TW200925162A - Fast synthesis and storage method for hydrogen storage material of metal-organic framework with high specific surface area - Google Patents

Fast synthesis and storage method for hydrogen storage material of metal-organic framework with high specific surface area Download PDF

Info

Publication number
TW200925162A
TW200925162A TW96146542A TW96146542A TW200925162A TW 200925162 A TW200925162 A TW 200925162A TW 96146542 A TW96146542 A TW 96146542A TW 96146542 A TW96146542 A TW 96146542A TW 200925162 A TW200925162 A TW 200925162A
Authority
TW
Taiwan
Prior art keywords
surface area
specific surface
metal
organic framework
high specific
Prior art date
Application number
TW96146542A
Other languages
Chinese (zh)
Other versions
TWI337610B (en
Inventor
cui-yun Zhong
Ming-Sheng Yu
zheng-xi Cao
Original Assignee
Atomic Energy Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atomic Energy Council filed Critical Atomic Energy Council
Priority to TW96146542A priority Critical patent/TW200925162A/en
Publication of TW200925162A publication Critical patent/TW200925162A/en
Application granted granted Critical
Publication of TWI337610B publication Critical patent/TWI337610B/zh

Links

Abstract

A fast synthesis and storage method for metal-organic framework (MOF) material with high specific surface area, which is performed by changing the influence interrelationship of parameter factors such as molar ratio of precursors, solvent contents, reaction time, and reaction temperatures with respect to the specific surface area (SSA), finding out the important operation variables, and finding out the condition of synthesizing the metal-organic framework-5 (MOF-5) material with the highest specific surface area in the shortest time by changing the important operation variables. The method can reduce the reaction time to twelve hours under the condition of high reaction temperature 120 Degrees Celcius so as to rapidly synthesize the metal-organic framework material with the high specific surface area, wherein the specific surface area (SSA) is greater than 3000m.sup.2/g so as to improve the yield. Since the metal-organic framework material has a property of tending to absorb water even under low humidity, vacuum storage period and resulting in phase structure decomposition, resulting in rapid reduction of specific surface area and hydrogen storage capability and reduction of storage life. This work provides a storage treatment method, and the structural stability can be elevated and the storage life can be prolonged as well after treated by the storage treatment method.

Description

200925162 * 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種高比表面積之金屬有機骨架 之微孔隙材料其快速合成及保存方法,由於高比表面 積特性,其吸氫量也相對比例上的提高,故本材料具 有高儲氫能力,近年來文獻上也證實,此材料在77K 條件下儲氩量可達4.5〜5.1wt%及在常溫298K下儲氫 量可達0.4wt%之儲氫能力,未來可應用於燃料電池或 〇 攜帶式交通工具等之氫能儲存用途,為一極具潛力之 能源材料。 此外,金屬有機骨架材料,其具有極大高表面積 之多孔性材料,對於催化反應、氣體分離及氣體儲存 等方面之應用具有舉足輕重之地位。 本工作提出一種金屬有機骨架之微孔隙材料快速 合成及保存方法,試樣合成條件在較高之反應溫度 120°C下縮短反應時間為12小時,以合成比表面積高 〇 於3000m2/g之金屬有機骨架材料,並將試樣進行活化 處理,可增加材料結構穩定性亦延長保存期間。 【先前技術】 金屬有機骨架為近年來新開發之微孔隙性材料 (Microporous material ),其較一般常用傳統儲氫材料 如:金屬氫化物(Metal hydride),沸石(Zeolites)及 奈米碳管(nano-carbon tube)等材料更具符合美國能 5 200925162 . • 源部(臓)氫計劃中制訂可商業用儲氫材料應具備之 條件和標準,例如須:⑴質量輕(2)可以重複使用 (3)其儲氫重量密度高(4)可於常溫及適當壓力下 吸釋放氫(5)吸放氫反應速率快(6)合成方法簡單 及成本低廉等特性。 金屬有機骨架材料(又稱爲金屬有機配位聚合 物),匕係由金屬離子(metaj clusters )和有機分子連 接物(organic linkers )自我組裝而形成為開放式3維 Ο 網路(open 3D network)之晶體結構,允許氫氣有效 地以物理吸附(Physical adsorption )方式吸附在其分 子微孔洞内部。理想的金屬有機骨架材料其晶體結構 呈有序排列,其形成開放式微孔孔洞結構(micr〇p〇r〇us structure )導致具有高比表面積及微孔體積 (microporous volume)之特性。例如:典型 M〇F_5 疋由金屬離子(Zn2+ )及有機配位物(對苯二甲酸, BDC )自我組裝形成多孔性有序排列晶體,其内微孔 © 半徑平均為8A。金屬有機骨架材料可以任意變更金屬 離子種類與有機連接物之長度,而藉以調整材料孔洞 之大小、比表面積及儲氫能力,形成另一系列MOF 形式’但是MOF-5材料為開發技術最成熟並具有高比 表面積及高熱穩定性而被選為一般研究金屬有機骨架 之代表性材料。 200925162 在 1999 年,最先被 Yaghi 團隊(Li,Η·; Eddaoudi, M.; O^eeffe, Μ.; Yaghi, Ο. Μ. Nature, 402,276(1999)) 提出有機金屬骨架材料合成條件,將一硝酸鋅(Zinc nitrate ,Ζη(Ν03)2·4Η20 )及一對苯二曱酸 (l,4-Benzenedicarboxylate,H2BDC),溶於一二曱基 曱酿胺(Dimethylformamide,DMF )與一氯苯 (Chlorobenzene )中,並且於其中再添加一三乙醇 胺(Triethanolamine, TEA)及一過氧化氩(Hydrogen 0 Peroxide,H2〇2)試劑,於室溫下合成時間為7-10天, 藉此可得到Langmuir比表面積為2900平方公尺/克 (m2/g);而在 2005 年時,Yaghi 等人(Andrew R· Millward and Ο. Μ. Yaghi, J. Am. Chem. Soc.,121^ 17998 (2005))亦再以該硝酸鋅與該對苯二曱酸,將其 溶於一二乙基乙醢胺(N,N-Diethylformamide,DEF) 溶劑中,提高反應溫度為100°C下,縮短反應時間為 20小時,合成出具有微孔結構之晶體(Zn40(BDC)3), ® 其比表面積可達2833 m2/g。此外,亦有Hirscher等 人(Panella,B.; Hirscher,M.,di/v. 17, 538(2005))將1.2克之硝酸鋅和0.334克之對苯二曱 酸溶解在40毫升(mL)之二甲基曱醯胺中,並於大 氣環境下對此溶液進行強力攪拌,且攪拌時係將2.2 毫升之三乙醇胺一滴一滴緩慢地加入到該溶液中,在 反應時間約30〜45分鐘後,即可生成比表面積為1014 m2/g之白色固體狀晶體。以上等團隊合成溫度大多為 7 200925162 R.T〜100°C,反應時間為20小時〜10天,利用提高溫 度來降低反應時間,以合成出高比表面積的金屬有機 骨架材料。 另一方面,Huang 等人(Huang, L.; Wang,H.; Chen, J.; Wang, Z.; Sun, J.; Zhao, D.; Yan, Y. Microporous MeiOporows Maier.,58,105(2003))提出一種大量及快 速合成的策略方法,此方法也廣為被接受成另一種合 成策略。以DMF為溶劑,在室溫下強力攪拌0.5-4小 ❹ 時,即可合成出比表面積為700〜1300 m2/g的MOF-5 材料。但是,依據最新的文獻發表(Hafizovic, J.; Bj(j>rgen,M.; Olsbye,U.; Dietzel,P. D. C·; Bordiga,S·; Prestipino, C.; Lamberti, C.; Lillerud, K. P. J. Am. <5%.,129, 3612(2007))指出,其使用 X 光繞射 分析儀發現,指出Huang學者以大量快速合成法所得 到的為非完美金屬有機骨架材料,以致於有較低比表 面積,同時該文獻提出最新的金屬有機骨架晶體品質 ® (與比表面積值有關)之快速鑑定為粉末X光繞射法 (Powder X-ray diffraction ; PXRD)。 綜上所述,從已發表之眾多期刊或論文中,得知 其金屬有機骨架材料均係反應溫度在R.T〜100°C條件 下,反應條件仍需在20小時〜10天,以合成出高於3000 m2/g比表面積的金屬有機骨架材料,一般上提高反應 溫度可以降低反應時間,但是目前之反應溫度仍在100 200925162 而其他學者利用低溫快速合成方法所得到的材 料,其比表面積最高為〜12〇〇m2/g且無法得到良好品 質。依上述之方法若須合成高於3000 m2/g比表面積 之金屬有機骨架材料,反應溫度在loot下,其製備 時間最短也需要20小時,不僅需耗費長久之製程時間 而降低其產率,且相對於製程成本而言,亦因此無法 達到有效靖省,故,一般習用者係無法符合使用者於 實際使用時之所需。 〇 依據 團隊(Li H.; Eddaoudi, M.; Groy, T.L.;200925162 * IX. Description of the Invention: [Technical Field] The present invention relates to a method for rapidly synthesizing and preserving a microporous material of a metal-organic framework having a high specific surface area, which has a relatively high hydrogen absorption capacity due to high specific surface area characteristics. The ratio is improved, so the material has high hydrogen storage capacity. In recent years, it has been confirmed in the literature that the argon storage capacity of this material can reach 4.5~5.1wt% under 77K and the hydrogen storage capacity can reach 0.4wt% at normal temperature 298K. The hydrogen storage capacity can be applied to hydrogen energy storage applications such as fuel cells or portable vehicles in the future, and is a potential energy material. In addition, metal-organic framework materials, which have extremely high surface area and porous materials, play an important role in catalytic reactions, gas separation and gas storage applications. In this work, a rapid synthesis and preservation method of microporous materials with metal-organic framework was proposed. The synthesis conditions of the samples were shortened at a high reaction temperature of 120 ° C for 12 hours to synthesize a metal with a specific surface area higher than 3000 m 2 /g. The organic framework material and the sample are activated to increase the structural stability of the material and extend the storage period. [Prior Art] The metal organic skeleton is a newly developed microporous material in recent years, which is more commonly used in conventional hydrogen storage materials such as metal hydride, zeolite (zeolites) and carbon nanotubes ( Materials such as nano-carbon tube are more in line with US Energy 5 200925162. • The conditions and standards for the development of commercially available hydrogen storage materials in the source (臓) hydrogen program, such as: (1) light weight (2) can be reused (3) Its hydrogen storage weight density is high (4) It can release hydrogen at normal temperature and appropriate pressure (5) The reaction rate of hydrogen absorption and desorption is fast (6) The synthesis method is simple and the cost is low. Metal-organic framework materials (also known as metal-organic coordination polymers), which are self-assembled by metal ions (metaj clusters) and organic molecular linkers to form an open 3D network (open 3D network) The crystal structure allows hydrogen to be efficiently adsorbed inside the molecular micropores by physical adsorption. The ideal metal organic framework material has an ordered structure, and the formation of an open microporous pore structure (micr〇p〇r〇us structure) results in a high specific surface area and a microporous volume. For example, the typical M〇F_5 自我 self-assembles by metal ions (Zn2+) and organic ligands (terephthalic acid, BDC) to form porous ordered crystals with an average pore radius of 8A. The metal organic framework material can arbitrarily change the metal ion species and the length of the organic linker, thereby adjusting the size, specific surface area and hydrogen storage capacity of the material to form another series of MOF forms. However, the MOF-5 material is the most mature development technology. It has a high specific surface area and high thermal stability and was selected as a representative material for the general study of metal organic frameworks. 200925162 In 1999, the synthesis of organometallic framework materials was first proposed by the Yaghi team (Li, Η·; Eddaoudi, M.; O^eeffe, Μ.; Yaghi, Ο. Μ. Nature, 402, 276 (1999)). Zinc nitrate (Ζn(Ν03)2·4Η20) and a pair of benzoenedicarboxylate (H2BDC), dissolved in dimethylformamide (DMF) and monochlorobenzene (Chlorobenzene), and further adding a triethanolamine (TEA) and an argon peroxide (Hydrogen 0 Peroxide, H2〇2) reagent, the synthesis time is 7-10 days at room temperature, thereby obtaining Langmuir has a specific surface area of 2,900 square meters per gram (m2/g); in 2005, Yaghi et al. (Andrew R. Millward and Ο. Μ. Yaghi, J. Am. Chem. Soc., 121^17998 ( 2005)) The zinc nitrate and the terephthalic acid are further dissolved in a solvent of N, N-Diethylformamide (DEF) to increase the reaction temperature to 100 ° C and shorten The reaction time was 20 hours, and a crystal having a microporous structure (Zn40(BDC)3) was synthesized, and its specific surface area was 2833 m2/g. In addition, Hirscher et al. (Panella, B.; Hirscher, M., di/v. 17, 538 (2005)) dissolved 1.2 g of zinc nitrate and 0.334 g of terephthalic acid in 40 ml (mL). In dimethyl decylamine, the solution is vigorously stirred under an atmosphere, and 2.2 ml of triethanolamine is slowly added to the solution while stirring, after the reaction time is about 30 to 45 minutes. A white solid crystal having a specific surface area of 1014 m 2 /g can be produced. Most of the above-mentioned team synthesis temperatures are 7 200925162 R.T~100 °C, and the reaction time is 20 hours to 10 days. The reaction time is lowered by increasing the temperature to synthesize a metal organic skeleton material with a high specific surface area. On the other hand, Huang et al. (Huang, L.; Wang, H.; Chen, J.; Wang, Z.; Sun, J.; Zhao, D.; Yan, Y. Microporous MeiOporows Maier., 58, 105 (2003) )) proposes a large and rapid synthesis strategy approach, which is also widely accepted as another synthetic strategy. When DMF is used as a solvent and stirred vigorously at room temperature for 0.5-4 Torr, a MOF-5 material having a specific surface area of 700 to 1300 m2/g can be synthesized. However, it is published according to the latest literature (Hafizovic, J.; Bj (j>rgen, M.; Olsbye, U.; Dietzel, PD C.; Bordiga, S.; Prestipino, C.; Lamberti, C.; Lillerud, KPJ Am. <5%., 129, 3612 (2007)) pointed out that it uses X-ray diffraction analyzer to find out that Huang scholars obtained a large number of rapid synthesis methods as imperfect metal-organic framework materials, so that there is The lower specific surface area, while the literature proposes the latest metal-organic framework crystal quality® (related to the specific surface area value) is quickly identified as Powder X-ray diffraction (PXRD). In many published journals or papers, it is known that the metal-organic framework materials are reacted at RT~100 °C, and the reaction conditions still need to be between 20 hours and 10 days to synthesize more than 3000 m2/g. The surface area of the metal-organic framework material generally increases the reaction temperature to lower the reaction time, but the current reaction temperature is still at 100 200925162. Other materials obtained by other scholars using the low-temperature rapid synthesis method have a specific surface area of up to ~12〇〇m2/ g It is impossible to obtain good quality. If the metal organic framework material with a specific surface area higher than 3000 m2/g is synthesized according to the above method, the reaction temperature is at the loot, and the preparation time is as short as 20 hours, which not only takes a long time to reduce the process time. The yield, and relative to the cost of the process, can not be achieved, so the average user can not meet the needs of the user in actual use. 〇 According to the team (Li H.; Eddaoudi, M. Groy, TL;

Yaghl’ 〇·Μ” J·飯 120, 8571(1998))在 19=年文獻指出,金屬有機骨架材料即使在低渔度之 保存d間下仍具有極易吸水而造成相結構分解之 特性’導致材料易損壞及保存期限短,本工作提出一 2保存處理方法’經過保存方法處理’可增加結構穩 定性亦延長保存期間。 【發明内容】 本發明之主要目的係在於,藉由改變先驅物之莫 耳數比、溶劑含量、反應時間及反應溫度等參數因子 士比表面積之影響相對關係,找出重要之最佳操作變 乂車乂决合成出該具高比表面積之金屬有機骨架晶 體條件’在本實驗合成條件中,不僅可於較高反應溫 又12〇 C下縮短最佳反應時間為12小時以快速合成 '彳于到比表面積高於3000m2/g之金屬有機骨架晶 200925162 體,且此條件進而提高其產率,在此溫度丨2(TC條件 下,反應時間若低於或高於12小時則其生成金屬有 機骨架之晶體品質及比表面積將大為降低。 本發明之次要目的係在於,經由保存處理過後, 更具有高熱安定性及高結晶性,可置於乾燥環境下而 不易分解。 為達以上之目的,本發明係一種高比表面積之金 屬有機骨架快速合成及保存方法,係選擇該硝酸鋅及 ❹ 該對笨二曱酸為先驅物,並依其相互間之莫耳數比, 將其/谷於該二乙基曱醯胺溶劑中,以配製成一先驅物 溶液,並將該先驅物溶液置於一玻璃瓶内,利用熱溶 劑法對該試樣進行加熱,其升溫速率為2°C /min,且於 加熱至120oC後進行12小時恆溫處理,以析出一金屬 有機骨架晶體Zri4〇(BDC)r(DEF)x,待該金屬有機骨 架晶體以冷卻速率1.6°C /min降溫至室溫後,以該二曱 ❹ 基甲醯胺溶劑進行清洗,再以一三氣曱烷(Chloroform, chci3)進行置換動作,可得Zn4〇(BDC)3.(CHCl3)x之 金屬有機骨架晶體。 一般文獻(Yaghi et al.,1998)提出’移除材料孔 洞内不純物及溶劑,需在真空下(5xl0·5 Torr)溫度 在140°C恆溫加熱長達16小時’而本工作提出一種保 存處理方法’為在一真空低壓環境下,經由加熱溫度 180〜200°C條件下,反應時間只需3小時,即可對此材 料進行活化作用,並有效移除材料孔洞内不純物及溶 200925162 劑,更重要的疋亦增加材料結構穩定性及延長材料保 存期限。 【實施方式】 凊參閱『第1圖及第2圖』所示,係分別為本發 明之製作流程示意圖及本發明之加熱示意圖。如圖所 示:本發明係一種高比表面積之金屬有機骨架快速合 成及保存方法’其至少包括下列步驟: (A )配製成先驅物溶液i i :選擇一硝酸鋅 (Ζη(Ν03)2·4Η20)及一對苯二甲酸(H2BDC)為先驅 物,並依該硝酸鋅與該對苯二曱酸之莫耳數比,溶於 一二乙基甲醯胺(DEF )溶劑中,以配製成一先驅物 溶液,其中,該硝酸鋅與對苯二甲酸之莫耳數比係可 為 1:1 、 2:1 、 3:1 及 4:1 ; (B )以熱溶劑法進行加熱丄2 :如第2圖所示, 將該先驅物溶液2 1置於一玻璃瓶2 2内,並利用熱 〇 溶劑法,將該玻璃瓶2 2直接放入一加熱包3丄内了 利用一控制器3對該加熱包3 i進行加熱,並於該玻 璃瓶2 2 口上插入一溫度感測計3 2,且將其封口緊 密,由該溫度感測計3 2做回授控制,以2。〇分鐘 (°C/min)之加熱速度,將該玻璃瓶2 2從室溫加熱 至120°C,其中,當達到所設定之溫度12〇〇c時該 加熱包3 1即自動停止加熱動作; 200925162 (c)進行恆溫處理並合成出金屬有機骨架晶體 1 3 :於加熱至120°c下’進行12小時怪溫處理,以 合成出一具有立方體三維多孔性結構之金屬有機骨架 晶體(Zn4〇(BDC)3*(DEF)x,MOF-5 ),且該金屬有機 骨架晶體之化學反應式係為: 4Zn2+ + 3H2BDC — Zn40(BDC)3 (DEF)X ;以及 (D)進行保存處理14:將該金屬有機骨架晶 體冷卻至室溫後,以一二曱基曱醯胺(DMF)溶劑進 〇 行清洗,再以一三氯曱烷(CHC13)進行置換,如下式: Zn,0{BDC\ ·(DEF)X-^β->Ζ«40(5Ζ)〇3 (CHCl3)x 最後’在低度或一般真空環境下,對此清洗並置 換過後之金屬有機骨架晶體 (Zn40(BDC)3.(CHCl3)x) ’ 於 18〇〇C〜200oC 溫度間進 行試樣活化1〜3小時之保存處理。 以上述論方法中,當硝酸鋅、對苯二甲酸與該二 乙基甲醯胺之莫耳數比在3:1:225時’反應溫度在 90〜120 C,反應時間為16〜72小時,所得晶體之Yaghl' 〇·Μ” J·Mei 120, 8571 (1998)) In the 19=year literature, it is pointed out that the metal-organic framework material has the property of being easily absorbed by water and causing phase structure decomposition even under the preservation of low-fishing d. The material is easy to be damaged and the storage period is short. This work proposes a 2 preservation processing method 'processed by the preservation method' to increase the structural stability and extend the storage period. SUMMARY OF THE INVENTION The main object of the present invention is to change the precursor The relative relationship between the molar ratio, the solvent content, the reaction time and the reaction temperature, and the specific surface area of the parameter, find out the important optimal operation, and synthesize the metal organic framework crystal condition with high specific surface area. 'In the experimental conditions of this experiment, the optimal reaction time can be shortened not only at a higher reaction temperature but also at 12 ° C for 12 hours to rapidly synthesize the metal organic skeleton crystal 200925162 with a specific surface area higher than 3000 m 2 /g. And this condition further increases the yield. At this temperature 丨2 (the TC condition, if the reaction time is lower or higher than 12 hours, the crystal quality of the metal organic skeleton is formed. The specific surface area of the present invention is greatly reduced. The secondary object of the present invention is that it has high heat stability and high crystallinity after storage treatment, and can be placed in a dry environment without being easily decomposed. A method for rapidly synthesizing and preserving a metal-organic framework with a high specific surface area, selecting the zinc nitrate and bismuth as the precursor of the stearic acid, and according to the Mohr ratio of each other, In a base amide solvent, a precursor solution is prepared, and the precursor solution is placed in a glass bottle, and the sample is heated by a hot solvent method at a heating rate of 2 ° C /min. And after heating to 120 ° C, 12 hours of constant temperature treatment to precipitate a metal organic skeleton crystal Zri4 〇 (BDC) r (DEF) x, after the metal organic skeleton crystal is cooled to room temperature at a cooling rate of 1.6 ° C / min, The metal organic skeleton crystal of Zn4〇(BDC)3.(CHCl3)x can be obtained by washing with the dimercaptocarboxamide solvent and replacing it with a trioxane (Chloroform, chci3). (Yaghi et al., 1998) proposed ' Remove the impurities and solvent in the material hole, and heat it at 140 °C under vacuum (5xl0·5 Torr) for up to 16 hours. 'This work proposes a preservation method' for heating under a vacuum and low pressure environment. Under the condition of temperature 180~200 °C, the reaction time is only 3 hours, the material can be activated, and the impurities in the pores of the material can be effectively removed and the 200925162 agent can be dissolved. The more important 疋 also increases the structural stability and elongation of the material. [Embodiment] 实施 Refer to the "Fig. 1 and Fig. 2" for the production flow diagram of the present invention and the heating diagram of the present invention. As shown in the figure: The present invention is a method for rapid synthesis and preservation of a metal-organic framework having a high specific surface area, which comprises at least the following steps: (A) Formulation of a precursor solution ii: Selection of zinc nitrate (Ζη(Ν03)2· 4Η20) and a pair of phthalic acid (H2BDC) as precursors, and dissolved in monoethylformamide (DEF) solvent according to the molar ratio of zinc nitrate to the terephthalic acid Forming a precursor solution, wherein the molar ratio of the zinc nitrate to terephthalic acid can be 1:1, 2:1, 3:1 and 4:1; (B) heating by a hot solvent method丄2: As shown in Fig. 2, the precursor solution 2 1 is placed in a glass bottle 2 2, and the glass bottle 22 is directly placed in a heating pack 3 by a hot mash method. A controller 3 heats the heating pack 3 i, inserts a temperature sensor 3 2 on the glass bottle 2 2 port, and seals it tightly, and performs feedback control by the temperature sensor 3 2 to 2. Heating the glass bottle 22 from room temperature to 120 ° C at a heating rate of 〇 (° C / min), wherein the heating package 3 1 automatically stops heating when the set temperature 12 〇〇 c is reached. 200925162 (c) Constant temperature treatment and synthesis of metal-organic framework crystals 1 3: heating to 120 ° C for 12 hours of strange temperature treatment to synthesize a metal-organic framework crystal with cubic three-dimensional porous structure (Zn4 〇(BDC)3*(DEF)x, MOF-5), and the chemical reaction formula of the metal organic skeleton crystal is: 4Zn2+ + 3H2BDC - Zn40(BDC)3 (DEF)X; and (D) preservation treatment 14: The metal organic skeleton crystal was cooled to room temperature, washed with a solvent of dimethyl decylamine (DMF), and then replaced with trichloromethane (CHC13), as follows: Zn, 0 {BDC\ ·(DEF)X-^β->Ζ«40(5Ζ)〇3 (CHCl3)x Finally 'cleaned and replaced metal-organic framework crystals (Zn40) in a low or general vacuum environment (BDC) 3. (CHCl3)x) ' The sample was activated for 1 to 3 hours between 18 〇〇C and 200 °C. In the above method, when the molar ratio of zinc nitrate, terephthalic acid to diethylformamide is 3:1:225, the reaction temperature is 90 to 120 C, and the reaction time is 16 to 72 hours. , the resulting crystal

Langmuir比表面積可高於丨〇〇〇m2/g,經由改變反應溫 度及時間,即可得到比表面積高於3〇〇〇 m2/g之金屬 ^機骨架材料。因此,為得到該金屬有機骨架晶體之 高比表面積及產率,本工作運用,在較高之反應溫度 為120°C且只需恆溫12小時最佳恆溫時間之反應時間 下,選用該硝’酸辞、該對苯二甲酸與該二乙基甲酿胺 之莫耳數比在3:1:225為最佳條件,不僅可製備出其 12 200925162The Langmuir specific surface area can be higher than 丨〇〇〇m2/g. By changing the reaction temperature and time, a metal framework material with a specific surface area higher than 3 〇〇〇 m2/g can be obtained. Therefore, in order to obtain the high specific surface area and the yield of the metal-organic framework crystal, the work is carried out, and the reaction is carried out at a reaction temperature of a high reaction temperature of 120 ° C and a constant constant temperature of 12 hours. The acidity, the molar ratio of the terephthalic acid to the diethyl amylamine are optimal at 3:1:225, and not only can be prepared 12 200925162

Langmuir比表面積為3113 m2/g之金屬有機骨架材 料,相對於先前之研究,其可降低所需之反應時間, 同時更可達到有助於提高產率之效果。 合成之MOF-5材料其理論上的有序晶體結構與 其高比表面積特性息息相關,一般上合成參數如反應 時間、反應溫度及莫耳數比輕微變動下將影響晶體結 構(品質)甚巨,唯有透過鑑定儀器分析方法方能掌 握製程參數之影響度,故X光繞射法是目前最快鑑定 0 其是否具有正確結構之方法,合成參數不在最佳條件 下,其合成得到晶體之X光繞射圖譜比對會有異常 (繞射峯角度及相對強度不符理論計算),故其比表面 積經驗量測值會低於1000 m2/g。 因此須將此製備而得之金屬有機骨架晶體分別先 進行X光繞射分析法檢驗,作為初步之品質檢驗,然 後利用掃描式電子顯微鏡(scanning electron microscope,SEM)觀察形貌是否有異常之立方體,作 〇 為第二步之輔助檢驗,最後利用比表面積分析儀 (Brunauer-Emmett-Teller,BET )量測其比表面積值。 請參閱『第3圖』所示,係本發明(MOF-5產物) 之PXRD圖譜及SEM照片示意圖。如圖所示:本發明 所製備之金屬有機骨架材料PXRD量測圖譜之繞射峯 角度與相度強度與Yaghi之理論計算PXRD圖譜一致 相符,其晶相屬於Fm3m結構,且表面為簡單立方體 之型態,晶格常數為25 A,晶體寬度約為10〜100微 13 200925162 米(μπι)。 金屬有機骨架材料儲氫能力與環境溫度及壓力均 有極大關係,由量測PXRD圖譜推斷該材料在77Κ及 5.0MPa下將具有4.7wt%之儲氫能力,另一方面本合 成材料利用高壓熱重量分析儀(HPTGA )在室溫及 7.0MPa下量測其儲氫量為0.27wt°/〇,與其他文獻量測 值相等。 比表面積分析,請參閱『第4圖』所示,係本發 Ο 明之比表面積分析儀分析之恆溫吸附-脫附曲線 (adsorption-desorption isotherm )示意圖。如圖戶斤示: 本發明所製備之金屬有機骨架材料屬於type_I型態, 屬於微孔孔洞(micropore)材料。 請參閱『第5圖』所示,係本發明之MOF-5試樣, 未經保存處理及使用保存處理後PXRD圖譜變化示意 圖。如圖5所示為MOF-5材料經由保存處理前後, PXRD圖譜變化,由圖5之(1)及(3)PXRD圖譜比較, 試樣未經保存處理,置於低真空下存放39天後, MOF-5主要6.9°繞射峯強度下降,且增加許多不純相 的繞射峯,顯示試樣有一般相分解產生;由圖 5(1)(2)PXRD圖譜比較,試樣經保存處理後於低真空 下存放39天後,M0F-5主要繞射峯位置仍在6.9°及 9.6°,且無其他不純相之特性繞射峯產生。 200925162 综上所述,本發明係一種高比表面積之金屬有機 骨架快速合成及保存方法,可有效改善習用之種種缺 點’藉由改變先驅物之莫耳數比、溶劑含量、反應時 間及反應溫度等參數因子對比表面積之相對關係,以 較快合成出高比表面積之金屬有機骨架材料,不僅可 於高反應溫度下縮短反應時間以提高產率,並且在經 由保存處理過後,可增加結構穩定性亦延長保存期 間,進而使本發明之産生能更進步、更實用、更符合 〇 使用者之所須,確已符合發明專利申請之要件,爰: 法提出專利申請。 惟以上所述者,僅為本發明之較佳實施例而已, 當不能以此限定本發明實施之範圍;故’凡依本發明 申請專利範圍及發明說明書内容所作之簡單的等效變 化與修飾’皆應仍屬本發明專利涵蓋之範圍内。 ❹ 15 200925162 【圖式簡單說明】 第1圖,係本發明之製作流程示意圖。 第2圖,係本發明之加熱示意圖。 第3圖,係本發明之PXRD及SEM分析示意圖。 第4圖,係本發明之比表面積分析儀分析之怪溫吸 附-脫附曲線示意圖。 第5圖,係本發明之M0F_5試樣,未經保存處理 〇 及使用保存處理前後PXRD變化示意圖。 【主要元件符號說明】 步驟(A)配製成先驅物溶液1 1 步驟(B )以熱溶劑法進行加熱1 2 步驟(C )進行恆溫處理並合成出金屬有機 骨架晶體1 3 步驟(D)進行保存處理14 ® 先驅物溶液2 1 玻璃瓶2 2 控制器3 加熱包3 1 溫度感測計3 2The Langmuir metal organic framework material with a specific surface area of 3113 m2/g can reduce the required reaction time compared to previous studies, and at the same time achieve an effect of improving the yield. The theoretical ordered crystal structure of the synthesized MOF-5 material is closely related to its high specific surface area. Generally, the synthesis parameters such as reaction time, reaction temperature and molar ratio will affect the crystal structure (quality). It is possible to grasp the influence of the process parameters through the identification instrument analysis method. Therefore, the X-ray diffraction method is the fastest method to identify whether it has the correct structure. The synthetic parameters are not under the optimal conditions, and the X-ray of the crystal is synthesized. The diffraction pattern is anomalous (the diffraction peak angle and relative intensity do not correspond to the theoretical calculation), so the empirical measurement of the specific surface area will be less than 1000 m2/g. Therefore, the prepared metal organic skeleton crystals are first subjected to X-ray diffraction analysis as a preliminary quality test, and then a scanning electron microscope (SEM) is used to observe whether the morphology has an abnormal cube. As a secondary test of the second step, the specific surface area value was measured by a specific surface area analyzer (Brunauer-Emmett-Teller, BET). Please refer to the "Fig. 3" for a PXRD pattern and a SEM photograph of the present invention (MOF-5 product). As shown in the figure: the diffraction peak angle and phase intensity of the PXRD measurement spectrum of the metal organic framework material prepared by the invention are consistent with the theoretically calculated PXRD pattern of Yaghi, the crystal phase belongs to the Fm3m structure, and the surface is a simple cube. The type has a lattice constant of 25 A and a crystal width of about 10 to 100 μ 13 200925162 m (μπι). The hydrogen storage capacity of the metal organic framework material has a great relationship with the ambient temperature and pressure. It is inferred from the PXRD pattern that the material will have a hydrogen storage capacity of 4.7 wt% at 77 Κ and 5.0 MPa. On the other hand, the composite material utilizes high pressure heat. The weight analyzer (HPTGA) measured its hydrogen storage capacity at room temperature and 7.0 MPa at 0.27 wt ° / 〇, which is equivalent to other literature measurements. For specific surface area analysis, please refer to Figure 4, which is a schematic diagram of the adsorption-desorption isotherm analysis of the specific surface area analyzer of the present invention. As shown in the figure: The metal-organic framework material prepared by the invention belongs to the type_I type and belongs to the micropore material. Please refer to Fig. 5 for a schematic diagram of the PXRD pattern change of the MOF-5 sample of the present invention without preservation treatment and storage treatment. As shown in Fig. 5, the PXRD pattern of the MOF-5 material was changed before and after the preservation treatment, and the sample was compared with the PXRD pattern of (1) and (3) of Fig. 5, and the sample was stored in a low vacuum for 39 days. The main peak of 6.9° diffraction peak of MOF-5 decreases, and many diffraction peaks of impure phase are added, which shows that the sample has general phase decomposition. According to the PXRD pattern of Fig. 5(1)(2), the sample is preserved. After storage for 39 days under low vacuum, the main diffraction peak position of M0F-5 was still at 6.9° and 9.6°, and no other characteristic characteristics of the impure phase were generated. 200925162 In summary, the present invention is a rapid synthesis and preservation method of a metal-organic framework with a high specific surface area, which can effectively improve various disadvantages of the prior art by changing the molar ratio, solvent content, reaction time and reaction temperature of the precursor. The relative relationship between the parameter factors and the surface area, the metal organic framework material with high specific surface area can be synthesized quickly, not only can shorten the reaction time at high reaction temperature to improve the yield, but also increase the structural stability after the preservation treatment. It also extends the preservation period, so that the invention can be made more progressive, more practical, and more suitable for the user. It has indeed met the requirements of the invention patent application, and the patent application is filed. However, the above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto; therefore, the simple equivalent changes and modifications made by the scope of the invention and the contents of the invention are 'All should remain within the scope of this patent. ❹ 15 200925162 [Simplified description of the drawings] Fig. 1 is a schematic diagram of the production process of the present invention. Figure 2 is a schematic view of the heating of the present invention. Figure 3 is a schematic diagram of PXRD and SEM analysis of the present invention. Fig. 4 is a schematic diagram showing the strange temperature adsorption-desorption curve of the specific surface area analyzer of the present invention. Fig. 5 is a schematic view showing the change of PXRD before and after the preservation treatment using the M0F_5 sample of the present invention, without preservation treatment. [Description of main component symbols] Step (A) is formulated into a precursor solution 1 1 Step (B) is heated by a hot solvent method 1 2 Step (C) is subjected to constant temperature treatment to synthesize a metal organic skeleton crystal 1 3 Step (D) Carry out the process 14 ® Precursor solution 2 1 Glass bottle 2 2 Controller 3 Heat pack 3 1 Temperature sensor 3 2

Claims (1)

200925162 十、申請專利範圍: 1 · 一種尚比表面積之金屬有機骨架快速合成及保存方 法,其至少包括下列步驟: (A )選擇一硝酸鋅(Ζη(Ν〇3)2·4Η2〇 )及一 對苯二曱酸(HaBDC)為先驅物,並依該硝酸鋅與 該對苯二甲酸之莫耳數比,溶於一二乙基甲醯胺 (DEF )溶劑中,以配製成一先驅物溶液;將該先 驅物溶液置於一玻璃瓶内,利用熱溶劑法對該玻璃 瓶進行加熱;於加熱過後進行恆溫處理,以合成出 一金屬有機骨架晶體(Zn4〇(BDC)3.(DEF)x^以及 (B)將該金屬有機骨架晶體冷卻至室溫後, =一二甲基甲醯胺(DMF)溶劑進行清洗,再以一 二氣甲烷(CHCI3)進行置換,最後,於溫度在 〜200〇C間進行試樣活化丨〜3小時之保存處理。 2 ·依申請專利範圍第!項所述之高比表面積之金屬有 機骨架快速合成及保存方法,其中’該硝酸鋅與該 對苯二甲酸之莫耳數比係可為1:1、2:1、3:1及4'厂 3 .依申請專利範圍第^項所述之高比表面積之金屬有 機骨架快速合成及保存方法,其中,該熱溶劑法係 將該玻璃瓶直接放入一加熱包内,利用一控制器對 該加熱包進行加熱,並於該玻璃瓶口上插入一溫度 感測計’且將其封口緊密,由該溫度感測計做回授 17 200925162 控制,當達到所設定之溫度時,該加熱包即自 止動作。 τ 4·依申請專利範圍第3項所述之高比表面積之金屬有 =骨架快速合成及保存方法,其中,該加熱包係以 2°C/min之加熱速度,從室溫加熱至l2〇〇c。 5 ·依申請專利範圍第工項所述之高比表面積之金屬有 機骨架快速合成及保存方法,其中,該怪溫處理係 於120°C下恆溫12小時。 6 ·依申請專利範圍第i項所述之高比表面積之金 機骨架快速合成及保存方法’纟中,該保存處理係 將該金屬有機骨架晶體置於i 8〇〇c〜 2〇〇〇c溫度間 之低度真空環境下’進行試樣活化處理卜6小時。200925162 X. Patent application scope: 1 · A method for rapid synthesis and preservation of a metal-organic framework with a specific surface area, which comprises at least the following steps: (A) selecting zinc nitrate (Ζη(Ν〇3)2·4Η2〇) and one Terephthalic acid (HaBDC) is a precursor and is dissolved in monoethylformamide (DEF) solvent to form a precursor according to the molar ratio of zinc nitrate to the terephthalic acid. The solution is placed in a glass bottle, and the glass bottle is heated by a hot solvent method; after heating, it is subjected to constant temperature treatment to synthesize a metal organic skeleton crystal (Zn4〇(BDC)3. DEF)x^ and (B) After cooling the metal organic skeleton crystals to room temperature, the solvent is washed with =dimethyl dimethylformamide (DMF), and then replaced with monohydromethane (CHCI3). Finally, The temperature is stored between ~200 °C and the sample is activated for ~3 hours. 2 · The rapid synthesis and preservation method of the metal-organic framework with high specific surface area according to the scope of the patent application, wherein 'the zinc nitrate and The molar ratio of the terephthalic acid can be 1 : 1, 2: 1, 3: 1 and 4' factory 3. A method for rapid synthesis and preservation of a metal-organic framework having a high specific surface area according to the scope of the patent application, wherein the hot solvent method is a glass bottle Directly placed in a heating pack, the heating pack is heated by a controller, and a temperature sensor is inserted into the glass bottle mouth and sealed tightly, and the temperature sensor is used for feedback. 17 200925162 Control When the set temperature is reached, the heating package is self-stopping. τ 4· The high specific surface area metal according to the third claim of the patent application has a rapid skeleton synthesis and preservation method, wherein the heating package is Heating at room temperature to l2〇〇c at a heating rate of 2 ° C / min. 5 · Rapid synthesis and preservation of metal-organic framework with high specific surface area as described in the scope of application of the patent application, wherein the strange temperature The treatment is carried out at a constant temperature of 120 ° C for 12 hours. 6 · According to the patent application scope, the high specific surface area of the high-specific surface area of the gold machine skeleton rapid synthesis and preservation method '纟, the preservation treatment is the metal organic skeleton crystal On i 8〇〇c~ 2 Under low temperature vacuum environment between the 〇〇c 'is Bu sample activation for 6 hours.
TW96146542A 2007-12-06 2007-12-06 Fast synthesis and storage method for hydrogen storage material of metal-organic framework with high specific surface area TW200925162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96146542A TW200925162A (en) 2007-12-06 2007-12-06 Fast synthesis and storage method for hydrogen storage material of metal-organic framework with high specific surface area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96146542A TW200925162A (en) 2007-12-06 2007-12-06 Fast synthesis and storage method for hydrogen storage material of metal-organic framework with high specific surface area

Publications (2)

Publication Number Publication Date
TW200925162A true TW200925162A (en) 2009-06-16
TWI337610B TWI337610B (en) 2011-02-21

Family

ID=44729296

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96146542A TW200925162A (en) 2007-12-06 2007-12-06 Fast synthesis and storage method for hydrogen storage material of metal-organic framework with high specific surface area

Country Status (1)

Country Link
TW (1) TW200925162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104341441A (en) * 2014-10-17 2015-02-11 中国科学技术大学 Method for enhancing water stability of metal organic framework material by surface hydrophobic modification
TWI474971B (en) * 2009-12-28 2015-03-01 Iner Aec Executive Yuan A method for the construction of fractal network structure in a hydrogen storage material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI474971B (en) * 2009-12-28 2015-03-01 Iner Aec Executive Yuan A method for the construction of fractal network structure in a hydrogen storage material
CN104341441A (en) * 2014-10-17 2015-02-11 中国科学技术大学 Method for enhancing water stability of metal organic framework material by surface hydrophobic modification
CN104341441B (en) * 2014-10-17 2016-06-22 中国科学技术大学 A kind of method modifying enhancing metal-organic framework materials water stability by surface hydrophobicity

Also Published As

Publication number Publication date
TWI337610B (en) 2011-02-21

Similar Documents

Publication Publication Date Title
Tian et al. Amorphous molecular organic solids for gas adsorption.
Khoshhal et al. Study of the temperature and solvent content effects on the structure of Cu–BTC metal organic framework for hydrogen storage
Panella et al. Hydrogen adsorption in metal–organic frameworks: Cu‐MOFs and Zn‐MOFs compared
Pan et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system
Pan et al. ZIF-derived in situ nitrogen decorated porous carbons for CO 2 capture
JP5698229B2 (en) Complex mixed ligand open skeleton materials
Chen et al. Amine-functionalized metal-organic frameworks for the transesterification of triglycerides
KR101707821B1 (en) Preparation of Mg-MOF and its amine-functionalization
EP3529252B1 (en) A crystalline metal organic framework
CN113583252B (en) Microporous metal organic framework Cu (Qc) 2 Preparation method of (1)
Adhikari et al. Synthesis, fine structural characterization, and CO2 adsorption capacity of metal organic frameworks-74
Yoon et al. A porous mixed-valent iron MOF exhibiting the acs net: Synthesis, characterization and sorption behavior of Fe3O (F4BDC) 3 (H2O) 3·(DMF) 3.5
Lestari et al. Solvothermal and electrochemical synthetic method of HKUST-1 and its methane storage capacity
Feng et al. Construction of an interpenetrated MOF-5 with high mesoporosity for hydrogen storage at low pressure
Bagherian et al. Chemically stable porous crystalline macromolecule hydrazone-linked covalent organic framework for CO2 capture
Haque et al. Synthesis of isostructural porous metal-benzenedicarboxylates: effect of metal ions on the kinetics of synthesis
CN112827470A (en) Selective air water-absorbing MOFs material with high stability and preparation method thereof
Aghajanloo et al. Synthesis of zinc-organic frameworks nano adsorbent and their application for methane adsorption
Perfecto-Irigaray et al. Metastable Zr/Hf-MOFs: the hexagonal family of EHU-30 and their water-sorption induced structural transformation
Reinoso et al. Structural study of functional hierarchical porous carbon synthesized from metal-organic framework template
CN114479094B (en) Metal-organic framework hydrogen storage material and preparation method and application thereof
TW200925162A (en) Fast synthesis and storage method for hydrogen storage material of metal-organic framework with high specific surface area
KR100792038B1 (en) Synthesis method of porous coordination polymer, porous coordination polymer and uses thereof
EP2675815B1 (en) A metal-organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature
Qian et al. Sorption comparison of two indium–organic framework isomers with syn–anti configurations

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees