TW200924406A - System for testing an embedded wireless transceiver - Google Patents

System for testing an embedded wireless transceiver Download PDF

Info

Publication number
TW200924406A
TW200924406A TW97131120A TW97131120A TW200924406A TW 200924406 A TW200924406 A TW 200924406A TW 97131120 A TW97131120 A TW 97131120A TW 97131120 A TW97131120 A TW 97131120A TW 200924406 A TW200924406 A TW 200924406A
Authority
TW
Taiwan
Prior art keywords
power level
packet
test
packets
sequence
Prior art date
Application number
TW97131120A
Other languages
Chinese (zh)
Other versions
TWI442721B (en
Inventor
Christian Volf Olgaard
Original Assignee
Litepoint Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/839,814 external-priority patent/US8131223B2/en
Priority claimed from US11/839,828 external-priority patent/US7865147B2/en
Application filed by Litepoint Corp filed Critical Litepoint Corp
Publication of TW200924406A publication Critical patent/TW200924406A/en
Application granted granted Critical
Publication of TWI442721B publication Critical patent/TWI442721B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/16Test equipment located at the transmitter

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Transceivers (AREA)

Abstract

A test equipment for testing a wireless communication device includes a wireless transceiver, memory, and a controller. The wireless transceiver transmits a first and second series of packets. The wireless transceiver receives a power level indicator that is based on at least one of the first series of packets. The memory stores the power level indicator. The controller performs a signal strength test. More specifically, the controller controls the transceiver to transmit the first series of packets at a first power level. The controller stores the power level indicator in memory when the power level indicator is received by the transceiver. The controller controls the transceiver to transmit the second series of packets at a second power level.

Description

200924406 九、發明說明: C 明所眉技領域3 相關共審查中之專利申請案 本申請案是2006年4月14曰申請之美國專利申請案第 5 11 /279,778號的一部分持續申凊案。該申請案亦有關於同一 天申請,表號 11602.00.0032號,由發明者Christian〇lgaard 與Peter Petersen共同提出,名為“用於測試嵌入式無線收發 器之系統”的共審查中之專利申請案。 發明領域 10 本揭示内容係有關具有一主機處理器與嵌於其中之無 線收發器的無線通訊系統,而更特定於,有關該類系統之 產品測試。 t先前技術1 發明背景 15 隨著無線通訊系統之數量與使用的增加,對於該類系 統製造商而言,以-更有時效性的方法來執行内嵌於該類 系統之該等無線收發器的產品測試變得曰漸重要。眾所週 知’該類嵌人式收發器之產品測試的問題是該受測裝置 (DUT)與該測試控制n(例如,個人電腦)之間通常無直接, 例如,有線 '數位控制的連接可用。反而是,通訊必須透 過,内嵌該系統中之該主機處理器來產生。因此,由於必 須女是或儲存測試韋刃體來於該嵌入式主機處理器中運作, 所以產品測試變得更加複雜。 針對一單一平台而言,於一嵌入式主機處理器中使用 200924406 韌體是可被接受的,但是含有以及必須支援多個平台時’ 此方法馬上變得無法令人滿意。此外’一般情況是’該無 線收發器功能’例如’根據ΙΕΕΕ 8〇2·η標準來操作之一無 線資料收發器,僅為該主機系統之整體功能組合的一小部 5 分。於是,致力於產生一完整功能性的無線收發器能力之 情況下,鑑於該系統之整體操作中其有限的角色,製造商 仍不熱衷花費重要的資源在整合該無線功能上。因此,所 期待的是針對該類系統提供一更簡單與更有效率的產品測 試方法,而執行各種不同系統之產品測試的情況下僅需最 10 少的改變。 C發明内容3 發明概要 於一實施例中,用於測試一無線通訊裝置之測試儀器 包括一無線收發器、記憶體、與一控制器。該無線收發器 15 發射一第一與第二序列封包。該無線收發器接收根據該第 一序列封包的至少其中之一封包的一功率準位指示器。該 記憶體用於儲存該功率準位指示器。該控制器執行一信號 強度測試。更特別是,該控制器控制該收發器以一第一功 率準位來發射該第一序列封包。該功率準位指示器被該收 2〇 發器接收時,該控制器將該功率準位指示器儲存於記憶體 中。該控制器控制該收發器以一第二功率準位來發射該第 二序列封包。其中本案亦揭示一相關方法。 於-辄例中,該第二功率準位小於該第一功率準位。 於一範例中,該第二功率準位大於該第-功率準位。於一 200924406 粑例中’該第二功率準位是根據該功轉位指示器。 5 於一範例中,該收發器用以響應發射該第—序列封包之 每一封包而接收-應答封包。於—範财,該收發器發射該 第一序列封包直到已接收到一預定數量之應答封包為止。 於一範例中,該功率準位指示器指出該第一功率準位 大於或小於-預定臨界值。於一範例中,該功率準位指示 f k 10 15 器包括多個功率準位封包。所有該等多個功率準位封包指 出該第一序列封包之一信號強度。 於-範例中,位於一測試環境中之一無線通訊系統包 測试儀器與一受測裝置(謝)。該DUT接收該第一序列 封包、評估該第一序列封包之至少其中之-封包的-信號 =度:並發射該功率準位指示器。該功率準位指示器是根 據該信號強度。。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The application also has a patent application filed on the same day, No. 11602.00.0032, jointly filed by the inventor Christian 〇lgaard and Peter Petersen, entitled "System for Testing Embedded Wireless Transceivers" case. FIELD OF THE INVENTION The present disclosure relates to a wireless communication system having a host processor and a wireless transceiver embedded therein, and more particularly to product testing of such systems. BACKGROUND OF THE INVENTION With the increase in the number and use of wireless communication systems, for such system manufacturers, the wireless transceivers embedded in such systems are executed in a more time-efficient manner. Product testing has become increasingly important. It is well known that the problem with product testing of such embedded transceivers is that there is usually no direct connection between the device under test (DUT) and the test control n (e.g., a personal computer), for example, a wired 'digitally controlled connection is available. Instead, communication must be generated by embedding the host processor in the system. Therefore, product testing becomes more complicated because the female must or store the test blade to operate in the embedded host processor. For a single platform, using 200924406 firmware in an embedded host processor is acceptable, but with and must support multiple platforms' This approach immediately became unsatisfactory. In addition, the 'general condition' is that the wireless transceiver function 'e.g.' operates one of the wireless data transceivers according to the 〇8〇2·n standard, which is only a fraction of the total functional combination of the host system. Thus, in an effort to create a fully functional wireless transceiver capability, manufacturers are still not keen on spending significant resources on integrating the wireless functionality in view of their limited role in the overall operation of the system. Therefore, what is expected is to provide a simpler and more efficient product testing method for such systems, and only minimal changes are required in the case of performing product testing of various systems. C SUMMARY OF THE INVENTION 3 SUMMARY OF THE INVENTION In one embodiment, a test instrument for testing a wireless communication device includes a wireless transceiver, a memory, and a controller. The wireless transceiver 15 transmits a first and second sequence of packets. The wireless transceiver receives a power level indicator based on at least one of the packets of the first sequence of packets. The memory is used to store the power level indicator. The controller performs a signal strength test. More particularly, the controller controls the transceiver to transmit the first sequence of packets at a first power level. When the power level indicator is received by the transceiver, the controller stores the power level indicator in the memory. The controller controls the transceiver to transmit the second sequence of packets at a second power level. The case also reveals a related method. In the example, the second power level is less than the first power level. In an example, the second power level is greater than the first power level. In the case of 200924406, the second power level is based on the work index indicator. In an example, the transceiver is responsive to receiving each packet of the first sequence packet and receiving a response packet. In the case of the method, the transceiver transmits the first sequence of packets until a predetermined number of response packets have been received. In one example, the power level indicator indicates that the first power level is greater than or less than a predetermined threshold. In an example, the power level indication f k 10 15 includes a plurality of power level packets. All of the plurality of power level packets indicate a signal strength of the first sequence of packets. In the example, one of the wireless communication system packages in a test environment is a test instrument and a device under test (Xie). The DUT receives the first sequence of packets, evaluates at least one of the packets of the first sequence of packets, and transmits the power level indicator. The power level indicator is based on the signal strength.

於一範例中,該贿操作來用以響應接收該第一序列 封包之每一封包而發射一應答封包。於-範例中,該DUT 發射-預定數#之應答封包後發賴功率準位指示器。 圖式簡單說明 第1圖是-位於-產品測試環境 系統的功能方塊圖。 ’,,、線貝枓通況 第2圖描繪-根據本發明目前要求之—實施例,用於測 δ式第1圖之#無線資料通訊系統的方法。 第3圖描繪-根據本發明目前要求之另一實 測試第1圖之該無線資料通訊系統的方法。 第4圖描緣—根據本發明目前要求之-實施例,用於執行 20 200924406 第1圖之該無線資料通訊系統的信號傳輸測試之測試序列。 第5圖描繪一根據本發明目前要求之另一實施例,用於 執仃第1圖之該無線資料通訊系統的信號接收測試之測試 序列。 5 第6圖描繪一根據本發明目前要求之另一實施例,用於 執行第1圖之s亥無線資料通訊系統的信號接收測試之測試 序列。 第7圖是一根據本揭示内容之測試儀器的示範功能方 塊圖。 1〇 第8圖是一執行一接收信號強度指示(RSSI)校準測試 之該測試儀器的示範時序圖。 第9圖是一描繪該測試儀器執行該R s s丨校準測試時可 採用之示範步驟的流程圖。 第10圖是一描繪該無線通訊裝置可採用之示範步驟的 15 流程圖。 第11圖是一描繪該測試儀器執行一靈敏度測試時可採 用之示範步驟的流程圖。 第12圖是一描繪該測試儀器執行該靈敏度測試時可採 用之替代示範步驟的流程圖。 20 第13圖是一該測試儀器使用改變發射功率與調變類型 來執行一靈敏度測試之示範時序圖。 第14圖是一描繪該測試儀器使用改變發射功率與調變 類型來執行一靈敏度測試時可採用之示範步驟的流程圖。 第15圖是一描繪該測試儀器使用改變發射功率與調變類 200924406 5 l〇 15 20 型,執行—靈敏度麟日村採狀替代科步驟的流程I 【貧施方式】 奴佳實施例之詳細說明 本/下該等實施例之說明本質上僅用於示範而不意欲對 圖=明、其應用、或用途加以限制。$ 了清楚解說,該等 '中之相同參考數字用於識卿同元件。該等實施例將 作、、田。兒明足以使#界之熟於此技者可對本揭示内容加以實 你Ιτν 了解在*違冑本發0狀精神或範•下,其他實施 '、可以某些變化型態來加以實作。 如本文所使用,該術語模組、電路與/或裝置參照為一 2應用積體電路(ASIC)、一電子電路、執行一或更多軟ΓΓ程式之—處㈣(共享、專屬、或频)與記憶體、 件。σ邏輯f路、與/或提供上述功驗之其他適當的構 柄雖然該上下文中並無明確的反面表示,但應了解上述 、路別路元件數量上可為單—或多個。例如,該等術語 〃 t路組,,可包括—單—構件或多個構件, 作為-或更多的積體電路晶片)以提供上述功能性。,S亥術語“信號’’可來一 的電壓、…一 電流、-或更多 〜 或者一貧料信號。該片語A、B、與c至少其中之 C):見為使用非互斥邏輯“或”來表示—邏輯性(A或B或 1再者,本揭示内容已於使用分離的電子電路組(較佳以 r ::更多積體電路晶片的型式)之實施態樣的上下文中加 M过明,該類電路組之任何部分的功能可根據待處理之; :圖 200924406 信號頻率或貝料速率’使用-或更多適當規劃之處理器來 替代地加以執行。 多…第1圖於般產品測试環境中之一無線資料通訊 系統包括一受測裝置(DUT)! 00、用於控制該測試之一電腦 5 150、以及測試儀器16〇(例如’包括_向量信號產生器(vsg) 與-向量信號分析器(VSA)),所有元件之實體互連如圖所 不。該DUT 1〇〇具有若干後入式子系統包括一主機處理 器110、記憶體120(例如,非依電性記憶體)、一纟線收發器 130以及-或更多的週邊裝置刚,财元件之實體互連如 10圖所不。s亥主機處理器110經由各種不同控制介面⑵、 in、in來控制該記憶體120、無線收發器13〇以及週邊裝 置140。典型情況是,該記憶體120儲存該DUT 1〇〇使用之 程式以作為勃體。該控制電腦15〇大體而言透過一外部介面 151例如,通用串列匯流排(USB)、串列週邊介面(spi)、 15 RS-232串列介面、等等來執行控制該黯丨⑽之產品測試 軟體,該控制電腦150亦經由另—介面16卜例如,聰、 制介面匯流排(GPIB)、乙太網路、科來㈣該測試儀 器160。6亥測试儀為16〇經由一介面1〇1與該無線收發器 通訊,該介面可為-無線介面,但針對產品測試目的而言 20通常為一有線介面。 於典型發射裔測試方案中,該控制電腦15〇將一或更 夕P ·?傳送至该主機處理器丨丨〇,其將該類命令轉譯為該無 線收發器130對應之命令。接著經由該測試介面1〇1之該測 試信號的傳輸’該控制電腦15〇(經由其介面161)從該測試儀 200924406 器160'糊取該等測量結果,接著於其規劃之輸出頻率與功率 時可解決該無線收發器130之一適當延遲。 如該範例中所呈現,該無線收發器130所需之該等命令 必須通過該主機處理器110並由其轉譯。該主機處理器110 5 可為許多不同的類型,並可操作許多不同的作業系統,通 常於該主機處理器110中提供該所需之軟體來適當轉譯該 等命令是相當困難的。一般而言,該類軟體必須針對每一 個應用程式來特別寫入’因而針對一系統整合器而言將該 無線收發器130整合於該DUT 100中是一相當困難的程序。 10 如下文中更詳細說明,根據本揭示内容之一提議的測 試方法使用一預定測試流程、或序列來提供簡化的產品測 試,以確認該嵌入式無線收發器之效能。若藉由以該測試 流程來預先規劃該無線收發器,則測試期間需要該無線收 發器與該主機處理器11 〇間之最小通訊。該測試流程可上載 15至該收發器13 0以作為該測試勃體之載入的一部分,或可替 代地,例如,以該測試定義之一預定資料區,而於該韌體 之一整合部分中完成。完成該韌體載入至該收發器13〇後, 該裝置可位於等待來自該測試儀器16 0之命令的一測試模 式中。此可經由作為該載入韌體之一部分、或作為該主機 20處理器n0所發出之一分開命令來達成。結果是,與該主機 處理器110之唯一相互作用包含該韌體之載入、該測試流程 之載入(除非其為該韌體之一整合部分)、以及可能包含將該 無線收發器130置於一產品操作測試模式中的一命令。 參照第2圖,該方法之一範例可如圖所示來描繪。該第 11 200924406 一步驟202中,該測試韌體大體而言由該控制電腦150轉移 至該主機處理器110。下一步驟204中,該測試韌體從該主 機處理器11 〇經由該介面111轉移至該無線收發器130。應了 解因為該測試韌體亦包括該所欲的測試流程、或序列來作 5 為一整體部分,所以可完成該測試韌體。或者,該測試流 程資料可從該電腦150轉移至該主機處理器110,而之後傳 達至該無線收發器130。作為另一替代方案,該所欲的測試 流程資料可以是先前儲存於該記憶體12 0中之一資料表型 式,其可經由該介面121來擷取,並由該主機處理器110轉 10 移至該無線收發器130。 下一步驟206中,該無線收發器130設定於一測試操作 模式,亦即,該無線收發器130現將等待來自該測試儀器160 之一或更多的命令(下文中更詳細說明),例如,藉由於一預 定頻率來聽取來自該測試儀器160之一命令。該類無線收發 15 器130於一測試操作模式之設定可自動啟動來作為可載入 之該測試韌體的一部分,或可由該主機處理器110發出之一 適當的命令來啟動。下一步驟208中’該測試儀器160之測 試操作可例如,藉由傳送如上述之該無線收發器130聽取的 適當命令來啟動。或者,該無線收發器130可以一預定頻率 20 來發射一“就緒,,信號,接著該測試儀器160接收後開始傳送 一或更多的測試命令。較佳情況是,該命令組合是最小化, 例如,僅為一NEXT類型的命令,因而僅需該接收器等待一 良好的資料封包(例如,表示一NEXT命令),而因此更不需 任何的媒體接取控制(MAC)層的操作。接著從該測試儀器 12 200924406 160傳送該初始測試命令,該無線收發器I30較佳發射一應 答信號以指出已接收該類命令’之後將開始來自該测試儀 器160之主要測試命令序列。該測試儀器160之控制會由該 控制電腦150經由該介面161監督下完成。 5 一隨後步驟210可包括載入該無線收發器130之該測試 韌體的更新,因此可根據從該控制電腦150經由該主機處理 器110接收的資料(例如,收發器校準資料),或從經由該主 機處理器110運送至該無線收發器130而儲存於記憶體120 之一資料表接收的資料,來修改各種不同的操作設定、參 1〇 數或條件。 參照第3圖,根據本發明目前要求之另一實施例的一測 試方法具有啟動系統測試操作之一第一步驟3〇2。此造成該 主機處理器110準備下一步驟,其為該測試韌體從該記 憶體120經由該主機處理器11〇轉移至該無線收發器130。如 15 上所述,該測試韌體可包括該測試流程’或亦可由兩種構 件所組成,亦即,該等測試命令與測試序列資料。下一步 驟306中,該無線收發器130設定於其測試操作模式。如上 所述,此可作為該測試韌體之載入的一部分來自動完成, 或可由該主機處理器110經由該介面111傳送之一適當命令 20 來啟動,而該類命令可由該主機處理器110啟動,或由該主 機處理器110用以響應其從該電腦150接收而運送。 下一步驟308中,啟動實際的測試。如上所述,此可為 該無線收發器13 〇於該介面1 〇 1啟動與該測試儀器16 0之通 訊,或該測試儀器160於該電腦150之控制下,經由該介面 13 200924406 101啟動與該無線收發器130之通訊。 之後步驟可包括如上所述,該測試韌體更新來修改各 種不同的測試設定、參數或條件之一步驟310。 如上所述,根據本揭示内容之一測試方法包括將該 5 DUT 100連同該外部測試儀器160置於一測試操作模式的 步驟。接著,有兩種一般的測試種類:該無線收發器130之 該信號發射功能的測試;與該無線收發器13 0之該信號接收 功能的測試。 參照第4圖,一發射測試序列之一範例可說明如下。測 10 試可從該DUT 100之該接收器(RX)部分等待一命令420開 始。該測試儀器160發出其命令410(例如,一GOTO-NEXT 命令)。接著該命令被接收後,該DUT 100之該發射器(TX) 發出一應答信號440以指出其接收並了解該命令。接著,該 DUT 1〇〇開始發射該測試流程判定之資料信號。此由信號 15 傳輸時槽460、461、...463來表示。該測試流程將判定發射 之封包數量,而該類發射封包包含該相同信號、或一多封 包傳輸時的多個信號。 接收該應答信號440後,該測試儀器160將等待一特定 的時間間隔430使該發射器來安排其所欲之操作(例如,頻 2〇 率準確性與功率準位)。接著該時間間隔430中,該測試儀 器160執行測量450、451。接著該等測量450、451完成,該 測試儀器160或者該控制器電腦150存取該測試儀器160收 集之資料後,便分析該收集之資料並準備設定該下一測試 序列470。同樣地,其信號傳輸463完成後,該DUT 1〇〇藉 14 200924406 由處理任何所需之操作4 8 〇來準備該測試序列的下一部分。 該測試儀器160或電腦15〇已完成該資料之處理47〇 後,會發出下—測試命令(例如’ G〇T〇 NEXT)。若該下一 測试之準備程序480尚未完成,則該類命令之第一個41丨可 5不破該DUT 100接收。若是如此,則該測試儀器160不會接 收到任何應答信號。因此,該測試儀器16〇持續傳送其命令 412,接著於某些時間點,該等命令其中之一412被該 100接收421’而一應答信號445將由該dut 100發射。該DUT 1〇〇發射已知數量465、466··.468的一全新測試信號時此為 1〇 —全新測試序列之開始,而該測試儀器160將執行該所欲之 測量455、456,接著進一步分析並準備隨後的測試471。 應了解雖然於一產品測試環境中是相當獨特,但該測 試儀器160可能無法從該DUT 100接收良好的資料。此通常 表示該DUT 100不良,而捨棄該DUT 100之前期待繼續進行 15該失敗的測試。該類情況中,存有兩種可能的動作過程。 根據其中之一過程,該測試儀器160可傳送一不同的命令 (例如,一REPEAT命令而非一GOTO-NEXT命令)。此僅為 —簡單的實施態樣,而該DUT 100可輕易識別該不同的命 令。然而,該測試儀器160需載入一新的命令或新資料來產 20生一新的信號時會使測試變慢。或者,該測試儀器16〇可不 傳送另一命令,接著該DUT 100可將其解譯為表示該測量 不成功,而該DUT 100將繼續進行該初始的測試。 如上所述,該DUT 100傳送之該等發射信號邨卜463 可為一單一發射信號,或可為一組多封包信號。使用該類 15 200924406 多封包信號具有一優點是校準期間,該測試儀器160與該 DUT 100之間僅需少數通訊或不需通訊,因為藉由疊代法 通常可達到一解決方案,如2005年8月12曰申請之美國專利 申請案第11/161,692號,名為“用於測量一信號產生器發射 5 之一信號的多個參數之方法”中所說明,其揭示内容將完整 合併於本文中以供參考。 參照第5圖,用於接收信號之該期待的測試流程可說明 如下。該測試流程不同於該信號傳輸測試流程,因為意欲 執行該測試時使該DUT 100完全不需分析(若有的話)實際 10 從該測試儀器160接收之資料’而是僅判定是否已接收一正 確的封包。於是,當從一接收測試變為另一測試時,該測 試儀器160不需發出一測試命令(例如’一 GOTO-NEXT命 令)。而是,較佳情況是使該DUT 100判定何時移至下一測 試。該DUT已接收一預定數量之良好信號封包時,此可僅 15藉由使該DUT 持續該下一測試來完成。 若β亥DUT 100已接收一良好封包而發射一應答信號, 則該測試儀器160可僅計算良好封包之數量而不需從該 DUT 1〇〇要求該類計算,因此不需額外通訊而僅需判定該 測試之結果,因為該測試儀器16〇知道傳送多少封包並可僅 2 0藉由計算從該D U Τ 1 〇 〇接收之應答信號的數量來判定接收 多少封包。該測試儀器160包括如該VSA與VSG之測試儀器 時此技術相當正確’因為其不可能有遺漏的應答信號,而 該DUT 1〇〇之該發射器功率通常大於該vSG之該發射器功 率。因此,該VSA不可能遺漏一應答信號封包,特別是若 16 200924406 §亥VSA由该VSG發射之該信號封包的後端邊緣觸發時。此 外,使該VSA接收該應答封包可提供額外的優點是使該 DUT 100之該發射/接收開關的切換時間亦被測試。 再次參照第5圖,該測試儀器160發射該測試命令510。 5假設該先前測試是一發射測試,則該測試命令510指示該 DUT 100啟動下一測試,其為一接收測試。該dUT 1〇〇接收 該命令520 ’其造成該測試韌體將該接收測試580賦能。該 DUT 100之該接收器部段就緒時,一應答信號被發射54〇, 其表示該接收器之讀數。相較於封包由該測試儀器丨6 〇傳送 10直到該接收器開始接收該類封包之習知測試方法,此變得 相當重要。藉由使該DUT 100指出其讀數,該測試儀器160 僅需將其VSA賦能來等待從該DUt 1 〇〇接收該應答信號,接 著之後該測試儀器16 〇準備接收測試5 3 0。 該測試儀器160(例如,該VSA)接收該應答信號540時, 15該測試儀器160知道該DUT 100已就緒並開始信號傳輸。因 此’該測試儀器160(例如,該VSA)開始發射一預定數量之 信號封包56卜562、563、564、568、569,其中每一封包 產生一對應的應答信號571、572、573、574、578、579。 該測試儀器16 0接收該等應答封包並針對該等接收之每一 20封包而增加其内部計算。此外,如上所述,該DUT 100之 該發射/接收切換操作可藉由分析一發射測試信號5 6 3與接 收一應答信號573間的一間隔560來加以分析(此方法中使 用一應答信號是有利的,因為該類信號已包括於所有標準 或預設的收發器信號組合中,因此可避免需新增其他不必 17 200924406 要的信號或功能)。 此範例中,無封包錯誤產生,所以該DUT 100已接收 該預定數量之封包並移至下一接收測試581。同樣地,該測 試儀器160根據該接收之應答信號的數量而知道該DUT 5 100已接收所有封包,並亦可準備該下一接收測試531。該 DUT 1 〇〇已備妥時,會發射一應答信號541以指出該類讀 數’而接著接收該應答信號551後,該測試儀器160開始發 射封包供下一剛試561使用。該DUT 100於一預定的時間間 隔中尚未接收到封包的情況中,其可重新發射其應答信號 10 541 ’例如’針對下一測試中該dut 1〇〇變為就緒比該測試 儀器160快的情況。 參照第6圖,若遭遇一封包錯誤,則該DUT 100無法接 收所有預定的良好封包數量。如圖所示,該測試流程從該 先前測試為一發射測試開始。該測試儀器16〇之VSG傳送該 15測試命令610以指出該全新操作開始或該先前操作結束。該 DUT 100接收該命令620並針對接收測試680而準備自我賦 能。當其就緒時,該DUT 100傳送其準備接收之應答信號 640。此應答信號650由該測試儀器16〇接收,接著該測試儀 器160就緒時,例如,完成其内部設定63〇時,其開始發射 20該預定數量之封包66卜662、663、664、668、669。該DUT 100用以響應此情況而針對該等接收之每一良好封包發射 一應答信號671、673、674、678、679。 如圖所示,該等封包其中之一662不被該DUT 1〇〇接 收。於是,該DUT 100不發射對應的應答封包,圖形中由 18 200924406 -空的接收封包_來繪示。接著該發射序列完成後,該測 試儀器⑽知道其接收多少應答封包,而因為很明顯地遺漏 一封包690,所以該測試儀器⑽知道該謝⑽之接收器 繼續該測試流程之下-測試之前,仍繼續再等待至少一個 5封包。於是’ §亥測试儀益160將計算需由該DUT 1〇〇接收之 額外封包的數量635,並開始發射所需之封包數量例。 接著接收該遺漏封包後,該DUT 1〇〇發射一應答信號 692,並開始準備該下一測试操作681。其就緒後該 100將另一應答信號傳送至該測試儀器16〇。此範例中,該 10 DUT 100就緒時該測試儀器160尚未就緒。因此,該DUT 1〇〇 傳送其應答信號641,但因為該測試儀器16〇尚未就緒並且 不回應,於是一預定的時間間隔後,該DUT i⑻將傳送另 應答#號642。該測試儀器160現已就緒並接著該應答信 5虎651接收後,開始發射更多的資料封包661 ,該DUT 100 15藉由傳送對應的應答封包671來回應該等資料封包。 如上所述,用於測試目的而發射之該等信號可為多封 包k號,其中期待該DUT 1〇〇僅對特定類型之資料封包回 應。例如,在不要求該發射器傳送更多封包來使得該接收 器符合進行至下一測試所需之封包數量的情況下,以不同 20功率準位來發射不同的資料封包可執行實際接收器之靈敏 度測試(其中並不期待接收特定封包)。 現參照第7圖,其繪示該測試儀器16〇之一示範功能方 塊圖。該測試儀器160包括一控制器702、記憶體704(例如, 非依電性記憶體)、一VSG 706、一VSA 708、與一無線收發 19 200924406 器710。該控制器702操作上耦合至該VSG 706、該VSA 708、記憶體704、該收發器710、以及該電腦150。該VSG 706 與VSA 708操作上耦合至該收發器710。更特別是,該VSG 706操作上耦合至該收發器710之一發射器714,而該VSA 5 708操作上耦合至該收發器710之一接收器716。該控制器 702包括控制該DUT 100之測試的一測試模組218。例如, 該測試模組218可執行一接收信號強度指示器(RSSI)校準 測試’而之後執行該無線收發器13〇之一靈敏度測試。 β亥RSSI校準測s式期間’該測試儀器16〇以一第一功率準 10位將一或更多封包發射至該DUT 1〇〇。用以響應該等一或 更多封包,該DUT 100將一功率準位指示器發射至該測試 儀器160,而該控制器702將其儲存於記憶體704中。某些實 施例中,該功率準位指示器指出該等—或更多封包之該 RSSI大於一預定臨界值或小於該預定臨界值。其他實施例 15中&lt;亥功率準位才曰示器代表該等一或更多封包之該 該測試儀器160以一第二功率準位發射一或更多封 包。某些實施例中,該控制器702週期性增加或減少該收發 器710之-發射功率,直到一預定的測試序列已完成。例 如’該控制器702週期性減少該發射功率時,該第二功率準 2〇位小於該第-功率準位。然而,該控制器7〇2週期性增加該 發射功率時,該第二功率準位大於該第_功率準位。直他 實施例中,該第二功率準位是根據該功率準位指示器:例 如’若該功率準位指示器指出該第一功率準位大於該預定 臨界值,則該第二功率準位小於該第一功率準位。然而, 20 200924406 若該功率準位指示器指出該第一功率準位小於該預定臨界 值,則該第二功率準位大於該第一功率準位。此方法中, 該測試儀态160搜哥3亥DUT 100所需來接收該等一或更多 封包之一校準功率準位。 5 某些實施例中’該測試儀器160根據用來校準該無線收 發器130之該第一功率準位、該第二功率準位、與/或該功 率準位指示器來判定一RSSI校準偏置。其他實施例中,該 測試儀器160將該第一功率準位、該第二功率準位、與/或 該功率準位指不器儲存於記憶體704中,之後將立轉移至諸 10 如該電腦150之一分析系統中以供之後分析。 該測試儀器160不發射一或更多封包來執行該尺851校 準測試,而是替代地以該第一功率準位來將一第一預定的 封包序列(例如,一第一預定的序列)發射至該DUT丨〇〇。該 DUT 100用以響應該第一封包序列的每一封包,而將一應 15 答封包發射至該測試儀器160。發射一預定數量之應答封包 後’ s亥DUT 100傳送該功率準位指示器。從該〇υτ 1〇〇接收 s亥功率準位指示器後’該測試儀器160以該第二功率準位來 發射一第二預定的封包序列(例如,一第二預定的序列)。此 方法中,該測試儀器160根據該預定的封包序列(例如,預 20定的序列)來搜尋該DUT 100所需之該校準功率準位。 如上所述,某些實施例中,該功率準位指示器表示該 等封包之該RSSI。該等實施例中,該測試儀器16〇可以一預 疋功率準位來將一單一預定的封包序列(例如,一預定的序 列)發射至該DUT丨00。該DUT 100用以響應該預定封包序 21 200924406 列的每一封包,而將一應答封包發射至該測試儀器160。發 射一預定數量之應答封包後,該DUT 1〇〇傳送表示該預定 封包序列的至少其中之一的RSSI之功率準位指示器。例 如’該RSSI可於該功率準位指示器中編碼。或者,該功率 5準位指示器可包括指出該RSSI之多個功率準位封包(未顯 示)。例如’若該功率準位指示器包括44個功率準位封包, 則該評估的信號強度可為-60dBm。雖然此範例中使用44 個功率準位封包來表示一評估的信號強度-60dBm,但業界 熟於此技者將體認任何數量之功率準位封包皆可用來表示 10 該評估的信號強度。 因為該測試儀器160期望接收指出該RSSI之一預定數 量的全部封包(例如’全部60個封包),所以該功率準位指示 器亦可包括未指出該RSSI之額外的填料封包(未顯示)(例 如,16個封包),使得該相同數量之封包包括於每一功率準 15位指示器中。一旦該測試儀器160已接收所有的預定數量之 全部封包(例如,44個功率準位封包與16個填料封包),該測 試儀器160便可完成該RSSI測試並進行至該靈敏度測試。 該靈敏度測試期間,其通常於該尺881校準測試之後執 行,該控制器702設定該發射器714於至少一第一與第二模 20式中操作。例如,某些實施例中,該發射器714於該第一模 式中操作時以一第一功率準位來發射,而於該第二模式中 操作時以一第一功率準位來發射。其他實施例中,該發射 器714於s亥第一模式中操作時使用一第一調變技術來發 射,而於該第二模式中操作時使用一第二調變技術來發 22 200924406 射。另外的其他實施例中’該發射器714於該第一模式中操 作時以一第一資料速率來發射,而於該第二模式中操作時 以一第二資料速率來發射。 該收發器710於該第一模式中操作時,該控制器702控 5 制該收發器710將由一時間間隔分離之一封包序列發射至 該DUT 100。該DUT 100用以響應接收該封包序列之每一封 包而將一應答封包發射至該測試儀器160。該控制器702用 以響應發射該封包序列之每一封包而計算該收發器710接 收之應答封包。 10 當該等應答封包之數量超過一預定計數時,該控制器 702設定該收發器710於該第二模式中操作,而隨後控制該 收發器710來發射一第二封包序列。某些實施例中,該測試 儀器160根據發射多少封包以及從該DUT 100接收多少應 答封包來判定一封包錯誤率(PER)。其他實施例中,發射封 15 包與應答封包之數量儲存於記憶體704中,其隨後轉移至諸 如該電腦150之分析系統中以供之後分析。 該控制器702可週期性減少該收發器710之一功率傳輸 準位,直到該DUT 100用以響應發射該封包序列而停止發 射應答封包。或者,該控制器7 02可週期性增加該收發器710 20之功率準位,直到該DUT 100用以響應該封包序列而開始 發射應答封包。 某些實施例中,該測試儀器16〇根據該等接收之應答封 包以及該等封包發射之該功率準位來判定該無線收發器 130之一靈敏度。其他實施例中,該測試儀器16〇將該測試 23 200924406 結果儲存於記憶體704中,隨後轉移至該電腦150以供之後 分析。 現參照第8圖,執行該RSSI校準測試之該測試儀器160 的一示範時序圖一般描繪於800。該範例中,該RSSI校準測 5 試包括一般以802、804、806、與808來識別之四個預定的 序列。雖然該範例繪示四個預定的序列,但業界熟於此技 者將體認可使用更多或更少的序列。該第一序列802期間, 該測試儀器160於時間間隔816期間將一第一封包序列 810、812、與814發射至該DUT 100。每一封包810、812、 10 與814由一時間間隔分開。更特別是,封包810與812由時間 間隔818分開,而封包812與814由時間間隔820分開。該DUT 100用以響應接收該第一封包序列810、812、與814之每一 封包而個別發射應答封包822、824、與826。 該DUT 100發射一預定數量之應答封包(此範例中為三) 15 後,該DUT 100評估該第一封包序列810、812、與814之一 信號強度。該信號強度可根據該第一封包序列810、812、 與814的其中之一或更多封包。例如,該信號強度可根據該 第一封包序列810、812、814之一高能量值、一低能量值、 與/或一平均能量值。 20 評估該信號強度後,該DUT 100發射根據該信號強度 之一功率準位指示器828至該測試儀器160。某些實施例 中,該功率準位指示器828指出該第一封包序列之該評估的 信號強度大於一預定臨界值或小於該預定臨界值。例如, 該評估的信號強度大於該預定臨界值時,該功率準位指示 24 200924406 器可包括一封包,其具有一時間持續期間比該評估的信號 強度小於該預定臨界值時的還長,反之亦然。 该控制斋702用以響應接收該功率準位指示器828,而 將該發射器714之一功率準位調整至一第二功率準位。如上 5所述,某些實施例中,該控制器7〇2週期性減少(或增加)該 預定序列802、804、806、808之每一個的功率準位。其他 實施例中,該功率準位根據該功率準位指示器828來調整。 例如,若該功率準位指示器828指出該第一封包序列81〇、 812、814之該信號強度大於該預定臨界值,則該發射器15〇 10 之該功率準位會減少。 該第二序列804期間,該測試儀器16〇將一第二封包序 列830、832、與834發射至該DUT 1〇〇。該第二封包序列 830、832、834於時間間隔836期間以該第二功率準位來發 射。封包830與832由時間間隔838分開。封包832與834由時 15間間隔840分開。該DUT丨〇〇用以響應接收該第二封包序列 830、832、與834之每一個而個別發射應答封包842、844、 與 846。 該DUT 100發射一預定數量之應答封包(此範例中為三) 後,該DUT 1〇〇評估該第二封包序列83〇、832、834之一信 20號強度。該DUT 1〇〇根據該信號強度將一功率準位指示器 848發射至該測試儀器丨60。該控制器7〇2用以響應接收該功 率準位指示器848 ’而將該發射器714之該功率準位調整至 一第二功率準位。如上所述’某些實施例中,該控制器7〇2 週期性減少(或增加)該預定序列802、804、806、808之每一 25 200924406 個的功率準位。其他實施例中’該功率準位根據該功率準 位指示器848來調整。例如,若該功率準位指示器848指出 該第二封包序列830、832、834之該信號強度小於該預定臨 界值,則該發射器150之該功率準位會減少。 5 該第三序列806期間’該測試儀器160將一第三封包序 列850、852、與854發射至該DUT 100。該第三封包序列 850、852、854於時間間隔856期間以該第三功率準位來發 射。封包850與852由時間間隔858分開。封包852與854由時 間間隔860分開。該DUT 100用以響應接收該第三封包序列 10 850、852、與854之每一個而個別發射應答封包862、864、 與 866。 該DUT 100發射一預定數量之應答封包(此範例中為三) 後’該DUT 100評估該第三封包序列850、852、854之一信 號強度。該DUT 100根據該信號強度將一功率準位指示器 15 868發射至該測試儀器160。該控制器702用以響應接收該功 率準位指示器868 ’而將該發射器714之該功率準位調整至 一第四功率準位。 該第四序列808期間,該測試儀器16〇將一第四封包序 列870、872、874、與876發射至該DUT 100。該第四封包 20序列87〇、872、874、876於時間間隔878期間以該第四功率 準位來發射。封包870與872由時間間隔880分開。封包872 與874由時間間隔882分開。封包874與876由時間間隔884分 開。該DUT 100用以響應接收該第四封包序列87〇、874、 與876之其中三個而個別發射應答封包886、888、與890。 26 200924406 此範例中,該DUT 100並不接收封包872因此不發射一應答 封包。 該DUT 100發射一預定數量之應答封包(此範例中為三) 後,該DUT 100評估該第四封包序列87〇、874、876之一信 5號強度。該DUT 1〇〇根據該信號強度將一功率準位指示器 892發射至該測試儀器16〇。該測試儀器丨6〇用以響應接收該 功率準位指示器892而計算一RSSI校準偏置,並根據該第一 至第四功率準位與/或該等功率準位指示器828、848、868、 892來校準該無線收發器no。或者,該測試儀器16〇將該測 10试結果儲存於記憶體704中,隨後轉移至諸如該電腦15〇之 一分析系統以供之後分析。 現參照第9圖’該RSSI校準測試期間該控制器7〇2可採 用之示範步驟一般以900來識別。該程序從步驟9〇2開始。 步驟904中,該測試儀器160產生一預定的封包序列來執行 15該尺%1校準測試。步驟906中,該測試儀器16〇發射該封包 序列之一單一封包。步驟908中,該測試儀器160判定是否 用以響應發射該單一封包而接收一應答封包。若未接收到 一應答封包,則步驟906中該測試儀器160再次發射該封 包。步驟908中若已接收到一應答封包,則步驟91〇中該測 2〇 試儀器160增加一應答封包計數。 步驟912中,該測試儀器160判定該應答封包計數是否 等於該預定的應答封包數量。若該應答封包計數不等於該 預疋的應答封包數量’則該程序返回步驟9〇6。然而,若該 應答封包計數等於該預定的應答封包數量,則步驟914中該 27 200924406 測試儀器160接收一功率準位指示器。 步驟918中,該測試儀器160判定該預定測試流程是否 需要另一封包序列。若需要另一封包序列,則該程序返回 步驟904而該測試儀器160以一不同功率準位來產生另一預 5 定的封包序列。然而,若該預定測試流程不需另一序列, 則該程序於步驟920中結束。 現參照第10圖,該RSSI校準測試期間該DUT 100可採 用之示範步驟一般以1000來識別。該程序從步驟1002開 始。步驟1004中,該DUT 100聽取從該測試儀器160發射之 10 一封包。步驟1006中,該DUT 100判定是否已接收來自該 測試儀器160之一封包。若未接收到一封包,則該程序返回 步驟1004。然而,若已接收到一封包,則步驟1008中該DUT 100用以響應該封包而發射一應答封包。 步驟1010中該DUT 100增加一應答封包計數。步驟 15 1012中,該DUT 100判定該應答封包計數是否等於每一序 列之一預定封包數量。若該應答封包計數不等於每一序列 之該預定封包數量,則該程序返回步驟1004。然而,若該 應答封包計數等於每一序列之該預定封包數量,則步驟 1014中該DUT 100評估該序列封包之一信號強度。如上所 20 述,該信號強度可根據該封包序列之每一個的一高能量 值、一低能量值、與/或一平均能量值。 步驟1016中,該DUT 100發射一功率準位指示器以指 出該信號強度是否大於一預定臨界值或小於該預定臨界 值。步驟1017中該DUT 100判定該預定的測試流程是否需 28 200924406 要另序列。若需要另一序列,則該程序返回步驟丨〇〇4。 ^ 右°亥預疋的測试流程不需另一序列,則該程序於步 驟1〇18中結束。 現參照第11圖,該靈敏度測試期間該測試儀器16〇可採 5用之示範步驟一般以11〇〇來識別,並通常於該校準測 。式之後執行。該程序從步驟]1〇2開始。步驟11〇4中,該測 4儀器160產生-預定的封包序列來測試該無線收發器】 之該靈敏度。步驟1106中,該測試儀器16〇發射該封包序列 之一單一封包。 1〇 #驟1108中’該測試儀器160用以響應發射該單一封包 而判定是否已接收到-應答封包。若已接收到—應答封包, 則步驟1110中該測試儀器160增加一應答封包計數並進行至 V驟1112 ’然’若未接收到一應答封包,則該測試儀器湖 僅進行至步驟出2。步驟1112中’該職儀以⑼判定該應 15答封包計數是否大於或等於該預定之應答封包數量。 若該應答封包計數不大於或等於該預定之應答封包數 量,則該程序返回步驟1106。然而,若該應答封包計數大 於或等於該預定之應答封包數量,則步驟⑴4中該測試儀 器刷判定是否需要測試另-功率準位來判定該無線收發 器130之該靈敏度。若需要另一功率準位,則步驟⑴6中該 控制器702調整該發射器714之該功率準位,而該程序返回 步驟1UM。然而,若不需另一功率準位,則該程序於步驟 1118中結束。 該DUT 100期待接收一預定數量與域測試封包序列。 29 200924406 因此’該DUT 100維持於該測試模式中直到其接收該預定 數量與/或測試封包序列。某些情況中,該發射器714之該 功率準位可針對該DUT 1〇〇來設為相當低而無法從該測試 儀器160接收一或更多封包。結果是,該dut 1〇〇可繼續於 5該測試模式中操作’因為其無法接收該預定數量與/或測試 封包序列,此有效增加該測試之持續期間。於是,第12圖 中一般以1200識別之替代示範步驟,可由該測試儀器“ο執 行以確認該DUT 1 〇〇接收該預定數量與/或測試封包序列。 該替代程序確認該D U T 1 〇 〇接收足夠的封包與/或封包序列 10 來離開該測試模式。 該程序從步驟1202開始。步驟1204中,該測試儀器16〇 產生一預定的封包序列來測試該無線收發器13〇之該靈敏 度。步驟1206中,該測試儀器16〇發射該封包序列之一單一 封包。 15 20 步驟1208中,該測試儀器16〇用以響應發射該單一則 而判定是否已接收到一應答封包。若已接收到一應q 包’則步驟測巾制試儀㈣㈣加—應答封包計數^ ^至步驟m2。m未純到—應答封包則 儀器賺進行至步糊2。步驟如中,該測試儀㈣ 判=該發㈣包的數量是料於步驟1212中該測試所^ 預疋封包。 石热π π列匕Μ驭1寺於該測試所需之 該程序返回步驟1206。然而,若兮庙Μ 疋 μ碼合封包計數 定之應答封包數量,則步驟1214中兮.、目,丨_^ s 亥測甙儀器160 30 200924406 需要另一功率準位來測試該無線收發器130之該靈敏度。若 需要另一功率準位,則步驟1216中該控制器702調整該發射 器714之該功率準位’而該程序返回步驟1204。然而,若不 需另一功率準位,則步驟1218中該控制器702將該發射器 5 714之該功率準位設定為該DUT 100能夠接收之一預定功 率準位。例如’若針對該DUT 100而言該功率準位太低而 無法接收一封包,則該控制器702可將該發射器714之該功 率準位增加至該預定的功率準位’以確認該DUT 100能夠 接收一或更多封包。 10 步驟1220中,該測試儀器160判定該應答封包計數是否 大於或等於該預定之應答封包數量。若該應答封包計數大 於或等於該預定之應答封包數量,則該程序於步驟1222結 束。然而,若該應答封包計數不大於或等於該預定之應答 封包數量,則步驟1224中該測試儀器160發射一封包。 15 步驟1226中,該測試儀器160用以響應發射該封包而判 定是否接收到一應答封包。若已接收到一應答封包,則步 驟1228中該測試儀器160增加該應答封包計數。然而,若未 接收到一應答封包,則該程序返回步驟丨224。 某些實施例中,該測試儀器160可使用多個調變技術而 20 以多個資料速率來額外執行PER測試。參照第13圖,該測 試儀器160使用改變發射功率與調變類型來執行一靈敏度 測試之一示範時序圖一般描繪於1300。該範例顯示以該基 本調變技術來調變之不同的IEEE 802.11資料封包。封包 1302為OFDM調變QAM64封包。封包1304為OFDM調變 31 200924406 QAM16封包。封包1306為OFDM調變QPSK封包。封包1308 為OFDM調變BPSK封包。封包1310為QPSK調變CCK封 包。封包1312為BPSK調變DSSS封包。如圖所示,每一調 變技術形成一不同的功率準位。 5 典型情況是,不支援部段化記憶體之測試儀器中,每 一封包類塑的一波形會個別載入記憶體中。然而’諸如一 般由1300識別之一單一波形可載入記憶體以測試所有的資 料速率。因此,載入諸如一般由1300識別之一波形於不支 援部段化記憶體之測試儀器中是有利的。 10 現參照第14圖’該測試儀器160使用改變調變技術與/ 或資料速率,針對該波形1300之每一封包序列(例如,針對 每一封包序列 1302、1304、1306、1308、1310、1312)來執 行一靈敏度測試時可採用之示範步驟一般以1400來識別。 該測試啟動時程序從步驟14〇2開始。步驟1404中,該測試 15儀器160發射該波形1300之一第一封包(例如,該等封包 1302之一第一封包)。步驟14〇6中,該測試儀器160判定是 否用以響應發射該第一封包而接收一應答封包。若已接收 應答封包’則步驟1408中該測試儀器160增加一應答封包 計數(例如’封包1302之一應答封包計數)並進行至步驟 20 。然而,若未接收一應答封包,則該測試儀器160僅進 行至步驟1410。 步驟1410中’該測試儀器160判定該應答封包計數是否 大於或等於該預定之應答封包數量。若該應答封包計數不 大於或等於該預定之應答封包數量,則步驟1412中該測試 32 200924406 儀器160發射該波形1300之該下一封包(例如,封包1302之 一第二封包)而該程序返回步驟1406。然而,若該應答封包 計數等於該預定之應答封包數量,則步驟1413中該測試儀 器160判定另一封包序列(例如,封包1304)是否包括於該波 5 形1300中。 若另一封包序列包括於該波形1300中,則步驟1404中 該測試儀器160發射該波形1300中之該下一封包序列的一 第一封包(例如,封包1304之一第一封包)。然而,若另一封 包序列不包括於該波形1300中(例如,該程序具有重複循環 10 的封包1302-1312),則該程序於步驟1414結束。某些實施例 中,該程序於步驟1414結束時,該測試儀器160可重置一指 標來指向該波形1300中之該第一封包序列(例如,1302)。 現參照第15圖,該測試儀器160使用該波形1300來執行 該DUT 100之一靈敏度測試時可採用之替代示範步驟一般 15 以1500來識別。該程序從步驟1502開始。步驟1504中,該測 試儀器160發射該波形1300之一第一封包(例如,封包1302 之一第一封包)。步驟1506中,該測試儀器160判定是否用以 響應發射該波形1300之該第一封包而接收一應答封包。 若已接收一應答封包,則步驟1508中該測試儀器160 20 增加一封包類型應答計數(例如,封包1302之一封包類型應 答計數)。步驟1509中,該測試儀器160增加該完整波形1300 之一應答封包計數而該程序進行至步驟1510。若未接收一 應答封包,則該程序僅進行至步驟1510。步驟1510中,該 測試儀器16 0判定該發射之封包數量是否等於該封包類型 33 200924406 (例如,封包1302)之預定封包數量。若該發射之封包數量不 等於該預定封包數量,則步驟1512中該測試儀器16〇發射該 波形1300之該下一封包(例如,封包丨3〇2之一第二封包)而該 程序返回步驟1506。 5 若該發射之封包數量等於該預定封包數量,則步驟 1511中§亥控制器702判定另一封包序列(例如,封包13〇4)是 否包括於該波形1300中。若另一封包序列包括於該波形 1300中,則該程序返回步驟15〇4 ^然而,若另—封包序列 不包括於該波形1300中(例如,該程序具有重複循環的封包 10丨302_1312),則步驟1514中該控制器702將該發射器714之該 功率準位設定為該DUT 1〇〇能夠接收之一預定準位。 步驟1516中,該測試儀器16〇判定該應答封包計數是否 大於或等於該完整波形13〇〇之該預定的應答封包數量。若 該應答封包計數大於或等於該預定之應答封包數量則該 15程序於步驟1518中結束。若該應答封包計數不大於或等於 該預定之應答封包數量,則步驟·中該測試儀器16〇發射 該波形1300之一下一封包(例如,封包1302之一下—封包)。 步驟1522中,該測試儀器16〇判定是否用以響應發射該封包 而接收-應答封包。若已接收一應答封包,則步驟胞中 20該測試儀器160增加該應答封包計數。然而,若未接收一應 答封包,則該程序返回步驟152〇。 如上所述,除了該等優點外,藉由以一預定測試流程 來預先規劃-無線收發器,則若有的話,測試期間需要該 無線收發器與該主機處理器間之最小通訊。此外,藉由提 34 200924406 供使用該預定測試流程、或序列來執行的_RSSI校準測 試,以確認該嵌入式無線收發器之效能,製造商可以產品 所需之最小變化來校準一無線裝置。業界熟於此技者將體 認到其他優點。 5 在不違背本發明之範疇與精神下,對業界熟於此技者 而言,很明顯地本發明之操作結構與方法可作其他各種不 同的修改與變動。雖然本發明已連同特定的較佳實施例來 加以說明’但應了解所要求之本發明不應不當地揭限於該 類特定的實施例中。下列申請專利範圍意欲定義本發明之 1〇範臂,而該等申請專利範圍之範壽中的結構與方法以及其 等效元件亦涵蓋其中。 【圖式簡單說明】 第1圖疋一位於一產品測試環境中之一無線資料通訊 系統的功能方塊圖。 第2圖描繪-根據本發明目前要求之—實施例,用於測 試第1圖之該無線資料通訊系統的方法。 第3圖描緣-根據本發明目前要求之另一實施例,用於 測試第1圖之該無線資料通訊系統的方法。 &quot;第4圖靖—根據本發明目前要求之—實施例,用於執行 2〇弟1圖之該無線資料通訊系統的信號傳輪測試之測試序列。 /第5圖描繪-根據本發明目前要求之另〆實施例,用於 執行第1圖之該無線資料通訊系統的信號接收測試之測試 序列。 苐6圖描繪一根撼太欲ηπ α 〇 發月目刖要求之另一實施例,用於 35 200924406 執行第1圖之該無線資料通訊系統的信號接收測試之測試 序列。 第7圖是一根據本揭示内容之測試儀器的示範功能方 塊圖。 5 第8圖是一執行一接收信號強度指示(RSSI)校準測試 之該測試儀器的示範時序圖。 第9圖是一描繪該測試儀器執行該R S SI校準測試時可 採用之示範步驟的流程圖。 第10圖是一描繪該無線通訊裝置可採用之示範步驟的 10 流程圖。 第11圖是一描繪該測試儀器執行一靈敏度測試時可採 用之示範步驟的流程圖。 第12圖是一描繪該測試儀器執行該靈敏度測試時可採 用之替代示範步驟的流程圖。 15 第13圖是一該測試儀器使用改變發射功率與調變類型 來執行一靈敏度測試之示範時序圖。 第14圖是一描繪該測試儀器使用改變發射功率與調變 類型來執行一靈敏度測試時可採用之示範步驟的流程圖。 第15圖是一描繪該測試儀器使用改變發射功率與調變類 20 型來執行一靈敏度測試時可採用之替代示範步驟的流程圖。 【主要元件符號說明】 100…受測裝置 1(U、111、113、12卜 16l···介面 110…主機處理器 36 200924406 120、704…記憶體 130、710…無線收發器 140···週邊裝置 150…電腦 151…外部介面 160…測試儀器 202、204、206、208、210、302、304、306、308、310、902、 904、906、908、910、912、914、918、920、1002、1004、1006、 1008、1010、1012、1014、1016、1017、1018、1102、1104、 1106、1108、1110、1112、1114、1116、1118、1202、1204、1206、 1208、1210、1212、1214、1216、1218、1220、1222、1224、 1226、1228、1402、1404、1406、1408、1410、1412、1413、 1414、1502、1504、1506、1508、1509、1510、15U、1512、 1514、1516、1518、1520、1522、1524…步驟 218···測試模組 410、411、412、420、510、520、610、620…命令 430、560、816、818、820、836、838、840、856、858、860、 878、880、882、884…時間區間 440、445、540、54卜 55 卜 571、572、573、574、578、579、 640、64 卜 642、650、65 卜 67 卜 673、674、678、679、692、 822、824、826、842、844、846、862、864、866、886、888、 890…應答信號 450、45卜 455、456·.·測量 460、461、...463…信號傳輸時槽 37 200924406 465、466、...468…時間 470、471、561、681…測試序列 480··.準備程序 530、531 ' 580、581、680·.·接收測試 561、562、563、564、568、569、661、662、663、664、668、 669、810、812、814、830、832、834、850、852、854、870、 872、874、876、1302、1304、1306、1308、1310、1312...信號 封包 630···内部設定 635、691…封包數量 66卜.·資料封包 690···空的接收封包 702…控制器 706 …VSG 708 …VSA 714…發射器 716···接收器 800.··時序圖 802、804、806、808…序列 828、848、868、892…功率準位指示器 900、1000、11〇〇、1200、1400、15〇〇…示範步驟 1300…波形 38In one example, the bribe operation is to transmit a response packet in response to receiving each packet of the first sequence of packets. In the example, the DUT transmits a predetermined number of response packets to the power level indicator. A brief description of the diagram Figure 1 is a functional block diagram of the -in-product test environment system. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> Fig. 2 depicts a method for measuring a #wireless data communication system of the first embodiment of the present invention in accordance with the presently claimed embodiments. Figure 3 depicts another method of testing the wireless data communication system of Figure 1 in accordance with the presently claimed invention. 4 is a test sequence for performing a signal transmission test of the wireless data communication system of FIG. 1 in accordance with the presently claimed embodiment of the present invention. Figure 5 depicts a test sequence for signal reception testing of the wireless data communication system of Figure 1 in accordance with another embodiment of the presently claimed invention. 5 Figure 6 depicts a test sequence for performing a signal reception test of the shai wireless data communication system of Figure 1 in accordance with another embodiment of the presently claimed invention. Figure 7 is an exemplary functional block diagram of a test instrument in accordance with the present disclosure. 1 〇 Figure 8 is an exemplary timing diagram of the test instrument performing a Received Signal Strength Indication (RSSI) calibration test. Figure 9 is a flow chart depicting exemplary steps that the test instrument can take when performing the R s s calibration test. Figure 10 is a flow diagram depicting exemplary steps that may be employed by the wireless communication device. Figure 11 is a flow chart depicting exemplary steps that the test instrument can take when performing a sensitivity test. Figure 12 is a flow chart depicting alternative exemplary steps that may be employed by the test instrument to perform the sensitivity test. Figure 13 is an exemplary timing diagram of the test instrument using a change in transmit power and modulation type to perform a sensitivity test. Figure 14 is a flow chart depicting exemplary steps that the test instrument can take when performing a sensitivity test using varying transmit power and modulation type. Figure 15 is a flow chart depicting the use of the test instrument to change the transmit power and modulation type 200924406 5 l〇15 20, the implementation-sensitivity of the Lin Ri Village adoptive steps. [Poor application method] The description of the present and other embodiments is merely exemplary in nature and is not intended to limit the scope of the application. $ Clearly explained that the same reference numbers in the ' are used to identify the same components. These examples will be made in the field. It is enough for the skilled person to make the disclosure of this article. You can understand the content of this disclosure. Under the circumstance of the violation of this issue, other implementations can be implemented in some variants. As used herein, the term module, circuit, and/or device refers to an application integrated circuit (ASIC), an electronic circuit, and one or more soft programs (four) (shared, exclusive, or frequency). ) with memory, pieces. σ Logic, and/or other suitable means for providing the above-described tests, although there is no explicit negative representation in this context, it should be understood that the number of path components described above may be single- or multiple. For example, the terms 〃t group, may include - a single component or multiple components, as - or more integrated circuit wafers, to provide the functionality described above. , Shai term "signal" can be a voltage, ... a current, - or more ~ or a poor material signal. The phrase A, B, and c at least one of C): see the use of non-mutual exclusion Logic "or" to indicate - logic (A or B or 1 again, the disclosure has been implemented using separate electronic circuit sets (preferably in the form of r:: more integrated circuit chips) In the context of M, the function of any part of this type of circuit group can be implemented according to the processor to be processed; Figure 200924406 signal frequency or material rate 'use-or more suitable planning processor. More... Figure 1 shows a wireless data communication system in a general product test environment including a device under test (DUT)! 00, a computer 5150 for controlling the test, and a test instrument 16 (eg 'including _ vector signal Generator (vsg) and - Vector Signal Analyzer (VSA), the physical interconnection of all components is as shown in the figure. The DUT 1 has a number of back-in subsystems including a host processor 110, memory 120 ( For example, non-electrical memory), a line transceiver 130, and/or more The physical interface of the edge device is as shown in Figure 10. The host processor 110 controls the memory 120, the wireless transceiver 13A, and the peripheral device 140 via various control interfaces (2), in, in. In this case, the memory 120 stores the program used by the DUT 1 as a body. The control computer 15 is generally through an external interface 151, for example, a universal serial bus (USB), a serial peripheral interface ( Spi), 15 RS-232 serial interface, etc. to execute the product testing software for controlling the device (10), the control computer 150 is also via another interface 16 for example, Cong, Interface Bus (GPIB), Ethernet Network, Kelai (4) The test instrument 160. The 6-Hai tester communicates with the wireless transceiver via a interface 1〇1, the interface can be a wireless interface, but for product testing purposes, 20 is usually A wired interface. In a typical emissivity testing scheme, the control computer 15 transmits a 或 or a P ? to the host processor 丨丨〇, which translates the command into a command corresponding to the wireless transceiver 130. Then through the test interface 1. The transmission of the test signal 'The control computer 15〇 (via its interface 161) pastes the measurements from the tester 200924406 160', and then solves the wireless at its planned output frequency and power. One of the transceivers 130 is suitably delayed. As presented in this example, the commands required by the wireless transceiver 130 must pass through and be translated by the host processor 110. The host processor 110 5 can be of many different types. Many different operating systems can be operated and it is often difficult to provide the required software in the host processor 110 to properly translate the commands. In general, such software must be specifically written for each application. Thus, integrating the wireless transceiver 130 into the DUT 100 for a system integrator is a relatively difficult procedure. As explained in more detail below, the test method proposed in accordance with one of the present disclosures uses a predetermined test flow, or sequence, to provide a simplified product test to confirm the performance of the embedded wireless transceiver. If the wireless transceiver is pre-planned by the test procedure, minimal communication between the wireless transceiver and the host processor 11 is required during testing. The test flow can upload 15 to the transceiver 130 as part of the loading of the test body, or alternatively, for example, to reserve a data area in one of the test definitions, and to integrate the portion of the firmware Completed in the middle. After the firmware is loaded into the transceiver 13, the device can be located in a test mode waiting for commands from the test instrument 160. This can be accomplished as part of the load firmware, or as a separate command issued by the host 20 processor n0. As a result, the only interaction with the host processor 110 includes loading of the firmware, loading of the test flow (unless it is an integrated portion of the firmware), and possibly including placing the wireless transceiver 130 A command in a product operation test mode. Referring to Figure 2, an example of the method can be depicted as shown. In a step 202 of the 11th 200924406, the test firmware is generally transferred by the control computer 150 to the host processor 110. In the next step 204, the test firmware is transferred from the host processor 11 to the wireless transceiver 130 via the interface 111. It should be understood that because the test firmware also includes the desired test flow, or sequence, as an integral part, the test firmware can be completed. Alternatively, the test flow data can be transferred from the computer 150 to the host processor 110 and thereafter to the wireless transceiver 130. As a further alternative, the desired test flow data may be a data table type previously stored in the memory 120, which may be retrieved via the interface 121 and rotated by the host processor 110. To the wireless transceiver 130. In the next step 206, the wireless transceiver 130 is set to a test mode of operation, i.e., the wireless transceiver 130 will now wait for one or more commands from the test instrument 160 (described in more detail below), for example, The command from the test instrument 160 is heard by a predetermined frequency. The setting of the wireless transceiver 15 in a test mode of operation can be automatically initiated as part of the testable firmware that can be loaded, or can be initiated by the host processor 110 with an appropriate command. The test operation of the test instrument 160 in the next step 208 can be initiated, for example, by transmitting an appropriate command as heard by the wireless transceiver 130 as described above. Alternatively, the wireless transceiver 130 can transmit a "ready," signal at a predetermined frequency 20, and then begin transmitting one or more test commands after the test instrument 160 receives. Preferably, the command combination is minimized. For example, it is only a command of the NEXT type, and thus only the receiver is required to wait for a good data packet (for example, indicating a NEXT command), and thus does not require any operation of the Media Access Control (MAC) layer. The initial test command is transmitted from the test instrument 12 200924406 160, which preferably transmits a response signal to indicate that the command command has been received and will begin the primary test command sequence from the test instrument 160. The test instrument The control of 160 is accomplished by the control computer 150 via the interface 161. 5 A subsequent step 210 can include loading an update of the test firmware of the wireless transceiver 130, and thus can be based on the host computer 150 from the host Data received by processor 110 (eg, transceiver calibration data), or from being shipped to the wireless transceiver 130 via the host processor 110 The data received in one of the data sheets of the memory 120 is used to modify various operational settings, parameters, or conditions. Referring to FIG. 3, a test method according to another embodiment of the presently claimed invention has a booting system. One of the test operations is the first step 3〇 2. This causes the host processor 110 to prepare for the next step, which transfers the test firmware from the memory 120 via the host processor 11 to the wireless transceiver 130. As described above, the test firmware may include the test flow 'or may also be composed of two components, that is, the test command and test sequence data. In the next step 306, the wireless transceiver 130 is set in Testing the mode of operation. As described above, this may be done automatically as part of the loading of the test firmware, or may be initiated by the host processor 110 via the interface 111 by transmitting an appropriate command 20, and the command may be The host processor 110 is activated or is used by the host processor 110 to be shipped in response to receiving it from the computer 150. In the next step 308, the actual test is initiated. As described above, this may be The wireless transceiver 13 initiates communication with the test instrument 160 in the interface 1 ,1, or the test instrument 160 initiates communication with the wireless transceiver 130 via the interface 13 200924406 101 under the control of the computer 150. The subsequent steps may include the step of testing the firmware update to modify various different test settings, parameters or conditions, as described above. As described above, the test method according to one of the present disclosures includes the 5 DUT 100 along with the The external test instrument 160 is placed in a test mode of operation. Next, there are two general types of tests: the test of the signal transmission function of the wireless transceiver 130; and the test of the signal receiving function of the wireless transceiver 130 . Referring to Fig. 4, an example of a transmission test sequence can be explained as follows. The test 10 can wait for a command 420 to begin from the receiver (RX) portion of the DUT 100. The test instrument 160 issues its command 410 (eg, a GOTO-NEXT command). After the command is received, the transmitter (TX) of the DUT 100 sends a response signal 440 to indicate that it is receiving and understanding the command. Then, the DUT 1 starts transmitting the data signal determined by the test flow. This is indicated by the signal slots 460, 461, ... 463 when transmitted. The test flow will determine the number of packets transmitted, and the type of transmit packet contains the same signal, or multiple signals when a multi-packet is transmitted. Upon receipt of the response signal 440, the test instrument 160 will wait for a particular time interval 430 for the transmitter to schedule its desired operation (e.g., frequency accuracy and power level). Next to the time interval 430, the test instrument 160 performs measurements 450, 451. Then, the measurements 450, 451 are completed. After the test instrument 160 or the controller computer 150 accesses the data collected by the test instrument 160, the collected data is analyzed and the next test sequence 470 is prepared. Similarly, after its signal transmission 463 is completed, the DUT 1 prepares the next portion of the test sequence by processing any required operations 4 2009. After the test instrument 160 or the computer 15 has completed the processing of the data 47, a test command (e.g., 'G〇T〇 NEXT) is issued. If the next test preparation procedure 480 has not been completed, then the first 41 of the commands may not be received by the DUT 100. If so, the test instrument 160 will not receive any response signals. Thus, the test instrument 16 continues to transmit its command 412, and then at some point in time, one of the commands 412 is received 421' by the 100 and a response signal 445 is transmitted by the dut 100. The DUT 1 〇〇 emits a new test signal of a known number 465, 466 · · 468, which is 1 〇 - the beginning of a new test sequence, and the test instrument 160 will perform the desired measurement 455, 456, then Further analysis and preparation of the subsequent test 471. It should be understood that although quite unique in a product testing environment, the testing instrument 160 may not be able to receive good data from the DUT 100. This usually indicates that the DUT 100 is bad, and it is expected to continue the test of 15 failures before discarding the DUT 100. In this type of situation, there are two possible actions. According to one of the processes, the test instrument 160 can transmit a different command (e.g., a REPEAT command instead of a GOTO-NEXT command). This is only a simple implementation, and the DUT 100 can easily recognize the different commands. However, the test instrument 160 needs to load a new command or new data to produce a new signal that will slow down the test. Alternatively, the test instrument 16 may not transmit another command, and the DUT 100 may interpret it to indicate that the measurement was unsuccessful, and the DUT 100 will proceed with the initial test. As described above, the transmit signal 463 transmitted by the DUT 100 can be a single transmit signal or can be a set of multi-packet signals. The use of this class 15 200924406 multi-packet signal has the advantage that during calibration, only a small amount of communication or no communication is required between the test instrument 160 and the DUT 100, since a solution can usually be achieved by iterative methods, such as 2005. U.S. Patent Application Serial No. 11/161,692, the entire disclosure of which is incorporated herein by reference in its entirety, the entire disclosure of the entire disclosure of the disclosure of For reference. Referring to Fig. 5, the expected test flow for receiving signals can be explained as follows. The test procedure differs from the signal transmission test procedure in that it is intended to perform the test such that the DUT 100 does not need to analyze (if any) the actual data received from the test instrument 160, but only determines whether a reception has been received. The correct packet. Thus, when changing from a receiving test to another test, the test instrument 160 does not need to issue a test command (e.g., a GOTO-NEXT command). Rather, it is preferred that the DUT 100 decides when to move to the next test. When the DUT has received a predetermined number of good signal packets, this can only be done by having the DUT continue for the next test. If the beta DUT 100 has received a good packet and transmits a response signal, the test instrument 160 can only calculate the number of good packets without requiring the type calculation from the DUT 1 , so no additional communication is required. The result of the test is determined because the test instrument 16 knows how many packets are transmitted and can only determine how many packets are received by counting the number of response signals received from the DU Τ 1 。. This technique is quite accurate when the test instrument 160 includes a test instrument such as the VSA and VSG&apos; because it is unlikely that there is a missing response signal, and the transmitter power of the DUT 1 is typically greater than the transmitter power of the vSG. Therefore, it is impossible for the VSA to miss a response signal packet, especially if the 16 V24 is triggered by the back edge of the signal packet transmitted by the VSG. In addition, having the VSA receive the response packet provides an additional advantage in that the switching time of the transmit/receive switch of the DUT 100 is also tested. Referring again to FIG. 5, the test instrument 160 transmits the test command 510. 5 Assuming that the previous test is a launch test, the test command 510 instructs the DUT 100 to initiate the next test, which is a receive test. The dUT 1 receives the command 520' which causes the test firmware to energize the receive test 580. When the receiver section of the DUT 100 is ready, a response signal is transmitted 54 〇, which indicates the receiver's reading. This becomes quite important compared to the conventional test method in which the packet is transmitted by the test instrument 直到6 直到 until the receiver begins to receive the packet. By having the DUT 100 indicate its reading, the test instrument 160 only needs to assert its VSA to wait for receipt of the response signal from the DUt 1 , and then the test instrument 16 is ready to receive the test 530. When the test instrument 160 (e.g., the VSA) receives the response signal 540, the test instrument 160 knows that the DUT 100 is ready and begins signal transmission. Thus, the test instrument 160 (e.g., the VSA) begins transmitting a predetermined number of signal packets 56, 563, 563, 564, 568, 569, each of which generates a corresponding response signal 571, 572, 573, 574, 578, 579. The test instrument 160 receives the response packets and increments its internal calculation for each of the 20 packets received. Moreover, as described above, the transmit/receive switching operation of the DUT 100 can be analyzed by analyzing an interval 560 between a transmit test signal 563 and a receive response signal 573 (the use of a response signal in this method is Advantageously, because such signals are already included in all standard or preset transceiver signal combinations, it is avoided that additional signals or functions that do not have to be required for 200924406 can be avoided. In this example, no packet error is generated, so the DUT 100 has received the predetermined number of packets and moved to the next receive test 581. Similarly, the test instrument 160 knows that the DUT 5 100 has received all packets based on the number of received response signals and can also prepare the next receive test 531. When the DUT 1 〇〇 is ready, a response signal 541 is transmitted to indicate the type of reading ′ and then the response signal 551 is received, the test instrument 160 begins transmitting the packet for use by the next test 561. In the event that the DUT 100 has not received the packet in a predetermined time interval, it may retransmit its response signal 10 541 'eg 'for the next test, the dut 1 becomes ready to be faster than the test instrument 160 Happening. Referring to Figure 6, if a packet error is encountered, the DUT 100 cannot receive all of the predetermined good packets. As shown, the test flow begins with the previous test being a launch test. The VSG of the test instrument 16 transmits the 15 test command 610 to indicate the start of the new operation or the end of the previous operation. The DUT 100 receives the command 620 and prepares for self-enablement for receiving the test 680. When it is ready, the DUT 100 transmits an acknowledgement signal 640 that it is ready to receive. The response signal 650 is received by the test instrument 16A. When the test instrument 160 is ready, for example, when its internal setting 63 is completed, it begins to transmit 20 the predetermined number of packets 66, 662, 663, 664, 668, 669. . The DUT 100 is responsive to this condition to transmit a response signal 671, 673, 674, 678, 679 for each good packet received. As shown, one of the packets 662 is not received by the DUT 1 . Thus, the DUT 100 does not transmit a corresponding response packet, which is represented by 18 200924406 - Empty Receive Packet_. Then, after the transmission sequence is completed, the test instrument (10) knows how many response packets it receives, and because a packet 690 is obviously missing, the test instrument (10) knows that the receiver of the thank-you (10) continues the test process - before testing, Continue to wait for at least one 5 packets. Thus, the § hai test instrument 160 will calculate the number of additional packets 635 to be received by the DUT 1 , and start transmitting the required number of packets. After receiving the missing packet, the DUT 1 transmits a response signal 692 and begins preparing for the next test operation 681. When it is ready, the 100 transmits another response signal to the test instrument 16A. In this example, the test instrument 160 is not ready when the 10 DUT 100 is ready. Therefore, the DUT 1 transmits its response signal 641, but since the test instrument 16 is not ready and does not respond, the DUT i (8) will transmit a further ##642 after a predetermined time interval. The test instrument 160 is now ready and then the response message 5 tiger 651 receives, begins to transmit more data packets 661, and the DUT 100 15 should wait for the data packet by transmitting the corresponding response packet 671. As noted above, the signals transmitted for testing purposes may be a multi-packet k number, where it is expected that the DUT 1 will only respond to a particular type of data packet. For example, if the transmitter is not required to transmit more packets to conform the receiver to the number of packets required for the next test, different data packets may be transmitted at different 20 power levels to perform the actual receiver. Sensitivity test (which does not expect to receive a specific packet). Referring now to Figure 7, an exemplary functional block diagram of one of the test instruments 16 is shown. The test instrument 160 includes a controller 702, a memory 704 (eg, non-electrical memory), a VSG 706, a VSA 708, and a wireless transceiver 19 200924406 710. The controller 702 is operatively coupled to the VSG 706, the VSA 708, the memory 704, the transceiver 710, and the computer 150. The VSG 706 and VSA 708 are operatively coupled to the transceiver 710. More specifically, the VSG 706 is operatively coupled to one of the transceivers 710, the transmitter 714, and the VSA 5 708 is operatively coupled to one of the transceivers 710, the receiver 716. The controller 702 includes a test module 218 that controls the testing of the DUT 100. For example, the test module 218 can perform a Received Signal Strength Indicator (RSSI) calibration test&apos; and then perform one of the sensitivity tests of the wireless transceiver 13〇. The β-Hai RSSI calibration test period ’ the test instrument 16 发射 transmits one or more packets to the DUT 1〇〇 at a first power level of 10 bits. In response to the one or more packets, the DUT 100 transmits a power level indicator to the test instrument 160, and the controller 702 stores it in the memory 704. In some embodiments, the power level indicator indicates that the RSSI of the - or more packets is greater than a predetermined threshold or less than the predetermined threshold. Other embodiments 15 &lt;Hai power level indicator The test instrument 160 representing the one or more packets transmits one or more packets at a second power level. In some embodiments, the controller 702 periodically increases or decreases the transmit power of the transceiver 710 until a predetermined test sequence has been completed. For example, when the controller 702 periodically reduces the transmit power, the second power level 2 is less than the first power level. However, when the controller 7〇2 periodically increases the transmit power, the second power level is greater than the first power level. In the embodiment, the second power level is based on the power level indicator: for example, if the power level indicator indicates that the first power level is greater than the predetermined threshold, the second power level Less than the first power level. However, 20 200924406 if the power level indicator indicates that the first power level is less than the predetermined threshold, the second power level is greater than the first power level. In this method, the test instrument 160 is required to receive one of the one or more packets to calibrate the power level. In some embodiments, the test instrument 160 determines an RSSI calibration bias based on the first power level used to calibrate the wireless transceiver 130, the second power level, and/or the power level indicator. Set. In other embodiments, the test instrument 160 stores the first power level, the second power level, and/or the power level indicator in the memory 704, and then transfers the data to the 10th. One of the computers 150 is analyzed in the system for later analysis. The test instrument 160 does not transmit one or more packets to perform the rule 851 calibration test, but instead transmits a first predetermined sequence of packets (eg, a first predetermined sequence) at the first power level. To the DUT丨〇〇. The DUT 100 is configured to transmit a response packet to the test instrument 160 in response to each packet of the first packet sequence. After transmitting a predetermined number of response packets, the power DUT 100 transmits the power level indicator. After receiving the shai power level indicator from the 〇υτ 1〇〇, the test instrument 160 transmits a second predetermined sequence of packets (e.g., a second predetermined sequence) at the second power level. In this method, the test instrument 160 searches for the calibration power level required by the DUT 100 based on the predetermined sequence of packets (e.g., a predetermined sequence). As noted above, in some embodiments, the power level indicator indicates the RSSI of the packets. In these embodiments, the test instrument 16 can transmit a single predetermined sequence of packets (e.g., a predetermined sequence) to the DUT 00 at a predetermined power level. The DUT 100 is responsive to each packet of the predetermined packet sequence 21 200924406 and transmits a response packet to the test instrument 160. After transmitting a predetermined number of response packets, the DUT 1 transmits a power level indicator indicative of the RSSI of at least one of the predetermined sequence of packets. For example, the RSSI can be encoded in the power level indicator. Alternatively, the power level indicator may include a plurality of power level packets (not shown) indicating the RSSI. For example, if the power level indicator includes 44 power level packets, the evaluated signal strength can be -60 dBm. Although 44 power level packets are used in this example to represent an estimated signal strength of -60 dBm, those skilled in the art will recognize that any number of power level packets can be used to represent the signal strength of the evaluation. Because the test instrument 160 desires to receive all of the predetermined number of packets of the RSSI (eg, 'all 60 packets), the power level indicator may also include an additional filler packet (not shown) that does not indicate the RSSI (not shown) ( For example, 16 packets) such that the same number of packets are included in each power level 15-bit indicator. Once the test instrument 160 has received all of the predetermined number of all packets (e.g., 44 power level packages and 16 packing packets), the test instrument 160 can complete the RSSI test and proceed to the sensitivity test. During the sensitivity test, which is typically performed after the rule 881 calibration test, the controller 702 sets the transmitter 714 to operate in at least one of the first and second modes. For example, in some embodiments, the transmitter 714 transmits at a first power level when operating in the first mode and at a first power level when operating in the second mode. In other embodiments, the transmitter 714 transmits using a first modulation technique when operating in the first mode, and uses a second modulation technique to transmit 22 200924406 when operating in the second mode. In still other embodiments, the transmitter 714 transmits at a first data rate when operating in the first mode and at a second data rate when operating in the second mode. When the transceiver 710 is operating in the first mode, the controller 702 controls the transceiver 710 to transmit a sequence of packets separated by a time interval to the DUT 100. The DUT 100 is operative to transmit a response packet to the test instrument 160 in response to receiving each packet of the packet sequence. The controller 702 calculates a response packet received by the transceiver 710 in response to transmitting each packet of the packet sequence. 10 When the number of the response packets exceeds a predetermined count, the controller 702 sets the transceiver 710 to operate in the second mode and then controls the transceiver 710 to transmit a second sequence of packets. In some embodiments, the test instrument 160 determines a packet error rate (PER) based on how many packets are transmitted and how many response packets are received from the DUT 100. In other embodiments, the number of transmit and receive packets is stored in memory 704, which is then transferred to an analysis system such as computer 150 for later analysis. The controller 702 can periodically reduce the power transfer level of one of the transceivers 710 until the DUT 100 stops transmitting the acknowledgement packet in response to transmitting the sequence of packets. Alternatively, the controller 702 can periodically increase the power level of the transceiver 710 20 until the DUT 100 begins transmitting a response packet in response to the sequence of packets. In some embodiments, the test instrument 16 determines the sensitivity of the wireless transceiver 130 based on the received response packets and the power level transmitted by the packets. In other embodiments, the test instrument 16 stores the test 23 200924406 results in memory 704 and then transfers to the computer 150 for later analysis. Referring now to Figure 8, an exemplary timing diagram of the test instrument 160 performing the RSSI calibration test is generally depicted at 800. In this example, the RSSI calibration test includes four predetermined sequences that are generally identified by 802, 804, 806, and 808. While this example illustrates four predetermined sequences, those skilled in the art will recognize that more or fewer sequences are used. During the first sequence 802, the test instrument 160 transmits a first packet sequence 810, 812, and 814 to the DUT 100 during a time interval 816. Each packet 810, 812, 10 and 814 is separated by a time interval. More specifically, packets 810 and 812 are separated by time interval 818, and packets 812 and 814 are separated by time interval 820. The DUT 100 is operative to transmit the response packets 822, 824, and 826 in response to receiving each of the first packet sequences 810, 812, and 814. After the DUT 100 transmits a predetermined number of acknowledgment packets (three in this example) 15, the DUT 100 evaluates the signal strength of one of the first packet sequences 810, 812, and 814. The signal strength may be packetized according to one or more of the first packet sequences 810, 812, and 814. For example, the signal strength may be based on one of the first packet sequence 810, 812, 814, a high energy value, a low energy value, and/or an average energy value. 20 After evaluating the signal strength, the DUT 100 transmits a power level indicator 828 to the test instrument 160 based on the signal strength. In some embodiments, the power level indicator 828 indicates that the evaluated signal strength of the first packet sequence is greater than a predetermined threshold or less than the predetermined threshold. For example, when the estimated signal strength is greater than the predetermined threshold, the power level indication 24 200924406 may include a packet having a duration that is longer than when the estimated signal strength is less than the predetermined threshold, and vice versa. Also. The control 702 is configured to adjust the power level of one of the transmitters 714 to a second power level in response to receiving the power level indicator 828. As described above, in some embodiments, the controller 702 periodically reduces (or increases) the power level of each of the predetermined sequences 802, 804, 806, 808. In other embodiments, the power level is adjusted based on the power level indicator 828. For example, if the power level indicator 828 indicates that the signal strength of the first packet sequence 81 〇, 812, 814 is greater than the predetermined threshold, the power level of the transmitter 15 〇 10 is reduced. During the second sequence 804, the test instrument 16 transmits a second packet sequence 830, 832, and 834 to the DUT 1〇〇. The second packet sequence 830, 832, 834 is transmitted at the second power level during the time interval 836. Packets 830 and 832 are separated by time interval 838. The packets 832 and 834 are separated by a time interval 840. The DUT is operative to individually transmit the response packets 842, 844, and 846 in response to receiving each of the second packet sequences 830, 832, and 834. After the DUT 100 transmits a predetermined number of acknowledgment packets (three in this example), the DUT 1 〇〇 evaluates the strength of the second packet sequence 83 〇, 832, 834. The DUT 1 transmits a power level indicator 848 to the test instrument 60 based on the signal strength. The controller 702 is configured to adjust the power level of the transmitter 714 to a second power level in response to receiving the power level indicator 848'. As described above, in some embodiments, the controller 7〇2 periodically reduces (or increases) the power level of each of the predetermined sequences 802, 804, 806, 808 by 200924406. In other embodiments, the power level is adjusted in accordance with the power level indicator 848. For example, if the power level indicator 848 indicates that the signal strength of the second packet sequence 830, 832, 834 is less than the predetermined threshold, then the power level of the transmitter 150 is reduced. 5 During the third sequence 806, the test instrument 160 transmits a third packet sequence 850, 852, and 854 to the DUT 100. The third packet sequence 850, 852, 854 is transmitted at the third power level during the time interval 856. Packets 850 and 852 are separated by time interval 858. Packets 852 and 854 are separated by a time interval 860. The DUT 100 is operative to individually transmit the response packets 862, 864, and 866 in response to receiving each of the third packet sequence 10 850, 852, and 854. The DUT 100 transmits a predetermined number of response packets (three in this example) after the DUT 100 evaluates the signal strength of one of the third packet sequences 850, 852, 854. The DUT 100 transmits a power level indicator 15 868 to the test instrument 160 based on the signal strength. The controller 702 is configured to adjust the power level of the transmitter 714 to a fourth power level in response to receiving the power level indicator 868'. During the fourth sequence 808, the test instrument 16 transmits a fourth packet sequence 870, 872, 874, and 876 to the DUT 100. The fourth packet 20 sequence 87 〇, 872, 874, 876 is transmitted at the fourth power level during time interval 878. Packets 870 and 872 are separated by time interval 880. Packets 872 and 874 are separated by time interval 882. Packets 874 and 876 are separated by time interval 884. The DUT 100 is operative to transmit the response packets 886, 888, and 890 individually in response to receiving three of the fourth packet sequences 87A, 874, and 876. 26 200924406 In this example, the DUT 100 does not receive the packet 872 and therefore does not transmit a response packet. After the DUT 100 transmits a predetermined number of response packets (three in this example), the DUT 100 evaluates the strength of one of the fourth packet sequences 87〇, 874, 876. The DUT 1 发射 transmits a power level indicator 892 to the test instrument 16 according to the signal strength. The test instrument 〇6〇 is configured to calculate an RSSI calibration offset in response to receiving the power level indicator 892, and based on the first to fourth power levels and/or the power level indicators 828, 848, 868, 892 to calibrate the wireless transceiver no. Alternatively, the test instrument 16 stores the test results in memory 704 and then transfers to an analysis system such as the computer 15 for later analysis. Referring now to Figure 9, the exemplary steps that the controller 7〇2 can take during the RSSI calibration test are generally identified at 900. The program begins with step 9〇2. In step 904, the test instrument 160 generates a predetermined sequence of packets to perform the ruler %1 calibration test. In step 906, the test instrument 16 transmits a single packet of the packet sequence. In step 908, the test instrument 160 determines whether a response packet is received in response to transmitting the single packet. If a response packet has not been received, the test instrument 160 transmits the packet again in step 906. If a response packet has been received in step 908, then the test instrument 160 increments a response packet count in step 91. In step 912, the test instrument 160 determines if the response packet count is equal to the predetermined number of acknowledgement packets. If the response packet count is not equal to the expected number of response packets, then the program returns to step 9-6. However, if the response packet count is equal to the predetermined number of response packets, then the 27 200924406 test instrument 160 receives a power level indicator in step 914. In step 918, the test instrument 160 determines if the predetermined test flow requires another sequence of packets. If another packet sequence is required, the program returns to step 904 and the test instrument 160 generates another predetermined sequence of packets at a different power level. However, if the predetermined test procedure does not require another sequence, the process ends in step 920. Referring now to Figure 10, the exemplary steps that the DUT 100 can take during the RSSI calibration test are generally identified at 1000. The program begins at step 1002. In step 1004, the DUT 100 listens to 10 packets transmitted from the test instrument 160. In step 1006, the DUT 100 determines if a packet from the test instrument 160 has been received. If a packet has not been received, the program returns to step 1004. However, if a packet has been received, then in step 1008 the DUT 100 transmits a response packet in response to the packet. In step 1010, the DUT 100 increments a response packet count. In step 15 1012, the DUT 100 determines if the response packet count is equal to one of the predetermined number of packets per sequence. If the response packet count is not equal to the predetermined number of packets per sequence, then the process returns to step 1004. However, if the response packet count is equal to the predetermined number of packets per sequence, then in step 1014 the DUT 100 evaluates the signal strength of one of the sequence packets. As described above, the signal strength may be based on a high energy value, a low energy value, and/or an average energy value for each of the packet sequences. In step 1016, the DUT 100 transmits a power level indicator to indicate whether the signal strength is greater than a predetermined threshold or less than the predetermined threshold. In step 1017, the DUT 100 determines if the predetermined test procedure requires 28 200924406 to be sequenced. If another sequence is needed, the program returns to step 丨〇〇4. ^ The test procedure of the right-handed preview does not require another sequence, and the program ends in step 1.18. Referring now to Figure 11, the exemplary steps of the test instrument during the sensitivity test are generally identified by 11 , and are typically measured at the calibration. Execute after the formula. The program starts from step 1〇2. In step 11〇4, the test instrument 160 generates a predetermined sequence of packets to test the sensitivity of the wireless transceiver. In step 1106, the test instrument 16 transmits a single packet of the packet sequence. The test instrument 160 is operative to determine whether a response packet has been received in response to transmitting the single packet. If a response packet has been received, then in step 1110 the test instrument 160 increments a response packet count and proceeds to step V1211. If the response packet is not received, then the test instrument lake proceeds only to step 2. In step 1112, the service determines whether the response packet count is greater than or equal to the predetermined number of response packets by (9). If the response packet count is not greater than or equal to the predetermined number of response packets, then the process returns to step 1106. However, if the response packet count is greater than or equal to the predetermined number of response packets, the test instrument in step (1) 4 determines whether the other power level needs to be tested to determine the sensitivity of the wireless transceiver 130. If another power level is required, the controller 702 adjusts the power level of the transmitter 714 in step (1) 6, and the program returns to step 1UM. However, if no further power level is required, the process ends in step 1118. The DUT 100 expects to receive a predetermined number of domain test packet sequences. 29 200924406 Thus the DUT 100 is maintained in the test mode until it receives the predetermined number and/or test packet sequence. In some cases, the power level of the transmitter 714 can be set relatively low for the DUT 1 to fail to receive one or more packets from the test instrument 160. As a result, the dut 1 〇〇 can continue to operate in the test mode because it cannot receive the predetermined number and/or test packet sequence, which effectively increases the duration of the test. Thus, in Fig. 12, an alternative exemplary step, generally identified by 1200, can be performed by the test instrument "o" to confirm that the DUT 1 is receiving the predetermined number and/or test packet sequence. The alternate program confirms that the DUT 1 is receiving Sufficient packet and/or packet sequence 10 exits the test mode. The process begins in step 1202. In step 1204, the test instrument 16 generates a predetermined sequence of packets to test the sensitivity of the wireless transceiver 13. In 1206, the test instrument 16 transmits a single packet of the packet sequence. 15 20 In step 1208, the test instrument 16 determines whether a response packet has been received in response to transmitting the single. If a packet has been received Should q package 'then the test towel tester (four) (four) plus - answer the packet count ^ ^ to step m2. m not pure to - response packet, the instrument earns to step paste 2. In the step, the tester (four) judge = the The number of the (4) packets is expected to be pre-packed in the test in step 1212. The program required for the test is returned to step 1206. However, if the temple is 疋μ code The number of response packets is determined by the packet, and in step 1214, the device is required to test the sensitivity of the wireless transceiver 130. If another power is required, another power level is required. The controller 702 adjusts the power level of the transmitter 714 in step 1216 and the process returns to step 1204. However, if another power level is not required, the controller 702 in step 1218 will The power level of the transmitter 5 714 is set such that the DUT 100 can receive a predetermined power level. For example, if the power level is too low for the DUT 100 to receive a packet, the controller 702 can The power level of the transmitter 714 is increased to the predetermined power level 'to confirm that the DUT 100 is capable of receiving one or more packets. 10 In step 1220, the test instrument 160 determines whether the response packet count is greater than or equal to The predetermined number of response packets. If the response packet count is greater than or equal to the predetermined number of response packets, the process ends in step 1222. However, if the response packet count is not greater than or equal to the number of In response to the number of packets, the test instrument 160 transmits a packet in step 1224. In step 1226, the test instrument 160 determines whether a response packet is received in response to transmitting the packet. If a response packet has been received, The test instrument 160 increments the response packet count in step 1228. However, if a response packet is not received, the process returns to step 224. In some embodiments, the test instrument 160 can use multiple modulation techniques. The PER test is additionally performed at a plurality of data rates. Referring to Figure 13, the test instrument 160 performs a sensitivity test using a change in transmit power and modulation type. An exemplary timing diagram is generally depicted at 1300. This example shows a different IEEE 802.11 data packet tuned with this basic modulation technique. Packet 1302 is an OFDM modulated QAM64 packet. Packet 1304 is an OFDM modulation 31 200924406 QAM16 packet. Packet 1306 is an OFDM modulated QPSK packet. Packet 1308 is an OFDM modulated BPSK packet. The packet 1310 is a QPSK modulated CCK packet. The packet 1312 is a BPSK modulated DSSS packet. As shown, each modulation technique forms a different power level. 5 Typically, in a test instrument that does not support segmented memory, a waveform of each packet type is individually loaded into the memory. However, a single waveform, such as generally recognized by 1300, can be loaded into memory to test all of the data rates. Therefore, it is advantageous to load a test instrument such as a waveform that is generally recognized by 1300 in a non-supported segmented memory. 10 Referring now to Figure 14, the test instrument 160 uses a change modulation technique and/or data rate for each packet sequence of the waveform 1300 (e.g., for each packet sequence 1302, 1304, 1306, 1308, 1310, 1312). The exemplary steps that can be used to perform a sensitivity test are generally identified by 1400. The test starts when the program starts from step 14〇2. In step 1404, the test 15 instrument 160 transmits a first packet of the waveform 1300 (e.g., one of the first packets of the packets 1302). In step 14-6, the test instrument 160 determines whether a response packet is received in response to transmitting the first packet. If the response packet has been received, then the test instrument 160 increments a response packet count (e.g., one of the packets of the packet 1302) and proceeds to step 20 in step 1408. However, if a response packet is not received, the test instrument 160 proceeds only to step 1410. In step 1410, the test instrument 160 determines whether the response packet count is greater than or equal to the predetermined number of response packets. If the response packet count is not greater than or equal to the predetermined number of response packets, then in step 1412 the test 32 200924406 instrument 160 transmits the next packet of the waveform 1300 (eg, one of the packets of the packet 1302) and the program returns Step 1406. However, if the response packet count is equal to the predetermined number of response packets, then the test instrument 160 determines in step 1413 whether another packet sequence (e.g., packet 1304) is included in the wave shape 1300. If another packet sequence is included in the waveform 1300, the test instrument 160 transmits a first packet of the next packet sequence in the waveform 1300 (e.g., one of the first packets of the packet 1304) in step 1404. However, if another packet sequence is not included in the waveform 1300 (e.g., the program has packets 1302-1312 of repeating loop 10), the process ends at step 1414. In some embodiments, at the end of step 1414, the test instrument 160 can reset an indicator to point to the first sequence of packets (e.g., 1302) in the waveform 1300. Referring now to Figure 15, an alternative exemplary step that can be employed by the test instrument 160 to perform one of the DUT 100 sensitivity tests using the waveform 1300 is generally identified at 1500. The program begins in step 1502. In step 1504, the test instrument 160 transmits a first packet of the waveform 1300 (e.g., one of the first packets of the packet 1302). In step 1506, the test instrument 160 determines whether a response packet is received in response to transmitting the first packet of the waveform 1300. If a response packet has been received, then in step 1508 the test instrument 160 20 adds a packet type response count (e.g., a packet type response count for packet 1302). In step 1509, the test instrument 160 increments one of the complete waveforms 1300 for the response packet count and the process proceeds to step 1510. If a response packet is not received, the process proceeds only to step 1510. In step 1510, the test instrument 16 0 determines whether the number of transmitted packets is equal to the predetermined number of packets of the packet type 33 200924406 (e.g., packet 1302). If the number of packets to be transmitted is not equal to the predetermined number of packets, the test device 16 transmits the next packet of the waveform 1300 (for example, the second packet of the packet 〇3〇2) in step 1512, and the program returns to the step. 1506. 5 If the number of packets to be transmitted is equal to the predetermined number of packets, then the controller 702 determines in step 1511 whether another packet sequence (e.g., packet 13〇4) is included in the waveform 1300. If another packet sequence is included in the waveform 1300, the program returns to step 15〇4. However, if another packet sequence is not included in the waveform 1300 (eg, the program has a repeated loop of packets 10丨302_1312), Then, in step 1514, the controller 702 sets the power level of the transmitter 714 to be one of the predetermined levels of the DUT 1 . In step 1516, the test instrument 16 determines whether the response packet count is greater than or equal to the predetermined number of response packets of the complete waveform 13〇〇. The 15 program ends in step 1518 if the response packet count is greater than or equal to the predetermined number of response packets. If the response packet count is not greater than or equal to the predetermined number of response packets, then the test instrument 16 transmits the next packet of the waveform 1300 (e.g., one of the packets 1302 - the packet). In step 1522, the test instrument 16 determines whether to receive the response packet in response to transmitting the packet. If a response packet has been received, the test instrument 160 in step cell 20 increments the response packet count. However, if a response packet is not received, the program returns to step 152. As noted above, in addition to these advantages, by pre-planning the wireless transceiver with a predetermined test flow, the minimum communication between the wireless transceiver and the host processor is required during testing, if any. In addition, by using the _RSSI calibration test performed by the predetermined test flow, or sequence, to verify the performance of the embedded wireless transceiver, the manufacturer can calibrate a wireless device with minimal changes required by the product. Those skilled in the industry will recognize other advantages. It will be apparent to those skilled in the art that various modifications and changes can be made in the structure and method of the present invention without departing from the scope and spirit of the invention. Although the present invention has been described in connection with the preferred embodiments thereof, it should be understood that the claimed invention should not be construed as limited to the particular embodiments. The scope of the following claims is intended to define the scope of the invention, and the structures and methods in the scope of the claims and their equivalents are also covered. [Simple description of the diagram] Figure 1 is a functional block diagram of a wireless data communication system in a product test environment. Figure 2 depicts a method for testing the wireless data communication system of Figure 1 in accordance with the presently claimed embodiments of the present invention. Figure 3 depicts a method for testing the wireless data communication system of Figure 1 in accordance with another embodiment of the presently claimed invention. &quot;Fig. 4 - In accordance with the presently claimed embodiment of the present invention, a test sequence for performing a signal passing test of the wireless data communication system of Figure 2. / Figure 5 depicts a test sequence for performing a signal reception test of the wireless data communication system of Figure 1 in accordance with another embodiment of the presently claimed invention. Figure 6 depicts another embodiment of a ηπη 〇 α 刖 , , , , , , , 。 。 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Figure 7 is an exemplary functional block diagram of a test instrument in accordance with the present disclosure. 5 Figure 8 is an exemplary timing diagram of the test instrument performing a Received Signal Strength Indication (RSSI) calibration test. Figure 9 is a flow chart depicting exemplary steps that the test instrument can take when performing the R S SI calibration test. Figure 10 is a flow chart 10 depicting exemplary steps that may be employed by the wireless communication device. Figure 11 is a flow chart depicting exemplary steps that the test instrument can take when performing a sensitivity test. Figure 12 is a flow chart depicting alternative exemplary steps that may be employed by the test instrument to perform the sensitivity test. 15 Figure 13 is an exemplary timing diagram of the test instrument using a change in transmit power and modulation type to perform a sensitivity test. Figure 14 is a flow chart depicting exemplary steps that the test instrument can take when performing a sensitivity test using varying transmit power and modulation type. Figure 15 is a flow chart depicting alternative test steps that may be employed when the test instrument uses a modified transmit power and modulation type 20 to perform a sensitivity test. [Description of main component symbols] 100...Device under test 1 (U, 111, 113, 12, 16l, ..., interface 110, host processor 36, 200924406 120, 704, memory 130, 710, ... wireless transceiver 140··· Peripheral device 150...computer 151...external interface 160...test instruments 202, 204, 206, 208, 210, 302, 304, 306, 308, 310, 902, 904, 906, 908, 910, 912, 914, 918, 920 , 1002, 1004, 1006, 1008, 1010, 1012, 1014, 1016, 1017, 1018, 1102, 1104, 1106, 1108, 1110, 1112, 1114, 1116, 1118, 1202, 1204, 1206, 1208, 1210, 1212 , 1214, 1216, 1218, 1220, 1222, 1224, 1226, 1228, 1402, 1404, 1406, 1408, 1410, 1412, 1413, 1414, 1502, 1504, 1506, 1508, 1509, 1510, 15U, 1512, 1514 , 1516, 1518, 1520, 1522, 1524... Step 218···Test modules 410, 411, 412, 420, 510, 520, 610, 620... commands 430, 560, 816, 818, 820, 836, 838, 840, 856, 858, 860, 878, 880, 882, 884... time interval 440, 445, 540, 54 卜 55 571, 572, 573, 574, 578 579, 640, 64 642, 650, 65 卜 67 673, 674, 678, 679, 692, 822, 824, 826, 842, 844, 846, 862, 864, 866, 886, 888, 890... response signal 450, 45 bu 455, 456 ·. Measure 460, 461, ... 463 ... signal transmission slot 37 200924406 465, 466, ... 468 ... time 470, 471, 561, 681 ... test sequence 480 · ·. Preparation procedures 530, 531 '580, 581, 680.. receive tests 561, 562, 563, 564, 568, 569, 661, 662, 663, 664, 668, 669, 810, 812, 814, 830, 832, 834, 850, 852, 854, 870, 872, 874, 876, 1302, 1304, 1306, 1308, 1310, 1312... signal packet 630··· internal setting 635, 691... number of packets 66 b.·data packet 690···empty receiving packet 702...controller 706 ...VSG 708 ...VSA 714...transmitter 716···receiver 800.···chrono diagram 802, 804, 806, 808... sequence 828, 848, 868, 892 ...power level indicator 900, 1000, 11 〇〇, 1200, 1400, 15 〇〇... exemplary step 1300... waveform 38

Claims (1)

200924406 十、申請專利範圍: 丨· 一種用於測試-無線通訊裝置之測試儀器包含: :無線收發器,其操作來發射-第-與第二序列封 二操作來接收根據該第―序列封包的至少其中之— 封包的-功率準位指示器; 林TF不烯存該功率準位指 .〜一 ,久200924406 X. Patent Application Range: 丨· A test instrument for a test-wireless communication device includes: a wireless transceiver operative to transmit a first-and second sequence-seal operation to receive a packet according to the first sequence At least one of them - the packet's power level indicator; the forest TF does not contain the power level indicator. 一控制器’其操作來藉由控制該收發器以_第—功 率準位來第—序列封包、該功率準位指示器被节 收發器接收時將其儲存於記憶體中、以及控制該收發器 該:率準位指示器之後以-第二功率準位來發 〜第一序列封包以執行—信號強度測試。 2. 如申請專利範圍第!項之測試儀器,其t該第二功率準 位小於§亥第一功率準位。 3. 如申請專利範圍第丨項之測試儀器,其中該第二功率準 位大於該第一功率準位。 4.如申請專利範圍⑴項之賴_,其巾該第二功率準 位是根據該功率準位指示器。 5·=申請專利範圍第i項之測試儀器,其中該收發器用以塑 ,。發射該第—相封包之每—封包而接收-應答封包。 申請專利範圍第5項之測試儀器,其中該收發器操作 f發射該第-序冊包直到已接收到—職數量之應 合封包為止。 如申請專利範圍第!項之測試儀器,其中該功率準位指 不器指出該第-功轉位是^為切―預定臨界值與 39 200924406 小於該預定臨界值的其中 8. 如申請專利範圍第丨項之測試儀器,其中該功率準位指 示器包含多個功率準位封包,而其中所有該等多個功率 準位封包指出該第一序列封包之一信號強度。 9. 如申請專利範圍第i項之測試儀器,其中該控制器操作 來根據該第-功率準位、該功率準位指示器 '以及該第 二功率準㈣至少其巾之-來欺-校準偏置。 1 〇·-種位於-測試環境中之無線通㈣統包含如申社專 利範圍第】項之測試儀器,並進一步包含—受測裝月置 ⑽丁),該膽操作來接收該第—序列封包、評估該第 包之至少其中之一封包的一信號強度、以及發 準位指示器,其中該功率準位指示器是根據該 秸5虎強度。 11· =請專利第1G項之無線通㈣統,其中該 作來^響應接收該第一序列封包之每 射 —應答封包。 如町 】2.如申請專利範圍第u項之無線通訊系統其中彻 =發射-狀數量之應答封包後發㈣功率準位指 13·—種2測試―無線通訊裝置之方法,其包含下列步驟: 藉由下列程序來執行—信號強度測試: 以-第-功率準位來發射—第—序列封包. 接收根據該第—序列封包的至少其中 的—功率準位指示器; ’于匕 40 200924406 儲存該功率準位指示器;以及 接收該功率準位指示器之後以_第二功率準位 來發射一第二序列封包。 14·如申物咖扣奴方法,其巾該第: 於該第一功率準位。 干+位J 15·如申請專·圍第13項之方法,其中該第二功率準位大 於該第一功率準位。 平位大 16·如申請專利範圍第13項之方法,其中該第二功率準位是 根據該功率準位指示器。 專利範圍第13項之方法,更包含用以響應發射該 幻封包之每一封包而接收一應答封包。 18.如申請專利範圍第17項之方法,更包含發射該第-序列 封包直到e接㈣―預定數量之應答封包為止。 19·如申請專利範圍第13項之方法,其中該功率準位指示哭 指出該第-功率準位是否為大於一預定臨界值與小於 °亥預疋臨界值的其中之一。 20. 如申請專利範圍第13項之方法,其中該功率準位指示器 包含多個功轉㈣包,而其巾所㈣衫個功率準位 封包的數量指出該第一序列封包之一信號強度。 21. ^申請專利範圍第13項之方法,更包含根據該功率準位 指不器、該第-功率準位、以及該第二功轉位的至少 其中之一來計算一偏置。 22· 一種用於測試一無線通訊裝置之測試儀器包含: -無線收發器’其操作來發射一序列封包並接收根據 41 200924406 該序列封包的至少其中之一封包的一功率準位指示哭. 一操作來儲存該功率準位指示器之記憶體;以及 一控制器,其操作來藉由控制該收發器以—預定的 功率準位來發射該序列封包、以及該功率準位指示器被 该收發器接收時將其儲存於記憶體中以執行—信號強 度測試。 23·如申請專利範圍第a項之測試儀器,其中該功率準位指 示器表示該第一序列封包的t亥至少其中之—封包的一 信號強度。 乳如申請專利範圍第23項之測試儀器,其中該功率準位指 示器包含多個功率準位封包,而射所有該等多個功率 準位封包指出該信號強度。 2 5 ’ -種位於-測試環境中之無線通訊系統包含如申請專 利範圍第22項之測試儀器,並進-步包含-受測裝置 _T) ’該DUT操作來接收該第一序列封包、評估該第 序列封包之至少其中之一封包的一信號強度、以及發 ^該功率準純4,其巾該功率準減示器是根據該 &quot;is號強度。 26.—種㈣職—無線軌裝置之方法,其包含下列步 驟: ^ 藉由下列程序來執行-信號強度測試: 發射一序列封包; 接收根據該序列封包的至少其中之—封包的一 功率準位指示器;以及 42 200924406 27. 28. 接收該功率準位指示器後將其儲存。 申明專利4圍第26項之方法,其中該功率準位指示器 示該序列封包的該至少其令之一封包的一信號強度。 如申請專利範㈣27項之方法,其中該功轉位指示哭 包含多個功率準位封包,而其中所有該❹個功: 封包指出該信號強度。 43A controller is operative to store the transceiver in a memory by controlling the transceiver with a _th power level, the power level indicator is received by the node transceiver, and controlling the transceiver The rate indicator is then sent with a second power level to the first sequence of packets to perform a signal strength test. 2. If you apply for a patent scope! The test instrument of the item, wherein the second power level is less than the first power level of the §. 3. The test instrument of claim </ RTI> wherein the second power level is greater than the first power level. 4. If the scope of claim (1) is applied, the second power level of the towel is based on the power level indicator. 5·=Application of the test instrument of the i-th patent range, wherein the transceiver is used for plastic molding. Each packet of the first phase packet is transmitted and the acknowledgement packet is received. The test instrument of claim 5, wherein the transceiver operates f to transmit the first-slot package until the number of copies of the job is received. Such as the scope of patent application! The test instrument of the item, wherein the power level indicator indicates that the first power transfer bit is a cut-predetermined threshold value and 39 200924406 is less than the predetermined threshold value. 8. The test instrument of the third aspect of the patent application scope The power level indicator includes a plurality of power level packets, and wherein all of the plurality of power level packets indicate a signal strength of the first sequence of packets. 9. The test apparatus of claim i, wherein the controller is operative to calibrate according to the first power level, the power level indicator, and the second power level (four) Offset. 1 〇 - - - - 测试 测试 测试 测试 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线Encapsulating, evaluating a signal strength of at least one of the packets of the first packet, and a leveling indicator, wherein the power level indicator is based on the strength of the straw. 11· = Please refer to the wireless communication (4) system of the patent 1G, wherein the response is to receive each of the first sequence packets of the response packet. Such as the town] 2. For example, the wireless communication system of the patent application scope item u, wherein the transmission = the number of response packets after the transmission (four) power level refers to the 13 - 2 test - wireless communication device method, which includes the following steps : Performed by the following procedure - signal strength test: transmitting at - first power level - first sequence packet. receiving at least one of the power level indicators according to the first sequence packet; '于匕40 200924406 Storing the power level indicator; and receiving a second sequence packet at the second power level after receiving the power level indicator. 14·If the method of detaining the slaves, the towel should be: at the first power level. Dry + bit J 15 · The method of claim 13, wherein the second power level is greater than the first power level. The method of claim 13 wherein the second power level is based on the power level indicator. The method of claim 13 further comprising receiving a response packet in response to each packet transmitting the magic packet. 18. The method of claim 17, further comprising transmitting the first sequence of packets until e (four) - a predetermined number of response packets. 19. The method of claim 13, wherein the power level indication cries indicates whether the first power level is greater than a predetermined threshold and less than a threshold value. 20. The method of claim 13, wherein the power level indicator comprises a plurality of power transfer (four) packages, and the number of power level packets of the clothing (four) of the clothing indicates a signal strength of the first sequence of packets . 21. The method of claim 13, further comprising calculating an offset based on at least one of the power level indicator, the first power level, and the second power level. 22. A test apparatus for testing a wireless communication device comprising: - a wireless transceiver operative to transmit a sequence of packets and receiving a power level indication according to at least one of the packets of the sequence of 41 200924406. a memory operable to store the power level indicator; and a controller operative to transmit the sequence packet at a predetermined power level by controlling the transceiver, and the power level indicator is transceived The device is stored in memory when it is received to perform a signal strength test. 23. The test apparatus of claim a, wherein the power level indicator indicates a signal strength of at least one of the packets of the first sequence packet. The invention is the test apparatus of claim 23, wherein the power level indicator comprises a plurality of power level packets, and all of the plurality of power level packets are marked to indicate the signal strength. 2 5 ' - the wireless communication system in the test environment includes the test instrument as claimed in claim 22, and further includes - the device under test _T) 'The DUT operates to receive the first sequence packet, evaluation A signal strength of at least one of the packets of the first sequence packet, and a power quasi-purity of the packet, the power quasi-subtracter of the packet is based on the intensity of the &quot;is number. 26. A method of (four) job-wireless track device comprising the steps of: - performing a signal strength test by: transmitting a sequence of packets; receiving a power level of at least one of the packets according to the sequence of packets Bit indicator; and 42 200924406 27. 28. Receive the power level indicator and store it. The method of claim 26, wherein the power level indicator indicates a signal strength of the at least one packet of the sequence packet. For example, the method of applying for the patent (4) 27, wherein the work index indicates that the cry contains a plurality of power level packets, and wherein all of the work: the packet indicates the signal strength. 43
TW97131120A 2007-08-16 2008-08-15 System for testing an embedded wireless transceiver TWI442721B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/839,814 US8131223B2 (en) 2006-04-14 2007-08-16 System for testing an embedded wireless transceiver
US11/839,828 US7865147B2 (en) 2006-04-14 2007-08-16 System for testing an embedded wireless transceiver

Publications (2)

Publication Number Publication Date
TW200924406A true TW200924406A (en) 2009-06-01
TWI442721B TWI442721B (en) 2014-06-21

Family

ID=40351072

Family Applications (2)

Application Number Title Priority Date Filing Date
TW97131124A TWI431955B (en) 2007-08-16 2008-08-15 System for testing an embedded wireless transceiver
TW97131120A TWI442721B (en) 2007-08-16 2008-08-15 System for testing an embedded wireless transceiver

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW97131124A TWI431955B (en) 2007-08-16 2008-08-15 System for testing an embedded wireless transceiver

Country Status (5)

Country Link
EP (1) EP2188925A1 (en)
CN (1) CN101828345B (en)
MX (1) MX2010001835A (en)
TW (2) TWI431955B (en)
WO (2) WO2009023521A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8693351B2 (en) * 2011-07-26 2014-04-08 Litepoint Corporation System and method for deterministic testing of packet error rate in electronic devices
US9671445B2 (en) * 2013-03-15 2017-06-06 Litepoint Corporation System and method for testing radio frequency wireless signal transceivers using wireless test signals
US9485040B2 (en) * 2013-08-05 2016-11-01 Litepoint Corporation Method for testing sensitivity of a data packet signal transceiver
US9319154B2 (en) * 2014-04-18 2016-04-19 Litepoint Corporation Method for testing multiple data packet signal transceivers with a shared tester to maximize tester use and minimize test time

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5337316A (en) * 1992-01-31 1994-08-09 Motorola, Inc. Transceiver self-diagnostic testing apparatus and method
US5481186A (en) * 1994-10-03 1996-01-02 At&T Corp. Method and apparatus for integrated testing of a system containing digital and radio frequency circuits
CN1592245A (en) * 2003-09-02 2005-03-09 皇家飞利浦电子股份有限公司 Power controlling method and apparatus for use in WLAN
GB2421401A (en) * 2004-12-15 2006-06-21 Agilent Technologies Inc Test instrument for testing a wireless device
US20060183432A1 (en) * 2005-01-12 2006-08-17 Donald Breslin Calibration using range of transmit powers
US20070002753A1 (en) * 2005-06-30 2007-01-04 Bailey Michael D System and method for testing a packet data communications device
KR20070030052A (en) * 2005-09-12 2007-03-15 엘지전자 주식회사 Method for performance testing of mobile phone, apparatus and system thereof
US20070072599A1 (en) * 2005-09-27 2007-03-29 Romine Christopher M Device manufacturing using the device's embedded wireless technology
US20070167155A1 (en) * 2006-01-19 2007-07-19 Yokogawa Electric Corporation Tester and test system for wireless device

Also Published As

Publication number Publication date
WO2009023521A1 (en) 2009-02-19
TWI431955B (en) 2014-03-21
WO2009023514A1 (en) 2009-02-19
TWI442721B (en) 2014-06-21
CN101828345A (en) 2010-09-08
EP2188925A1 (en) 2010-05-26
TW200915752A (en) 2009-04-01
CN101828345B (en) 2013-12-11
MX2010001835A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
US8131223B2 (en) System for testing an embedded wireless transceiver
US7865147B2 (en) System for testing an embedded wireless transceiver
TW200924407A (en) Apparatus, system and method for calibrating and verifying a wireless communication device
KR101967473B1 (en) System and method for deterministic testing of packet error rate in electronic devices
US7773531B2 (en) Method for testing data packet transceiver using loop back packet generation
TWI442072B (en) Apparatus and method for testing a wireless transceiver
TWI396411B (en) Test apparatus and test method
TWI578725B (en) Method for efficient parallel testing of time division duplex (tdd) communications systems
KR101103094B1 (en) Testing method, communication device and testing system
KR101784405B1 (en) System and method for using multiple network addresses to establish synchronization of a device under test and test equipment controlling the test
TW200924406A (en) System for testing an embedded wireless transceiver
WO2015073400A1 (en) System and method for data packet transceiver testing after signal calibration and power settling to minimize test time
JP3708458B2 (en) Mobile terminal transmission power measuring apparatus and measuring method
US7337346B2 (en) Method and apparatus for fine tuning a memory interface
CN111835440B (en) Automatic calibration method and system for chip radio frequency signal delay measurement parameters
JP2002185552A (en) Communication processor and communication processing method
US10237764B2 (en) Assistance device, assistance method and program
TW201345166A (en) Method for measuring sensitivity of data packet signal receiver