1200 174 4 558,427 1200 174 5 1,441,076 1200 174 6 1,728,000 971,292 748,506 1100 160 1 1,728,000 1100 160 2 1,699,342 1100 160 3 367,452 1100 160 4 1,728,000 1100 160 5 1,728,000 1100 160 6 1,728,000 1,496,466 553,220 表ΠΙΑ及IIIB中提出之數據繪製於圖1,其展現在該數據 點且顯示連接在三個壓力水準下測得之該疲勞壽命的中間 值之線。表IIIA及IIIB所提及圖1所示數據圖解地說明了在 各該測試的三個壓力水準下,依據本發明之經鈣處理之合 金比經稀土元素處理的材料提供更長之疲勞壽命。 在一掃描電子顯微鏡(SEM)中對在疲勞試驗中破損的樣 132587.doc -17- 200925296 品的材料進行分析,以根據大小及組成特性化各合金中形 成之内含物。該SEM在經鈣處理的樣品中檢測出191個内 含物且在該經稀土元素處理的材料中則為156個。表IV提 出在經稀土元素處理的合金中觀測到的内含物大小及組 成。表V提出在經鈣處理材料中觀測到的内含物大小及組 成0Table IIIB Maximum pressure MPa ksi Sample cycle mean standard deviation 1400 203 1 103,467 1400 203 2 128,634 1400 203 3 338,054 1400 203 4 36,116 1400 203 5 48,048 1400 203 6 55,407 118,288 113,370 1200 174 1 312,529 1200 174 2 1,728,000 1200 174 3 59,719 1200 174 4 558,427 1200 174 5 1,441,076 1200 174 6 1,728,000 971,292 748,506 1100 160 1 1,728,000 1100 160 2 1,699,342 1100 160 3 367,452 1100 160 4 1,728,000 1100 160 5 1,728,000 1100 160 6 1,728,000 1,496,466 553,220 The data presented in Table III and IIIB are drawn in Figure 1, which shows the line at the data point and shows the intermediate value of the fatigue life measured at three pressure levels. The data shown in Figures 1 of Tables IIIA and IIIB graphically illustrate that the calcium treated alloys according to the present invention provide a longer fatigue life than the rare earth treated materials at the three pressure levels of each of the tests. The material of the sample 132587.doc -17- 200925296 which was broken in the fatigue test was analyzed in a scanning electron microscope (SEM) to characterize the contents formed in each alloy according to the size and composition. The SEM detected 191 contents in the calcium treated sample and 156 in the rare earth element treated material. Table IV presents the inclusion size and composition observed in rare earth element treated alloys. Table V presents the inclusion size and composition observed in the calcium treated material.

表IV 内含物 數量 大小 (微米) 形態 元素組份 1 0.51 圓形/橢圓 Fe、Ce、P、As、Cr、Co、La、Ni、 c、s、w 2 0.52 不規則 3 0.6 矩形 Fe、Co、Ni、Cr、Ce、As、P、Mo、C 4 0.67 圓形/橢圓 1 1.44 不規則 Fe、S、Ce、La、Cr、Co、Ni、P、 As、C 2 1.22 有角的 3 1.2 不規則 4 1.51 1 0.38 圓形/橢圓 Fe、Co、Ce、Cr、Ni、P及 Mo 以及微量La及As 2 0.55 Fe、Co、Ni、Cr、Ce、As、P、Mo、C 3 0.35 微量La 4 2.96 不規則 Fe、Ce、P、La、Cr、. Co、Ni、O、 C、Mo、As 5 1.57 6 2.21 塊狀 Fe、P、Ce、Co、Cr、Ni、La、C、S 7 1.11 矩形 8 1.04 塊狀 132587.doc -18 * 200925296 1 1.14 圓形/橢圓 Fe、Ce、P、As、Co、Cr、La、Ni、 C、S 2 1.05 1 0.35 圓形/橢圓 Fe、Co、Ce、Cr、Ni、P及Mo 以及微量La及As 2 0.65 矩形 Fe、Ce、P、La、Cr、Co、Ni、O、 C、Mo、As 3 0.6 圓形/橢圓 Fe、Ce、P、As、Co、Cr、La、Ni、 C、S 4 0.4 5 0.37 延伸的 Fe、Co、Ni、Cr、Ce、As、P、Mo、C 1 0.61 塊狀 Fe、Ce、P、As、Co、Cr、La、Ni、 C、S 2 0.7 圓形/橢圓 3 0.6 Fe、Co、Ni、Cr、Ce、As、P、Mo、C 4 0.63 5 0.49 有角的 Fe、S、Ce、La、Cr、Co、Ni、P、 As、C 6 1.04 塊狀的 Fe、Ce、La、S、P、Co、Cr、Ni、 As、C、W 7 0.97 圓形/橢圓 Fe、Co、Ni、Cr、S、La、Ce、C、Sr 8 1.04 不規則 基質微量La及Ce 1 1.19 不規則 La、S、Ce、Fe、Cr、Co、Ni、P、 C O 2 1.29 Fe、S、Ce、Co、La、Cr、Ni、P、 As、C、Sr 3 2.14 La、S、Ce、Fe、Cr、Co、Ni、P、 C O 4 1.6 圓形/橢圓 Fe、La、Ce、S、Cr、Co、Ni、C 1 2.41 塊狀的 La、S、Ce、Fe、Cr、Co、Ni、O、C 1 0.87 塊狀的 La、S、Ce、Fe、Cr、Co、Ni、O、C 2 1.8 Fe、La、Ce、Cr、Co、Ni 132587.doc • 19- 200925296Table IV Number of inclusions (micron) Morphological element component 1 0.51 Round/ellipse Fe, Ce, P, As, Cr, Co, La, Ni, c, s, w 2 0.52 Irregular 3 0.6 Rectangular Fe, Co, Ni, Cr, Ce, As, P, Mo, C 4 0.67 Circle / Ellipse 1 1.44 Irregular Fe, S, Ce, La, Cr, Co, Ni, P, As, C 2 1.22 Angular 3 1.2 Irregular 4 1.51 1 0.38 Round/ellipse Fe, Co, Ce, Cr, Ni, P and Mo and traces La and As 2 0.55 Fe, Co, Ni, Cr, Ce, As, P, Mo, C 3 0.35 Trace La 4 2.96 Irregular Fe, Ce, P, La, Cr, Co, Ni, O, C, Mo, As 5 1.57 6 2.21 Blocky Fe, P, Ce, Co, Cr, Ni, La, C, S 7 1.11 Rectangular 8 1.04 Block 132587.doc -18 * 200925296 1 1.14 Circle / Ellipse Fe, Ce, P, As, Co, Cr, La, Ni, C, S 2 1.05 1 0.35 Round / Elliptical Fe, Co, Ce, Cr, Ni, P and Mo and trace amounts of La and As 2 0.65 Rectangular Fe, Ce, P, La, Cr, Co, Ni, O, C, Mo, As 3 0.6 Round/elliptical Fe, Ce, P, As, Co, Cr, La, Ni, C, S 4 0.4 5 0.37 Extended Fe, Co, Ni, Cr, Ce As, P, Mo, C 1 0.61 Blocky Fe, Ce, P, As, Co, Cr, La, Ni, C, S 2 0.7 Circular/elliptical 3 0.6 Fe, Co, Ni, Cr, Ce, As, P, Mo, C 4 0.63 5 0.49 Angled Fe, S, Ce, La, Cr, Co, Ni, P, As, C 6 1.04 Blocks of Fe, Ce, La, S, P, Co, Cr, Ni, As, C, W 7 0.97 Round/ellipse Fe, Co, Ni, Cr, S, La, Ce, C, Sr 8 1.04 Irregular matrix traces La and Ce 1 1.19 Irregular La, S, Ce, Fe ,Cr,Co,Ni,P,CO 2 1.29 Fe, S, Ce, Co, La, Cr, Ni, P, As, C, Sr 3 2.14 La, S, Ce, Fe, Cr, Co, Ni, P , CO 4 1.6 Round/ellipse Fe, La, Ce, S, Cr, Co, Ni, C 1 2.41 Blocky La, S, Ce, Fe, Cr, Co, Ni, O, C 1 0.87 Block La, S, Ce, Fe, Cr, Co, Ni, O, C 2 1.8 Fe, La, Ce, Cr, Co, Ni 132587.doc • 19- 200925296

1 2 塊狀的 La、Ce、S、Fe、Cr、Co、Ni、Ο及 C 以及微量W 2 1.13 有角的 1 2.28 塊狀的 S、La、Ce、Fe、Cr、P、Co、Ni、 As、C、W 2 0.91 圓形/橢圓 Fe、Ce、As、P、Cr、Co、La、Ni、 C、W、S 1 1.11 圓形/橢圓 Fe、Co、La、Ce、Cr、S、Ni、As、 C P 2 1.59 Fe、Ce、As、P、Cr、Co、La、Ni、 C、W、S 3 0.85 1 3.74 塊狀的 La、Ce、S、Fe、Cr、Co、Ni、O及 C 以及微量w 2 0.89 圓形/橢圓 Fe、Co、Cr、Ce、Ni、La 1 3.37 有角的 S、La、Ce、Fe、Cr、P、Co、Ni、 As、C、Mo 2 3.62 不規則 1 0.71 圓形/橢圓 Fe、Ce、P、Co、Cr、Ni、La、As、 〇、C、W、S 2 1 3 0.78 Fe、Co、Cr、Ce、La、Ni 1 0.64 圓形/橢圓 Fe、Co、Ni、Cr、Mo、P、Ce、La、 C ' w 2 1.81 有角的 3 1.16 圓形/橢圓 Ce、P、Fe、La、S、Cr、Co、As、 Ni、C 4 0.65 Fe、Co、Cr、Ce、La、Ni 5 0.52 有角的 6 0.5 圓形/橢圓 7 0.57 Fe、Ce、As、P、Cr、Co、La、Ni、 C、W、S δ 0.45 Fe、Ce、P、Co、Cr、Ni、La、As、 O、C、W、S 132587.doc -20- 200925296 ❹ 1 0.74 圓形/橢圓 Fe、Ce、P、Co、Cr、Ni、La、As、 〇、C、W、S 2 0.89 矩形 3 0.53 圓形/橢圓 4 0.6 Fe、Co、Cr、Ce、La、Ni 1 1.05 塊狀的 Fe、Ce、P、Co、Cr、Ni、La、As、 〇、C、W、S 2 0.76 不規則的 3 1.11 有角的 1 1.6 塊狀的 La、Fe、Ce、Cr、Co、Ni、S 1 1.05 矩形的 基質以及Ce及La 2 0.76 塊狀的 基質及La、Ce及P 3 0.37 塊狀的 1 1.38 塊狀的 S、Fe、La、Ce、Cr、Co、Ni、As、 W、P、C 1 0.78 圓形/橢圓 Fe、Co、Cr、Ni、Ce、P、La、As、 O、C、Mo. Sr 1 0.47 塊狀的 Fe、Co、Cr、Ni、Ce、P、La、As、 O ' C ' Mo. Sr 2 0.45 圓形/橢圓 1 0.76 不規則 Fe、Co、Cr、Ni、Ce、P、La、As、 O ' C ' Mo. Sr 2 0.72 圓形/橢圓 基質及La、Ce及P 3 0.66 不規則 Fe、Co、Cr、Ni、Ce、P、La、As、 O、C、Mo. Sr 4 0.36 圓形/橢圓 基質以及Ce及La 1 2.29 圓形/橢圓 La、S、Ce、Fe、Cr、Co、Ni、P、 O、As、C、W 1 1.03 圓形/橢圓 Fe、La、S、Ce、Cr、Co、Ni、O、 C、W 1 0.9 圓形/橢圓 Fe、Ce、S、La、Cr、Co、Ni、O及C 以及微量P及w 132587.doc •21 - 2009252961 2 Blocks of La, Ce, S, Fe, Cr, Co, Ni, Ο and C and trace W 2 1.13 angular 1 2.28 Blocks of S, La, Ce, Fe, Cr, P, Co, Ni , As, C, W 2 0.91 Round / Ellipse Fe, Ce, As, P, Cr, Co, La, Ni, C, W, S 1 1.11 Circular / Elliptical Fe, Co, La, Ce, Cr, S , Ni, As, CP 2 1.59 Fe, Ce, As, P, Cr, Co, La, Ni, C, W, S 3 0.85 1 3.74 Blocky La, Ce, S, Fe, Cr, Co, Ni, O and C and trace w 2 0.89 round / elliptical Fe, Co, Cr, Ce, Ni, La 1 3.37 angular S, La, Ce, Fe, Cr, P, Co, Ni, As, C, Mo 2 3.62 Irregular 1 0.71 Circular/elliptical Fe, Ce, P, Co, Cr, Ni, La, As, 〇, C, W, S 2 1 3 0.78 Fe, Co, Cr, Ce, La, Ni 1 0.64 Shape / Ellipse Fe, Co, Ni, Cr, Mo, P, Ce, La, C ' w 2 1.81 Angular 3 1.16 Circular / Elliptical Ce, P, Fe, La, S, Cr, Co, As, Ni , C 4 0.65 Fe, Co, Cr, Ce, La, Ni 5 0.52 Angular 6 0.5 Circular / Elliptical 7 0.57 Fe, Ce, As, P, Cr, Co, La, Ni, C, W, S δ 0.45 Fe, Ce, P, C o,Cr,Ni,La,As,O,C,W,S 132587.doc -20- 200925296 ❹ 1 0.74 Round/ellipse Fe, Ce, P, Co, Cr, Ni, La, As, 〇, C , W, S 2 0.89 Rectangular 3 0.53 Circle / Ellipse 4 0.6 Fe, Co, Cr, Ce, La, Ni 1 1.05 Blocky Fe, Ce, P, Co, Cr, Ni, La, As, 〇, C , W, S 2 0.76 Irregular 3 1.11 Angular 1 1.6 block La, Fe, Ce, Cr, Co, Ni, S 1 1.05 rectangular matrix and Ce and La 2 0.76 bulk matrix and La, Ce and P 3 0.37 Block 1 1.38 Block S, Fe, La, Ce, Cr, Co, Ni, As, W, P, C 1 0.78 Round/elliptical Fe, Co, Cr, Ni, Ce, P, La, As, O, C, Mo. Sr 1 0.47 Blocky Fe, Co, Cr, Ni, Ce, P, La, As, O ' C ' Mo. Sr 2 0.45 Circle / Ellipse 1 0.76 No Regular Fe, Co, Cr, Ni, Ce, P, La, As, O ' C ' Mo. Sr 2 0.72 Circular/elliptical matrix and La, Ce and P 3 0.66 Irregular Fe, Co, Cr, Ni, Ce , P, La, As, O, C, Mo. Sr 4 0.36 round/elliptical matrix and Ce and La 1 2.29 round/elliptical La, S, Ce, Fe, Cr, Co, Ni P, O, As, C, W 1 1.03 Round/ellipse Fe, La, S, Ce, Cr, Co, Ni, O, C, W 1 0.9 Circular/elliptical Fe, Ce, S, La, Cr, Co, Ni, O and C and trace P and w 132587.doc •21 - 200925296

1 1.54 塊狀的 La、S、Ce、Fe、Cr、Co、Ni、P、 O、As、C、W 1 1.47 圓形/橢圓 S、La、Ce、Fe、Cr、O、Co、Ni、C 及As以及微量W及P 1 1.08 塊狀的 Fe、Ce、S、La、Co、Cr、Ni、O、 W、As、C 2 0.88 延伸的 Fe、Ce、S、La、Co、Cr、Ni、O、 W、C 1 1.05 圓形/橢圓 Fe、Ce、S、La、Cr、Co、Ni、As、 P、o、c、w 1 1.91 圓形/橢圓 S、La、Ce、Fe、Cr、Co、Ni、C及As 以及微量W 1 1.86 圓形/糖圓 Ce、Fe、Co、Ni、La、Ce及C 以及微 量W及P 2 1.83 塊狀的 3 0.77 圓形/橢圓 4 0.43 Fe、Co、Cr、Ni、Ce、P、La、As、 O ' C ' Mo. Sr 5 0.59 6 0.53 基質及微量S及La 7 0.72 基質及Ce及La 8 0.42 Fe、Ce、La、Ni、Cr、Co、P 9 0.83 基質及Ce及La 10 2.07 不規則 1 5.11 塊狀的 Fe、Ce、Co、P、Cr、Ni、La、O及 C 以及微量Si及S 2 12.7 不規則 3 5.84 La、S、Ce、Cr、Fe、O、C、Co、 Ni、Sr、Ga 1 12.6 不規則 La、S、Ce、Cr、Fe、O、C、Co、 Ni、Sr、Ga 2 6.5 3 4.32 132587.doc ·22· 200925296 4 2.5 S、La、Ce、Fe、Cr、Ο、Co、C、 Ni、Sr 5 3.94 La、S、Ce、Cr、Fe、O、C、Co、 Ni、Sr、Ga 6 4.97 有角的 S、La、Ce、Fe、Cr、O、Co、C、 Ni、Sr 7 5.35 塊狀的 La、S、Ce、Cr、Fe、O、C、Co、 Ni、Sr、Ga δ 3.66 不規則的 9 3.47 10 3.02 塊狀的 11 2.47 1 2.11 塊狀的 Fe、La、S、Co、Cr、Ni、P、O、C 1 2.15 不規則的 S、La、Ce、Fe、Cr、O、Co、C、 Ni、Sr 2 1.87 塊狀的 La、S、Ce、Cr、Fe、O、C、Co、 Ni、Sr、Ga 1 0.95 有角的 Fe、La、Ce、Co、S、Cr、Ni、As、 P、C、W 2 1.93 不規則的 Fe、Co、La、S、Cr、Ni、C、W 3 0.78 矩形的 1 1.42 有角的 La、S、Ce、Cr、Fe、O、C、Co、 Ni、Sr、Ga 2 3.42 塊狀的 Fe、La、S、Co、Cr、Ni、P、O、C 1 1.46 塊狀的 La、S、Ce、Cr、Fe、O、C、Co、 Ni、Sr、Ga 2 1.62 不規則的 Fe、La、S、Co、Cr、Ni、P、O、C 3 0.57 有角的 Fe、La、Ce、Co、S、Cr、Ni、As、 P、C、W 4 1 矩形的 La、S、Ce、Cr、Fe、O、C、Co、 Ni、Sr、Ga 5 0.66 132587.doc •23- 200925296 ❹ 6 0.91 塊狀的 Fe、Co、Ni、Cr、S、La、Ce、P、 Ti、C、As、Si 1 1 塊狀的 Fe、Ce、P、La、Cr、Co、Ni、O、C 2 0.93 3 0.2 4 0.72 不規則的 5 0.66 矩形的 6 0.46 塊狀的 Ce、P、Fe、La、Cr、0、Co、Ni、 C、As 7 1.14 矩形的 Fe、Ce、P、La、Cr、Co、Ni、0、C 8 0.42 塊狀的 9 0.86 1 2.21 不規則 Ce、P、Fe、La、Cr、O、Co、Ni、 C、As 2 0.9 3 1.72 4 5.42 Ce、P、La、Fe、O、Cr、C、Co、 As、Si、Ni 1 0.79 圓形/橢圓 Fe、S、La、Ce、Cr、Co、Ni、As、 P、C、W、Ga 2 2.15 塊狀的 La、S、Ce、Fe、Cr、Co、O、Ni、 C、W、P 3 2.11 La、S、Ce、Fe、Cr、Co、Ni、O、 W> C 1 1.07 塊狀的 Ce、P、La、Fe、O、Cr、C、Co、 As、Si、Ni 2 1.31 3 1.29 不規則的 Fe、Ce、P、Co、Cr、Ni、La、O、 Si 、 C 、 S 4 0.83 Fe、Ce、Co、P、Cr、Ni、La、C、S 5 0.8 Fe、Ce、P、Co、Cr、Ni、La、O、 132587.doc -24- 2009252961 1.54 Blocks of La, S, Ce, Fe, Cr, Co, Ni, P, O, As, C, W 1 1.47 Round / Elliptical S, La, Ce, Fe, Cr, O, Co, Ni, C, As and trace W and P 1 1.08 Blocks of Fe, Ce, S, La, Co, Cr, Ni, O, W, As, C 2 0.88 Extended Fe, Ce, S, La, Co, Cr, Ni, O, W, C 1 1.05 Circle / Ellipse Fe, Ce, S, La, Cr, Co, Ni, As, P, o, c, w 1 1.91 Round / Elliptical S, La, Ce, Fe, Cr, Co, Ni, C and As and trace W 1 1.86 Round / sugar circle Ce, Fe, Co, Ni, La, Ce and C and trace W and P 2 1.83 Block 3 0.77 Circle / Ellipse 4 0.43 Fe, Co, Cr, Ni, Ce, P, La, As, O ' C ' Mo. Sr 5 0.59 6 0.53 Matrix and trace S and La 7 0.72 matrix and Ce and La 8 0.42 Fe, Ce, La, Ni, Cr, Co, P 9 0.83 matrix and Ce and La 10 2.07 Irregular 1 5.11 Blocky Fe, Ce, Co, P, Cr, Ni, La, O and C and trace Si and S 2 12.7 Irregular 3 5.84 La , S, Ce, Cr, Fe, O, C, Co, Ni, Sr, Ga 1 12.6 Irregular La, S, Ce, Cr, Fe, O, C, Co, Ni, Sr, Ga 2 6.5 3 4.3 2 132587.doc ·22· 200925296 4 2.5 S, La, Ce, Fe, Cr, Ο, Co, C, Ni, Sr 5 3.94 La, S, Ce, Cr, Fe, O, C, Co, Ni, Sr Ga 6 4.97 angular S, La, Ce, Fe, Cr, O, Co, C, Ni, Sr 7 5.35 Blocky La, S, Ce, Cr, Fe, O, C, Co, Ni, Sr , Ga δ 3.66 Irregular 9 3.47 10 3.02 Blocky 11 2.47 1 2.11 Blocky Fe, La, S, Co, Cr, Ni, P, O, C 1 2.15 Irregular S, La, Ce, Fe , Cr, O, Co, C, Ni, Sr 2 1.87 Blocks of La, S, Ce, Cr, Fe, O, C, Co, Ni, Sr, Ga 1 0.95 Angled Fe, La, Ce, Co , S, Cr, Ni, As, P, C, W 2 1.93 Irregular Fe, Co, La, S, Cr, Ni, C, W 3 0.78 Rectangular 1 1.42 Angled La, S, Ce, Cr , Fe, O, C, Co, Ni, Sr, Ga 2 3.42 Blocky Fe, La, S, Co, Cr, Ni, P, O, C 1 1.46 Blocky La, S, Ce, Cr, Fe , O, C, Co, Ni, Sr, Ga 2 1.62 Irregular Fe, La, S, Co, Cr, Ni, P, O, C 3 0.57 Angled Fe, La, Ce, Co, S, Cr , Ni, As, P, C, W 4 1 moment Shapes of La, S, Ce, Cr, Fe, O, C, Co, Ni, Sr, Ga 5 0.66 132587.doc •23- 200925296 ❹ 6 0.91 Blocky Fe, Co, Ni, Cr, S, La, Ce, P, Ti, C, As, Si 1 1 Blocks of Fe, Ce, P, La, Cr, Co, Ni, O, C 2 0.93 3 0.2 4 0.72 Irregular 5 0.66 Rectangular 6 0.46 Block Ce, P, Fe, La, Cr, 0, Co, Ni, C, As 7 1.14 Rectangular Fe, Ce, P, La, Cr, Co, Ni, 0, C 8 0.42 Block 9 0.86 1 2.21 Irregular Ce, P, Fe, La, Cr, O, Co, Ni, C, As 2 0.9 3 1.72 4 5.42 Ce, P, La, Fe, O, Cr, C, Co, As, Si, Ni 1 0.79 Round/ellipse Fe, S, La, Ce, Cr, Co, Ni, As, P, C, W, Ga 2 2.15 Blocks of La, S, Ce, Fe, Cr, Co, O, Ni, C, W, P 3 2.11 La, S, Ce, Fe, Cr, Co, Ni, O, W> C 1 1.07 Blocky Ce, P, La, Fe, O, Cr, C, Co, As, Si, Ni 2 1.31 3 1.29 Irregular Fe, Ce, P, Co, Cr, Ni, La, O, Si, C, S 4 0.83 Fe, Ce, Co, P, Cr, Ni, La, C, S 5 0.8 Fe , Ce, P, Co, Cr, Ni La, O, 132587.doc -24- 200925296

6 0.75 塊狀的 C、Si、S 7 1.28 基質及La 1 2.01 有角的 Ce、P、La、Fe、Ο、Cr、C、Co、 As、Si、Ni 1 3.02 塊狀的 La、S、Ce、Fe、Cr、Co、O、Ni、 C、W、P 2 1.65 Fe、Ce、P、La、Cr、Co、Ni、0、C 1 2.58 有角的 La、S、Ce、Fe、Cr、Co、Ni、O、 W、C 2 2.86 Fe、S、La、Ce、Cr、Co、Ni、As、 P、C、W、Ga 1 1.95 塊狀的 Fe、La、Ce、Cr、Co、Ni、S 2 2.35 La、S、Ce、Fe、Cr、Co、Ni、O、 W、C 註:相較於基質值較富含之元素已藉粗體字加註。 表v6 0.75 Block C, Si, S 7 1.28 Matrix and La 1 2.01 Angled Ce, P, La, Fe, Ο, Cr, C, Co, As, Si, Ni 1 3.02 Blocky La, S, Ce, Fe, Cr, Co, O, Ni, C, W, P 2 1.65 Fe, Ce, P, La, Cr, Co, Ni, 0, C 1 2.58 Angled La, S, Ce, Fe, Cr , Co, Ni, O, W, C 2 2.86 Fe, S, La, Ce, Cr, Co, Ni, As, P, C, W, Ga 1 1.95 Blocky Fe, La, Ce, Cr, Co, Ni, S 2 2.35 La, S, Ce, Fe, Cr, Co, Ni, O, W, C Note: The elements richer than the matrix value have been filled in bold. Table v

内含物 數量 大小 (微米) 形態 元素組份 1 2.1 圓形/橢圓 Ca、Fe、Ti、As、Co、Ni、Cr、0、 S、P 2 0.86 有角的 Fe、Co、Ni、Cr、Ca、S、W、As 1 1.6 矩形 Fe、Co、Ca、Cr、Ni及微量S 1 0.85 圓形/橢圓 Fe、Ca、S、Co、Cr、Ni 1 0.7 圓形/橢圓 Fe、Ti、Co、Ni、Cr、Mo、W、C 2 1.2 塊狀的 Fe、Ca、As、Co、Ni、Cr、O、S以及 微量Ti 1 0.9 塊狀的 Fe、S、Ca、Co、Ni及Cr以及微量W 1 3.4 圓形/橢圓 Ca、Fe、As、Co、O、Ti、Cr、Ni及 S 132587.doc -25- 200925296 1 1 圓形/橢圓 Fe、Ca、Co、Cr、S及Ni 1 2.4 不規則的 Ca、As、Fe、Ο 2 3.8 不規則的 3 5.7 不規則的 1 2.8 有角的 S、Ca、Fe、Co、Ni、Cr、Ti 2 0.8 有角的 1 0.85 有角的 S、Ca、Fe、Co、Ni、Cr、Ti 1 2.8 圓形/橢圓 Fe、Ca、As、Co、Ni、Cr、O、S以及 微量Ti 1 1.15 圓形/橢圓 Fe、Ca、S、Co、Cr、Ni 2 1.25 塊狀的 1 1 有角的 Fe、Ca、Co、Cr、S、Ti、Ni 1 2.5 有角的 Fe、S、Ca、Co、Ni及Cr以及微量W 1 1.6 塊狀的 1 1.2 塊狀的 1 2 圓形/橢圓 Fe、Ti、Co、Ni、Cr、Mo、W、C 1 2 延長的 Fe、S、Ca、Co、Ni、Cr、W 1 2.3 塊狀的 Fe、Ti、Co、Ni、Cr、Mo、W、C 1 1.35 不規則的 Fe、Ti、Co、Ni、Cr、Mo、W、C 2 2.65 延長的 Ca、Fe、Ti、As、Co、Ni、Cr、O、 S ' P 1 1.3 塊狀的 Fe、S、Ca、Co、Ni、Cr、W 1 2.2 不規則的 Ti、S、Ca、Fe、Co、Cr、Ni 1 33.8 塊狀的 A1、O、及Ti以及微量Fe 1 2.73 矩形 S、Ca、Fe、Co、Ni及 Cr 1 2.91 有角的 S、Ca、Fe、Co、Ni及Cr 1 0.86 有角的 Ca、Fe、S、Co、Ti、Cr、Ni 132587.doc -26- 200925296Number of inclusions (micron) Form component 1 2.1 Circular/elliptical Ca, Fe, Ti, As, Co, Ni, Cr, 0, S, P 2 0.86 Angled Fe, Co, Ni, Cr, Ca, S, W, As 1 1.6 Rectangular Fe, Co, Ca, Cr, Ni and trace S 1 0.85 Round/ellipse Fe, Ca, S, Co, Cr, Ni 1 0.7 Round/elliptical Fe, Ti, Co , Ni, Cr, Mo, W, C 2 1.2 Fe, Ca, As, Co, Ni, Cr, O, S and trace Ti 1 0.9 bulk Fe, S, Ca, Co, Ni and Cr Trace W 1 3.4 Round / Elliptical Ca, Fe, As, Co, O, Ti, Cr, Ni and S 132587.doc -25- 200925296 1 1 Round / Elliptical Fe, Ca, Co, Cr, S and Ni 1 2.4 Irregular Ca, As, Fe, Ο 2 3.8 Irregular 3 5.7 Irregular 1 2.8 Angular S, Ca, Fe, Co, Ni, Cr, Ti 2 0.8 Angular 1 0.85 Angular S , Ca, Fe, Co, Ni, Cr, Ti 1 2.8 Round / Elliptical Fe, Ca, As, Co, Ni, Cr, O, S and Trace Ti 1 1.15 Round / Elliptical Fe, Ca, S, Co, Cr, Ni 2 1.25 block of 1 1 angular Fe, Ca, Co, Cr, S, Ti, Ni 1 2.5 angular Fe, S, Ca, C o, Ni and Cr, and trace W 1 1.6 Blocks 1 1.2 Blocks 1 2 Round/ellipse Fe, Ti, Co, Ni, Cr, Mo, W, C 1 2 Extended Fe, S, Ca, Co , Ni, Cr, W 1 2.3 Blocky Fe, Ti, Co, Ni, Cr, Mo, W, C 1 1.35 Irregular Fe, Ti, Co, Ni, Cr, Mo, W, C 2 2.65 Extended Ca, Fe, Ti, As, Co, Ni, Cr, O, S ' P 1 1.3 Blocky Fe, S, Ca, Co, Ni, Cr, W 1 2.2 Irregular Ti, S, Ca, Fe, Co, Cr, Ni 1 33.8 Blocks of A1, O, and Ti and trace amounts of Fe 1 2.73 Rectangular S, Ca, Fe, Co, Ni, and Cr 1 2.91 Angled S, Ca, Fe, Co, Ni, and Cr 1 0.86 angular Ca, Fe, S, Co, Ti, Cr, Ni 132587.doc -26- 200925296

2 0.81 有角的 1 1.79 有角的 S、Ca、Fe、Co、Ni、Cr 1 2.13 不規則的 Ca、Fe、Co、As、Ni、Cr、S、O、Ti 2 2.11 有角的 Ti、S、Fe、Ca、Zr、Cr、Co、Ni、As 3 1.4 不規則的 Fe、Ti、Co、Ni、Cr、Zr、S、Ca 及W以及微量As 1 1.11 塊狀的 S、Ca、Fe、Co、Ni、Cr 1 2.44 不規則的 Fe、Ca、Co、Cr、Ni、Mn 1 2.08 不規則的 Ca、Fe、S、Co、Ni、Cr、As、O 2 1.27 矩形 S、Ca、Fe、Co、Ni、Cr 1 1.77 有角的 S、Ca、Fe、Co、Ni、Cr 2 1.54 有角的 1 1.19 塊狀的 S、Ca、Fe、Co、Ni、Cr 2 1.28 圓形/橢圓 3 1.59 有角的 4 1.71 塊狀的 Ca、Fe、S、Co、Ti、Cr、Ni 1 1.4 矩形 S、Ca、Fe、Co、Ni、Cr 1 1.81 圓形/櫥圓 Ca、Fe、As、Cr、Ni、O、S、W 2 2.74 圓形/橢圓 1 2.16 有角的 Ca、Fe、S、Co、Ti、Cr、Ni 2 1.56 有角的 S、Ca、Fe、Co、Ni、Cr 1 4.96 矩形 Ca、Fe、S、Co、Ti、Cr、Ni 2 2.58 有角的 S、Ca、Fe、Co、Ni、Cr 3 1.78 矩形 1 1.19 不規則 S、Ca、Fe、Co、Ni、Cr 2 1.04 矩形 Fe、Ca、Co、Cr、Ni、Mn 1 2.21 有角的 S、Ca、Fe、Co、Ni、Cr 132587.doc -27- 200925296 1 1.34 圓形/橢圓 Ca、Fe、S、Co、Ni、Cr、As、Ο 2 1.23 塊狀的 1 1.68 塊狀的 Ca、O及Fe以及微量S、Si及A1 2 1.19 不規則的 1 1.68 塊狀的 Ca、O及Fe以及微量S、Si及A1 2 1.72 3 1.84 4 2.06 5 1.45 6 2.17 低計數 7 1.25 Ca、O及Fe以及微量S、Si及A1 8 2.48 不規則的 1 1.85 不規則的 Ca、O及Fe以及微量S、Si及A1 2 1.85 Ca、O、Co、Cr、Ni、O及S以及微量W 3 0.81 Ca、O及Fe以及微量S、Si及A1 4 1.43 5 2.08 塊狀的 6 2.29 7 2.1 8 1.15 不規則的 Fe、Ca、S、Co、Ni及Cr以及微量Si 9 1.82 Ca、O及Fe以及微量S、Si及A1 10 1.53 不規則的 Ca、Fe、S、Co、Cr、Ni、O、Si 11 1.64 1 1.66 不規則的 Ca、Fe、S、Co、Cr、Ni、O、Si 2 1.98 Ca、O及Fe以及微量S、Si及A1 3 2.5 塊狀的 Ca、Fe、S、Co、Cr、Ni、O、Si 4 1.85 5 2.18 •28- 132587.doc 200925296 6 1.88 Ca、Ο及Fe以及微量S、Si及A1 7 2.24 不規則的 Ca、Fe、S、Co、Cr、Ni、Ο、Si 8 1.53 塊狀的 Ca、O及Fe以及微量S、Si及A1 9 1.85 Ca、Fe、S、Co、Cr、Ni、O、Si 10 1.45 不規則的 11 2.01 Ca、O及Fe以及微量S、Si及A1 12 1.91 Ca、O及Fe以及微量S、Si及A1 12 1.13 塊狀的 Ca、Fe、Co、Ni、Cr、Mo、Ti、O 14 2.28 Ca、O及Fe以及微量S、Si及A1 15 1.73 16 1.34 有角的 Ca、Fe、Co、Cr、Ni、O及S以及微量 W 1 1.02 Ca、Fe、S、Co、Cr、Ni、O、Si 2 0.83 3 0.95 Ca、O及Fe以及微量S、Si及A1 4 0.92 5 2.05 Ca、Fe、S、Co、Cr、Ni、O、S 6 2.3 不規則的 Ca、O及Fe以及微量S、Si及A1 7 1.14 8 0.99 Ca、Fe、Co、Cr、Ni、O及S以及微量 W 9 1.33 Ca、O及Fe以及微量S、Si及A1 10 1.69 1 1.14 不規則的 Ca、S、Fe及O以及微量Co、Ni及Cr 2 1.13 Ca、O及Fe以及微量S、Si及A1 3 1.27 Ca、S、Fe及O以及微量Co、Ni及Cr 4 1.25 5 1.88 132587.doc -29- 2009252962 0.81 Angular 1 1.79 Angular S, Ca, Fe, Co, Ni, Cr 1 2.13 Irregular Ca, Fe, Co, As, Ni, Cr, S, O, Ti 2 2.11 Angular Ti, S, Fe, Ca, Zr, Cr, Co, Ni, As 3 1.4 Irregular Fe, Ti, Co, Ni, Cr, Zr, S, Ca and W and trace As 1 1.11 Blocky S, Ca, Fe , Co, Ni, Cr 1 2.44 Irregular Fe, Ca, Co, Cr, Ni, Mn 1 2.08 Irregular Ca, Fe, S, Co, Ni, Cr, As, O 2 1.27 Rectangular S, Ca, Fe , Co, Ni, Cr 1 1.77 Angular S, Ca, Fe, Co, Ni, Cr 2 1.54 Angular 1 1.19 Blocks of S, Ca, Fe, Co, Ni, Cr 2 1.28 Round / Ellipse 3 1.59 angular 4 1.71 block Ca, Fe, S, Co, Ti, Cr, Ni 1 1.4 Rectangular S, Ca, Fe, Co, Ni, Cr 1 1.81 Round / cup round Ca, Fe, As, Cr , Ni, O, S, W 2 2.74 Round / Ellipse 1 2.16 Angled Ca, Fe, S, Co, Ti, Cr, Ni 2 1.56 Angular S, Ca, Fe, Co, Ni, Cr 1 4.96 Rectangular Ca, Fe, S, Co, Ti, Cr, Ni 2 2.58 Angular S, Ca, Fe, Co, Ni, Cr 3 1.78 Rectangular 1 1.19 Irregular S, Ca Fe, Co, Ni, Cr 2 1.04 Rectangular Fe, Ca, Co, Cr, Ni, Mn 1 2.21 Angled S, Ca, Fe, Co, Ni, Cr 132587.doc -27- 200925296 1 1.34 Circle/Ellipse Ca, Fe, S, Co, Ni, Cr, As, Ο 2 1.23 Block 1 1.68 Block Ca, O and Fe and trace S, Si and A1 2 1.19 Irregular 1 1.68 Block Ca, O And Fe and traces S, Si and A1 2 1.72 3 1.84 4 2.06 5 1.45 6 2.17 Low count 7 1.25 Ca, O and Fe and traces S, Si and A1 8 2.48 Irregular 1 1.85 Irregular Ca, O and Fe And trace S, Si and A1 2 1.85 Ca, O, Co, Cr, Ni, O and S and trace W 3 0.81 Ca, O and Fe and traces S, Si and A1 4 1.43 5 2.08 Block 6 2.29 7 2.1 8 1.15 Irregular Fe, Ca, S, Co, Ni and Cr and trace Si 9 1.82 Ca, O and Fe and traces S, Si and A1 10 1.53 Irregular Ca, Fe, S, Co, Cr, Ni, O, Si 11 1.64 1 1.66 Irregular Ca, Fe, S, Co, Cr, Ni, O, Si 2 1.98 Ca, O and Fe and traces of S, Si and A1 3 2.5 Blocks of Ca, Fe, S, Co, Cr, Ni, O, Si 4 1.85 5 2.18 • 28- 132587.doc 200925296 6 1.88 Ca, antimony and Fe and traces of S, Si and A1 7 2.24 Irregular Ca, Fe, S, Co, Cr, Ni, Niobium, Si 8 1.53 Blocky Ca, O and Fe and trace S, Si And A1 9 1.85 Ca, Fe, S, Co, Cr, Ni, O, Si 10 1.45 Irregular 11 2.01 Ca, O and Fe and traces S, Si and A1 12 1.91 Ca, O and Fe and trace S, Si And A1 12 1.13 Block Ca, Fe, Co, Ni, Cr, Mo, Ti, O 14 2.28 Ca, O and Fe and traces S, Si and A1 15 1.73 16 1.34 Angled Ca, Fe, Co, Cr , Ni, O and S and trace W 1 1.02 Ca, Fe, S, Co, Cr, Ni, O, Si 2 0.83 3 0.95 Ca, O and Fe and traces S, Si and A1 4 0.92 5 2.05 Ca, Fe, S, Co, Cr, Ni, O, S 6 2.3 Irregular Ca, O and Fe and traces S, Si and A1 7 1.14 8 0.99 Ca, Fe, Co, Cr, Ni, O and S and trace W 9 1.33 Ca, O and Fe and traces of S, Si and A1 10 1.69 1 1.14 Irregular Ca, S, Fe and O and traces of Co, Ni and Cr 2 1.13 Ca, O and Fe and traces of S, Si and A1 3 1.27 Ca , S, Fe and O and traces of Co, Ni and Cr 4 1.25 5 1.88 132587.do c -29- 200925296

6 1.27 7 0.83 8 0.11 Ca、Ο及Fe以及微量S、Si及A1 9 2.24 Ca、S、Fe及Ο以及微量Co、Μ及Cr 10 1.03 Ca、Ο及Fe以及微量S、Si及A1 11 1.57 12 1.16 13 1.16 14 2.39 15 1.23 16 0.99 空白 17 1.28 Ca、O及Fe以及微量S、Si及A1 18 1.05 19 1.08 20 1.37 1 4.33 有角的 Ti、Fe、Mo、Zr、Cr、Ni、C 2 2.59 3 3.81 4 2.1 不規則的 1 6.62 塊狀的 Ti、Mo、Fe、Cr、Co、Ca、Zr、C、 Ni 1 1.08 有角的 Fe、S、Ca、Co、Ni、Cr及Th以及微量 Si 1 1.69 不規則的 Fe、S、Ca、Co、Ti、Ni、Cr、Zr 1 1.31 塊狀的 Ca、S、Fe、Zr、Ce、Ti、Cr、Co、 Ni、Mg、A1 2 1.58 不規則的 S、Fe、Ca、Co、Ni、Cr、Mg 1 2.04 有角的 Fe、S、Ca、Co、Ni及Cr以及微量Sr 2 0.68 圓形/橢圓 132587.doc -30- 2009252966 1.27 7 0.83 8 0.11 Ca, antimony and Fe and traces of S, Si and A1 9 2.24 Ca, S, Fe and antimony and trace amounts of Co, antimony and Cr 10 1.03 Ca, antimony and Fe and traces of S, Si and A1 11 1.57 12 1.16 13 1.16 14 2.39 15 1.23 16 0.99 Blank 17 1.28 Ca, O and Fe and traces S, Si and A1 18 1.05 19 1.08 20 1.37 1 4.33 Angled Ti, Fe, Mo, Zr, Cr, Ni, C 2 2.59 3 3.81 4 2.1 Irregular 1 6.62 Block Ti, Mo, Fe, Cr, Co, Ca, Zr, C, Ni 1 1.08 Angled Fe, S, Ca, Co, Ni, Cr and Th and trace Si 1 1.69 Irregular Fe, S, Ca, Co, Ti, Ni, Cr, Zr 1 1.31 Blocky Ca, S, Fe, Zr, Ce, Ti, Cr, Co, Ni, Mg, A1 2 1.58 No Regular S, Fe, Ca, Co, Ni, Cr, Mg 1 2.04 Angled Fe, S, Ca, Co, Ni and Cr and trace Sr 2 0.68 Round / Ellipse 132587.doc -30- 200925296

Ca、S、Fe、Zr、Ce、Ti、Cr、Co、 1 0.76 有角的 Ni、Mg、A1 2 1.05 圓形/橢圓 Fe、S、Ca、Co、Ni及Cr以及微量Sr 3 1.33 塊狀的 1 1.42 不規則的 2 1.66 塊狀的 3 0.92 塊狀的 4 0.99 有角的 Fe、S、Ca、Co、Ni及Cr以及微量Sr 5 0.84 塊狀的 6 0.79 矩形 7 0.62 塊狀的 Fe、Ca、S、Zr、Co、Cr、Ni、Ce、 1 1.08 塊狀的 Ti、Sr 2 1.02 有角的 3 0.8 塊狀的 Fe、S、Ca、Ci、Ni及Cr以及微量Sr 4 0.46 有角的 Fe、S、Ca、Co、Ni、Cr及Th以及微量 5 0.91 塊狀的 Si 6 0.43 矩形的 Fe、S、Ca、Co、Ni及Cr以及微量Sr 1 1.66 矩形的 S、Ca、Fe、Co、Cr及Ni 以及微量Ti及Si 1 1.26 塊狀的 Fe、Ca、Co、S、Ni、Si 2 3.38 不規則的 Ca、S、Fe、Co、Ni、Cr、Si 1 3.09 塊狀的 Ca ' Fe ' As ' Co ' S ' Cr ' Ni ' Si 1 2.85 塊狀的 Ca、Fe、As、Co、S、Cr、Ni、Si 1 3.48 不規則的 Ca、S、Fe及Co以及微量Ni、Cr、Si及 As 132587.doc -31 - 200925296 2 1.68 塊狀的 Fe、Ca、S、Ti、Co、Cr、Ni及As以及 微量Si 3 1.71 不規則的 Ca、Fe、As、Co、S、Cr、Ni、Si 4 2.65 Fe、Ca、S、Ti、Co、Cr、Ni及 As 以及 微量Si 1 2.69 有角的 Ca、S、Fe、Co、Ni、Cr、Si 1 3.48 不規則的 Fe、Ca、S、Ti、Co、Cr、Ni及As以及 微量Si 1 1.85 不規則的 Ca、S、Fe、Co、Ni、Cr、Si 1 2.22 不規則的 Ca、Fe、As、Co、S、Ni、Cr、Zr、 Si 、 Ti 、 O 2 0.94 有角的 Ca、S、Fe、Co、Ni、Cr、Si 3 1.9 不規則的 Fe、Ca、Ti、S、Co、Ni、Cr、Zr、 Si、As 4 0.96 Fe、Zr、Ti、Ca、Co、Ni、Cr、S 5 0.96 有角的 Fe、Ti、Co、Zr、Ca、Ni、Cr、S 6 1.37 不規則的 Fe、Ca、Co、S、Ni、C及Ti以及微量 Si 7 1.68 Ca、Fe、S、Co、Cr、Ni、As、Si、 Ti、Zr 1 2.72 不規則的 Fe、Ca、Co、Ni、Cr、S、Ti、As、Si 1 1.14 不規則的 Ca、Fe、As、Co、S、Cr、Ni、Si 2 1.59 3 3.01 不規則的 4 1.75 5 0.92 1 2.66 不規則的 Ca、S、Fe、Co、Ni、Cr、Si 2 0.85 矩形 3 1.24 塊狀的 132587.doc -32- 200925296 有角的 ------^__ Ti、Ca、Mo、Fe及Zr以及微量Cr、 Co、Ni及Si 2 1.67 3 3.23 矩形 4 3.21 有角的 5 1.67 塊狀 Ti、Fe、Mo、Co、Cr及Ni以及微量办 及Si 6 1.36 有角的 7 1.12 8 1.11 塊狀的 註:相較於基質值較富含之元素已藉粗體字加註。 表IV及V中的數據顯示脫硫處理的類型大為影響該等内 含物之組成。該經稀土元素處理之合金中之大部分内含物 含有稀土元素Ce及La。相反地,經鈣處理之合金中之大部 分内含物含有Ca,但是基本上不含稀土元素如。及以。該 稀土處理及鈣處理均可有效地吸收偶存元素如p、s及 As 〇 表IV及V中所述的内含物大小數據符合圖2所示之 ❹ 分佈。經測定該簡處理物質與該經稀土處理物質 之間的内含物大小的中值統計學上有95%差異。因此,該 經鈣處理物質與該經稀土處理物質之間的中值内 = 冑料有統計學上顯著的差異。該經約處理合金的中值内含 * #大小經収約為h6微米,而該經稀土處理材料的中值 内含物大小敎約為U微米1信,源自本發明之妈脫 硫處理之具有不同組成内含物組合之_處理合金之内含 物大小-般較大明顯有助於由本發明之該合金及方法所提 供之疲勞壽命。鐘於相對於已知經稀土元素處理的合金之 132587.doc -33, 200925296 内含物大小及組合物差異無法預期由本發明之該合金及方 法所實現的疲勞壽命之改良。 本文所使用之術語及表達係用以描述而非限制。使用該 等術語及表達不意指排除所描述之特徵或其任何部分之等 效物。然而’需理解該等各種修飾在所描述及主張的本發 明申請專利範圍内係可能的。 【圖式簡單說明】 圖1係已知的稀土處理合金及依據本發明之鈣處理合金 ^ 之橫向轴-轴疲勞壽命之曲線圖;及 圖係已4的稀土處理合金及依據本發明之約處理合金 之内含物之大小頻率之柱狀圖。 132587.doc •34-Ca, S, Fe, Zr, Ce, Ti, Cr, Co, 1 0.76 Angular Ni, Mg, A1 2 1.05 Round/elliptical Fe, S, Ca, Co, Ni and Cr and trace Sr 3 1.33 1 1.42 Irregular 2 1.66 Block 3 0.92 Block 4 0.99 Angled Fe, S, Ca, Co, Ni and Cr and Trace Sr 5 0.84 Block 6 0.79 Rectangular 7 0.62 Block Fe, Ca, S, Zr, Co, Cr, Ni, Ce, 1 1.08 Blocky Ti, Sr 2 1.02 Angled 3 0.8 Blocks of Fe, S, Ca, Ci, Ni and Cr and Trace Sr 4 0.46 Angled Fe, S, Ca, Co, Ni, Cr and Th and trace 5 0.91 Block Si 6 0.43 Rectangular Fe, S, Ca, Co, Ni and Cr and trace Sr 1 1.66 Rectangular S, Ca, Fe, Co, Cr and Ni and trace amounts of Ti and Si 1 1.26 Blocks of Fe, Ca, Co, S, Ni, Si 2 3.38 Irregular Ca, S, Fe, Co, Ni, Cr, Si 1 3.09 Block Ca 'Fe ' As ' Co ' S ' Cr ' Ni ' Si 1 2.85 Blocky Ca, Fe, As, Co, S, Cr, Ni, Si 1 3.48 Irregular Ca, S, Fe and Co and trace amounts of Ni, Cr, Si and As 132587.doc -31 - 200925296 2 1.68 Block Fe, Ca, S, Ti, Co, Cr, Ni and As and trace Si 3.71 Irregular Ca, Fe, As, Co, S, Cr, Ni, Si 4 2.65 Fe, Ca, S, Ti, Co , Cr, Ni and As and trace Si 1 2.69 Angular Ca, S, Fe, Co, Ni, Cr, Si 1 3.48 Irregular Fe, Ca, S, Ti, Co, Cr, Ni and As and trace Si 1 1.85 Irregular Ca, S, Fe, Co, Ni, Cr, Si 1 2.22 Irregular Ca, Fe, As, Co, S, Ni, Cr, Zr, Si, Ti, O 2 0.94 Angular Ca , S, Fe, Co, Ni, Cr, Si 3 1.9 Irregular Fe, Ca, Ti, S, Co, Ni, Cr, Zr, Si, As 4 0.96 Fe, Zr, Ti, Ca, Co, Ni, Cr, S 5 0.96 Angled Fe, Ti, Co, Zr, Ca, Ni, Cr, S 6 1.37 Irregular Fe, Ca, Co, S, Ni, C and Ti and trace Si 7 1.68 Ca, Fe, S, Co, Cr, Ni, As, Si, Ti, Zr 1 2.72 Irregular Fe, Ca, Co, Ni, Cr, S, Ti, As, Si 1 1.14 Irregular Ca, Fe, As, Co, S, Cr, Ni, Si 2 1.59 3 3.01 Irregular 4 1.75 5 0.92 1 2.66 Irregular Ca, S, Fe, Co, Ni, Cr, Si 2 0.85 Shape 3 1.24 Block 132587.doc -32- 200925296 Angled ------^__ Ti, Ca, Mo, Fe and Zr and traces of Cr, Co, Ni and Si 2 1.67 3 3.23 Rectangular 4 3.21 Yes Angle 5 1.67 Block Ti, Fe, Mo, Co, Cr and Ni and Micro and Si 6 1.36 Angled 7 1.12 8 1.11 Block Note: Compared with the matrix value, the richer elements have been bolded. Word raise. The data in Tables IV and V show that the type of desulfurization treatment greatly affects the composition of the contents. Most of the inclusions in the rare earth element-treated alloy contain rare earth elements Ce and La. Conversely, most of the calcium-treated alloy contains Ca, but is substantially free of rare earth elements such as. And. Both the rare earth treatment and the calcium treatment can effectively absorb the incidental elements such as p, s and As 〇 The inclusion size data described in Tables IV and V conforms to the ❹ distribution shown in Fig. 2. The median value of the size of the inclusion between the simple treated material and the rare earth treated material was statistically 95% different. Therefore, there is a statistically significant difference between the median value of the calcium-treated material and the rare earth-treated material. The median inclusion of the treated alloy has a size of about #6 micrometers, and the median inclusion content of the rare earth-treated material is about U micron, which is derived from the desulfurization treatment of the mother of the present invention. The size of the contents of the treated alloy having a combination of different composition contents is generally larger and contributes significantly to the fatigue life provided by the alloy and method of the present invention. The improvement in the fatigue life achieved by the alloy and method of the present invention cannot be expected from the difference in the size and composition of the alloy relative to the known rare earth element treated alloys 132587.doc -33, 200925296. The terms and expressions used herein are used to describe rather than limit. The use of such terms and expressions is not intended to exclude equivalents of the described features or any part thereof. However, it is to be understood that such modifications are possible within the scope of the invention as described and claimed. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a graph showing the transverse axial-axis fatigue life of a known rare earth treated alloy and a calcium treated alloy according to the present invention; and a rare earth treated alloy of the type 4 and an approximating according to the present invention. A histogram of the size and frequency of the contents of the alloy. 132587.doc •34-

Claims (1)

200925296 十、申請專利範圍: 1. 一種可提供高強度、高動性及良好低循環疲勞壽命之可 時效硬化馬氏體鋼合金,該合金包括: 具有基本上約由下列重量百分比構成之組成的基質: 碳 0.2-0.36 鎂 0.20最多 矽 0.10最多 磷 0.01最多 硫 0.004最多 鉻 1.3-4 鎳 10-15 鉬 0.75-2.7 姑 8-22 鋁 0.01最多 欽 0.02最多 0.001最多 ❹200925296 X. Patent application scope: 1. An age-hardenable martensitic steel alloy capable of providing high strength, high dynamics and good low cycle fatigue life, the alloy comprising: having a composition substantially consisting of the following weight percentages Substrate: carbon 0.2-0.36 magnesium 0.20 up to 0.10 up to phosphorus 0.01 most sulfur 0.004 up to chromium 1.3-4 nickel 10-15 molybdenum 0.75-2.7 abalone 8-22 aluminum 0.01 up to 0.02 up to 0.001 up to ❹ 而其餘部分為鐵及常見雜質;及 複數種分散於該基質中之内含物,該内含物包括主要 尺寸約〇·4 μιη-約7·〇 μιη且具有主要尺寸之中值粒度至少 約為1.6 μηι之鈣化合物,且其中該内含物基本不含稀土 元素。 2.如請求項1之可時效硬化之馬氏體鋼合金,其中該基質 組成主要約由下列構成: 碳 0.20-0.33 132587.doc 200925296 鎂 0.15最多 磷 0.008最多 硫 0.0025最多 鉻 2-4 鎳 10.5-15 鉬 0.75-1.75及 始 8-17。 ❿ 如請求項1之可時效硬化之馬氏體鋼合金,其中該基質 組成主要約由下列構成:While the remainder is iron and common impurities; and a plurality of inclusions dispersed in the matrix, the inclusions comprising a major dimension of about 4 μm to about 7 Å μm and having a median size of at least about It is a 1.6 μηι calcium compound, and wherein the inclusion is substantially free of rare earth elements. 2. The age-hardenable martensitic steel alloy according to claim 1, wherein the matrix composition is mainly composed of the following: carbon 0.20-0.33 132587.doc 200925296 magnesium 0.15 maximum phosphorus 0.008 high sulfur 0.0025 maximum chromium 2-4 nickel 10.5 -15 molybdenum 0.75-1.75 and the beginning 8-17.马 The age-hardenable martensitic steel alloy of claim 1, wherein the matrix composition consists essentially of: 碳 0.21-0.27 鎂 0.10最多 磷 0.008最多 硫 0.0020最多 鉻 2.25-3.5 鎳 11.0-13.0 鉬 1.0-1.5及 鈷 10-15 。 4. 5. 如請求項1之可時效硬化之馬氏體鋼合金,其中該基質 組成含不超過0,33%之碳。 如請求項1之可時效硬化之馬氏體鋼合金,其中該基質 組成主要由約下列構成: 碳· 0.21-0.34 磷 0.008最多 ^ 0.003最多 132587.doc 2- 200925296 ❹ 鉻 1.5-2.80 鎳 10-13 鉬 09-1.8及 姑 14-22 。 如請求項1 . t可時效硬化 組成主要由 約下列構成: 碳 0.30-0.36 鎂 0.05最多 硫 〇·〇〇1最多 鉻 1.3-3.2 錄 10-13 鉬 1.0-2.7 姑 13.8-17.4及 鋁 0.005最多。 一種改良高強度、高韌性 壽命之方法 ,該方法包括 熔化具有下列約重量百 碳 0.2-0.36 鎂 0·20最多 矽 〇·1〇最多 磷 0-01最多 硫 0.004最多 鉻 1.3-4 鎳 10-15 132587.doc 200925296 鉬 0.75-2.7 鈷 8-22 且其餘部分為鐵及常見雜質; 於該合金仍熔化下於其中加入鈣,使得鈣與可利用的 元素結合形成分散於該合金中之内含物; 加工該合金以移除至少部分該内含物;及接著固化該 合金; 因而該合金具有含有主要尺寸約為〇 4 μιη_約7 μιη且具 有主要尺寸之中值粒度至少約16 μιη之該内含物之受限 分散物之基質,且其中該内含物基本不含稀土元素。 8.如π求項7之方法’丨中該熔化步驟包括熔化該馬氏體 鋼,以獲得下列約重量百分比組成: 碳 0.20-0.33 鎂 0.15最多 矽 0.10最多 磷 0.008最多 硫 0.0025最多 路 2-4 鎳 10.5-15 鉬 0.75-1.75 姑 8-17 鋁 0.01最多 欽 0.02最多 且其餘部分主要為鐵及常見雜質。 132587.doc 200925296 9如請求項7之方法,其中該溶化步驟包括炫化該馬氏體 鋼’以獲得具有約下列重量百分比組成: 碳· 0.21-0.27 鎂 0.1最多 矽 0.10最多 磷 0.008最多 硫 0.002最多 鉻 ❹ 錄 2.25-3.5 11.0-13.0 鉬 1.0-1.5 鈷 10-15 鋁 0.01最多 鈦 0.02最多 且其餘部分為鐵及常見雜質。 ίο.種製造旋轉機械之轴桿之方法,包含下列步驟: 〇 熔化具有下列約重量百分比組成之馬氏雜鋼合金: 碳 0.2-0.36 鎂 0.20最多 , 矽 0.10最多 • 磷 0.01最多 硫 0.004最多 鉻 1.3-4 鎳 10-15 鉬 0.75-2.7 132587.doc 200925296 鋁 0.01最多 鈦 0.02最多 且其餘部分為鐵及常見雜質; ❹ 在該合金仍熔化下於其中加入鈣,使得鈣與可利用的 元素結合形成分散於該合金中之内含物,該内含物主要 尺寸約0.4 μπι-約7 μιη且具有主要尺寸之中值粒度至少約 1·όμιη’其中該内含物基本不含稀土元素; 加工該合金以移除至少部分該内含物; 固化該合金; 機械加工該固化合金以形成長形中間體產物;且“ 加工該長形的中間體型態以提供一軸桿。 接著 11. 一種用於旋轉機械之軸桿,包括: 下列約重量 可時效硬化馬氏邇钢合金,其包_ 百分比組成構成之基質: 碳 0.2-0.36 鎂 〇·20最多 矽 〇·ι〇最多 磷 101最多 硫 0·004最多 鉻 1.3-4 鎳 10-15 鉬 0.75-2.7 链 8-22 132587.doc 200925296 鋁 0.01最多 鈦 〇·〇2最多 鈣 0.001最多 且其餘部分為鐵及常見雜質;及 複數個分散於該基質中之内含物’該内含物包括主要 % 尺寸約為ο.4 μιη-約7.0 μιη且具有主要尺寸之中值粒度至 、 少約為h6 之鈣化合物,且其中該内含物基本不含稀 土元素。Carbon 0.21-0.27 Magnesium 0.10 Most Phosphorus 0.008 Most Sulfur 0.0020 Most Chromium 2.25-3.5 Nickel 11.0-13.0 Molybdenum 1.0-1.5 and Cobalt 10-15. 4. 5. The age-hardenable martensitic steel alloy of claim 1 wherein the matrix composition comprises no more than 0,33% carbon. An age-hardenable martensitic steel alloy according to claim 1, wherein the matrix composition is mainly composed of the following: carbon · 0.21 - 0.34 phosphorus 0.008 up to ^ 0.003 up to 132587.doc 2- 200925296 ❹ chromium 1.5-2.80 nickel 10- 13 Molybdenum 09-1.8 and Gu 14-22. The content of the ageing hardening composition of claim 1 consists mainly of the following: carbon 0.30-0.36 magnesium 0.05 most sulphur 〇 〇〇 1 most chrome 1.3-3.2 recorded 10-13 molybdenum 1.0-2.7 gull 13.8-17.4 and aluminum 0.005 most . A method for improving high strength and high toughness life, the method comprising melting the following about 100 parts by weight of carbon 0.2-0.36 magnesium 0. 20 up to 矽〇 · 1 〇 up to phosphorus 0-01 up to sulphur 0.004 up to chrome 1.3-4 nickel 10 - 15 132587.doc 200925296 Molybdenum 0.75-2.7 Cobalt 8-22 and the remainder is iron and common impurities; calcium is added to the alloy while it is still molten, so that calcium combines with available elements to form a dispersion dispersed in the alloy. Processing the alloy to remove at least a portion of the inclusions; and subsequently curing the alloy; thus the alloy has a major dimension of about μ4 μηη to about 7 μηη and having a median particle size of at least about 16 μηη a matrix of the constrained dispersion of the inclusions, and wherein the inclusions are substantially free of rare earth elements. 8. The method of claim 7, wherein the melting step comprises melting the martensitic steel to obtain the following composition by weight: carbon 0.20-0.33 magnesium 0.15 up to 0.10 maximum phosphorus 0.008 maximum sulfur 0.0025 up to 2 4 Nickel 10.5-15 Molybdenum 0.75-1.75 Gu 8-17 Aluminum 0.01 up to 0.02 most and the rest is mainly iron and common impurities. The method of claim 7, wherein the melting step comprises arranging the martensitic steel to obtain a composition having a weight percentage of about: carbon · 0.21 - 0.27 magnesium 0.1 up to 矽 0.10 up to phosphorus 0.008 and up to 0.002 The most chrome ❹ recorded 2.25-3.5 11.0-13.0 molybdenum 1.0-1.5 cobalt 10-15 aluminum 0.01 up to 0.02 most titanium and the rest is iron and common impurities. Ίο. A method of manufacturing a shaft for a rotating machine, comprising the steps of: 〇 melting a Markov-type steel alloy having the following composition by weight: carbon 0.2-0.36 magnesium 0.20 at most, 矽0.10 at most • phosphorus 0.01 at most sulfur 0.004 at most chromium 1.3-4 Nickel 10-15 Molybdenum 0.75-2.7 132587.doc 200925296 Aluminum 0.01 up to 0.02 at most titanium and the rest is iron and common impurities; ❹ Calcium is added to the alloy while it is still molten, allowing calcium to combine with available elements Forming an inclusion dispersed in the alloy, the inclusion having a major dimension of from about 0.4 μm to about 7 μm and having a median particle size of at least about 1·όμιη, wherein the inclusion is substantially free of rare earth elements; The alloy to remove at least a portion of the inclusions; solidify the alloy; mechanically process the cured alloy to form an elongated intermediate product; and "process the elongated intermediate form to provide a shaft. Next 11. A use The shaft of the rotating machine, including: The following approximately weight-age age hardenable Martensitic steel alloy, the package _ percentage composition of the matrix: carbon 0 .2-0.36 Magnesium 〇·20 Most 矽〇·ι〇 Most Phosphorus 101 Most Sulphur 0·004 Most Chromium 1.3-4 Nickel 10-15 Molybdenum 0.75-2.7 Chain 8-22 132587.doc 200925296 Aluminum 0.01 Most Titanium 〇·〇 2 up to 0.001 at most calcium and the remainder being iron and common impurities; and a plurality of inclusions dispersed in the matrix 'the inclusions comprising a major % size of about ο.4 μηη - about 7.0 μιη and having a major dimension A calcium compound having a median particle size of up to about h6, and wherein the inclusion is substantially free of rare earth elements. 132587.doc132587.doc
TW097124031A 2007-06-26 2008-06-26 High strength, high toughness rotating shaft material TW200925296A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US94624407P 2007-06-26 2007-06-26

Publications (1)

Publication Number Publication Date
TW200925296A true TW200925296A (en) 2009-06-16

Family

ID=39687231

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097124031A TW200925296A (en) 2007-06-26 2008-06-26 High strength, high toughness rotating shaft material

Country Status (9)

Country Link
US (1) US20090004041A1 (en)
EP (1) EP2171113A1 (en)
JP (1) JP2010531933A (en)
KR (1) KR20100029130A (en)
CN (1) CN101802239A (en)
CA (1) CA2691795A1 (en)
MX (1) MX2009014214A (en)
TW (1) TW200925296A (en)
WO (1) WO2009003112A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8756429B2 (en) 2008-10-10 2014-06-17 International Business Machines Corporation Tunable encryption system
CN102155802A (en) * 2011-04-29 2011-08-17 武汉中圣能源环保工程有限公司 Non-vacuum solar high temperature tower-type heat collector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4461657A (en) * 1983-05-19 1984-07-24 Union Carbide Corporation High strength steel and gas storage cylinder manufactured thereof
US5087415A (en) * 1989-03-27 1992-02-11 Carpenter Technology Corporation High strength, high fracture toughness structural alloy
JP2683599B2 (en) * 1990-02-06 1997-12-03 シーアールエス ホールディングス,インコーポレイテッド Martensitic alloy steel and structural members with high strength and high fracture surface toughness with low ductility-brittleness transition temperature
US5268044A (en) * 1990-02-06 1993-12-07 Carpenter Technology Corporation High strength, high fracture toughness alloy
US5866066A (en) * 1996-09-09 1999-02-02 Crs Holdings, Inc. Age hardenable alloy with a unique combination of very high strength and good toughness
JP2002285290A (en) * 2001-03-27 2002-10-03 Daido Steel Co Ltd High strength and highly fatigue resistant steel for structural purpose and production method therefor
US20070113931A1 (en) * 2005-11-18 2007-05-24 Novotny Paul M Ultra-high strength martensitic alloy

Also Published As

Publication number Publication date
CN101802239A (en) 2010-08-11
JP2010531933A (en) 2010-09-30
US20090004041A1 (en) 2009-01-01
EP2171113A1 (en) 2010-04-07
CA2691795A1 (en) 2008-12-31
WO2009003112A1 (en) 2008-12-31
KR20100029130A (en) 2010-03-15
MX2009014214A (en) 2010-03-15

Similar Documents

Publication Publication Date Title
WO2007074986A1 (en) Steel wire having excellent cold heading quality and quenching property, and method for producing the same
WO2014081491A2 (en) Cobalt alloys
WO2018182480A1 (en) Hot work tool steel
JP6366326B2 (en) High toughness hot work tool steel and manufacturing method thereof
CA3039661C (en) High temperature, damage tolerant superalloy, an article of manufacture made from the alloy, and process for making the alloy
JP2002256378A (en) Low alloy heat resistant steel, heat treatment method therefor and turbine rotor
CA2955320A1 (en) Ni-based superalloy for hot forging
KR101696967B1 (en) High strengthhigh toughness steel alloy
WO2007123164A1 (en) Piston ring material for internal combustion engine
KR20120125945A (en) Bainitic steel for moulds
JP6620490B2 (en) Age-hardening steel
EP2441853A1 (en) Method for producing tools from steel alloy and tools, in particular for machining metal
JP6506978B2 (en) Method of manufacturing NiCrMo steel and NiCrMo steel material
US20180094345A1 (en) Case-hardened steel component
TW201002831A (en) Method of making a high strength, high toughness, fatigue resistant, precipitation hardenable stainless steel and product made therefrom
JP5304507B2 (en) Non-tempered steel for induction hardening
JP6238114B2 (en) High speed tool steel, cutting edge material and cutting tool, and manufacturing method of cutting edge material
TW200925296A (en) High strength, high toughness rotating shaft material
JP6797465B2 (en) High hardness matrix highs with excellent toughness and high temperature strength
WO2016148206A1 (en) Age-hardenable steel, and method for manufacturing components using age-hardenable steel
CN112011740B (en) High-toughness and high-hardness die steel and preparation method thereof
JP2005126817A (en) Steel part for machine structure having excellent fatigue property and machinability, method for manufacture thereof, and stock for induction hardening
CN106167879A (en) Maraging steel
EP3870730A1 (en) A method of producing a high speed steel alloy
KR101575096B1 (en) Ni base superalloys and manufacturing method of ni base superalloys