TW200924222A - Package structure of light-emitting device and method for manufacturing the same - Google Patents

Package structure of light-emitting device and method for manufacturing the same Download PDF

Info

Publication number
TW200924222A
TW200924222A TW96143912A TW96143912A TW200924222A TW 200924222 A TW200924222 A TW 200924222A TW 96143912 A TW96143912 A TW 96143912A TW 96143912 A TW96143912 A TW 96143912A TW 200924222 A TW200924222 A TW 200924222A
Authority
TW
Taiwan
Prior art keywords
light
electrical
emitting element
pad
package
Prior art date
Application number
TW96143912A
Other languages
Chinese (zh)
Inventor
Tzu-Hao Chao
Bo-Tsung Hus
Original Assignee
Everlight Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Everlight Electronics Co Ltd filed Critical Everlight Electronics Co Ltd
Priority to TW96143912A priority Critical patent/TW200924222A/en
Publication of TW200924222A publication Critical patent/TW200924222A/en

Links

Landscapes

  • Led Device Packages (AREA)

Abstract

A package structure of a light-emitting device and a method for manufacturing the same are described. The package structure of the light-emitting device comprises: a package substrate; at least one first connecting pad and at least one second connecting pad disposed on a surface of the package substrate; a light-emitting device chip disposed above the surface of the package substrate, wherein a surface of the light-emitting device chip includes at least one first conductivity type electrode pad and at least one second conductivity type electrode pad formed thereon; and at least one first conductivity type connecting bump and at least one second conductivity type connecting bump respectively connected between first connecting pad and the second conductivity type electrode pad and the second connecting pad and the first conductivity type electrode pad, wherein materials of the first conductivity type connecting bump and the second conductivity type connecting bump are selected from the group consisting of a plurality of thermoelectric materials.

Description

200924222 九、發明說明 【發明所屬之技術領域】 _本發明是有關於—種發光元件之封裝結構,且特別是有 關於一種高發光效率之發光元件的封裝結構及其製造方法。 【先前技術】 傳統之發光元件,例如發光二極體(led)等元件之封裝 結構的散熱效果普遍不佳,因而嚴重影響發光元件之操作性 能。舉例而言,發光二極體的發光效率一般約只有2〇%轉 換成光能’剩下的80%的能量以熱能的型態發出,這些埶 能會對發光元件之性能造成嚴重的負面影響,而導致發光^ 件之發光效能下降。 為提高發光元件之封裝結構的散熱能力,目前發展出許 夕不同散熱型態之封裝方式,例如合晶共融與覆晶接合等。 請參照f 1圖,其係繪示傳統發光元件之覆晶封裝結構的剖 面示意圖。在傳統之發光元件之封裝結構1〇〇中,封裝基板 102之表面104上設有接合墊106與1〇8,接合凸塊118與 120則分別設置在接合墊106與1〇8上。另一方面發光元 件晶片110之表面112上亦設有n型電極墊114與p型電極 墊116。發光元件晶片11〇透過覆晶方式設置在封裝基板 之表面104之上,而使n型電極墊114與卩型電極墊116 分別接合在封裝基板102之接合墊1〇6與1〇8上的接合凸塊 U8與120上。因此,發光元件晶片110之η型電極墊114 和Ρ型電極墊116分別經由接合凸塊118與120而與封裝基 板102之接合墊1〇6和1〇8接合。 200924222 一般發光元件之封裝結構丨〇〇之散熱能力仍難以滿足 現今高功率發光元件的需求,因此導致發光元件之發光效率 的改善有限。此外,在發光元件之封裝結構1〇〇中,不論是 封裝基板102上之接合墊106與1〇δ,抑或是發光元件晶片 110上之η型電極墊114與ρ型電極墊116,其材料多係採 用金(Au),而且接合凸塊118與12〇之材料也採用金。由於 金的價格高昂’因此金的大量使用使得傳統發光元件之封裝 結構100的成本大幅增加。 一有鑒於傳統發光元件之封裝結構的散熱能力不佳又成 本尚因此亟需種發光元件之封裝結構的設計,既可降低 成本,更可使發光元件之封裝結構的熱能有效地傳導至外界 而快速散熱,藉以大幅提升發光元件之發光效率。 【發明内容】 因此,本發明之目的就是在提供一種發光元件之封裝結 構及其製造方法,其係利用覆晶(Flip Chip)封裝方式進行晶 片之固I㈣了可免除傳統打線封裝所造成之厚度,有效 縮減封裝體之厚度,更可增進發光元件之封裝結構的散熱能 本發明之另一目的是在提供 種 一—……元件之封裝结禮 二其係利用p型與n型熱電半導體材料來做為 曰曰裝之接σ凸塊,而提供pn型致冷器之功能。因此, ==發=件之封裝結構的同時,可將熱有效地傳 導至散熱基板而散熱到外界,更進—步地提高發 裝結構的散熱能力。故,整個發光元件之封 3 200924222 大之驅動電流,而可大幅提井路土 — & ^ 卩捉汁發先兀*件之發光效率,進而獲 得更高之發光效果。 本發明之又-目的是在提供一種發光元件之封裝結構 及其製造方法’其銲接電極可採用銅或銀等金屬來取代金, 因此可大幅減少金的使用量,進而可降低製程成本。 根據本發明之上述目的,提出一種發光元件之封裝結 構’至少包括:-封裝基板;至少U合墊以及至卜 墊設於封裝基板之一表面上;一發光元件晶片設於 裝基板之上述表面之上’其中發光元件晶片之—表面上包 =少:第-電性電極墊以及至少—第二電性電極塾;以及 ί = 性接合凸塊以及至少一第二電性接合凸塊分 接5在第-接合墊與第二電性電極墊之間、以及第二 接合墊與第一電性電極塾 # 〃巾第—電性接合凸塊與第 口之材料係選自於由複數個熱電材料所組成 t 一万矢砰0 依照本發明-較佳實施例,上述之第-接合墊、第二接 °墊祀:本:性電極墊與第二電性電極墊之材料為銅或銀。 造方括之目提r出一種發 表面上設有至r-裝基板,,其中該封裝基板之一 至少-第-電性接人:u及至》一第-接合墊;形成 對應接合在第與至少一第二電性接合凸塊分別 凸塊與第二電性接其中苐-電性接合 導體材料所组成之一 糸h自於由複數個熱電半 元件晶片之—表面卜群;提供—發光元件晶片,其中發光 面上設有至少一第一電性電極塾以及至少 200924222 一第二電性電極塾;以及 性電極墊與第二電性電極二—覆晶接合步驟’以使第-電 與第-電性接合凸塊上。》別接合在第二電性接合凸塊 依照本發明_ μ彳去鲁7, 與第二電性接合凸塊之;=,上述形成第-電性接合凸塊 鬼之步驟至少包括進行一離子植入步驟。 【實施方式】 本發明揭露—種發光元件之封裝結構及其製造方法。為 f \ =使本發明之敘述更加詳盡與完備,可參照下列描述並配合 第2圖至第6圖之圖式。 明參照第2圖至第4圖,其係繪示依照本發明一較佳實 施例的-種發光元件之封裝結構的製程剖面圖。在—示範實 t例中γ製作發光元件之封裝結構22〇(請先參照第4圖) 2可提供封裝基板·,其中封裝基板·可採用熱傳導 :佳之基板,以利發光元件之封裝結構22〇之散熱。封裝基 200可例如知用氧化銘基板 '氮化紹基板或鑽石鑛膜基 j接下來,於封裝基板扇之表面2〇2上形成一或多個第 :接合塾204、與一或多個第二接合| 2〇6。在—實施例中, =接合墊<204與第二接合墊2〇6之材料係採用非金的材 科,較佳可採用鋼(Cu)或銀(Ag)等金屬。 接著,利用沉積方式形成一或多個第一電性接合凸塊 封一或多個第二電性接合⑽2i〇 ’分別對應設置在 =基板200上方之第__接合塾綱與第二接合墊挪上, 八中第-電性不同於第二電性。舉例而言,當第 型時,第二電性可為p型;而當第一電 电『生為p型時,第二電 200924222 性可為η型。在本示範實施例中,第一電性為⑺,第二電 性則為ρ型。在-實施例中,第一電性接合凸塊2〇8和第二 . 電性接合凸塊210之數量分別與封裝基板200上之第一接合 墊204和第二接合墊206的數量相同。在另—些實施例中, 如第6圖所示之發光元件之封裝結構226,數組第一電性接 合凸塊208與第二電性接合凸塊21〇電性並聯時,第一電性 接合凸塊208和第二電性接合凸塊21〇之總和的數量與封裝 基板200上之接合墊205的總數量可不相同。在本示範實施 (ί例中,封裝基板200上設有一第一電性接合凸塊208和一第 —電性接合凸塊210,如第2圖所示。第一電性接合凸塊2〇8 與第二電性接合凸塊210所採用之材料均係選自於熱電材 料。在一些實施例中,這些熱電材料係選自於由碲(丁勾'銻 (Sb)、鉍(Bi)、硒(Se)、及上述材料之合金所組成之一族群, 例如碲化鉍(BbTed及其合金、碲化銻(Sb2Te3)及其合金、與 砸化鉍(BhSe3)及其合金等熱電半導體材料。在製作第一電 性接合凸塊208與第二電性接合凸塊21〇時,更可選擇性地 i ;利用例如離子植入方式,將第一電性與第二電性摻質,例如 η型與p型摻質,分別植入第一電性接合凸塊2〇8與第二電 性接合凸塊210中。 同時,提供發光元件晶片212,其中發光元件晶片212 可例如為發光二極體、高功率發光二極體以及雷射二極體等 光電元件。如第3圖所示,發光元件晶片212之表面214 上設有一或多個第一電性電極墊216、舆一或多個第二電性 電極墊218。發光元件晶片212上之第一電性電極墊216與 第二電性電極墊218之數量和位置通常與封裝基板2〇〇上之 200924222 ::電性接合凸塊21〇與第一電性接合凸塊2〇8之數量輿位 置對應’以利後續之覆晶接合。在—實施例中,第 極墊216與第二電性電極墊 較仏了採用銅或銀等金屬。由於第—電性電極塾216 :性電極塾218、第一電性接合凸塊2〇8、第二電性接合: ::1〇、第-接合墊204與第二接合塾2〇6之材料均可採用 非金的材料,因此可大幅降低金的使用量。 、接下來,可進行覆晶接合步驟,將發光元件晶片2D 連同其上之第-電性電極墊216與第二電性電極墊218倒覆 在封裝基板200之表面202上’而使發光元件晶片212之表 面214與封裝基板扇之表面2〇2相面對,並使發光元件晶 片212之第—電性電極塾216與第:電性電極墊218分別對 應接合在封裝基板2〇〇上方之第二電性接合凸塊2ig與第一 電性接合凸塊208上,而大致完成發光元件之封裝結構22〇 的製作,如第4圖所示。 請參照第5圖,其係綠示依照本發明一較佳實施例的一 種發光το件之封裝結構的運作示意圖。將發光元件之封裝結 構220與直流的電源222電性連接時,電流224先依序經由 封裝基板200與第一接合墊2〇4而流至第一電性接合凸塊 208’再依序經由第二電性電極墊218、發光元件晶片212 與第一電性電極墊216而流至第二電性接合凸塊21〇,接著 經由第二接合墊206而流至封裝基板2〇〇,再回到電源222, 如第5圖所示。 由於在發光元件之封裝結構220中,第一電性接合凸塊 208與第二電性接合凸塊21〇係由熱電材料所組成。因此, 200924222 當直流電流從第一接合墊204流入n型之第一電性接合凸塊 208而到p型之第二電性電極墊218時,第一電性接合凸塊 208可吸收上方之發光元件晶片212所產生的熱能,並傳送 至下方之散熱基板200’如箭頭228所示之方向。另一方面, 當電流從η型之第一電性電極墊2丨6流入p型之第二電性接 合凸塊210而到第二接合墊2〇6時,第二電性接合凸塊 同樣可吸收上方之發光元件晶片212所產生的熱能,並傳送 至下方之散熱基板200,如箭頭228所示之方向。如此一來, 整個發光元件之封裝結構22〇可產生如同pn型熱電致冷器 的功效,而有效地將發光元件晶片212端的熱能導到封^基 板200,進而可大大地提升發光元件晶片212之發光效率。 由上述本發明之示範實施例可知,本發明之一優點就是 因為發光元件之封裝結構及其製造方法係利用覆晶封裝方 式進行晶片之固定,因此除了可有效縮減封裝體之厚度,更 可增進發光元件之封裝結構的散熱能力。 又 由上述本發明之示範實施例可知,本發明之另一優點就 是因為發光元件之封裝結構及其製造方法其係利用p型與η 型熱電半導體材料來做為覆晶封裝之接合凸塊,而提供pn 型致冷器之功能。因此,在電流輸入此發光元件之封裝结構 的同時,可將熱有效地傳導至散熱基板而將熱散逸到, 更進-步地提高發光元件之封褒結構的散熱能力。故,整個 發光元件之封裝結構可承受更大之驅動電流,而可大幅提升 發光元件之發光效率,進而獲得更高之發光效果。 由上述本發明之示範實施例可知,本發明之又一優點就 是因為發光元件之封裝結構及其製造方法可採用銅或銀等 11 200924222 金屬來取代金作為銲接電極,因此可大幅減少金的使用量, 進而可降低製程成本。 里 雖然本發明已以一較佳實施例揭露如上,然其並非用以 限定本發明,任何在此技術領域中具有通常知識者,在不脫 離本發明之精神和範圍内,#可作各種之更動與潤飾,因此 本發明之保護範圍當視後附之巾請㈣範圍所界定者為準。 圖式簡單說明】 意圖 第1圖係緣示傳統發光元件之覆晶封袭結構的剖面示 0 第2圖至第4圖係繪示依照本發明一較佳每 發光元件之封裝結構的製程剖面圖。 Λ ' 件之:二圖?不依照本發明-較佳實施例的一種發光元 仟之封裝結構的運作示意圖。 第6圖係繪示依照本發明另— 元件之封裝結構㈣面示意圖。 實施㈣-種發先BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a package structure of a light-emitting element, and more particularly to a package structure of a light-emitting element having high luminous efficiency and a method of manufacturing the same. [Prior Art] A conventional light-emitting element, such as a package of a light-emitting diode (LED), has a generally poor heat dissipation effect, and thus seriously affects the operational performance of the light-emitting element. For example, the luminous efficiency of a light-emitting diode is generally only about 2% converted into light energy. The remaining 80% of the energy is emitted in the form of thermal energy, which can have a serious negative impact on the performance of the light-emitting element. , and the luminous efficacy of the illuminating device is lowered. In order to improve the heat dissipation capability of the package structure of the light-emitting element, a package method of different heat dissipation types, such as a crystal fusion and a flip chip bonding, has been developed. Please refer to the figure f1, which is a cross-sectional view showing a flip chip package structure of a conventional light-emitting element. In the package structure 1 of the conventional light-emitting element, the surface 104 of the package substrate 102 is provided with bonding pads 106 and 1B, and the bonding bumps 118 and 120 are respectively disposed on the bonding pads 106 and 1B. On the other hand, an n-type electrode pad 114 and a p-type electrode pad 116 are also provided on the surface 112 of the light-emitting element wafer 110. The light-emitting device wafer 11 is disposed on the surface 104 of the package substrate through a flip chip, and the n-type electrode pad 114 and the germanium electrode pad 116 are respectively bonded to the bonding pads 1〇6 and 1〇8 of the package substrate 102. Bonding bumps U8 and 120. Therefore, the n-type electrode pad 114 and the Ρ-type electrode pad 116 of the light-emitting element wafer 110 are bonded to the bonding pads 1〇6 and 1〇8 of the package substrate 102 via the bonding bumps 118 and 120, respectively. 200924222 The heat dissipation capability of the package structure of general light-emitting components is still difficult to meet the needs of today's high-power light-emitting components, resulting in limited improvement in the luminous efficiency of light-emitting components. In addition, in the package structure 1 of the light-emitting element, whether it is the bonding pads 106 and 1 〇 δ on the package substrate 102, or the n-type electrode pad 114 and the p-type electrode pad 116 on the light-emitting element wafer 110, the material thereof Gold is used in many cases, and gold is also used as the material for bonding the bumps 118 and 12〇. Since the price of gold is high, the large use of gold has greatly increased the cost of the package structure 100 of the conventional light-emitting element. In view of the poor heat dissipation capability of the package structure of the conventional light-emitting element and the cost, the design of the package structure of the light-emitting element is required, which can reduce the cost and effectively transmit the heat energy of the package structure of the light-emitting element to the outside. Rapid heat dissipation, in order to greatly improve the luminous efficiency of the light-emitting elements. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a package structure for a light-emitting element and a method of fabricating the same, which utilizes a Flip Chip package to perform a solid state of the wafer (4), thereby eliminating the thickness caused by the conventional wire-bonding package. Effectively reducing the thickness of the package, and further improving the heat dissipation performance of the package structure of the light-emitting element. Another object of the present invention is to provide a package of the device - the use of p-type and n-type thermoelectric semiconductor materials. As a sheathed sigma bump, it provides the function of a pn-type refrigerator. Therefore, while the package structure of the == is made, the heat can be efficiently conducted to the heat dissipation substrate to dissipate heat to the outside, and the heat dissipation capability of the package structure can be further improved. Therefore, the entire light-emitting element seal 3 200924222 greatly drives the current, and can greatly improve the luminous efficiency of the well-beating material, and then obtain a higher luminous effect. Still another object of the present invention is to provide a package structure of a light-emitting element and a method of manufacturing the same. The solder electrode can be made of a metal such as copper or silver instead of gold, so that the amount of gold used can be greatly reduced, and the process cost can be reduced. According to the above object of the present invention, a package structure for a light-emitting element includes at least: a package substrate; at least a U-pad and a pad are disposed on a surface of the package substrate; and a light-emitting device chip is disposed on the surface of the substrate Above the 'light-emitting element wafer-on-surface package=less: the first-electrode electrode pad and the at least-second electrical electrode 塾; and the λ=sexual bonding bump and the at least one second electrical bonding bump 5 between the first bonding pad and the second electrical electrode pad, and the second bonding pad and the first electrical electrode 塾 # 第 第 - electrical bonding bump and the material of the mouth is selected from a plurality of The composition of the thermoelectric material is in accordance with the present invention - the preferred embodiment, the first bonding pad, the second bonding pad: the material of the electrode pad and the second electrode pad is copper or silver. The invention comprises a r-mounted substrate, wherein one of the package substrates is at least - first-electrically connected: u and to a first-bonding pad; forming a corresponding joint in the first And the at least one second electrical bonding bump respectively comprises a bump and a second electrical connection, wherein one of the plurality of thermoelectric half-element wafers is provided by the plurality of thermoelectric half-element wafers; The component wafer, wherein the light emitting surface is provided with at least one first electrical electrode 塾 and at least 200924222 a second electrical electrode 塾; and the electrode pad and the second electrical electrode two-clad bonding step 'to make the first Bonding to the first-electrode bump. The second electrical bonding bump is bonded to the second electrical bonding bump according to the present invention, and the second electrical bonding bump; =, the step of forming the first electrical bonding bump ghost comprises at least one ion Implantation steps. [Embodiment] The present invention discloses a package structure of a light-emitting element and a method of manufacturing the same. For f \ = to make the description of the present invention more detailed and complete, reference is made to the following description and in conjunction with the drawings of Figures 2 through 6. Referring to Figures 2 through 4, there are shown process cross-sectional views of a package structure for a light-emitting device in accordance with a preferred embodiment of the present invention. In the exemplary embodiment, γ is used to fabricate the package structure 22 of the light-emitting device (please refer to FIG. 4 first). 2 A package substrate can be provided. The package substrate can be thermally conductive: a good substrate to facilitate the package structure of the light-emitting device. The heat of the heat. The package base 200 can be formed, for example, by using an oxidized substrate, a nitrided substrate or a diamond ore substrate. Next, one or more first: joints 204 are formed on the surface 2〇2 of the package substrate fan, and one or more Second joint | 2〇6. In the embodiment, the material of the bonding pad <204 and the second bonding pad 2〇6 is a non-gold material, and a metal such as steel (Cu) or silver (Ag) is preferably used. Then, one or more first electrical bonding bumps or one or more second electrical bondings (10) 2i 〇 ′ are formed by deposition to respectively correspond to the first _ _ 塾 与 and the second bonding pads disposed above the substrate 200 Moved, the eighth-electricity is different from the second electrical. For example, when the first type is used, the second electrical property may be p-type; and when the first electrical power is generated as p-type, the second electrical quantity 200924222 may be n-type. In the exemplary embodiment, the first electrical property is (7) and the second electrical property is p-type. In the embodiment, the number of the first electrical bonding bumps 2〇8 and the second electrical bonding bumps 210 is the same as the number of the first bonding pads 204 and the second bonding pads 206 on the package substrate 200, respectively. In another embodiment, as in the package structure 226 of the light-emitting element shown in FIG. 6, when the array of first electrical bonding bumps 208 and the second electrical bonding bumps 21 are electrically connected in parallel, the first electrical property The sum of the bonding bumps 208 and the second electrical bonding bumps 21 可 may be different from the total number of bonding pads 205 on the package substrate 200. In the present exemplary implementation, a first electrical bonding bump 208 and a first electrical bonding bump 210 are disposed on the package substrate 200, as shown in FIG. 2. The first electrical bonding bump 2〇 8 and the materials used for the second electrical bonding bumps 210 are selected from thermoelectric materials. In some embodiments, the thermoelectric materials are selected from the group consisting of 碲 (丁b'锑(Sb), 铋(Bi) , selenium (Se), and alloys of the above materials, such as bismuth telluride (BbTed and its alloys, bismuth telluride (Sb2Te3) and its alloys, and bismuth telluride (BhSe3) and its alloys, etc. When the first electrical bonding bumps 208 and the second electrical bonding bumps 21 are fabricated, the first electrical and second electrical dopants are more selectively used; for example, by ion implantation. For example, n-type and p-type dopants are implanted into the first electrical bonding bumps 2〇8 and the second electrical bonding bumps 210, respectively. Meanwhile, the light-emitting element wafer 212 is provided, wherein the light-emitting element wafer 212 can be, for example, Photoelectric elements such as light-emitting diodes, high-power light-emitting diodes, and laser diodes. As shown in Figure 3, the light-emitting elements One or more first electrical electrode pads 216, one or more second electrical electrode pads 218 are disposed on the surface 214 of the chip 212. The first electrical electrode pads 216 and the second electrodes on the light emitting device chip 212 The number and position of the electrode pads 218 are generally corresponding to the number of positions of the 200924222::electrical bonding bumps 21〇 on the package substrate 2 and the first electrical bonding bumps 2〇8 to facilitate subsequent flip chip bonding. In the embodiment, the first pad 216 and the second electrode pad are made of a metal such as copper or silver. The first electrode 216 is the first electrode and the first electrode is 218. 2〇8, the second electrical joint: ::1〇, the first joint pad 204 and the second joint 塾2〇6 can be made of non-gold material, so the amount of gold can be greatly reduced. The flip-chip bonding step may be performed, and the light-emitting element wafer 2D together with the first-electrode electrode pad 216 and the second electrical electrode pad 218 thereon is overlaid on the surface 202 of the package substrate 200 to make the light-emitting element wafer 212 The surface 214 faces the surface 2〇2 of the package substrate fan and makes the first portion of the light-emitting element chip 212 The electrode electrode 216 and the second electrode pad 218 are respectively bonded to the second electrical bonding bumps 2ig and the first electrical bonding bumps 208 above the package substrate 2, and the package structure of the light emitting device is substantially completed. 22〇的制作, as shown in Fig. 4. Please refer to Fig. 5, which is a schematic diagram showing the operation of a package structure of a light-emitting device according to a preferred embodiment of the present invention. When the DC power source 222 is electrically connected, the current 224 flows through the package substrate 200 and the first bonding pad 2〇4 to the first electrical bonding bump 208′, and sequentially through the second electrical electrode pad 218. The light-emitting element chip 212 and the first electrical electrode pad 216 flow to the second electrical bonding bump 21 , and then flow to the package substrate 2 via the second bonding pad 206, and then return to the power source 222, such as the fifth The figure shows. Since the first electrical bonding bump 208 and the second electrical bonding bump 21 are composed of a thermoelectric material in the package structure 220 of the light emitting device. Therefore, when the DC current flows from the first bonding pad 204 into the n-type first electrical bonding bump 208 to the p-type second electrical electrode pad 218, the first electrical bonding bump 208 can absorb the upper portion. The thermal energy generated by the light-emitting element wafer 212 is transferred to the lower heat-dissipating substrate 200' as indicated by the arrow 228. On the other hand, when current flows from the n-type first electrical electrode pad 2丨6 into the p-type second electrical bonding bump 210 to the second bonding pad 2〇6, the second electrical bonding bump is also The thermal energy generated by the upper light-emitting element wafer 212 can be absorbed and transmitted to the lower heat-dissipating substrate 200 in the direction indicated by the arrow 228. In this way, the package structure 22 of the entire light-emitting element can produce the same function as the pn-type thermoelectric cooler, and effectively guide the thermal energy of the end of the light-emitting element chip 212 to the sealing substrate 200, thereby greatly improving the light-emitting element wafer 212. Luminous efficiency. According to the exemplary embodiment of the present invention, one of the advantages of the present invention is that the package structure of the light-emitting element and the manufacturing method thereof are fixed by the flip-chip package, so that the thickness of the package can be effectively reduced. The heat dissipation capability of the package structure of the light-emitting element. According to the exemplary embodiment of the present invention, another advantage of the present invention is that the package structure of the light-emitting element and the manufacturing method thereof use the p-type and n-type thermoelectric semiconductor materials as the bump bumps of the flip chip package. The function of the pn type refrigerator is provided. Therefore, while current is input to the package structure of the light-emitting element, heat can be efficiently conducted to the heat-dissipating substrate to dissipate heat, and the heat-dissipating ability of the sealing structure of the light-emitting element can be further improved. Therefore, the package structure of the entire light-emitting element can withstand a larger driving current, and can greatly improve the luminous efficiency of the light-emitting element, thereby obtaining a higher luminous effect. According to the exemplary embodiment of the present invention described above, another advantage of the present invention is that the package structure of the light-emitting element and the manufacturing method thereof can be replaced by copper or silver 11 200924222 metal instead of gold as a welding electrode, thereby greatly reducing the use of gold. Quantity, which in turn reduces process costs. While the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and any one of ordinary skill in the art can be made without departing from the spirit and scope of the invention. Changes and retouching, therefore, the scope of protection of the present invention is subject to the scope defined in the scope of the attached towel (4). BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a flip-chip structure of a conventional light-emitting element. FIG. 2 to FIG. 4 are schematic cross-sectional views showing a package structure of a preferred light-emitting element according to the present invention. Figure. Λ 'Parts: Two pictures? A schematic diagram of the operation of a package structure of a light-emitting element according to the preferred embodiment of the present invention. Figure 6 is a schematic cross-sectional view showing the package structure (four) of the component according to the present invention. Implementation (four) - seed first

【主要元件符號說明】 100 .發光元件之封裝結構 104 : 108 : 112 : 116 : 120 : 202 : 表面 接合塾 表面 Ρ型電極墊 接合凸塊 表面 102:封裝基板 106 :接合墊 110 :發光元件晶片 114 : η型電極墊 118 :接合凸塊 20(^封裝基板 12 200924222 204 : 206 : 210 : 214 : 218 : 222 : 226 : 228 : 第一接合墊 205 : 接合墊 第二接合墊 208 : 第一電性接合凸塊 第二電性接合凸塊 212 : 發光元件晶片 表面 216 : 第一電性電極塾 第二電性電極墊 220 : 發光元件之封裝結構 電源 224 : 電流 發光元件之封裝結構 箭頭 13[Description of Main Component Symbols] 100. Package Structure of Light-Emitting Element 104 : 108 : 112 : 116 : 120 : 202 : Surface Bonding Surface Ρ Type Electrode Pad Bonding Bump Surface 102 : Package Substrate 106 : Bonding Pad 110 : Light-emitting Element Wafer 114: n-type electrode pad 118: bonding bump 20 (^ package substrate 12 200924222 204 : 206 : 210 : 214 : 218 : 222 : 226 : 228 : first bonding pad 205 : bonding pad second bonding pad 208 : first Electrical Bonding Bump Second Electrical Bonding Bump 212: Light Emitting Element Wafer Surface 216: First Electrical Electrode 塾 Second Electrical Electrode Pad 220: Light Emitting Element Package Structure Power Supply 224: Current Light Emitting Element Package Structure Arrow 13

Claims (1)

200924222 十、申請專利範S 1. 一種發光元件之封裝結構,至少包括: 一封裝基板; 至少一第一接合墊以及至少一第二接合墊,設於該封 裝基板之一表面上; 一發光元件晶片,設於該封裝基板之該表面之上,其 中該發光元件晶片之一表面上包括至少一第一電性電極 墊以及至少一第二電性電極墊;以及 至少一第一電性接合凸塊以及至少一第二電性接合 凸塊分別對應接合在該第一接合墊與該第二電性電極墊 之間、以及該第二接合墊與該第一電性電極墊之間,其中 該第一電性接合凸塊與該第二電性接合凸塊之材料係選 自於由複數個熱電材料所組成之一族群。 2. 如申請專利範圍第1項所述之發光元件之封裝結 構,其中該些熱電半導體材料係選自於由碲(Te)、銻(Sb)、 鉍(Bi)、硒(Se)及其合金所組成之一族群。 3. 如申請專利範圍第1項所述之發光元件之封裝結 構,其中該封裝基板為一氧化鋁基板、一氮化鋁基板或一 鑽石鍍膜基板。 4.如申請專利範圍第1項所述之發光元件之封裝結 構,其中該第一接合墊與該第二接合墊之材料為銅或銀。 14 200924222 5.如申請專利範圍第1項所述之發光元件之封裝結 構’其中該第一電性電極塾與該第-一电性電極塾之材料為 銅或銀。 6.如申請專利範圍第1項所述之發光元件之封農結 構’其中該發光元件晶片係選自於由發光二極體以及雷射 二極體所組成之一族群。 7.如申請專利範圍第1項所述之發光元件之封楚結 構’其中該第一電性接合凸塊之電性為η型,且該第二電 性接合凸塊之電性為ρ型。 少 8. —種發光元件之封裝結構之製造方法,至少包括: 提供一封裝基板,其中該封裝基板之一表面上設有至 第一接合墊以及至少一第二接合墊; 形成至少一第一電性接合凸塊舆至少一第二電性接 合凸塊分別對應接合在該第一接合墊與胃第二接合塾 上,其中該第-電性接合凸塊與該第二電性接合凸塊之材 料係選自於由複數個#電半導體材料戶斤組叙一族群; 』提供-發光元件晶片’其中該發光元件晶片之一表 上設有至少一第一電性電極墊以 塾;以及 第—電性電極 :行-覆晶接合步驟,以使該第一 二電性電極塾分別接合在該第 該第 电r生筏合凸塊與該第一 15 200924222 電性接合凸塊上。 9.如申請專利範圍第8項所述之發光元件之封 構之製造方法,其中該些熱電半導體材料係選自於、、: 銻、鉍、硒及其合金所組成之一族群。 10.如申請專利範圍第8項所述之發光元件之封 構之製造方法,苴中布:占兮铱 ^ lt t 衣Ά 八甲形成忒弟一電性接合凸塊與該第_ 性接合凸塊之步驟至少包括進行一離子植入步驟。〜電 二如申請專利範圍第8項所述之發光元 構之製造方法,其中續封# I 4 ^ 展'、·吉 、甲a封裝基板為一氧化鋁基板、— 鋁基板或一鑽石鍍膜基板。 .化 8項所述之發光元件之封裝結 接合墊與該第二接合墊之材^ 12·如申請專利範圍第 構之製造方法,其中該第一 為銅或銀。 13.如申請專利範圍第8 構之製造方法,A中㈣h 封裝結 墊之材料為鋼或銀。 U弟一电性電極 構之=申ΛΤ圍第8項所述之發光元件之封裝 ==極::發光元件晶片係選自於由發光二 篮μ及笛射—極體所組成之—族群。 16 200924222 15.如申請專利範圍第8項所述之發光元件之封裝結 構之製造方法,其中該第一電性接合凸塊之電性為η型, 且該第二電性接合凸塊之電性為Ρ型。 17200924222 X. Patent application S 1. A package structure of a light-emitting device, comprising at least: a package substrate; at least one first bond pad and at least one second bond pad disposed on a surface of the package substrate; The chip is disposed on the surface of the package substrate, wherein the surface of one of the light-emitting element wafers includes at least one first electrical electrode pad and at least one second electrical electrode pad; and at least one first electrical bonding protrusion The block and the at least one second electrical bonding bump are respectively respectively bonded between the first bonding pad and the second electrical electrode pad, and between the second bonding pad and the first electrical electrode pad, wherein the The material of the first electrical bonding bump and the second electrical bonding bump is selected from a group consisting of a plurality of thermoelectric materials. 2. The package structure of a light-emitting element according to claim 1, wherein the thermoelectric semiconductor material is selected from the group consisting of strontium (Te), strontium (Sb), bismuth (Bi), and selenium (Se) A group of alloys. 3. The package structure of the light-emitting element according to claim 1, wherein the package substrate is an aluminum oxide substrate, an aluminum nitride substrate or a diamond coated substrate. 4. The package structure of a light-emitting element according to claim 1, wherein the material of the first bond pad and the second bond pad is copper or silver. The package structure of the light-emitting element according to claim 1, wherein the material of the first electrical electrode 塾 and the first-electrode electrode 为 is copper or silver. 6. The sealing structure of a light-emitting element according to claim 1, wherein the light-emitting element chip is selected from the group consisting of a light-emitting diode and a laser diode. 7. The sealing structure of the light-emitting element according to claim 1, wherein the electrical property of the first electrical bonding bump is n-type, and the electrical property of the second electrical bonding bump is p-type. . A method for manufacturing a package structure of a light-emitting device, comprising: providing a package substrate, wherein one surface of the package substrate is provided with a first bonding pad and at least a second bonding pad; forming at least one first The at least one second electrical bonding bump is respectively bonded to the first bonding pad and the second bonding port of the stomach, wherein the first electrical bonding bump and the second electrical bonding bump The material is selected from the group consisting of a plurality of electric semiconductor materials; wherein the light-emitting element wafer is provided with at least one first electrical electrode pad on one of the light-emitting element wafers; The first-electrode electrode: a row-to-cover bonding step, wherein the first two-electrode electrode is respectively bonded to the first electrical-electrode bump and the first 15 200924222 electrical bonding bump. 9. The method for producing a package of a light-emitting element according to claim 8, wherein the thermoelectric semiconductor material is selected from the group consisting of: ruthenium, osmium, selenium and alloys thereof. 10. The method for manufacturing a package of a light-emitting element according to claim 8, wherein the medium-sized cloth: 兮铱 lt t Ά 八 八 忒 忒 一 一 一 一 一 一 一 一 一 与 与 与 与 与 与 与The step of bumping at least includes performing an ion implantation step. 〜二二, as in the manufacturing method of the illuminating element structure described in claim 8, wherein the sequel # I 4 ^ 展 ', 吉吉, A a package substrate is an alumina substrate, an aluminum substrate or a diamond coating Substrate. The method for manufacturing a package junction pad of the light-emitting device according to claim 8 or the second bond pad, wherein the first method is copper or silver. 13. The manufacturing method of the eighth aspect of the patent application, the material of the (4)h package pad in A is steel or silver. U-Electrical Electrode Construction = Encapsulation of the illuminating element described in Item 8 of Shen Weiwei == Pole: The illuminating element chip is selected from the group consisting of two sets of illuminating light and a polar body. . The method of manufacturing a package structure for a light-emitting device according to claim 8, wherein the electrical property of the first electrical bonding bump is n-type, and the electrical property of the second electrical bonding bump is Sex is Ρ type. 17
TW96143912A 2007-11-20 2007-11-20 Package structure of light-emitting device and method for manufacturing the same TW200924222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96143912A TW200924222A (en) 2007-11-20 2007-11-20 Package structure of light-emitting device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96143912A TW200924222A (en) 2007-11-20 2007-11-20 Package structure of light-emitting device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
TW200924222A true TW200924222A (en) 2009-06-01

Family

ID=44728922

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96143912A TW200924222A (en) 2007-11-20 2007-11-20 Package structure of light-emitting device and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TW200924222A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI514528B (en) * 2013-10-04 2015-12-21 Lextar Electronics Corp Semiconductor chip structure
CN113692115A (en) * 2021-07-09 2021-11-23 平头哥(上海)半导体技术有限公司 Packaging structure and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI514528B (en) * 2013-10-04 2015-12-21 Lextar Electronics Corp Semiconductor chip structure
CN113692115A (en) * 2021-07-09 2021-11-23 平头哥(上海)半导体技术有限公司 Packaging structure and electronic device

Similar Documents

Publication Publication Date Title
US7683396B2 (en) High power light emitting device assembly utilizing ESD protective means sandwiched between dual sub-mounts
US7855397B2 (en) Electronic assemblies providing active side heat pumping
TWI377706B (en) Mount for semiconductor light emitting device
US8450764B2 (en) Semiconductor light-emitting apparatus and method of fabricating the same
TWI257722B (en) Package structure of light-emitting diode with electrothermal component
TW554553B (en) Sub-mount for high power light emitting diode
US20100108117A1 (en) Thermoelectric module package and manufacturing method therefor
TW201131828A (en) LED flip-chip package structure with dummy bumps
TWI580082B (en) Light emitting device
CN108074892B (en) Package having interconnect structures with different melting temperatures
TW200814350A (en) A light emitting device and the manufacture method thereof
JP2006294782A (en) Semiconductor light source device
WO2009117859A1 (en) Method for manufacturing led
JP2013016525A (en) Power semiconductor module and manufacturing method of the same
CN102194972B (en) Light-emitting device (LED) package component
Liu et al. High efficiency silicon-based high power LED package integrated with micro-thermoelectric device
TWI262608B (en) Light emitting device
TW201117436A (en) Light-emitting diode package and manufacturing method thereof
CN103928577A (en) Plate type LED packaging method and LED packaged with method
TWM344575U (en) No-wire-bond package structure of LED
TW200924222A (en) Package structure of light-emitting device and method for manufacturing the same
CN101452979A (en) Encapsulation construction for light emitting device and manufacturing method thereof
TW201019496A (en) Substrate for packaging light-emitting device and light-emitting device package body
US20090026606A1 (en) Semiconductor Device and Method for Manufacturing the Same
JP2006191052A (en) Flip chip bonding structure of luminous element using metal column