TW200923424A - System and method for slanted aspherical lens machining - Google Patents

System and method for slanted aspherical lens machining Download PDF

Info

Publication number
TW200923424A
TW200923424A TW096143473A TW96143473A TW200923424A TW 200923424 A TW200923424 A TW 200923424A TW 096143473 A TW096143473 A TW 096143473A TW 96143473 A TW96143473 A TW 96143473A TW 200923424 A TW200923424 A TW 200923424A
Authority
TW
Taiwan
Prior art keywords
processing
machining
tool
workpiece
oblique
Prior art date
Application number
TW096143473A
Other languages
Chinese (zh)
Other versions
TWI427447B (en
Inventor
Jun-Qi Li
Miao-An Ouyang
Qing Liu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW096143473A priority Critical patent/TWI427447B/en
Publication of TW200923424A publication Critical patent/TW200923424A/en
Application granted granted Critical
Publication of TWI427447B publication Critical patent/TWI427447B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

The present invention provides a system for slanted aspherical lens machining. The system includes: a track designing module for designing a machining track curve of a workpiece; a parameter setting module for setting a tool radius and machining parameters; a track calculating module for calculating a tool path according to the machining track curve of workpiece; a code generating module for generating machining codes according to the tool path; a track displaying module for executing the machining codes and displaying the tool path. A method for slanted aspherical lens machining is also provided.

Description

200923424 九、發明說明: .. 【發明所屬之技術領域】 . 本發明涉及一種超精密加工系統及方法,特別涉及一 種斜軸非球面鏡面加工系統及方法。 【先前技術】 隨著科技的進步,超精密加工儀器亦不斷創新。工廠 雖已經有了精密及自動化機械,也需要相對應的加工儀器 以及正確的加工技術,高精度的產品製造才能達成。 / 非球面光學零件係一種非常重要的光學零件,常用的 有抛物面鏡、雙曲面鏡、橢球面鏡等。非球面光學零件可 以獲得球面光學零件無可比擬的良好的成像品質,在光學 系統中能夠很好的矯正多種像差,改善成像品質,提高系 統鑒別能力,它能以一個或幾個非球面零件代替多個球面 零件,從而簡化儀器結構,降低成本並有效的減輕儀器重 量。 近些年來,出現了許多種新的非球面超精密加工技 術,主要有:電腦數控單點金剛石車削技術、電腦數控磨 削技術、電腦數控離子束成形技術、電腦數控超精密拋光 技術和非球面複印技術等,這些加工方法,基本上解決了 各種非球面鏡加工中所存在的問題。前四種方法運用了數 控技術,均具有加工精度較高,效率高等特點,適於批量 生產。 目前,超精密加工係指加工精度為1〜Ο.ίμιη,表面粗 糙度為RaO.l〜Ο.ΟΙμιη的加工技術,但這個界限是隨著加 6 200923424 工技術的進步不斷變化的,今天的超精密加工可能就是明 天的一般加工。超精密加工所要解決的問題,一是加工精 度,包括形位公差、尺寸精度及表面狀況,有時有無表面 缺陷也是這一問題之核心;二是加工效率,有些加工可以 取得較好的加工精度,卻難以取得高的加工效率。超精密 加工應該包括微細加工和超微細加工、光整加工等加工技 術。 超精密加工之加工方法可分為直軸加工及斜轴加 工,直軸加工是指刀具之主轴與工件水平面垂直,斜轴加 工是指刀具之主轴傾斜於工件工件水平面。 然而,傳統的超精密加工人為參與過多,導致加工出 來的模具精度不高且加工效率低。而且,由於工藝的限制, 直軸加工只適用於加工較大的工件。 因此,有必要提供一種斜轴非球面鏡面加工系統及方 法,其可自動控制精密加工設備之刀具對小型工件進行斜 轴非球面鏡面精密加工,提高加工工件之精度性。 【發明内容】 鑒於以上内容,有必要提供一種斜軸非球面鏡面加工 系統及方法,其可自動控制精密加工設備之刀具對小型工 件進行斜轴非球面鏡面精密加工,提高加工工件之精度性。 一種斜軸非球面鏡面加工系統,其可控制精密加工設 備之刀具對工件進行斜軸加工,該系統包括:加工執跡設 計模組,用於根據需求設計出工件之加工軌跡曲線;加工 參數設置模組,用於設置刀具半徑及刀具加工參數;加工 7 200923424 .軌跡計算模組,用於根據所設計的工件之加工軌跡曲線計 . 算斜轴加工的刀具軌跡座標;加工代碼生成模組,用於根 . 據所述之刀具軌跡座標生成相應的加工代碼;及加工執跡 顯示模組,用於執行所述之加工代碼,顯示刀具斜軸加工 轨跡,依此刀具斜轴加工執跡可對工件進行斜軸非球面鏡 面力口工〇 一種斜軸非球面鏡面加工方法,其可控制精密加工設 備之刀具對工件進行斜軸加工,該方法包括如下步驟:根 據需求設計出工件之加工執跡曲線;設置刀具半徑及刀具 加工參數;根據所設計的工件之加工軌跡曲線計算斜軸加 工的刀具軌跡座標;根據所述之刀具軌跡座標生成相應的 加工代碼;及執行所述之加工代碼,顯示刀具斜轴加工軌 跡,依此刀具斜軸加工轨跡可對工件進行斜軸非球面鏡面 加工。 相較於習知技術,所述之斜轴非球面鏡面加工系統及 , 方法其可自動控制精密加工設備之刀具對小型工件進行斜 轴非球面鏡面精密加工,提高加工工件的精度性。 【實施方式】 參閱圖1、圖2所示,分別係本發明斜軸非球面鏡面 加工系統Y-Z平面刀具加工示意圖及X-Z平面刀具加工示 意圖。該斜轴非球面鏡面加工系統運行於精密加工設備的 電腦控制系統上或相應的數位控制設備上,用於控制精密 加工設備之刀具2之加工軌跡,以達到進一步對工件1進 行斜軸非球面鏡面加工的目的。所述之工件1可以係超硬 8 200923424 .合金材料的金屬工件,所述刀具2係一種精密加工設備中 . 對工件1進行超精密加工的鑽石砂輪刀具。如圖所示,DE 為工件1之中軸線,PQ為刀具2之中轴線,G點為刀具加 工過程中刀具2與工件1之切點,Ο點為刀具加工部分之 中心點,OG為刀具加工半徑,線段GT垂直於該G點處 加工曲面的切線。在刀具斜轴非球面鏡面加工過程中,所 述之工件1以其中軸線DE為軸進行轉動,所述之刀具2 以其中轴線PQ為軸轉動進而對工件1進行精密加工,同 f 時該刀具2須與工件1在Y-Z軸方向上有一傾斜角,也即 所述之線段GT與刀具2之中軸線PQ即不平行也不垂直, 以實現斜軸加工。 參閱圖3所示,係本發明斜軸非球面鏡面加工系統功 能模組圖。該斜軸非球面鏡面加工系統10主要包括加工執 跡設計模組11,加工參數設置模組12,曲線加圓處理模組 13,補償加工模組14,加工軌跡計算模組15,加工代碼生 成模組16及加工執跡顯示模組17。 -¾.. 所述之加工軌跡設計模組11用於根據需求設計出待 加工工件1的加工執跡曲線。在本實施方式中,所述待加 工工件1的加工軌跡曲線在XZ轴座標上可用公式表示為: v2 20 z=—?—7=====-+V A- k I1 ? 其中,R、K、Ai為非球面形狀定義參數,用於控制及 調整待加工的工件1加工執跡曲線。 所述之加工參數設置模組12用於設置刀具半徑及刀 9 200923424 具加工參數。所述之刀具加工參數包括刀具運行速度,切 割深度,切割速度等。 所述之曲線加圓處理模組13用於判斷是否需要對待 加工工件1的加工執跡曲線進行加圓處理,及用於當需要 進行加圓處理時,對待加工工件1的加工軌跡曲線進行加 圓處理。 所述之補償加工模組14用於判斷是否需要補償加 工,及當需要補償加工時,導入補償加工資料對所設計的 待加工工件1的加工執跡曲線進行補償處理。 所述之加工軌跡計算模組15用於根據加工軌跡設計 模組11所設計的待加工工件1的加工軌跡曲線計算斜轴加 工的刀具軌跡座標。所述之斜軸加工的刀具執跡上每個點 的座標到該點處刀具2與工件1的切點的距離都等於刀具 加工半徑OG。 所述之加工代碼生成模組16用於根據所述之斜軸加 工的刀具執跡座標生成相應的加工代碼。 所述之加工執跡顯示模組17用於執行所述之加工代 碼,顯示刀具斜轴加工軌跡,依此刀具斜軸加工軌跡可對 工件進行斜抽非球面鏡面加工。 參閱圖4所示,係本發明斜軸非球面鏡面加工方法的 較佳實施方式的流程圖。首先,步驟S11,加工軌跡設計 模組11根據需求設計出待加工工件1的加工軌跡曲線。在 本實施方式中,所述待加工工件1的加工軌跡曲線在XZ 軸座標上可用公式表示為: 10 200923424 其中,R、K、Ai為非球面形狀定義參數,用於控制及 調整待加工的工件1加工執跡曲線。 步驟S12,加工參數設置模組12設置刀具半徑及刀具 加工參數。所述之刀具加工參數包括刀具運行速度,切割 深度,切割速度等。 步驟S13,曲線加圓處理模組13判斷是否需要對待加 工工件1的加工執跡曲線進行加圓處理。 步驟S14,當需要進行加圓處理時,曲線加圓處理模 組13對待加工工件1的加工軌跡曲線進行加圓處理。 步驟S15,補償加工模組14判斷是否需要補償加工。 步驟S16,當需要補償加工時,補償加工模組14導入 補償加工資料對所設計的待加工工件1的加工軌跡曲線進 行補償處理。 步驟S17,加工執跡計算模組15根據所設計的待加工 工件1的加工執跡曲線計算斜軸加工的刀具執跡座標。所 述之斜轴加工的刀具軌跡上每個點的座標到該點處刀具2 與工件1的切點的距離都等於刀具加工半徑OG。 步驟S18,加工代碼生成模組16根據所述之斜轴加工 的刀具執跡座標生成相應的加工代碼。 步驟S19,加工軌跡顯示模組17執行所述之加工代 碼,顯示刀具斜軸加工執跡,依此刀具斜軸加工軌跡可對 工件進行斜軸非球面鏡面加工。 11 200923424 在步驟S13中,若不需要對待加工工件1的加工軌跡 . 曲線進行加圓處理時,則轉到步驟S15進行執行。 _ 在步驟S15中,若不需要需要補償加工時,則轉到步 驟S17進行執行。 【圖式簡單說明】 圖1係本發明斜軸非球面鏡面加工系統Y-Z平面刀具 加工示意圖。 圖2係本發明斜軸非球面鏡面加工系統X-Z平面刀具 加工示意圖。 圖3係本發明斜軸非球面鏡面加工系統功能模組圖。 圖4係本發明斜軸非球面鏡面加工方法的較佳實施方 式之流程圖。 【主要元件符號說明】 斜軸非球面鏡面加工系統 1 加工執跡設計模組 2 加工參數設置模組 3 曲線加圓處理模組 41 補償加工模組 42 加工執跡計算模組 43 加工代碼生成模組 51 加工軌跡顯示模組 52 12200923424 IX. INSTRUCTIONS: [. Technical Field of the Invention] The present invention relates to an ultra-precision machining system and method, and more particularly to an oblique-axis aspheric mirror processing system and method. [Prior Art] With the advancement of technology, ultra-precision processing instruments are constantly innovating. Although the factory already has precision and automated machinery, it also needs corresponding processing equipment and correct processing technology, and high-precision product manufacturing can be achieved. / Aspherical optical parts are a very important optical part. Commonly used are parabolic mirrors, hyperbolic mirrors, ellipsoidal mirrors, etc. Aspherical optical components provide unparalleled imaging quality for spherical optical components. They can correct a variety of aberrations, improve imaging quality, and improve system identification in optical systems. It can be used with one or several aspherical parts. It replaces multiple spherical parts, simplifying the instrument structure, reducing costs and reducing instrument weight. In recent years, there have been many new types of aspheric ultra-precision machining technologies, including: CNC single-point diamond turning technology, computer numerical control grinding technology, computer numerical control ion beam forming technology, computer numerical control ultra-precision polishing technology and aspheric surface. Copying techniques, etc., these processing methods basically solve the problems in the processing of various aspherical mirrors. The first four methods use digital control technology, which has the characteristics of high processing precision and high efficiency, and is suitable for mass production. At present, ultra-precision machining refers to the processing technology with a processing precision of 1~Ο.ίμιη, and the surface roughness is RaO.l~Ο.ΟΙμιη, but this limit is constantly changing with the progress of the technology. Ultra-precision machining may be the general processing of tomorrow. The problems to be solved in ultra-precision machining are: machining accuracy, including geometrical tolerance, dimensional accuracy and surface condition, sometimes with or without surface defects is also the core of this problem; second, processing efficiency, some machining can achieve better machining accuracy However, it is difficult to achieve high processing efficiency. Ultra-precision machining should include machining techniques such as micromachining, ultra-fine machining, and finishing. The machining method of ultra-precision machining can be divided into straight-axis machining and oblique-axis machining. Straight-axis machining means that the spindle of the tool is perpendicular to the horizontal plane of the workpiece. The machining of the oblique axis means that the spindle of the tool is inclined to the horizontal plane of the workpiece. However, the traditional ultra-precision machining is too much involved, resulting in a low precision of the processed mold and low processing efficiency. Moreover, due to process limitations, straight-axis machining is only suitable for machining large workpieces. Therefore, it is necessary to provide an oblique-axis aspherical mirror processing system and method for automatically controlling a tool of a precision machining apparatus to perform an oblique-axis aspherical mirror precision machining on a small workpiece, thereby improving the precision of the workpiece. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide an oblique-axis aspherical mirror processing system and method, which can automatically control a tool of a precision machining device to perform an oblique-axis aspheric mirror precision machining on a small workpiece, thereby improving the precision of the workpiece. An oblique axis aspherical mirror processing system capable of controlling a tool of a precision machining device to perform oblique axis machining on a workpiece, the system comprising: a processing and excavation design module, configured to design a machining path curve of the workpiece according to requirements; processing parameter setting Module for setting tool radius and tool machining parameters; machining 7 200923424. Trajectory calculation module for calculating the machining path curve of the workpiece according to the design. Calculating the tool path coordinate of the oblique axis machining; processing code generation module, For the root. According to the tool path coordinates generated corresponding processing code; and a processing trace display module, used to execute the processing code, display the tool oblique axis processing track, according to the tool oblique axis processing An oblique axis aspheric mirror surface working method can be performed on the workpiece, and a tilting axis aspheric mirror processing method can be controlled, which can control the tool of the precision processing equipment to perform oblique axis processing on the workpiece, and the method comprises the following steps: designing the workpiece according to requirements Processing the trace curve; setting the tool radius and tool processing parameters; calculating according to the designed machining path curve of the workpiece A tool path coordinate of the axis machining; generating a corresponding machining code according to the tool path coordinate; and executing the machining code to display a tool skew machining path, and the tool oblique axis machining path can be performed according to the tool skew axis machining track Spherical mirror processing. Compared with the prior art, the oblique axis aspheric mirror processing system and the method thereof can automatically control the precision machining equipment tool to perform the oblique axis aspheric mirror precision machining on the small workpiece, thereby improving the precision of the workpiece. [Embodiment] Referring to Fig. 1 and Fig. 2, respectively, the schematic diagram of the Y-Z plane tool processing and the X-Z plane tool processing of the oblique axis aspheric mirror processing system of the present invention are shown. The oblique axis aspherical mirror processing system runs on a computer control system of a precision processing device or a corresponding digital control device for controlling a machining path of the tool 2 of the precision machining device, so as to further perform an oblique axis aspherical mirror on the workpiece 1. The purpose of surface processing. The workpiece 1 can be a superhard 8 200923424. A metal workpiece of an alloy material, the cutter 2 is a precision machining equipment. A diamond grinding wheel tool for ultra-precision machining of the workpiece 1. As shown in the figure, DE is the axis of the workpiece 1, PQ is the axis of the tool 2, G is the tangent point of the tool 2 and the workpiece 1 during the tool machining, and the point is the center point of the tool processing part, OG is the tool The machining radius, the line segment GT is perpendicular to the tangent of the curved surface at the G point. During the aspherical mirror processing of the tool oblique axis, the workpiece 1 is rotated with the central axis DE as an axis, and the tool 2 is rotated by the central axis PQ to perform precision machining on the workpiece 1. The tool 2 must have an inclination angle with the workpiece 1 in the YZ-axis direction, that is, the line segment GT and the tool axis CQ are not parallel or perpendicular to the oblique axis machining. Referring to Fig. 3, it is a functional module diagram of the oblique axis aspherical mirror processing system of the present invention. The oblique axis aspheric mirror processing system 10 mainly comprises a processing and trace design module 11, a processing parameter setting module 12, a curve plus circle processing module 13, a compensation processing module 14, a processing trajectory calculation module 15, and a processing code generation The module 16 and the processing display display module 17. The machining path design module 11 is used to design a machining execution curve of the workpiece 1 to be processed according to requirements. In the present embodiment, the machining trajectory curve of the workpiece 1 to be processed can be expressed by the formula on the XZ axis coordinate as: v2 20 z=—?—7=====-+V A-k I1 ? , K, Ai define parameters for the aspherical shape, which are used to control and adjust the machining execution curve of the workpiece 1 to be processed. The processing parameter setting module 12 is used to set the tool radius and the tool 9 200923424 with processing parameters. The tool processing parameters include tool running speed, cutting depth, cutting speed, and the like. The curve-plus-circle processing module 13 is configured to determine whether it is necessary to perform rounding processing on the processing trace curve of the workpiece 1 to be processed, and to increase the processing trajectory curve of the workpiece 1 to be processed when the rounding processing is required. Round processing. The compensation processing module 14 is configured to determine whether compensation processing is required, and when compensation processing is required, the compensation processing data is introduced to compensate the designed processing trace of the workpiece 1 to be processed. The processing trajectory calculation module 15 is configured to calculate a tool path coordinate of the oblique axis machining according to the machining trajectory curve of the workpiece 1 to be processed designed by the machining trajectory design module 11. The coordinates of each point on the tool path of the oblique axis machining to the point where the tool 2 is at the tangent point of the workpiece 1 are equal to the tool machining radius OG. The processing code generation module 16 is configured to generate a corresponding processing code according to the tool tracking coordinates of the oblique axis processing. The processing and displaying display module 17 is configured to execute the processing code and display a tool oblique axis processing track, and according to the tool oblique axis processing track, the workpiece can be obliquely drawn aspherical mirror surface processing. Referring to Figure 4, there is shown a flow chart of a preferred embodiment of the oblique axis aspheric mirror processing method of the present invention. First, in step S11, the processing trajectory design module 11 designs a machining trajectory curve of the workpiece 1 to be processed according to requirements. In the present embodiment, the machining trajectory curve of the workpiece 1 to be processed can be expressed by the formula on the XZ axis coordinate as: 10 200923424 wherein R, K, and Ai define parameters for the aspherical shape for controlling and adjusting the to-be-processed The workpiece 1 is processed to trace the curve. In step S12, the machining parameter setting module 12 sets the tool radius and the tool machining parameters. The tool processing parameters include tool running speed, cutting depth, cutting speed and the like. In step S13, the curve plus circle processing module 13 determines whether it is necessary to perform rounding processing on the processing trace curve of the workpiece 1 to be processed. In step S14, when the rounding process is required, the curve plus circle processing module 13 rounds the processing track curve of the workpiece 1 to be processed. In step S15, the compensation processing module 14 determines whether compensation processing is required. In step S16, when the compensation processing is required, the compensation processing module 14 introduces the compensation processing data to compensate the processing trajectory curve of the workpiece 1 to be processed. In step S17, the processing and tracking calculation module 15 calculates the tool execution coordinates of the oblique axis machining according to the designed processing trace curve of the workpiece 1 to be processed. The coordinates of each point on the tool path of the oblique axis machining to the point where the tool 2 is at the tangent point of the workpiece 1 are equal to the tool machining radius OG. In step S18, the machining code generation module 16 generates a corresponding machining code according to the tool execution coordinates of the oblique axis machining. In step S19, the processing trajectory display module 17 executes the processing code to display the tool oblique axis processing trace, and the oblique axis aspheric mirror processing can be performed on the workpiece according to the tool oblique axis processing trajectory. 11 200923424 In step S13, if the machining path of the workpiece 1 to be processed is not required. When the curve is rounded, the process proceeds to step S15. _ In step S15, if it is not necessary to perform the compensation processing, the processing proceeds to step S17. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the processing of the Y-Z plane tool of the oblique axis aspherical mirror processing system of the present invention. Fig. 2 is a schematic view showing the processing of the X-Z plane cutter of the oblique axis aspheric mirror processing system of the present invention. 3 is a functional block diagram of the oblique axis aspherical mirror processing system of the present invention. Fig. 4 is a flow chart showing a preferred embodiment of the oblique-axis aspheric mirror processing method of the present invention. [Major component symbol description] Oblique axis aspheric mirror processing system 1 Processing trace design module 2 Processing parameter setting module 3 Curve plus circle processing module 41 Compensation processing module 42 Processing execution calculation module 43 Processing code generation module Group 51 processing track display module 52 12

Claims (1)

200923424 十、申請專利範圍: . 1. 一種斜轴非球面鏡面加工系統,其可控制精密加工設 備之刀具對工件進行斜轴加工,該系統包括: 加工轨跡設計模組,用於根據需求設計出工件之加工 執跡曲線; 加工參數設置模組,用於設置刀具半徑及刀具加工參 數; 加工執跡計算模組,用於根據所設計的工件之加工軌 跡曲線計算斜軸加工的刀具執跡座標; 加工代碼生成模組,用於根據所述之刀具執跡座標生 成相應的加工代碼;及 加工軌跡顯示模組,用於執行所述之加工代碼,顯示 刀具斜軸加工執跡,依此刀具斜軸加工軌跡可對工件 進行斜軸非球面鏡面加工。 2. 如申請專利範圍第1項所述之斜轴非球面鏡面加工系 統,其中該系統還包括曲線加圓處理模組,用於判斷 是否需要對工件之加工軌跡曲線進行加圓處理,及當 需要進行加圓處理時,對工件之加工執跡曲線進行加 圓處理。 3. 如申請專利範圍第1項所述之斜軸非球面鏡面加工系 統,其中該系統還包括補償加工模組,用於判斷是否 需要補償加工,及當需要補償加工時,導入補償加工 資料對所設計的工件之加工軌跡曲線進行補償處理。 4. 如申請專利範圍第1項所述之斜軸非球面鏡面加工系 13 200923424 統,其中所述之刀具加工參數包括刀具運行速度、切 割深度及切割速度。 5. —種斜轴非球面鏡面加工方法,其可控制精密加工設 備之刀具對工件進行斜轴加工,其中該方法包括如下 步驟: 根據需求設計出工件之加工執跡曲線; 設置刀具半徑及刀具加工參數; 根據所設計的工件之加工軌跡曲線計算斜轴加工的 刀具執跡座標; 根據所述之刀具執跡座標生成相應的加工代碼;及 執行所述之加工代碼,顯示刀具斜軸加工執跡,依此 刀具斜軸加工執跡可對工件進行斜軸非球面鏡面加 工° 6. 如申請專利範圍第5項所述之斜軸非球面鏡面加工方 法,其中在根據加工執跡曲線計算斜軸加工的刀具執 跡座標的步驟之前還包括: 判斷是否需要對工件之加工執跡曲線進行加圓處理; 當需要進行加圓處理時,對工件之加工軌跡曲線進行 加圓處理。 7. 如申請專利範圍第5項所述之斜軸非球面鏡面加工方 法,其中在根據加工軌跡曲線計算斜軸加工的刀具執 跡座標的步驟之前還包括: 判斷是否需要補償加工; 若需要補償加工,則導入補償加工資料對所設計的工 14 200923424 件之加工執跡曲線進行補償處理。 8.如申請專利範圍第5項所述之斜軸非球面鏡面加工方 、 法,其中所述之刀具加工參數包括刀具運行速度、切 割深度及切割速度。 15200923424 X. Patent application scope: 1. An oblique axis aspheric mirror processing system, which can control the tool of precision machining equipment to obliquely machine the workpiece. The system includes: processing track design module, which is designed according to requirements The processing trace curve of the workpiece; the machining parameter setting module is used to set the tool radius and the tool processing parameter; the machining execution calculation module is used to calculate the tool trace of the oblique axis machining according to the designed machining path curve of the workpiece a coordinate code generating module, configured to generate a corresponding machining code according to the tool execution coordinate; and a machining track display module, configured to execute the machining code, and display the tool oblique axis processing execution, according to The tool oblique axis machining path can perform oblique axis aspheric mirror processing on the workpiece. 2. The oblique axis aspheric mirror processing system according to claim 1, wherein the system further comprises a curve plus circle processing module, configured to determine whether it is necessary to round the processing curve of the workpiece, and When the rounding process is required, the processing trace curve of the workpiece is rounded. 3. The oblique-axis aspherical mirror processing system according to claim 1, wherein the system further comprises a compensation processing module for determining whether compensation processing is required, and when compensation processing is required, introducing compensation processing data pairs The machining path curve of the designed workpiece is compensated. 4. The oblique axis aspheric mirror processing system described in claim 1 of the patent scope, wherein the tool processing parameters include tool running speed, cutting depth and cutting speed. 5. An oblique-axis aspherical mirror processing method, which can control a tool of a precision machining device to perform oblique axis machining on a workpiece, wherein the method comprises the following steps: designing a machining execution curve of the workpiece according to requirements; setting a tool radius and a tool Processing parameter; calculating a tool execution coordinate of the oblique axis machining according to the designed machining path curve of the workpiece; generating a corresponding machining code according to the tool execution coordinate; and executing the processing code to display the tool oblique axis processing According to the tool oblique axis processing, the workpiece can be subjected to oblique axis aspheric mirror processing. 6. The oblique axis aspheric mirror processing method according to claim 5, wherein the skew is calculated according to the processing trace curve Before the step of the tool-destroying coordinates of the axis machining, the method further includes: determining whether the machining execution curve of the workpiece needs to be rounded; when the rounding process is required, the machining path curve of the workpiece is rounded. 7. The oblique-axis aspheric mirror processing method according to claim 5, wherein before the step of calculating the tool-orientation coordinate of the oblique-axis machining according to the machining trajectory curve, the method further comprises: determining whether compensation processing is required; For machining, the compensation processing data is imported to compensate the processing trace of the designed work piece 200923424. 8. The oblique-axis aspherical mirror processing method according to claim 5, wherein the tool processing parameters include a tool running speed, a cutting depth, and a cutting speed. 15
TW096143473A 2007-11-16 2007-11-16 System and method for slanted aspherical lens machining TWI427447B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096143473A TWI427447B (en) 2007-11-16 2007-11-16 System and method for slanted aspherical lens machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096143473A TWI427447B (en) 2007-11-16 2007-11-16 System and method for slanted aspherical lens machining

Publications (2)

Publication Number Publication Date
TW200923424A true TW200923424A (en) 2009-06-01
TWI427447B TWI427447B (en) 2014-02-21

Family

ID=44728588

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096143473A TWI427447B (en) 2007-11-16 2007-11-16 System and method for slanted aspherical lens machining

Country Status (1)

Country Link
TW (1) TWI427447B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005131724A (en) * 2003-10-29 2005-05-26 Seiko Epson Corp Aspheric surface processing method, aspheric surface forming method and aspheric surface processing apparatus
JP2006318268A (en) * 2005-05-13 2006-11-24 Toshiba Corp Machining data production method and cutting method
TWI288043B (en) * 2005-12-26 2007-10-11 Kinik Co Method for manufacturing non-spherical insert mold
JP4712586B2 (en) * 2006-03-27 2011-06-29 西部電機株式会社 NC machine tool

Also Published As

Publication number Publication date
TWI427447B (en) 2014-02-21

Similar Documents

Publication Publication Date Title
CN105643396A (en) Milling and grinding method of large-caliber off-axis aspherical lens
US9751171B2 (en) Method to process spectacle lens blanks
CN103056731A (en) Five-axis precision ultrasonic milling machining method of large-aperture off-axis aspheric mirror
CN104290002A (en) Method for machining cylindrical mirror
CN103862346B (en) Instant center-free envelope grinding method for spiral curved surface of micro milling cutter
EP2089781B1 (en) Method of surface manufacture with an apex decentered from a spindle axis
Yan et al. Fabrication of optical freeform molds using slow tool servo with wheel normal grinding
CN102490103A (en) Meniscus lens and processing method therefor
CN113770812A (en) Method and system for predicting influence of tool wear on curved surface profile precision
CN104875080B (en) A kind of ion beam polishing modification processing of oblique incidence
JP5039129B2 (en) Lens processing method and lens processing apparatus
CN107443026A (en) Vibration pendulum mirror processing method
Xing et al. Study of the tool path generation method for an ultra-precision spherical complex surface based on a five-axis machine tool
TWI416291B (en) Method for processing an aspheric lens mold
Chen et al. Freeform surface machining error compensation method for ultra-precision slow tool servo diamond turning
TW200923424A (en) System and method for slanted aspherical lens machining
JP2002126984A (en) Optical center measuring method for spectacles lens, and method and device for installing lens holder of spectacles lens
TWI410765B (en) System and method for vertical aspherical lens machining
CN101424934A (en) Skew axis aspherical mirror processing system and method
Wei et al. Tool setting error compensation in large aspherical mirror grinding
JP2016521378A (en) Generation of microstructured eyeglass lenses in prescription lens fabrication
US10126730B2 (en) Method for machining a surface of an optical lens
CN113601257A (en) Microstructure array processing device and method based on variable-pitch fly cutter cutting
Zhang Fabrication and testing of optical free-form convex mirror
CN112935849A (en) Two-axis linkage machining method for micro-lens array

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees