TW200924009A - Field emission pixel tube - Google Patents

Field emission pixel tube Download PDF

Info

Publication number
TW200924009A
TW200924009A TW96145612A TW96145612A TW200924009A TW 200924009 A TW200924009 A TW 200924009A TW 96145612 A TW96145612 A TW 96145612A TW 96145612 A TW96145612 A TW 96145612A TW 200924009 A TW200924009 A TW 200924009A
Authority
TW
Taiwan
Prior art keywords
field emission
cathode
anode
emission pixel
pixel tube
Prior art date
Application number
TW96145612A
Other languages
Chinese (zh)
Other versions
TWI362676B (en
Inventor
Yang Wei
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96145612A priority Critical patent/TWI362676B/en
Publication of TW200924009A publication Critical patent/TW200924009A/en
Application granted granted Critical
Publication of TWI362676B publication Critical patent/TWI362676B/en

Links

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

The present invention relates to a field emission pixel tube. The field emission pixel tube includes a shell, a cathode, at least three anodes and at least three layers of fluorescence disposed on the anodes respectively. The cathode and each of the anodes are disposed in the shell at a distance. The cathode includes at least three cathode emitters. Each of the cathode emitters is disposed corresponding to each of the anodes. Each of the cathode emitters includes an electron-emitting end. Each of the electron-emitting ends is disposed adjacent to a surface of the anode respectively.

Description

200924009 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種場發射裝置,尤其涉及一種場發射像 素管。 【先前技術】 奈米碳管(Carbon Nanotube,CNT)係一種新型碳材 料’由曰本研究人員1中腿在1991年發現,請參見” Microtubules of Graphitic Carbon", S. Nature, νο1·354,Ρ56 (1991)。奈米碳管具有極大的長徑比(其長度 在微米量級以上,直徑只有幾個奈米或幾十個奈米),具有 良好的‘電導熱性能,並且還有很好的機械強度和良好的 化學穩H這些特性使得奈米碳管成為—種優良的場發 射材料。因此,奈米碳管在場發射裝置中的應用成為目前 奈米科技領域的一個研究熱點。 奈米碳管長線係由超順排奈米碳管陣列製備出來的線 碳管材料。首先,從超順排奈米碳管陣列抽出奈米 碳管薄膜,再經有機溶液收縮成纖維狀或料轉的方法擰 成繩狀。這種線狀奈米碳管材料具有宏觀的尺度,對其進 二些操作極為方便。這種奈米碳管長線的端面具有很好 的%發射能力,係一種良好的場發射電子源。 場發射像素管係奈米碳管場發射電子源的一個重要應 用領域。先前的場發射像㈣包括—個巾空殼體,該^ ,該出光部的内壁依次塗覆有螢光粉層和 部與該出光部相對處有-陰極發射體, 極發射體包括—奈米碳管長線作為場發射電子源。當 200924009 5亥場發射像素管工作 成電場,通過電場作用使陰極於‘體:::::$電壓形 子=陽極層在擊费光粉層,;=發射出電子’電 為要的^'有奈米好陰極發射體的像素管,因 .=尺先:;大塗覆在殼體内一表面上,受裳備工藝: 這使得基於太域為厘米量級’或更大, 限制,例如%射像素f的應用受到了極大的 的大型戶外顯示:的:!管無法用來組裝具有較高清晰度 素其,’先則的具有奈米碳管陰極發射體的像 藝^产大,、過程中陰極與陽極需要準確對準,製造工 將馨:私s、ασ率低。另外’先前的像素管製備方法,先 有= 在殼體内壁上,再在螢光粉層上沈積—層 發掉制,、,、後在有機物層上錢—陽極層,最後將有機物i 發掉,製造工藝較複雜。 …、 素管提供一種尺寸小,更易於製造的場發射像 【發明内容】 :—種場發射像素管,其包括—殼體及置於殼體内的— 個陰極,至少三個陽極和設置於該陽極表面的螢光粉層, 所述陰極與每個陽極間隔m中,所述陰極進一二包 $至少二個陰極發射體,該至少三個陰極發射體與所述至 V —個陽極 對應設置,所述每個陰極發射體包括—電 子發射端,該至少三個陰極發射體的電子發射端分別靠近 與之對應的陽極表面設置。 200924009 相較于先前技術,所述的場發射像素管的陰極發射體 為奈米碳管長線,陽極為金屬杯 鴒扞,且每個陽極端面設置有 一種顏色的螢光粉層,該場於射德丰_ 琢射像素官具有以下優點:第 -,通過控制設置有不種顏色的螢光粉層的陽極電壓,使 所述不同顏色的螢光粉層分別發出不㈣度的單色光從而 搭配成不同顏㈣混色光,從而實賴場發射像素管的彩 色顯示;第二,這種場發射像素管的體積小,發光面積可 達到毫米量級甚至更小’因&’可用來組裝具有較高清晰 度的大型戶外顯示器;第三,這種場發射像素管更容易製 造,製備成本低,易於實現大規模生產使用。 【實施方式】 明 以下將結合附圖對本技術方案作進一步的詳細說 請參閱圖1及圖2,本技術方案實施例提供一種場發 射像素管100,其包括一殼體1〇, 一陰極12, 一第一螢光 粕層14,一第一螢光粉層16,一第三螢光粉層i§,一第 —陽極15,一第二陽極17及一第三陽極19。所述陰極12 與所述第一陽極15、第二陽極17及第三陽極間隔設置 於所述殼體10内。所述陰極12包括一第一陰極發射體 121 ’ 一第二陰極發射體m和一第三陰極發射體ι23。該 第一陰極發射體121、第二陰極發射體122和第三陰極發 射體123分別包括一第一電子發射端125、一第二電子發 射端126和一第三電子發射端17。該第一電子發射端125、 第二電子發射端126和第三電子發射端17分別靠近所述第 200924009 -陽極i5、第二陽極17及第三陽極i9的表 第一陽極15包括一第—减而彳 又 斤述 外必 弟埏面151,所述第二陽極17包括 一弟二端面171,所述第三陽極19包括 1括 所述第-螢光粉層14設置在所述第 ;^面191 ° ㈣面上,所述第二螢光粉二,置 ==-端面 Λη 山 虫疋物層丄6双置在所述第二陽極 17的弟二端面171的表面上’所述第三營光粉層18設置 在所述第三陽極19的第三端面191的表面上。 所述双體1G為-真空密封的結構。該殼體⑺包括— ^部/1’該出光部U與所述第一端面⑸、第二端面 料如::端面191相對設置。該殼體1〇材料為-透明材 ^如^央石或玻璃。在本技術方案實施例中,該殼體⑺ —中工透明的玻璃圓柱體,且該殼體直徑為2毫米至ι〇 =’ f度為5毫米至50毫米。可以理解,該殼體10亦 ^擇為中空透明的立方體、中空透明的三棱柱或其他中 空透明的多邊形棱柱’本領域技術人員可根據實際情況進 行選擇。 所述陰極12進一步包括一陰極支撐體124,該陰極支 撐體124為-導電體’如:金屬絲或金屬杆。該陰極支樓體 124形狀不限,且能夠導電並具有—定強度。本技術方案 實施例中所述陰極支撐體124優選為鎳絲。所述第一陰極 發射體121、第二陰極發射體122和第三陰極發射體⑵ 分㈣所述陰極支撐體124的一端電性連接。該場發射像 素管100進一步包括一陰極引線13,所述陰極支撐體丄以 遠離所述第-陰極發射體121、第二陰極發射體122和第 200924009 .二陰極發射體123的一端通過該陰極引線13連接到所述咬 -體10外。 所述的第一陰極發射體121 ’第二陰極發射體122和 第三陰極發射體123可選自奈米碳管長線、單根奈米碳 管、單根奈米碳纖維或其他場發射電子源。本技術方案實 施例中,所述的第一陰極發射體121,第二陰極發射體 和第三陰極發射體123均優選為一奈米碳管長線。該奈米 石炭管長線的長度為0J亳米至1〇毫米,直徑為丄微:至 ⑽微米。該奈来碳管長線係由多個平行的首尾相連的太 米碳管束組成的束狀結構或由多個首尾相連的奈米碳管^ 組成的絞線結構,該相鄰的奈米碳管束之間通過凡德瓦 ί緊管束中包括多個定向排列的奈米碳 s該不未石反官長線中的奈米碳管為單壁、雙壁 太 +碳管。該奈米碳管的長度範圍為1()〜2 ^ 碳管的直徑小於5奈米。 攸木且不未 以第一陰極發射體121 射體m採用奈米舻貝施例中弟-陰極發 括多個場發射尖端30 敕其第一電子發射端125可包 琢〜耵大编30或係平整的 ^,丄 體121的結構可有效降 厅呔第一陰極發射 蔽效應。請參見圖3,該第體121的電場屏 突出的場發射尖端30。哕兒 '射端125可包括多個 根奈米碳管斯。請來閱::發,端3〇的頂端突出有- 125;r^ 射端125包括多個突出的場發-端3==: 11 200924009 第陰極發射體121中的第一電子發射端125的透射電鏡 照片上,可看出第一電子發射端125中的場發射尖端3〇 的頂端突出有一根奈米石炭管301。該第-陰極發射體121 中的場發射尖端3㈣端的奈米碳管3〇1與其他遠離該場發 射失端30頂端的奈米碳管緊密結合,使得該場發射央端 30頂端的奈米碳管搬在場發射過程中產生的熱量可有效 地被傳導出去,並且可承受較強的電場力。可以理解,所 述第二電子發射端126和第三電子發射端127也可包括多 個場發射尖端或係平整的端面。 一曾所述的第-陽極15,第二陽極17和第三陽極Η均為 :¥電體’如:金屬杆。該第-陽極15,第二陽極17和 f二陽極19形狀不限,且能夠導熱並具有-定強度。本技 =案實施财,所述的第—陽極15,第二陽極Η和第 一蝓極19均優選為鎳金屬杆。該金屬杆直徑為微米至 =彳以理解,該金屬杆直徑可根據實際需要選擇。 a弟一陽極15,第二陽極17和第三陽極19呈一等邊三 =放置’其中所述陰極12設置在該等邊三角形的中心。 °之門:T *述第一陽極15 ’第二陽極17和第三陽極19 '的位置關係可根據需要進行適#的調整。所述第一陽 广括一抛光的第一端面151,第二陽極17包括一抛 光的第二端面171,$二@ ⑼。所述第-端面二一 Γ 拋光的第三端面 為羊而、、第二端面171和第三端面⑼可 、半球面、球面、錐面、凹面戋i 0 & π 述第-端面m、第Γ 形狀端面。所 弟一编面171和第三端面191可反射螢 12 200924009 絲層:出的光。該場發射像素管ι〇 陽極引線20、一第二陽極引線 1包括一第一 所述第一陽極12遠離其第—姓第二^極引線22。 ^面151的一端,笛—臨技 17迫離其第二端面171的-端和第三陽極19逹^:: 端面191的一端分別通過 9遇離其弟二 線21和第三陽極引線第二陽極引 所述的第-勞光粉層:4 =:述殼體10外。 光粉層18分職置在所述第_ 粉層16和第三螢 第三端面m的表面上。/述:面:;第二咖 ,v a , ^ 义第—螢光粉層14,第-罄本 粉層W和第三螢光粉層18的材 弟一螢先 螢光粉。者命〗為一種不同顏色的 f先私田包子轟擊所相第_螢光粉層⑷ 層16和第三螢光粉層1δ時可 私 光,述第-螢光粉層14 ’第二螢光粉 可剌沈積法或塗敷法設置在所述第 弟一鈿面171和第三端面191的表面上。 層14,第二螢光粉層16 斤达第一螢光粉 米至5。微米,理解,所—述 馨„ 京尤杨層14,弟二 螢“層16和弟三螢光粉層18也可進 -陽極15,第二陽極17和第 :斤述弟 只要所述第-陰極發射體121,第二陰極 J陰極發射體123所發射的電子能雇擊到所述的第: 泰層⑷第二螢光粉層㈣第三營光粉層18即可。先 Τ的每赌極發㈣與陽極的設置可為 置 係。以第-陰極發射體121和第一陽極15之間 13 200924009 所述第1 極發射體121的第一電子發射端125與 斤,第一 _15的第一端自151可正對設置;奈米碳管長 j屬杆軸向可成m置;第—陰極發射體121的 二:::發射端125與所述第一陽極15的第一端面i5i 3斜對故置;可使奈米碳管長線與金屬杆轴向互相垂直或 :’使第-陰極發射體121的第一電子發射端125設置 在所述第—陽極15的第—端面ΐ5ι附近。其中,第一^極 =體m的第—電子發射端125與所述第—陽㈣的第 敕端面151之間的距離依據場發射像素管的大小進行調 正。本技術方案實施例中第一陰極發射體121的第-電子 發射端125與所述第—陽搞1<;&楚 小於5毫米。…極15的弟-端㈣之間的距離 可以理解,所述第一陰極發射體121、 體m、第三陰極發射體123分別與第一陽才請、第二= 第三陽極18之間的位置關係、不限,只需確保所述 射體==體121 電子發射端125、第二陰極發 —體m的弟二電子發射端126及第三陰極發射體的 弟:電子發射端m分別靠近所述的第—螢光粉層14,第 粉層16和第三榮光粉層18即可。因此 所· ^極發射體m、第二陰極發射體 —、弟二陰極發射體123與第一陽極14、第二陽極μ、 弟二陽極18無需精確對準,從而更容易製造。 另外,該場發射像素管⑽進一步包括一位於殼體忉 内壁的吸氣劑23’用於吸附場發射像素管⑽内殘餘氣 14 200924009 體、准持場發射像素管⑽内部的真空度。該吸氣劑Μ 可f蒸散型吸氣劑金屬薄膜,在殼體1〇封接後通過高頻加 熱洛鑛的方式形成於殼體1G内壁上。該吸氣劑23也可為 非蒸散型m固定在所述陰極12上或單獨的—根陰極 引線13上。所述的非蒸散型吸氣劑23材料主要包括鈦、 結、給、处、稀土金屬及其合金。 ,當該場發射像素管⑽王料,分別在料第-陽極 15第一陽極17、第三陽極19和陰極η之間加上電壓形 成電場,通過電場作用使第一陰極發射體121、第二陰極 發射體122和第三陰極發射體123發射出電子,發射的* =:_、1 二陽極17和第三陽極19,分別】 的第’、广面151、弟一端面171和第三端面191表面 光粉層14、第二螢光粉層16和第三螢光粉層18, 2可見光。其中,-部分可見光直接透過與所述 出面15】、第二端面171和第三端…對的出光部U: 出第另一部分可見光則經過第-端面151、第二端面i7i 二…i反射後,透過該出光㈣射出 象素官⑽’由於將第一螢光粉層14、第二營光粉二射 σ第二螢光粉層18分別設置於所述第—端面15卜曰二山 面上,避免了製備工藝的:制, 文體積可做到更小’其發光面積可達到 』 組裴具有較高清晰度的大型戶外顯示器。,二來 像素管100中所述第-陽極15、第二陽極,场發射 19和陰極12之間無需精確對準’因此,更容陽ΐ 15 200924009 ί 場發射像素管1〇0採用金屬杆作為第-陽極15、 模生產使用。 衣備成本低’易於實現大規 射像^本技術方案實施例還進—步提供—場發 射像素S 100的製備方法,具體包括以下步驟: 絲分提供—玻璃芯柱,該玻璃芯柱包括四個金屬 引、緣22广;陽極引線20,第二陽極引線21,第三陽極 弓丨線22和一陰極引線13。 所述的四個金制被玻翻定,並被柄 Η形狀玻璃芯柱。哼今屬 幵/成 通常幻為可實現和玻璃熔封的材料, 逋吊為杜杲絲、鎢絲、鉬絲等。 步驟二,提供三個金屬杆 17釦坌l 蜀犴作為弟-除極15,第二陽極 7矛弟二%極19,並將所述第一陽極 第三陽極19盥上述第一陪弟一除極17和 Π… 線2〇,第二陽極引線21和 弟二%極引線22 —端分別電性連接。 :述第-陽極15’第二陽極17和第三陽極19呈一等 二角:放置。可以理解’所述第—陽極Μ,第二陽極” 整U的位置關係可根據需要進行適當的調 J in ΑΛ —陽極17和第三陽極19的金 焊技術與第—陽極引線2〇,第二陽極引 極引線22 一端分別電性連接。本技術方荦 =例中,該金層杆優選的為錄 ^ 至1厘米。將每個金屬杆山 Μ為100微未 知面151、第二端面171知策 和弟三端面191。該第 第-端面⑴m面拋光,得到拋光的 端β 16 200924009 15卜第二端φ 171#第三端面191可為平面、半球面、球 面、錐面、凹面或其他形狀端面。 步驟三’提供三種顏色的螢光粉層,並將所述三種顏 色,螢光粉分別設置於所述第一端面151、第二端面⑺ 和弟二端面m表面上’形成一第一螢光粉層i4,一第二 螢光粉層16和一第三螢光粉層18。 將上述螢光粉採用塗敷或沈積的方法設置於所述第一 端面15、1、第二端S171和第三端面m表面上。所述營 ,粉可為白色螢絲,也可為單色螢絲,如紅色,綠色, ,色螢光粉等。所述第—端面151、第二端面Μ和第三 端面191表面上螢光粉的顏色可相同也可不同。 步驟四,提供一金屬絲作為陰極支撐體124 ,並將該 陰極支撐體124與上述陰極引線13 一端電性連接。” 將陰極支撐體m與陰極引線13一端電性連接的方法 為點焊法。本技術方案實施例中,陰極支撐體124 鎳絲。 步驟五,提供一第一陰極發射體121,一第二陰極發 射體122和一第三陰極發射豸123,並將所述第一陰極發 射體121’第二陰極發射體122和第三陰極發射體123^ 所述陰極支撐體124遠離陰極引線13的一端電性連接,形 成一場發射像素管1〇〇預製體。 乂 一所述第一陰極發射體121 ,第二陰極發射體122和第 一陰極發射體123為奈米碳管長線,單根奈米碳管,單根 奈米碳纖維或其他場發射電子源。本技術方案實施例中, 17 200924009 所述第一陰極發射體121,第二陰極發射體i22和第三吟 極發射體⑵優選為奈米碳管長線。叾中,該奈米碳管: 2的長度為0.1毫米至10毫米,直徑為丄微米至工毫米。 奈米碳管長線通過導電膠與陰極支撐體124 一端電性連 接。、料的每個陰極發射體與陽極的設置可為録位置關 係。以第一陰極發射體121和第一陽極15之間的位置關係 為例二可使第一陰極發射體121的第一電子發射端125與 所述第-陽極15的第-端面151正對設置;可使奈米碳管 ,線與金屬杆軸向成—銳角;可使第—陰極發射體i2i的 弟-:子發㈣125與所述第一陽極15的第一端面ΐ5ι 斜對設置;可使奈米碳管長線與金屬杆轴向互相垂直或平 行’、,第一陰極發射體121的第一電子發射端125設置在 所述第-陽極15的第一端面151附近。其中,第一陰極發 =體121的第—電子發射端125與所述第—陽極15的第— 端面151之間的距離依據場發射像素管的大小進行調整。 本技術方案實施例中第一陰極發射體121的第一電子發射 端^125與所述第一陽極15的第一端面151之間的距離小於 5毫米。所述第二陰極發射體122和第二陽極“及第三陰 極發射體123和第三陽極17之間的位置關係與所述第一= 極發射體121和第一陽極15之間的位置關係可相同也可; 同。 ★奈米碳管長線遠離所述陰極支撐體124的一端可作為 第:陰極發射體121的第一電子發射端125、第二陰極發 射體I22的第二電子發射端126和第三陰極發射體123的 18 200924009 第三電子發射端127。所述第—電子發射端125、第二電子 發射端m和第三電子發射端127可包括多個平行排列且 3長Λ::=米碳管束’也可包括多個突出的場發射尖端 下步: 一陰極發射體121為例,其具體包括以 首先’提供—超順排奈求碳管陣列形成於-梦基板上。 其次,從上述超順排奈米碳管陣列中抽出一夺米碳管 ==碳管絲’通過使用有機溶劑或者施加機械外 心切Η膜或者奈米碳管絲得到-奈米碳管長 線0 :超::奈米碳管陣列中抽出_束奈求碳管時,相鄰 的作用而相互連接在-起而形 成不、未石反吕薄膜或一奈米石炭管絲。本實施例中,也 用扭轉紡紗技術製備一奈米碳管長線。 最後,使上述奈米碳管長線斷裂, 極發射體121。 j弟^ 燒灼Si奈:碳管長線斷裂的方法為機械切割法或鐳射 k灼炫斷法。奈米碳管長線斷裂後 -電子發射减1… 斷點形成兩個第 子Si 其中,採用機械切割法得到的第-電 支'广125包括多個平行排列且長度-致的奈米碳管 ί個=錯射燒灼溶斷法得到的第一電子發射端125包括 突出Ϊ 端I且每個場發射尖端30的頂端 犬出有一根奈米碳_管301。 步驟六,提供-玻璃管作為殼體1〇,將上述場發射像 19 200924009 •素管100預製體封裝在 .100。 长坡璃官内,得到一場發射像素管 玻璃管為一端開口, 包括以下步驟: 另封口的玻璃管。封裝具體 爷姑It將上述場發射像素管100預製體通過管壁裝入 ;孔 並對開口進行密封,密封時在密封處留:排 空,=體孔外接真空泵,用以將殼體10抽真 便A又體10内達到一定的真空度。 二後’密封排氣孔,得到—場:射像素管100。 還解’在封裝上述場發射像素管⑽前,進一步 遇可在%發射像素管7 設置於殼體10内壁。 置—吸氣劑23,該吸氣劑23 提出確已符合發明專利之要件’遂依法 專】申广惟,以上所述者僅為本發明之較佳實施例, 之人:r::制本案之申請專利範圍。舉凡熟悉本案技藝 發明之精神所作之等效修飾或變化,皆應涵 盍於以下申凊專利範圍内。 20 200924009 [圖式簡單說明】 圖。圖1係本技術方案實施例的場發射像素管的結構示意 圖2係圖1的俯視示意圖。 圖3係圖丄中第— 大示意圖。 知射體的弟-電子發射端的放 圖4係本技術方案實施例的第 子發射端的掃描電鏡照片。 &射體的第-電 圖5係本技術方案實施例的 子發射端中場發射尖端的透射電鏡照片。發射體的第〜電 S 6係本技術方案實施例 的流程示意圖。 讀射像素管的製備方法 主要元件符號說明 殼體 10 出光部 11 陰極 12 陰極引線 13 第一螢光粉層 14 第一陽極 15 第二螢光粉層 16 弟二陽極 17 第三螢光粉層 18 第二陽極 19 第一陽極引線 20 21 200924009 *· 第二陽極引線 21 . 第三陽極引線 22 吸氣劑 23 場發射尖端 30 場發射像素管 100 第一陰極發射體 121 第二陰極發射體 122 第三陰極發射體 123 陰極支撐體 124 第一電子發射端 125 第二電子發射端 126 第三電子發射端 127 第一端面 151 第二端面 171 第三端面 191 ί 奈米碳管 301 22BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field emission device, and more particularly to a field emission pixel tube. [Prior Art] Carbon Nanotube (CNT) is a new type of carbon material. This was discovered in 1991 by the researchers. The "Microtubules of Graphitic Carbon", S. Nature, νο1·354, Ρ56 (1991). The carbon nanotubes have a very large aspect ratio (the length of which is above the order of micrometers, only a few nanometers or tens of nanometers in diameter), have good 'electrical thermal conductivity, and there is still very Good mechanical strength and good chemical stability H make carbon nanotubes an excellent field emission material. Therefore, the application of nano carbon tubes in field emission devices has become a research hotspot in the field of nanotechnology. The carbon nanotube long-line is a carbon tube material prepared from a super-sequential carbon nanotube array. First, the carbon nanotube film is taken out from the super-sequential carbon nanotube array, and then the organic solution is shrunk into a fiber or The method of material transfer is screwed into a rope. This linear carbon nanotube material has a macroscopic scale, which is very convenient for the two operations. The end face of the long carbon nanotube has a good % emission capability. One A good field emission electron source. The field emission pixel tube is an important application field of the carbon nanotube field emission electron source. The previous field emission image (4) includes a hollow shell, and the inner wall of the light exit portion is sequentially coated. The phosphor powder layer and the portion opposite to the light exiting portion have a cathode emitter, and the polar emitter includes a long line of carbon nanotubes as a field emission electron source. When the 200924009 5 field emission pixel tube works as an electric field, the electric field passes through The effect is to make the cathode in the 'body:::::$ voltage form = the anode layer is hitting the light powder layer;; = emitting the electron 'electricity is required ^' has a good pixel cathode tube of the cathode, because. = 尺先:; large coating on a surface inside the casing, subject to the dressing process: This makes the application based on the centimeter level of the terameter ' or larger, limited, for example, the application of the % ray p is greatly large Outdoor display: The :: tube can not be used to assemble a higher resolution, 'the first image with a carbon nanotube cathode emitter, the cathode and anode need to be accurately aligned, manufacturing Work will be sweet: private s, α σ rate is low. Also 'previous The preparation method of the tube is firstly carried out on the inner wall of the casing, and then deposited on the phosphor layer - the layer is released, and then the money layer is deposited on the organic layer, and finally the organic substance i is emitted, and the manufacturing process More complicated. ..., the tube provides a field emission image that is small in size and easier to manufacture. [Inventive content]: a field emission pixel tube comprising: a housing and a cathode disposed in the housing, at least three An anode and a phosphor layer disposed on the surface of the anode, wherein the cathode is spaced apart from each anode m, the cathode is in a package of at least two cathode emitters, and the at least three cathode emitters are V-electrodes are correspondingly disposed, and each of the cathode emitters includes an electron-emitting end, and electron-emitting ends of the at least three cathode emitters are respectively disposed near the anode surface corresponding thereto. 200924009 Compared with the prior art, the cathode emitter of the field emission pixel tube is a long carbon nanotube tube, the anode is a metal cup, and each anode end surface is provided with a color phosphor layer.射德丰_ 琢 像素 官 has the following advantages: -, by controlling the anode voltage of the phosphor layer provided with no color, the different color of the phosphor layer respectively emits a (four) degree of monochromatic light Therefore, it is combined with different color (four) mixed color light, so that the field display pixel tube color display; second, the field emission pixel tube is small in size, the light emitting area can reach the order of millimeters or even smaller 'in &' can be used Assembling a large outdoor display with high definition; thirdly, such a field emission pixel tube is easier to manufacture, has a low preparation cost, and is easy to implement for mass production. [Embodiment] Hereinafter, the present technical solution will be further described in detail with reference to the accompanying drawings. Referring to FIG. 1 and FIG. 2, the embodiment of the present invention provides a field emission pixel tube 100, which includes a casing 1 and a cathode 12. A first phosphor layer 14, a first phosphor layer 16, a third phosphor layer i§, a first anode 15, a second anode 17, and a third anode 19. The cathode 12 is disposed in the housing 10 at intervals from the first anode 15, the second anode 17, and the third anode. The cathode 12 includes a first cathode emitter 121', a second cathode emitter m, and a third cathode emitter ι23. The first cathode emitter 121, the second cathode emitter 122, and the third cathode emitter 123 respectively include a first electron emitting end 125, a second electron emitting end 126, and a third electron emitting end 17. The first electron emitting end 125, the second electron emitting end 126, and the third electron emitting end 17 are respectively adjacent to the first and second anodes 15, the second anode 17 and the third anode i9, and the first anode 15 includes a first portion. In addition, the second anode 17 includes a second end face 171, and the third anode 19 includes a first phosphor powder layer 14 disposed on the first; ^ face 191 ° (four) face, the second phosphor powder two, set == - end face Λ 山 mountain worm layer 丄 6 double placed on the surface of the second anode 17 of the second anode 17 'the said A third camp light layer 18 is disposed on the surface of the third end surface 191 of the third anode 19. The double body 1G is a vacuum sealed structure. The housing (7) includes a portion /1'. The light exit portion U is disposed opposite the first end surface (5) and the second end surface such as an end surface 191. The material of the casing 1 is - a transparent material such as a stone or glass. In the embodiment of the technical solution, the casing (7) is a transparent glass cylinder, and the casing has a diameter of 2 mm to ι〇='f degrees of 5 mm to 50 mm. It can be understood that the housing 10 is also selected as a hollow transparent cube, a hollow transparent triangular prism or other hollow transparent polygonal prisms. Those skilled in the art can select according to actual conditions. The cathode 12 further includes a cathode support 124, which is an electrical conductor such as a wire or a metal rod. The cathode support body 124 is not limited in shape and is electrically conductive and has a constant strength. The cathode support 124 described in the embodiment of the present invention is preferably a nickel wire. The first cathode emitter 121, the second cathode emitter 122, and the third cathode emitter (2) are electrically connected to one end of the cathode support 124. The field emission pixel tube 100 further includes a cathode lead 13 passing through the cathode away from the first cathode emitting body 121, the second cathode emitter 122, and the end of the second cathode emitter 123. A lead 13 is attached to the outside of the bite body 10. The first cathode emitter 121 'the second cathode emitter 122 and the third cathode emitter 123 may be selected from a long carbon nanotube line, a single carbon nanotube, a single nano carbon fiber or other field emission electron source. . In the embodiment of the technical solution, the first cathode emitter 121, the second cathode emitter and the third cathode emitter 123 are each preferably a carbon nanotube long line. The long length of the nano-carboniferous pipe is from 0 J to 1 mm, and the diameter is from 丄 micro: to (10) microns. The Nile carbon nanotube long-line is a bundle structure composed of a plurality of parallel end-to-end connected carbon nanotube bundles or a stranded structure composed of a plurality of end-to-end connected carbon nanotubes, the adjacent carbon nanotube bundles. Between the van der Waals tight bundles comprising a plurality of aligned nanocarbon s. The carbon nanotubes in the long line are single-walled, double-walled too + carbon tubes. The length of the carbon nanotubes ranges from 1 () to 2 ^ and the diameter of the carbon tubes is less than 5 nm. The eucalyptus does not use the first cathode emitter 121. The emitter m uses the nano-mussels. The cathode-cathode includes a plurality of field emission tips 30. The first electron-emitting end 125 can be packaged. Or a flat ^, the structure of the body 121 can effectively lower the first cathode emission effect. Referring to Figure 3, the electric field screen of the first body 121 protrudes from the field emission tip 30. The child's emitter 125 can include a plurality of root carbon nanotubes. Please refer to:: hair, the top end of the end 3〇 protrudes - 125; r ^ the emitter end 125 includes a plurality of protruding field hair ends - end 3 ==: 11 200924009 The first electron emitter end 125 of the second cathode emitter 121 On the TEM photograph, it can be seen that a nano-carboniferous tube 301 protrudes from the top end of the field emission tip 3 in the first electron-emitting end 125. The carbon nanotubes 3〇1 at the (four) end of the field emission tip 3 in the first cathode emitter 121 are tightly coupled with other carbon nanotubes remote from the top end of the field emission terminal 30, so that the nanometer at the top end of the field emission center 30 The heat generated by the carbon tube during field emission can be effectively conducted and can withstand strong electric field forces. It will be understood that the second electron emitting end 126 and the third electron emitting end 127 may also include a plurality of field emission tips or flat end faces. The first anode 15, the second anode 17, and the third anode 曾 which have been described are both: "electric body" such as a metal rod. The first anode 15, the second anode 17, and the f anode 19 are not limited in shape, and are capable of conducting heat and having a constant strength. In the present invention, the first anode 15, the second anode Η and the first drain 19 are preferably nickel metal rods. The diameter of the metal rod is micrometer to = 彳 to understand that the diameter of the metal rod can be selected according to actual needs. A-anode 15, the second anode 17 and the third anode 19 are in an equilateral three = placed 'where the cathode 12 is disposed at the center of the equilateral triangle. Gate of °: T * The positional relationship of the first anode 15 'the second anode 17 and the third anode 19' can be adjusted as needed. The first anode includes a polished first end surface 151, and the second anode 17 includes a polished second end surface 171, $2 @ (9). The third end face polished by the first end face is a sheep, the second end face 171 and the third end face (9), a hemispherical surface, a spherical surface, a tapered surface, a concave surface 戋i 0 & π said the first end surface m, Dimensional shape end face. The younger face 171 and the third end face 191 can reflect the firefly 12 200924009 silk layer: the light emitted. The field emission pixel tube ι anode lead 20 and a second anode lead 1 include a first first anode 12 remote from the first-last second electrode lead 22. ^At one end of the face 151, the flute-technical 17 is forced away from the end of the second end face 171 and the third anode 19逹:: one end of the end face 191 passes through the second line 21 and the third anode lead The anode is coated with the first-light powder layer: 4 =: outside the casing 10. The toner layer 18 is placed on the surface of the first powder layer 16 and the third firefly third end surface m. / Description: face:; second coffee, v a , ^ yidi - phosphor powder layer 14, the first 罄 粉 powder layer W and the third layer of phosphor powder 18 一 萤 萤 first fluorescent powder. The life is a different color of the f first private field buns bombarded the first _ fluorescent powder layer (4) layer 16 and the third fluorescent powder layer 1δ can be private light, the first - fluorescent powder layer 14 'second firefly A light powder deposition method or a coating method is provided on the surfaces of the first and second end faces 171 and 191. Layer 14, the second phosphor layer 16 kg reaches the first phosphor powder to 5 meters. Micron, understanding, by - said Xin „ Jing You Yang layer 14, brother two firefly “layer 16 and brother three fluorescent powder layer 18 can also enter - anode 15, second anode 17 and the first: Jin Shudi as long as the said - Cathode emitter 121, electrons emitted by second cathode J cathode emitter 123 can be applied to said: (T) second phosphor powder layer (4) third camp powder layer 18. The settings for each gambling (4) and anode of the first 可 can be set. The first electron emitting end 125 of the first pole emitter 121 is between the first cathode 15 and the first anode 15 and the first anode 15 is connected to the first electron emitting end 125 of the first pole emitter 121. The first end of the first _15 can be disposed opposite to the 151. The carbon carbon tube length j is axially set to m; the second::: emitter end 125 of the first cathode emitter 121 is obliquely opposite to the first end surface i5i 3 of the first anode 15; The tube long line and the metal rod are axially perpendicular to each other or: 'The first electron emitting end 125 of the first cathode emitter 121 is disposed near the first end face ΐ5ι of the first anode 15. The distance between the first electron emitter end 125 of the first electrode = body m and the first end face 151 of the first positive (four) is adjusted according to the size of the field emission pixel tube. In the embodiment of the technical solution, the first electron emitter end 125 of the first cathode emitter 121 is less than 5 mm from the first yang yang 1 <;& It is understood that the distance between the first and second ends of the pole 15 is equal to the first cathode emitter 121, the body m, and the third cathode emitter 123, respectively, between the first anode and the second anode The positional relationship is not limited, and it is only necessary to ensure that the emitter == body 121 electron emitting end 125, the second cathode emitting body m, the second electron emitting end 126 and the third cathode emitter: the electron emitting end m The first phosphor powder layer 14, the first powder layer 16 and the third glory powder layer 18 are respectively adjacent to the first phosphor powder layer 14. Therefore, the emitter emitter m, the second cathode emitter, the second cathode emitter 123 and the first anode 14, the second anode μ, and the second anode 18 do not need to be precisely aligned, thereby making it easier to manufacture. In addition, the field emission pixel tube (10) further includes a getter 23' on the inner wall of the casing 用于 for adsorbing the vacuum inside the field emission pixel tube (10), and the inside of the quasi-field-emitting pixel tube (10). The getter Μ can be an evaporable getter metal film formed on the inner wall of the casing 1G by high-frequency heating of the ore after the casing 1 is sealed. The getter 23 may also be non-evaporable m fixed on the cathode 12 or on a separate cathode lead 13. The material of the non-evaporable getter 23 mainly includes titanium, a junction, a feed, a rare earth metal and an alloy thereof. When the field emits a pixel tube (10), a voltage is applied between the first anode 17, the third anode 19, and the cathode η of the first anode 15 to form an electric field, and the first cathode emitter 121 is applied by an electric field. The two cathode emitters 122 and the third cathode emitters 123 emit electrons, and the emitted * =: _, 1 two anodes 17 and third anodes 19, respectively, the 'th, the wide side 151, the other side 171 and the third The end surface 191 surface toner layer 14, the second phosphor layer 16, and the third phosphor layer 18, 2 visible light. Wherein, part of the visible light directly passes through the light exiting portion U opposite to the exit surface 15], the second end surface 171 and the third end ...: the other portion of the visible light passes through the first end surface 151 and the second end surface i7i And emitting the pixel official (10) through the light emission (4) because the first phosphor powder layer 14, the second camping powder, and the second phosphor powder layer 18 are respectively disposed on the first end surface 15 In the above, the preparation process is avoided: the volume can be made smaller, and the light-emitting area can be achieved. The group has a large outdoor display with high definition. Secondly, the first anode 15 and the second anode in the pixel tube 100 do not need precise alignment between the field emission 19 and the cathode 12. Therefore, the field emission pixel tube 1〇0 uses a metal rod. It is used as the first anode 15 and mold. The utility model has the advantages that the clothing cost is low, and the method of preparing the field emission pixel S 100 is further provided. The method includes the following steps: A metal lead, a wide edge 22; an anode lead 20, a second anode lead 21, a third anode bow line 22 and a cathode lead 13. The four golds are made of glass and are shackled into a glass stem.哼 属 属 成 成 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常In the second step, three metal rods 17 are provided, 坌l 蜀犴 as the younger-defining pole 15, the second anode 7 is the second pole 19, and the first anode third anode 19 is the first accompaniment In addition to the poles 17 and Π ... line 2 〇, the second anode lead 21 and the second pole lead 22 are electrically connected. The first anode 17 and the third anode 19 are in the same angle: placed. It can be understood that the positional relationship of the 'the first anode and the second anode' can be appropriately adjusted as needed. The gold welding technique of the anode 17 and the third anode 19 and the anode lead 2〇, One end of the two anode lead wires 22 are electrically connected respectively. In the example of the present technology, the gold layer rod is preferably recorded to 1 cm. Each metal rod is made up of 100 micro unknowns 151 and the second end face. 171 knows the policy and the third end face 191. The first end face (1) m face is polished to obtain a polished end β 16 200924009 15 b second end φ 171 # third end face 191 can be a plane, a hemisphere, a sphere, a cone, a concave surface Or other shape end faces. Step 3' provides a phosphor layer of three colors, and the three colors, phosphor powder are respectively disposed on the first end surface 151, the second end surface (7) and the surface of the second end surface m a first phosphor layer i4, a second phosphor layer 16 and a third phosphor layer 18. The phosphor is applied to the first end face 15, 1 by coating or deposition. The second end S171 and the third end surface m are on the surface. The camp, the powder can be white flutter It may also be a monochromatic filament such as red, green, or fluorescene powder, etc. The colors of the phosphor powder on the surfaces of the first end surface 151, the second end surface Μ and the third end surface 191 may be the same or different. 4. A wire is provided as the cathode support 124, and the cathode support 124 is electrically connected to one end of the cathode lead 13. The method of electrically connecting the cathode support m to one end of the cathode lead 13 is a spot welding method. In the embodiment of the technical solution, the cathode support body 124 is a nickel wire. Step five, providing a first cathode emitter 121, a second cathode emitter 122 and a third cathode emitter 123, and emitting the first cathode emitter 121' the second cathode emitter 122 and the third cathode The body 123 is electrically connected to one end of the cathode support 124 away from the cathode lead 13 to form a field emission pixel tube 1 〇〇 preform. The first cathode emitter 121, the second cathode emitter 122 and the first cathode emitter 123 are long carbon nanotube tubes, single carbon nanotubes, single nano carbon fibers or other field emission electron sources. In the embodiment of the technical solution, the first cathode emitter 121, the second cathode emitter i22 and the third anode emitter (2) described in 17200924009 are preferably long carbon nanotube tubes. In the middle, the carbon nanotubes: 2 have a length of 0.1 mm to 10 mm and a diameter of 丄 micron to mm. The long carbon nanotube wire is electrically connected to one end of the cathode support 124 through a conductive paste. The arrangement of each cathode emitter and anode of the material can be recorded. Taking the positional relationship between the first cathode emitter 121 and the first anode 15 as an example, the first electron emitter end 125 of the first cathode emitter 121 and the first end surface 151 of the first anode 15 may be disposed opposite each other. The carbon nanotubes, the wire and the metal rod may be axially formed at an acute angle; the first-end hair (four) 125 of the first cathode emitter i2i may be obliquely disposed with the first end surface ΐ5 of the first anode 15; The first electron emitting end 125 of the first cathode emitter 121 is disposed adjacent to the first end surface 151 of the first anode 15 such that the long carbon nanotube and the metal rod are axially perpendicular or parallel to each other. The distance between the first electron emitting end 125 of the first cathode emitting body 121 and the first end surface 151 of the first anode 15 is adjusted according to the size of the field emission pixel tube. In the embodiment of the technical solution, the distance between the first electron-emitting end 125 of the first cathode emitter 121 and the first end surface 151 of the first anode 15 is less than 5 mm. Positional relationship between the second cathode emitter 122 and the second anode "and the third cathode emitter 123 and the third anode 17 and the positional relationship between the first emitter emitter 121 and the first anode 15 The same may be used. The same: The end of the nano carbon tube long line away from the cathode support 124 may serve as the first electron emission end 125 of the cathode emitter 121 and the second electron emission end of the second cathode emitter I22. 126 and third cathode emitter 123 18 200924009 third electron emitting end 127. The first electron emitting end 125, the second electron emitting end m and the third electron emitting end 127 may comprise a plurality of parallel arrays and 3 long Λ The ::= m carbon tube bundle ' may also include a plurality of protruding field emission tips as follows: A cathode emitter 121 is exemplified, which specifically includes first forming a super-sequential carbon nanotube array formed on a dream substrate. Secondly, extracting a carbon nanotube from the above-mentioned super-sequential carbon nanotube array==carbon tube filament' is obtained by using an organic solvent or applying a mechanical external tangent film or a carbon nanotube wire to obtain a long-term carbon nanotube 0: Super:: Extracted from the carbon nanotube array When the carbon tubes are adjacent to each other, they are connected to each other to form a non-stone anti-lu film or a nano-carbon tube yarn. In this embodiment, a long carbon nanotube tube is also prepared by a twist spinning technique. Finally, the above-mentioned nano carbon tube is broken, and the emitter is 121. J brother ^ Burning Si Nai: The method of long-term fracture of the carbon tube is mechanical cutting or laser k-shearing method. After the long-term fracture of the carbon nanotubes - electron The emission is reduced by 1... The breakpoint forms two first sub-Sis. Among them, the first electric branch obtained by mechanical cutting method has a plurality of parallel rows and length-induced carbon nanotubes. The resulting first electron-emitting end 125 includes a protruding end I and a tip carbon nanotube 301 is provided at the top end of each field-emitting tip 30. Step six, providing a glass tube as the housing 1〇, the above-described field emission Like 19 200924009 • The plain tube 100 prefabricated body is packaged in .100. Inside the long slope glass, a glass tube with a launching pixel tube is opened at one end, including the following steps: Another sealed glass tube. The package specific geek It will launch the above field The pixel tube 100 preform is loaded through the tube wall The hole is sealed and the opening is sealed. When sealing, it is left in the seal: emptying, and the body hole is connected with a vacuum pump, so that the casing 10 can be pumped to a certain degree of vacuum in the body A and the body 10. Hole, get-field: shoot pixel tube 100. Also solution ' before encapsulating the field emission pixel tube (10), further encounter the % emission pixel tube 7 is disposed on the inner wall of the casing 10. Placement - getter 23, the getter Agent 23 proposes that it has met the requirements of the invention patent '遂 】 According to the law, Shen Guangwei, the above is only the preferred embodiment of the present invention, the person: r:: the patent application scope of the case. Equivalent modifications or changes made by the spirit shall be covered by the following claims. 20 200924009 [Simple diagram of the diagram] Figure. 1 is a schematic structural view of a field emission pixel tube according to an embodiment of the present technical solution. FIG. 2 is a schematic top view of FIG. Figure 3 is the first large schematic of the figure. The emitter of the emitter-electron emitting end is shown in Fig. 4 as a scanning electron micrograph of the first emitter of the embodiment of the present technical solution. The electro-optical image of the field-emitting tip of the sub-emitter end of the embodiment of the present technical solution is a TEM image of the emitter of the present invention. The first to the electric S 6 of the emitter is a schematic flow chart of the embodiment of the present technical solution. Preparation method of reading pixel tube Main component symbol housing 10 light exiting portion 11 cathode 12 cathode lead 13 first phosphor layer 14 first anode 15 second phosphor layer 16 second anode 17 third phosphor layer 18 second anode 19 first anode lead 20 21 200924009 *· second anode lead 21. third anode lead 22 getter 23 field emission tip 30 field emission pixel tube 100 first cathode emitter 121 second cathode emitter 122 Third cathode emitter 123 cathode support 124 first electron emission end 125 second electron emission end 126 third electron emission end 127 first end surface 151 second end surface 171 third end surface 191 ί carbon nanotube 301 22

Claims (1)

200924009 十、申請專利範圍 1 · 一種場發射像素管,宜肖括一私驶β 4 一 括"又體及设置於該殼體内的 了個陰極,其改良在於,該場發射像切進—步包括至 個陽極和設置於該陽極表面的鸯光粉層,所述陰極 與母個刼極間隔設置,豆中,所沭 搞恭如挪 1 所述陰極包括至少三個陰 極毛射體’該至少三個陰極發射體與所述至少三個陽極 —對應設置。 一 2. 如令請專利範圍第巧所述的場發射像素管,其中,所 陰極發射體包括一電子發射端,所述的每個電子 孓射鳊为別靠近與之對應的陽極表面設置。 3. 、如申請專利範圍第巧所述的場發射像素管,其中 = ΐ = :步包括一陰極支撐體,所述每個陰極發射 =離電子發射端的另-端分別與該陰極支樓體電性 4. 二申請專利範圍第1項所述的場發射像素管,其中,所 述陽極的數量與陰極發射體的數量相等。 5. 如申請專利範圍第㈣所述的場發射像素管,盆中 述的每個陽極進一步句括一办山品 ^ 、 n 進〃已括^面,所述的螢光粉層'設 置在所述母個陽極的端面上。 6. 如申請專利範圍第!項所述的場發射像素管,t中 ==三個陽極表面的榮光粉層中包含不同顏色的 7. 如申,專利範圍第1項所述的場發射像素管,其中,所 述的每個陽極分別通過—陽極引線連接到殼體外。 8. 如申請專利範圍第5項所述的場發射像素管,其中,所 23 200924009 .二的二面專為二光的平面、半球面、球面、錐面或凹面。 述的陽極為-金屬杆。 像^,其中,所 10.如申請專利範圍第9項所述的場發射像 所述的金屬杆直徑為100微米至1厘米。、g八 11·如中請專利範圍第i項所述的場發射像素 所述的陰極發射,、 /、中, /或單根奈米為 長線、單板奈米破管 12所tit專利範圍第2項所述的場發射像素管,i中, 13 J申::發射端包括多個突出的場發射尖端。 所述的1=利_第12項所述的場發射像素管,其中, 14 發射尖端的頂端突出有一根奈米碳管。 所诚專利範圍第2項所述的場發射像素管,1中, 置子發射端正對陽極表面設置 5又置或設置在陽極表面附近。 ㈣表面 15所請專利範圍第2項所述的場發射像素管,並中, 5毫求、。母個電子發射端與對應的陽極表面的距離小於 16所^請專利範圍第1項所述的場發射像素管,其中, 體::殼體為-中空透明的圓柱體、t空透明的立方 體或中空透明的三棱柱。 月的立方 如申明專利範圍第工項所述的場發射像素管 所迷的場發射德去其 ,、甲, 内。 素&進—步包括一吸氣劑位於殼體 24200924009 X. Patent application scope 1 · A field emission pixel tube, which should be a private drive β 4 1 " and a cathode disposed in the housing, the improvement is that the field emission image is cut into - The step includes an anode and a phosphor layer disposed on the surface of the anode, the cathode being spaced apart from the parent bungee, and the bean is plucked by 1 and the cathode includes at least three cathodes. The at least three cathode emitters are disposed corresponding to the at least three anodes. A field emission pixel tube as described in the scope of the patent, wherein the cathode emitter comprises an electron emitting end, and each of the electron emitting electrodes is disposed adjacent to an anode surface corresponding thereto. 3. The field emission pixel tube as described in the patent application scope, wherein = ΐ = : the step comprises a cathode support, and each cathode emission = the other end from the electron emission end and the cathode branch body respectively The field emission pixel tube of claim 1, wherein the number of the anodes is equal to the number of cathode emitters. 5. If the field emission pixel tube described in the fourth paragraph of the patent application is applied, each of the anodes described in the basin further includes a mountain product, a n-input surface, and the phosphor layer is disposed in the On the end face of the mother anode. 6. If you apply for a patent scope! The field emission pixel tube according to the item, wherein the glory powder layer of the three anode surfaces contains different colors. 7. The field emission pixel tube of claim 1, wherein each of the said The anodes are respectively connected to the outside of the casing through an anode lead. 8. The field emission pixel tube according to claim 5, wherein the two sides of the 23 200924009 . are two planes, a hemisphere, a sphere, a cone or a concave surface. The anode described is a metal rod. A metal rod having a diameter of from 100 micrometers to 1 centimeter as described in claim 9 of the invention. G8 11. The cathodic emission of the field emission pixel described in item i of the patent scope, /, medium, / or single nanometer is the long-line, single-plate nano-tube 12 tit patent range The field emission pixel tube of item 2, i, 13: the emitter includes a plurality of protruding field emission tips. The field emission pixel tube according to Item 12, wherein the top end of the emission tip protrudes with a carbon nanotube. In the field emission pixel tube of claim 2, the emitter end of the set is disposed opposite to the anode surface or disposed near the anode surface. (4) Surface 15 The field emission pixel tube described in item 2 of the patent scope is requested, and 5 milliseconds. The distance between the parent electron emitting end and the corresponding anode surface is less than 16. The field emission pixel tube of the first aspect of the patent scope, wherein: the housing is: a hollow transparent cylinder, a t-transparent cube Or a hollow transparent triangular prism. The cube of the moon, such as the field emission pixel tube described in the project of the patent scope, is the field emission of the field, and it is inside, A, and. The prime & step comprises a getter located in the housing 24
TW96145612A 2007-11-30 2007-11-30 Field emission pixel tube TWI362676B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96145612A TWI362676B (en) 2007-11-30 2007-11-30 Field emission pixel tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96145612A TWI362676B (en) 2007-11-30 2007-11-30 Field emission pixel tube

Publications (2)

Publication Number Publication Date
TW200924009A true TW200924009A (en) 2009-06-01
TWI362676B TWI362676B (en) 2012-04-21

Family

ID=44728868

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96145612A TWI362676B (en) 2007-11-30 2007-11-30 Field emission pixel tube

Country Status (1)

Country Link
TW (1) TWI362676B (en)

Also Published As

Publication number Publication date
TWI362676B (en) 2012-04-21

Similar Documents

Publication Publication Date Title
CN101441972B (en) Field emission pixel tube
CN102074442A (en) Field emission electronic device
CN102024653B (en) Field emission unit and field emission pixel tube
TWI356438B (en) Field emission pixel tube
TW200924009A (en) Field emission pixel tube
CN101425443B (en) Field emission pixel tube
TWI386966B (en) Field emission display
TW483016B (en) Manufacturing method of electron emitter stack and structure of field emission display
TWI330379B (en) Field emission pixel tube
CN101441969B (en) Field emission pixel tube
TWI393160B (en) Field emission cathode structure and display using the same
CN102013376B (en) Field emission unit and field emission pixel tube
CN102024654B (en) Field emission pixel tube
TW200905714A (en) Field emission pixel tube
TWI364055B (en) Field emission light source
TWI427662B (en) Field emission cathod device and field emission display
TWI337370B (en) Ambipolar field emission pixel tube
TWI321804B (en) Field emission tube and method for making the same
TW201225140A (en) The field emission unit and the field emission pixel tube
TWI386964B (en) Electron emitter and displaying device using the same
TWI436399B (en) The field emission unit and the field emission pixel tube
TWI383420B (en) Electron emitter and displaying device using the same
TW200921738A (en) Field emission electron source and method for making the same
TW200807482A (en) Field emission pixel tube
TW201135791A (en) Method for making field emission device