TW200923406A - Stacked film for optical use - Google Patents

Stacked film for optical use Download PDF

Info

Publication number
TW200923406A
TW200923406A TW097106317A TW97106317A TW200923406A TW 200923406 A TW200923406 A TW 200923406A TW 097106317 A TW097106317 A TW 097106317A TW 97106317 A TW97106317 A TW 97106317A TW 200923406 A TW200923406 A TW 200923406A
Authority
TW
Taiwan
Prior art keywords
refractive index
film
stacked film
layer
coating layer
Prior art date
Application number
TW097106317A
Other languages
Chinese (zh)
Other versions
TWI374290B (en
Inventor
Kwang-Hui Choi
Moon-Bok Lee
Ki-Bong Suh
Sang-Yeol Um
Sang-Pil Kim
Young-Ho Cho
Original Assignee
Toray Saehan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Saehan Inc filed Critical Toray Saehan Inc
Publication of TW200923406A publication Critical patent/TW200923406A/en
Application granted granted Critical
Publication of TWI374290B publication Critical patent/TWI374290B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/16Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/38Anti-reflection arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

The invention relates to a stacked film for optical use, and, more particularly, to a stacked film for optical use having good antireflective performance and abrasion resistance, and being produced cost-effectively. To this end, the stacked film according to the invention is characterized in that it comprises: a substrate film; a high refractive index layer provided on at least one side of the substrate film, containing resin with fluorocompounds, a metal oxide and a photopolymerization initiator, the layer having 1.58 to 1.70 of a refractive index and being 30 to 100 nm in thickness; and a low refractive index hard coat layer provided on the high refractive index layer containing (metha) acrylate compounds and fluorocopolymers having a vinylester structure in a backbone, and a metal oxide, the layer also having 1.38 to 1.48 of a refractive index and being 0.05 to 10.0μm in thickness.

Description

200923406 九、發明說明: 【發明所屬之技術領域:j 發明領域200923406 IX. Description of invention: [Technical field to which the invention belongs: j Field of invention

本發明係關於一種供光學用之堆疊式薄膜,更特定言 5 之係關於具有良好抗反射效能及防蝕性,且可成本有效地 製造之一種供光學用之堆疊式薄膜。 t先前技術J 發明背景 大致上’於PDP、CRT及LCD顯示器中,入射於螢幕上 10之光反射造成難以觀看所顯示的圖像。特別隨著平板顯示 器尺寸的變大,解決前述問題變成益發重要的議題。 為了解決前述問題,曾經採用抗反射處理或減少炫光 處理,例如對顯示器使用抗反射膜。 此種抗反射膜之製法係經由習知藉乾被覆法例如沉 15積、濺鍍等施用低折射率材料(MgF2)至基材薄膜上形成為 薄膜製’或另外’經由堆疊一高折射率材料(肋:捧錫 氧化钢、細:掺錫氧化録、Zn〇、叫等)及—低折射率 材料(MgF2 Si〇2等)而製造。但利用乾被覆法所製造之抗 反射膜於商業上生產時不具有成本效益。 2〇 士〇此嘗試利用濕被覆法製造抗反射膜來解決前述先前 ^問題,此種方法實際上用於量產。但利用濕被覆法所 w之抗反射膜比較利用乾被覆法所製造之抗反射膜不利 地具有防蝕性較低的問題。 200923406 t發明内容:j 發明概要 本發明係意圖解決前述先前技術問題。 本發明之-個目的係提供可有效消除圖像顯示元件表 5面上之光反射,高度防蝕性,需要低製造成本之一種供光 學用之堆疊式薄膜。 前述及其它本發明之目的及優點由後文詳細說明之本 發明之較佳實施例參照附圖將更為彰顯。 達成前述目的之根據本發明之供光學用之堆疊式薄 10膜,其特徵在於包含:一基材薄膜;提供於該基材薄膜之 至少一側上之一高折射率層,其包含帶有含氟化合物之樹 月曰、金屬氧化物及光聚合起始劑,該層具有158至丨之折 射率及30奈米至1〇〇奈米之厚度;以及提供於該高折射率層 上之一低折射率硬質被覆層,其包含(曱基)丙烯酸酯化合物 15及骨架中具有乙稀醋結構之含氣共聚物及金屬氧化物,該 層也具有1.38至1.48折射率及〇.〇5微米至1〇.〇微米之厚度。 較佳,根據本發明之供光學用之堆疊式薄膜之特徵在 於’於該高折射率層巾,該金屬氧化物含量為5重量%至% 重量%。 2〇 較佳,根據本發明之供光學用之堆疊式薄膜之特徵在 於,於該高折射率層中,該金屬氧化物為選自於有掺錫氧 化録顆粒、掺鋅氧化録顆粒、摻錫氧化銦顆粒、氧化鋅/氧 匕!呂顆粒&氧化録顆粒所組成之組群中之至少—者。 較佳,根據本發明之供光學用之堆疊式薄膜之特徵在 200923406 矽/中空二氧化矽顆粒。 物為一虱化 較佳,根據本發明之供光學用之堆疊 於,於該低折射率硬質被謝,該二氧化辦:特徵在 石夕顆粒具有顆粒直徑為_微米至〇2微米。〜軋化 杈佳,根據本發明之供光學用之堆叠 於,於該二氧化碎/中★ 勝之特徵在 至少2組分。巾〜乳化㈣粒具有顆粒直徑散度為 10 15 20 於據本發明之供光學狀堆疊柄狀特徵在 =低折射率硬f被覆層!觀表面為凹凸面, 粗度(Ra)為〇_〇〇3微米至0.025微米。 十与 較佳’根據本發明之供光學用之堆疊式薄膜之特徵在 於該堆疊式_之反射比為0.1%至4%。 較佳,根據本發明之供光學用之堆疊式薄膜之特徵在 於該堆疊式_之濁度值為0.5%至3.0%。 圖式簡單說明 參照附圖,由後文較佳實施例之詳細說明,本發明之 特徵及優點將更為彰顯,附圖中: 第1圖係顯示抗反射膜原理; 第2圖示意顯示根據本發明之供光學用之堆疊 之一堆疊結構之剖面圖。 、 t實施方式3 較佳實施例之詳細說明 後文將參照實施例及附圖說明本發明之進一步細節。 7 200923406 熟:技藝=士顯然易知該等實施例係供舉例說明本發明之 進步細節,但非囿限本發明之範圍。 發明人研究具有良好抗反射效能及防姓性且可成本右 效地製造之一種浐戍本有 抗反射膜之製法,如此發現-種適合用於 :二的之供光學用之堆疊式賴,該薄膜係期濕被覆 * 其製法係堆疊包含金屬氧化物及含1化合物之一 回折射率層於_基材上,以及然後堆疊具有給定相 之低折射率硬質被覆層,因而完成本發明。 又 «本發日狀供料社堆疊絲敎製法係利用濕 破覆法,經由堆疊⑷一高折射率層(後文稱作為「傳導層」) 於一基材薄膜之至少一側上,以及然後(B)堆疊-低折射率 f邊被覆層而製成。根據本發明之供光學用之堆疊式薄膜 *然可經由將該薄膜黏著於圖像顯示側或其前面板而施用 至圖像顯示裝置。 較佳於根據本發明之具有良好抗反射效能之堆疊式薄 、中之4基材薄膜1〇〇具有高光透射比及低濁度值俾便將 /基材薄膜用作為顯示裝置之—個構件(於此處也稱作為 「顯示構件」)。例如於奈米至_奈米之波長範圍之光 扣透射比較佳至少為40%及更佳至少為6G%。濁度值較佳不高 於5%’及更佳不高於3%。若未能滿足前述條件中之一者或 者田薄膜係用於顯示構件時,所顯示的圖像不可能鮮 明。就可重複再現之範圍而言,光透射比之上限為99.5%左 右,而濁度值之下限為〇.1%左右俾便達成期望的效果。 基材薄膜100並未限於特定類型,而可適當選自於常用 200923406 於已知之塑膠基材薄膜之樹脂材料。基材薄膜10 0用之樹脂 材料之實例包括具有選自於由酯、乙烯、丙烯、二乙酸酯、 三乙酸酯、苯乙烯、碳酸酯、曱基戊烯、颯、醚、乙酮、 醯亞胺、氟、尼龍、丙烯酸酯、脂肪酯、烯烴等所組成之 5 組群中之一個亞單元之聚合物或共聚物。 較佳為具有選自於酯類諸如聚對苯二曱酸伸乙酯、乙 酸酯類例如三乙醯基纖維素及丙烯酸酯類例如聚曱基丙烯 酸甲酯等中之一個亞單元之聚合物或共聚物。原因在於就 所形成之薄膜之透明度、強度及均勻厚度等性質良好。特 10 別,就透明度、濁度值及機械性質而言,較佳為由具有一 個自旨亞單位之聚合物所組成之基材薄膜100。 此種聚酯樹脂之實例包括聚對苯二甲酸伸乙酯、聚伸 乙基-2,6-萘二甲酸酯、聚對苯二曱酸伸丁酯、聚伸乙基-α, yS-貳(2-氯苯氧基)乙烷-4,4’-二羧酸酯等。於此等共聚酯中 15 可共聚合20莫耳%或更小量之二羧酸組分或二醇組分。於 聚酯樹脂實例中,通常考慮品質、經濟效益等,以聚對苯 二曱酸伸乙酯為特佳。 可使用該等樹脂中之任一類別或二或多個類別之組合。 於根據本發明之供光學用之堆疊式薄膜中之基材薄膜 20 100之厚度並未限於特定值,但通常為5微米至800微米且較 佳為10微米至250微米。基材薄膜100可為以已知方式將兩 張或多張薄膜連結所製成之薄膜。 此外,於形成高折射率層110之前,基材薄膜100可經 過表面處理(例如電暈放電、輝光放電、燄處理、蝕刻或粗 200923406 化等)。此外’為了協助黏著,於被覆基材薄膜表面作為广 層後可形成高折射率層110 (例如使用聚胺基曱酸I旨、$ 酯、聚酯丙烯酸酯、聚胺基甲酸酯丙烯酸酯、聚環氣式 烯酸酯、鈦酸酯化合物等被覆)。特定言之,就改良黏著性 良好对用性諸如耐熱性、防濕性等方面而言,基材薄 寸之 醏樹 較佳實例係經由施用一種組成物作為底劑而製造,該組成 物包含經由將丙烯酸系化合物接枝至具有親水基之聚 脂所製成之共聚物及交聯黏結劑。 其次,根據本發明之供光學用之堆疊式薄膜之高折射 率層110形成於基材薄臈100上。高折射率層11〇主要包含傳 導顆粒及黏結劑組分。於本發明中,傳導顆粒為金屬顆粒 或金屬氧化物顆粒。但就高透明度而言,以金屬氧化物顆 粒為佳。特別對金屬氧化物顆粒而言較佳者為掺錫氧化錄 (ΑΤΟ)顆粒、掺鋅氧化銻顆粒、掺錫氧化銦(IT〇)顆粒 '氧 15化鋅/氧化紹顆粒、及氧化銻顆粒;且更佳為掺錫氧化録 (ΑΤΟ)顆粒及掺錫氧化銦(ιτο)顆粒。 較佳,本發明之傳導顆粒具有平均一次顆粒直徑為〇5 微米(根據BET法則測量之球體相當直徑),但更特別為 0.001微米至0_2微米。若平均一次顆粒直徑係高於該範圍, 20則所製造之薄膜(傳導層120)之透明度降低。若平均直經係 低於該範圍,則顆粒可能凝聚,因而造成所製成之薄膜(高 折射率層110)之濁度值增高。因此於兩種情況下,難以辦 得期望之濁度值。 於向折射率層110中之黏結劑組分為(甲基)丙烯酸酯化 200923406 合物。該(曱基)丙烯酸酯化合物係經由照射光化射線而進行 自由基聚合,較佳在於其可改良所製造之薄膜之耐溶劑性 或硬度。分子内有兩個或多個(甲基)丙烯醯基之多官能(曱 基)丙烯酸酯化合物為特佳’原因在於耐溶劑性因而獲得改 5 良。多官能(甲基)丙烯酸酯化合物之實例包括3-多官能(甲 基)丙烯酸酯類例如季戊四醇三(甲基)丙烯酸酯、三羥甲基 丙烷三(甲基)丙烯酸酯、甘油三(曱基)丙烯酸酯、改性伸乙 基三羥曱基丙烷三(甲基)丙烯酸酯、參(2_羥基乙基)-異氰尿 酸酯三(甲基)丙烯酸酯及4-或4以上-多官能(曱基)丙烯酸酯 10 類例如季戊四醇四(甲基)丙烯酸酯、二季戊四醇五(甲基)丙 烯酸酯、二季戊四醇六(甲基)丙烯酸酯等。 根據本發明之供光學用之堆疊式薄膜之低折射率硬質 被覆層120係形成於該高折射率層110上,主要包含(甲基) 丙烯酸酯化合物。(甲基)丙烯酸酯化合物藉照射光化射線進 15 行自由基聚合反應,改良所製造之薄膜之耐溶劑性或硬 度。特別,(甲基)丙烯酸酯化合物之實例包括單官能丙烯酸 酯化合物,例如(甲基)丙浠酸曱酯、(甲基)丙烯酸正丁酯、 (甲基)丙烯酸多酯、(甲基)丙烯酸月桂酯、(甲基)丙烯酸羥 乙酯、(曱基)丙烯酸羥丙酯。此外,由於町改良所製造之薄 20膜之耐溶劑性,故以分子内有兩個或多個(甲基)丙烯醯基之 多官能(甲基)丙烯酸酯化合物為特佳。多官能(甲基)丙烯酸 酯化合物之特例包括三(甲基)丙烯酸季戊四醇酯、四(甲基) 丙烯酸季戊四醇酯、三(甲基)丙烯酸二季戊四醇酯、四(甲 基)丙稀酸季戊四醇酯、五(甲基)丙烯酸甲季戊四醇酯、六 11 200923406 (甲土)丙烯自文季戊四醇酯、三(甲基)丙烯酸三羥甲基丙酯 等。所述各單體可分開使用或與其中二類型或多類型之組 合使用。 士本發明中用於形成低折射率硬質被覆層120之組態中 柄月日、.且刀包含無機顆粒例如烧基石夕酸鹽及其水解產物、 j體—氧切、乾二氧化石夕、濕二氧化砂及鈦氧化物或二 氧化石夕粒子分散於膠體等來改良硬質被覆層之硬度。於本 ㈣之供光學用之堆疊式薄膜中,低折射率硬質被覆層之 $月曰組分含有錢院聚合物。包切氧院聚合物之該層之 10貝例包含無機二氧化石夕化合物(也含有聚砂酸鹽類)、聚有機 基石夕氧院化合物或其混合物等各層。形成各層之二氧化石夕 化口物或聚有機基矽氧烷化合物可以已知之習知方式製 造。依據用途而定,低折射率硬質被覆層12〇之厚度可適當 選用但車又佳為0.05微米至10.0微米。若低折射率硬質被覆 層20之厚度係大於1〇微米,則所製造之薄膜之透明度降 低’因而導致較高濁度值,及較脆弱之硬化薄膜。於此種 凊况下,當薄膜彎曲摺疊時,低折射率硬質被覆層12〇之缺 點為可能產生裂痕。 根據本發明之供光學用之堆疊式薄膜之低折射率硬質 2〇被覆層120係形成於高折射率層110上,且主要包含含氟化 合物。 本發明所使用之έ氟化合物較佳係利用加熱交聯或游 離輕射交聯。交聯後之含氟化合物可為由不飽和基團之含 氟單體或有交聯基之含氟聚合物,或有含氟單體亞單位及 12 200923406 產生交聯基單體之含氟共聚物。 特疋a之,較佳為其骨架有乙稀s旨結構之含氟共聚 物。較佳含氟共聚物有至少30重量%氟含量,以及利用聚 笨乙烯換算,含氟之烯烴量至少有5〇〇且較佳至少5〇〇〇數目 5平均分子量。此種含氟共聚物係經由將包含含氟化合物及 乙烯酯化合物之一者可硬化組成物聚合獲得。較佳其獲得 方式係經由將包含含氟烯烴化合物、與該含氟烯烴化合物 可聚合之乙烯酯化合物,以及若有所需混合反應性乳化劑 之-種可硬化組成物聚合獲得。較佳用來形成含氣共聚物 K)之可硬化組成物包含反應性乳化劑作為一種組分。使用該 反應性乳化劑組分,允許該含氟聚合物良好施用,具有優 異的被覆及均平效能。較佳該反應性乳化劑特別為㈣子 性反應性乳化劑。 於包含於該低折射率硬質被覆層120之含氟共聚物 15中’源自於包含氟之該含氟烯烴化合物之結構單元之比例 為20莫耳%至7〇莫耳%,較佳25莫耳%至65莫耳%及更佳% 莫耳%至60莫耳%。若該源自於含㈣烴化合物之社構單元 之比例低於2〇莫耳%,則所得含氣共聚物中之氟:量可= 過低,因而所得低折射率硬質被覆層120之折射率未能如: 20期望地夠低。同時,若源自於該含氣稀烴化合物之=單 兀係馬於7〇莫耳%’則所得硬質被覆層u〇並不佳,原因在於 被覆液之均質情況低劣’如此難㈣減覆膜,且該硬質被 覆層120之透明度降低,無法如所期望地緊密黏著於基材貝。 於遠含鼠共聚物中,源自於具有乙稀崎構之化合物 13 200923406 組分之該結構單元比例為10莫耳%至7〇莫耳%,較佳為15 莫耳%至65料%及更佳為3〇莫耳%至⑹莫耳H原自於 具有乙烯醚結構之化合物組分之結構單元比例低於1〇莫耳 %,則被覆液之均質度低劣,如此難以形成均質被覆薄膜。 5 10 15 20 若比例高於7〇莫耳%,舰折料硬諸覆層12g並不佳, 原因在於光學性質例如透明度降低且具有低折射率。使用 具有反應性官祕諸如錄或縣基之單體料具有乙稀 ㈣構之化合物Μ分為触,在於賴得之可硬化樹 月曰、.且成物可㈣為被覆材料而硬化後薄膜之強度改良。具 有經基或環氧基之單體對單體總量之比為G至20莫耳%,較 莫耳。/〇至2〇莫耳%及更佳3莫耳%至15莫耳%。若該比例 门於莫耳%’則所得低折射率硬質被覆層Η⑽光學性質 =劣而可ι導致硬化後薄膜脆弱。於包含反應性乳化劑之 含氟共聚物中,源自於反應性乳化劑組分之亞單元之比例 通常細莫耳°如◦莫耳%且較佳為0.1莫耳%至5莫耳%。若 /比例:於1G莫耳%,則所得低折射率硬質被覆層12〇可能 具有黏者性’如此並不佳,原因在於處理不Μ 之抗濕性降低。 寸 較佳於本發明中之低折射率硬質被覆層⑶除了含銳 共聚物之外包含㈣化合物,原因在於其具體表現一給定 之硬化攻能程度,且可有效改良硬化效能。 交聯化合物之實例包括胺基化合物、季戊四醇、多齡、 ρ田燒基稍鹽類及含絲之化合物例如其水解產物 。作為交聯化合物之胺基化合物為具有胺基例如經基 14 200923406 5 10 15 20 炫:基胺基或烧氧基烧基胺基且可與含I化合物之經基或環 氧基反應之化合物,該化合物共有兩個或多個基團且得自 别述胺基中之任一者或·一者。特別’胺基化合物之實例包 括蜜胺化合物'脲化合物、苯并胍胺化合物及甘脲化合物。 該蜜胺化合物為已知有一框架其中氮原子係與三讲環鍵結 之化合物,例如蜜胺、烷基蜜胺、羥曱基蜜胺、烷氧基曱 基蜜胺等。其中較佳為一個分子共有兩個或多個基團之化 合物,該基團可為羥甲基及烷氧基甲基中之任一者或二 者。特別較佳為經由蜜胺與甲酸於驗性條件下反應所得之 超甲基省胺、烧氧基曱基蜜胺或其衍生物。特別,烧氧基 甲基蜜胺之較佳之處在於可硬化樹脂組成物而獲得良好保 藏安定性及良好反應越。對用作為交聯化合物之經甲基 蜜胺及烧氧基甲基蜜胺並無特殊限制,可使用以文件「塑 膠材料附蜜胺黯」(尼撃_)高等學校新聞出版社 出版)所述方式獲得之多種樹脂。脲化合物之實例為經甲基 脲調及絲基甲基脲酮,具有多㈣基尿、魅自其中之 =基曱基脲及除了尿之外含有_個脲輯。至於尿衍生 物化合物’可使用前述文件所述之多種樹脂。 用# A重里比3氟共聚物為基準’此種交聯化合物之 用量係不超過7〇份重量卟 5至30彳八會旦μ ^ 較彳土為3至50份重量比及更較為 無法獲««及比,則 用量係高於70份重量比,則Μ的賴耐用程度。若 生膠凝,1共聚物反應發 且硬化後相不具有低折射率,故所得硬化膜不 15 200923406 如期望趣的強勁。 此外,較佳低折射率硬質被覆層120包含二氧化矽顆粒 偶合劑,及/或具找氧基残基之含氟樹脂= 體貫她防餘性。 5 10 15 20 及^氣化㈣粒組分較佳包含乾二氧切、I氧^ 一化矽顆粒分散於膠體。二氧化矽顆粒之平均—次顆 =直也(壞體相當直徑:BET法則)通常為G謝微米至02微 隹為嶋微米至G.15微米。若平均顆粒直徑係於該 乂,内,則低折_硬#被覆層12()之透明度不會降 硬度容易改良。此外,二氧切顆粒之形狀較佳 ^ V或中空圓柱形。該二氧化㈣粒,可使用各自有不 粒直徑之顆粒的兩種或多種組分。二氧切顆粒 :面處理。用於表面處理,可採用物理表面處理諸如 /電或電暈放電,或使用偶合劑之化學表面處理,作 f圭採用化學處理。至於化學處理,較佳採时貌偶合劑。 V自氧切顆粒之組分以固型物比表示為5%至50%,較 佳為5%至術°及更佳桃至30%。若得自:氧切顆粒之 奴分比係於較佳範圍’朗得低折射率硬f被覆層12〇具有 '^表面更度也有良好光學特性,例如低透明度、低 折射率等。 — 石夕统偶合劑組分為結構式1 R⑴綱bSlX4-㈣表示之 化口物或八水解產物0此處,R⑴aR(2)b為具有烧基、稀基、 丙烯基或β基之L基、環氧基、胺基、魏基、甲基丙稀酿 氧基氰鱗自於由烧氧基、烧氧纽氧基、鹵基 16 200923406 及醯氣基所組成之組群之可水靖 解取代基。如上化學式1中,BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a stacked film for optics, and more particularly to a stacked film for optical use which has good antireflection performance and corrosion resistance and can be manufactured cost effectively. BACKGROUND OF THE INVENTION In the PDP, CRT, and LCD displays, light reflected on the screen 10 makes it difficult to view the displayed image. In particular, as the size of the flat panel display becomes larger, solving the aforementioned problems becomes an important issue. In order to solve the aforementioned problems, anti-reflection treatment or glare reduction treatment has been employed, for example, an anti-reflection film is used for the display. The method for preparing such an anti-reflection film is formed by applying a low refractive index material (MgF2) to a substrate film by a conventional dry coating method such as deposition, sputtering, or the like to form a film or a further high refractive index via stacking. Materials (ribs: tin-tin oxide steel, fine: tin-doped oxide, Zn, y, etc.) and low-refractive-index materials (MgF2, Si〇2, etc.) are manufactured. However, the antireflection film produced by the dry coating method is not cost effective in commercial production. 2〇 This attempt to solve the aforementioned problem by using an anti-reflection film by a wet coating method, which is actually used for mass production. However, the antireflection film using the wet coating method has a problem that the antireflection film produced by the dry coating method is disadvantageously low in corrosion resistance. 200923406 t SUMMARY OF THE INVENTION: j SUMMARY OF THE INVENTION The present invention is intended to solve the aforementioned prior art problems. SUMMARY OF THE INVENTION An object of the present invention is to provide a stacked film for optical use which can effectively eliminate light reflection on the surface of an image display element, is highly corrosion-resistant, and requires low manufacturing cost. The above and other objects and advantages of the present invention will be more apparent from the appended claims. A stacked thin film 10 for optical use according to the present invention, which comprises: a substrate film; a high refractive index layer provided on at least one side of the substrate film, comprising a fluorine-containing compound, a metal oxide, and a photopolymerization initiator, the layer having a refractive index of 158 to 丨 and a thickness of 30 nm to 1 Å; and being provided on the high refractive index layer A low refractive index hard coating layer comprising a (fluorenyl) acrylate compound 15 and a gas-containing copolymer having a vinyl vinegar structure and a metal oxide in the skeleton, the layer also having a refractive index of 1.38 to 1.48 and 〇.〇5 Micron to 1 〇. 〇 micron thickness. Preferably, the stacked film for optics according to the present invention is characterized in that the metal oxide content is from 5% by weight to % by weight. Preferably, the stacked film for optics according to the present invention is characterized in that, in the high refractive index layer, the metal oxide is selected from the group consisting of tin-doped oxide particles, zinc-doped oxide particles, and doped At least one of the group consisting of tin indium oxide particles, zinc oxide/oxygen hydride, granules & oxidized particles. Preferably, the stacked film for optics according to the present invention is characterized by a 矽/hollow cerium oxide particle of 200923406. Preferably, the optical supply is stacked according to the present invention, and the low refractive index is hardened. The dioxide is characterized in that the stone particles have a particle diameter of from _micron to 〇2 μm. 〜 轧 杈 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 根据 根据The towel ~ emulsified (four) granules have a particle diameter divergence of 10 15 20 in accordance with the present invention for the optically stacked shank-like features in the = low refractive index hard f coating! The surface is an uneven surface, and the roughness (Ra) is 〇_〇〇3 μm to 0.025 μm. Preferably, the stacked film for optical use according to the present invention is characterized in that the reflectance of the stacked type is from 0.1% to 4%. Preferably, the stacked film for optics according to the present invention is characterized in that the turbidity value of the stacked type is from 0.5% to 3.0%. BRIEF DESCRIPTION OF THE DRAWINGS The features and advantages of the present invention will become more apparent from the detailed description of the preferred embodiments illustrated in the accompanying drawings in which: FIG. 1 shows the principle of the anti-reflection film; A cross-sectional view of a stacked structure of a stack for optics according to the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, further details of the present invention will be described with reference to the embodiments and the accompanying drawings. It is obvious that the examples are intended to illustrate the details of the invention, but are not intended to limit the scope of the invention. The inventors have studied a method for producing an anti-reflection film which has good anti-reflection performance and anti-sexuality and can be manufactured at a right cost, and thus found that it is suitable for use in a stacking method for optical use. The film is wet-coated*, the method comprises stacking a metal oxide and a refractive index layer containing one compound on the substrate, and then stacking a low refractive index hard coating layer having a given phase, thereby completing the present invention . Further, the method of stacking the wire twisting system of the present invention utilizes a wet breaking method by stacking (4) a high refractive index layer (hereinafter referred to as a "conducting layer") on at least one side of a substrate film, and Then (B) a stack-low refractive index f-side cladding layer is formed. The stacked film for optics according to the present invention can be applied to an image display device by adhering the film to the image display side or its front panel. Preferably, the stacked thin and medium 4 substrate film having good anti-reflection performance according to the present invention has a high light transmittance and a low haze value, and the substrate film is used as a member of the display device. (also referred to herein as "display member"). For example, the light transmission in the wavelength range from nanometer to nanometer is preferably at least 40% and more preferably at least 6G%. The haze value is preferably not higher than 5%' and more preferably not higher than 3%. If one of the aforementioned conditions is not satisfied or the film is used for the display member, the displayed image may not be sharp. In terms of the range of repeatable reproduction, the upper limit of the light transmittance is about 99.5%, and the lower limit of the turbidity value is about 11% to achieve the desired effect. The base film 100 is not limited to a specific type, and may be appropriately selected from the resin materials commonly used in the known plastic substrate film of 200923406. Examples of the resin material for the base film 10 include a material selected from the group consisting of esters, ethylene, propylene, diacetate, triacetate, styrene, carbonate, decylpentene, anthracene, ether, and ethyl ketone. a polymer or copolymer of one of the five subgroups consisting of quinone imine, fluorine, nylon, acrylate, fatty ester, olefin, and the like. It is preferably a polymer having one subunit selected from the group consisting of esters such as ethyl terephthalate, acetates such as triethylsulfonyl cellulose, and acrylates such as polymethyl methacrylate. Or a copolymer. The reason is that the properties of the formed film are good in transparency, strength and uniform thickness. Specifically, in terms of transparency, turbidity value and mechanical properties, it is preferably a substrate film 100 composed of a polymer having one subunit. Examples of such a polyester resin include polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, polyethylidene-α, yS - Anthracene (2-chlorophenoxy)ethane-4,4'-dicarboxylate or the like. The copolyester 15 may copolymerize a dicarboxylic acid component or a diol component in an amount of 20 mol% or less. In the case of the polyester resin, quality, economic efficiency, and the like are generally considered, and polyethylene terephthalate ethyl ester is particularly preferred. Any of these resins or a combination of two or more of the classes may be used. The thickness of the base film 20 100 in the stacked film for optics according to the present invention is not limited to a specific value, but is usually from 5 μm to 800 μm and more preferably from 10 μm to 250 μm. The substrate film 100 may be a film formed by joining two or more films in a known manner. Further, before the formation of the high refractive index layer 110, the substrate film 100 may be subjected to surface treatment (e.g., corona discharge, glow discharge, flame treatment, etching or roughing, etc.). In addition, in order to assist adhesion, a high refractive index layer 110 can be formed on the surface of the coated substrate film as a wide layer (for example, using a polyamine phthalic acid, an ester, a polyester acrylate, a polyurethane acrylate) , polycycloolefin acid ester, titanate compound, etc.). In particular, in terms of improving adhesion, such as heat resistance, moisture resistance, and the like, a preferred example of a eucalyptus substrate is produced by applying a composition as a primer, and the composition comprises A copolymer prepared by grafting an acrylic compound to a polyester having a hydrophilic group and a cross-linking binder. Next, a high refractive index layer 110 for a stacked film for optics according to the present invention is formed on a substrate sheet 100. The high refractive index layer 11 〇 mainly contains a conductive particle and a binder component. In the present invention, the conductive particles are metal particles or metal oxide particles. However, in terms of high transparency, metal oxide particles are preferred. Particularly preferred for the metal oxide particles are tin-doped oxide (ΑΤΟ) particles, zinc-doped cerium oxide particles, tin-doped indium oxide (IT〇) particles, oxygen 15 zinc oxide/oxidized granules, and cerium oxide particles. More preferably, it is tin-doped oxide (ΑΤΟ) particles and tin-doped indium oxide (ιτο) particles. Preferably, the conductive particles of the present invention have an average primary particle diameter of 〇 5 μm (the sphere equivalent diameter measured according to the BET rule), but more particularly from 0.001 μm to 0 2 μm. If the average primary particle diameter is higher than the range, 20 the transparency of the produced film (conductive layer 120) is lowered. If the average straight warp system is below this range, the particles may agglomerate, thereby causing an increase in the haze value of the formed film (high refractive index layer 110). Therefore, in both cases, it is difficult to achieve the desired turbidity value. The binder component in the inward refractive index layer 110 is (meth)acrylated 200923406. The (fluorenyl) acrylate compound is subjected to radical polymerization by irradiation with actinic rays, and it is preferred that the solvent resistance or hardness of the produced film can be improved. A polyfunctional (fluorenyl) acrylate compound having two or more (meth) acrylonitrile groups in the molecule is particularly preferable because the solvent resistance is improved. Examples of the polyfunctional (meth) acrylate compound include 3-polyfunctional (meth) acrylates such as pentaerythritol tri(meth) acrylate, trimethylolpropane tri(meth) acrylate, glycerol triterpene (曱) Acrylate, modified ethyltrihydroxymercaptopropane tri(meth)acrylate, bis(2-hydroxyethyl)-isocyanurate tri(meth)acrylate and 4- or more - Polyfunctional (fluorenyl) acrylates such as pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, and the like. The low refractive index hard coating layer 120 for a film for optical use according to the present invention is formed on the high refractive index layer 110, and mainly contains a (meth) acrylate compound. The (meth) acrylate compound is subjected to radical polymerization by irradiation with actinic rays to improve the solvent resistance or hardness of the produced film. In particular, examples of the (meth) acrylate compound include monofunctional acrylate compounds such as decyl (meth) acrylate, n-butyl (meth) acrylate, polyester (meth) acrylate, (methyl) Lauryl acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate. Further, since the solvent resistance of the thin film produced by Machi is improved, it is particularly preferable to use a polyfunctional (meth) acrylate compound having two or more (meth) acrylonitrile groups in the molecule. Specific examples of the polyfunctional (meth) acrylate compound include pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol tris(meth)acrylate, pentaerythritol tetra(meth)acrylate , pentaerythritol penta (meth) acrylate, hexa-11 200923406 (methane) propylene from the pentaerythritol ester, tris (meth) acrylate trimethylol propyl ester and the like. The monomers may be used separately or in combination with two or more types thereof. In the present invention, the configuration for forming the low refractive index hard coating layer 120 is in the form of a stalk, and the knives comprise inorganic particles such as alkyl sulfite and hydrolyzate thereof, j-oxygen cut, dry sulphur dioxide The wet silica sand and the titanium oxide or the silica dioxide particles are dispersed in the colloid or the like to improve the hardness of the hard coating layer. In the stacked film for optical use of this (4), the low-refractive-index hard coating layer contains the Qianyuan polymer. Each of the 10 layers of the layer of the oxygen-containing polymer comprises an inorganic sulfur dioxide compound (also containing a polysilicate), a polyorgano compound, or a mixture thereof. The formation of the layers of the dioxide dioxide or polyorganosiloxane compound can be made in a known manner. Depending on the application, the thickness of the low-refractive-index hard coating layer 12 can be suitably selected, but the car is preferably from 0.05 μm to 10.0 μm. If the thickness of the low refractive index hard coating layer 20 is greater than 1 Å, the transparency of the film produced is lowered, thus resulting in a higher haze value and a more fragile cured film. Under such circumstances, when the film is bent and folded, the defect of the low refractive index hard coating layer 12 is likely to cause cracks. The low refractive index hard tantalum coating layer 120 for a stacked film for optics according to the present invention is formed on the high refractive index layer 110, and mainly contains a fluorine-containing compound. The ruthenium fluoride compound used in the present invention is preferably crosslinked by heat crosslinking or free light crosslinking. The crosslinked fluorine-containing compound may be a fluorine-containing monomer having an unsaturated group or a fluorine-containing polymer having a crosslinking group, or a fluorine-containing monomer subunit and 12 200923406 to produce a crosslinking-based monomer. Copolymer. Particularly preferred is a fluorine-containing copolymer having a structure of ethylene s. Preferably, the fluorinated copolymer has a fluorine content of at least 30% by weight, and the amount of the fluorinated olefin is at least 5 Å and preferably at least 5 〇〇〇 5 average molecular weight in terms of polystyrene. Such a fluorine-containing copolymer is obtained by polymerizing a hardenable composition containing one of a fluorine-containing compound and a vinyl ester compound. Preferably, the obtained form is obtained by polymerizing a hardenable composition comprising a fluorine-containing olefin compound, a vinyl ester compound polymerizable with the fluorine-containing olefin compound, and a desired reactive emulsifier. The hardenable composition preferably used to form the gas-containing copolymer K) comprises a reactive emulsifier as a component. The use of the reactive emulsifier component allows for good application of the fluoropolymer with superior coating and leveling effectiveness. Preferably, the reactive emulsifier is in particular a (iv) reactive emulsifier. The proportion of the structural unit derived from the fluorine-containing olefin compound containing fluorine in the fluorine-containing copolymer 15 contained in the low refractive index hard coating layer 120 is 20 mol% to 7 mol%, preferably 25 Molar% to 65% by mole and more preferably % by mole to 60% by mole. If the ratio of the structural unit derived from the (tetra)hydrocarbon-containing compound is less than 2 mol%, the amount of fluorine in the obtained gas-containing copolymer may be too low, and thus the refractive index of the obtained low refractive index hard coating layer 120 is obtained. The rate failed as follows: 20 Expectations are low enough. At the same time, if the single-tethered horse is derived from the gas-containing dilute compound, the hard coating layer is not good, because the homogenization of the coating liquid is inferior, so it is difficult (four) to reduce The film, and the transparency of the hard coating layer 120 is lowered, and cannot be adhered to the substrate shell as desired. In the far-inclusive murine copolymer, the proportion of the structural unit derived from the compound 13 200923406 component having an ethyl acetate composition is from 10 mol% to 7 mol%, preferably from 15 mol% to 65 wt%. More preferably, the amount of the structural unit of the compound having a vinyl ether structure is less than 1% by mole, and the homogeneity of the coating liquid is inferior, so that it is difficult to form a homogeneous coated film. . 5 10 15 20 If the ratio is higher than 7 〇 mol %, the hard coating 12 g of the ship-bending material is not preferable because optical properties such as transparency are lowered and a low refractive index is obtained. The use of a compound having a reactive official such as a record or a county-based monomer having a compound of ethylene (tetra) is divided into a touch, which is a hardenable tree of the hardened tree, and the product can be cured by a coating material. The strength is improved. The ratio of the monomer to the total amount of monomers having a trans group or an epoxy group is from G to 20 mol%, which is a molar amount. /〇 to 2〇% by mole and more preferably 3% by mole to 15% by mole. If the ratio is in the % of moles, the resulting low refractive index hard coating layer (10) has an optical property = inferior and may cause the film to be weak after hardening. In the fluorinated copolymer comprising a reactive emulsifier, the proportion of subunits derived from the reactive emulsifier component is usually fine moiré such as ◦ mol % and preferably 0.1 mol % to 5 mol % . If / ratio: at 1 G mol%, the resulting low refractive index hard coating layer 12 may be viscous', which is not preferable because the moisture resistance of the treatment is lowered. Preferably, the low refractive index hard coating layer (3) of the present invention contains the compound of (4) in addition to the sharp copolymer because it specifically exhibits a given degree of hardening energy and can effectively improve the hardening efficiency. Examples of the crosslinking compound include an amine compound, pentaerythritol, various ages, a ruthenium salt, and a silk-containing compound such as a hydrolysis product thereof. The amine compound as a crosslinking compound is a compound having an amine group such as a trans group 14 200923406 5 10 15 20 succinyl group or an alkoxyalkyl group and reacting with a group or an epoxy group containing a compound I The compound has two or more groups and is derived from either or both of the other amine groups. Specific examples of the amine compound include a melamine compound 'urea compound, a benzoguanamine compound, and a glycoluril compound. The melamine compound is a compound known to have a framework in which a nitrogen atom is bonded to a triple ring, such as melamine, alkyl melamine, hydroxydecyl melamine, alkoxymercapto melamine or the like. Among them, a compound in which two or more groups are shared by one molecule is preferable, and the group may be either or both of a methylol group and an alkoxymethyl group. Particularly preferred is a supermethylamine, alkoxymercapto melamine or a derivative thereof obtained by reacting melamine with formic acid under an assay condition. In particular, alkoxymethylmelamine is preferred in that it can be cured to obtain a good preservation stability and a good reaction. There are no special restrictions on methyl melamine and alkoxymethyl melamine used as cross-linking compounds, and can be used in the document "Plastic materials with melamine 黯" (Nicole _) High School Press Press) A variety of resins obtained in the manner described. Examples of urea compounds are methylurea-mediated silk-based methylurea, having poly(tetra)-based urine, merging from it, and having a urea group in addition to urine. As for the urinary derivative compound, a plurality of resins described in the foregoing documents can be used. Using #A heavy to 3 fluorocopolymer as the benchmark 'The amount of such cross-linking compound is not more than 7 parts by weight 卟 5 to 30 彳 8 会 μ μ ^ compared with alumina 3 to 50 parts by weight and more difficult If you get the «« ratio, the dosage is higher than 70 parts by weight. If the gelation occurs, the copolymer reacts and the hardened phase does not have a low refractive index, so that the resulting cured film is not as strong as expected. Further, it is preferable that the low refractive index hard coating layer 120 contains a cerium oxide particle coupling agent, and/or a fluorine-containing resin having an oxygen-seeking residue = body anti-residue. The 5 10 15 20 and gasification (four) particles preferably comprise dry dioxo, I oxygen, and bismuth particles dispersed in the colloid. The average of the cerium oxide particles - secondary = straight (bad body equivalent diameter: BET rule) is usually G to micron to 02 micro 隹 嶋 micron to G. 15 micron. If the average particle diameter is within the crucible, the transparency of the low-fold_hard# coating layer 12() is not lowered and the hardness is easily improved. Further, the shape of the diced particles is preferably ^ V or a hollow cylindrical shape. As the (4) particles, two or more components each having particles having a non-particle diameter can be used. Dioxo pellets: surface treatment. For surface treatment, physical surface treatment such as / electric or corona discharge, or chemical surface treatment with a coupling agent may be used for chemical treatment. As for chemical treatment, it is preferred to use a time-matching coupler. The component of the V self-oxygen dicing particles is expressed as a solid content ratio of 5% to 50%, preferably 5% to 5% and more preferably to 30%. If the slave oxygen ratio of the oxygen-cut particles is in the preferred range, the low-refractive-index hard-f coating layer 12 has a good surface and good optical properties such as low transparency, low refractive index, and the like. — The composition of the Shi Xitong coupling agent is the chemical formula 1 R(1), bSlX4-(4), or the VIII hydrolyzate. Here, R(1)aR(2)b is a group having a burnt group, a dilute group, a propylene group or a β group. Base group, epoxy group, amine group, Wei group, methyl propylene oxycyanate scale from water group consisting of alkoxy group, oxyoxyoxy group, halogen group 16 200923406 and helium group Jing Jie Substitutes. In the above chemical formula 1,

帶有烧氧基碎烧基之含氟樹 脂為化學式2 R(3)cR(4)dSiXMc+d)表示之化合物或其水解產物。此處,The fluorine-containing resin having an alkoxyalkyl group is a compound represented by the formula 2 R(3)cR(4)dSiXMc+d) or a hydrolyzate thereof. Here,

U)丙烯醯氧基、(甲基)丙稀酿基等之烴基。乂為選自於由烧氧 基、烧氧基院氧基、鹵基或酿氧基所組成之組群之可水解U) a hydrocarbon group such as a propylene methoxy group or a (meth) acrylonitrile group.乂 is a hydrolyzable group selected from the group consisting of an oxygen-burning group, an alkoxy group, a halogen group or a methoxy group.

為1、2或3。 以固型物比表示,源自於具有烷氧基矽烷基之含氟樹脂 15之組分為至90%,較佳25%至80%,及更佳30%至70%。 當源自於具有烷氧基矽烷基之含氟樹脂之該組分比例係於 前述較佳範圍時,所得低折射率硬質被覆層12〇有期望之表 面硬度,也有良好光學特性,例如透明度低反射率等。 當於本發明中形成低折射率硬質被覆層120,可使用硬 2〇化催化劑來輔助加速被覆液硬化。較佳硬化催化劑為可協 助矽烷偶合劑例如酸性化合物縮合之硬化催化劑。酸性化 合物之較佳實例為路易士酸性化合物。路易士酸性化合物 之實例為金屬烷氧化物例如乙醯基乙醯氧基鋁或金屬螯合 物。可適當選擇硬化催化劑之用量,但以100份重量比石夕烧 17 200923406 偶合劑為基準,通f桃1份至10份重量比。 當於本發_成低折射率硬f被覆層⑽,若有 添加各種添加劑,例如聚合抑 均平劑等。 “化劑、分散劑、 射膜==:明之反射效能良好之高度透明抗反 ^將堆蝴膜之濁度值維她观 ==::r高,,可_期 10 15 為了獲得本發明中低折射率硬質被覆層12〇表面 良好防純’低折射率硬質被覆層⑶表面必須有細小皺 褶。精皺褶表面所得表面粗度與防餘性間之關係考慮係由 下列機轉影響。換言之對於精細皺褶表面,當將鋼絲絨於 鈹褐表面上滑動時,鋼絲絨只接觸凸部且滑動,故如所需, 與低折射率硬質被覆層12()之接觸面積變最小。結果特別防 姓性改良。低折射率硬質被覆層12〇之皺褶面之算術平均粗 度(Ra)大致上為0·003微米至〇 〇25微米,更佳為〇 〇〇4微米至 〇_〇22微米及又更佳為〇.004微米至〇 〇2〇微米。若皺褶面之 算術平均粗度(Ra)係高於前述較佳範圍,則低折射率硬質 被覆層120之濁度值增高,結果導致透明度降低。若皺褶面 之算術平均粗度(Ra)係低於載明之範圍,則難以改良防姓 性。為了於本發明形成低折射率硬質被覆層12〇之細小皺褶 面,較佳該硬質塗覆層120包含無機顆粒,例如膠體二氧化 矽、乾二氧化矽、濕二氧化矽、氧化鈦、玻璃珠、氧化鋁、 碳化矽、氮化矽、二氧化矽顆粒分散於膠體等。更佳該硬 20 200923406 質塗覆層120包含二a 虱化矽顆粒分散於膠體。特別,較佳使 用有兩種或多種顆板直徑散度組分之二氧化石夕顆粒。例如 丄由八有平均顆粒直徑為〇 〇〇1微米至0.02微米及〇 〇2微米 至〇_2微米之二氧切顆粒混合物,可形成細小皺褶面。 5為了讓本發明之堆疊式薄膜於低折射率硬質被覆層 120該側表面具有低反射比,要求堆疊式薄膜之最大反射比 係不大於4.0%,取小反射比係不小於。若反射比係高 於/低於載明之範圍,則外來光線可照射,堆疊式薄膜表面 無法製作成具有低反射比。 10 為了讓本發明之堆疊式薄膜於低折射率硬質被覆層 120該側表面具有低反射比,_高折射率層⑽及低折射 率硬質被覆層12G之折射率與厚度之乘積為目標射線(通常 為可見光)波長之1/4。因此於高折射率層11〇及低折射率硬 質被覆層12G巾’厚度與折射率n乘積之四倍較佳係於38〇奈 15米至780奈米。亦即較佳高折射率層110及低折射率硬質被 覆層120之折射率n與厚度d間之關係係與根據如下方程 之範圍: (1) η · d= λ /4 > 20 此處η表示可見光波長通常為380奈米$凡$780奈米。 為了製造具有低反射比之本發明之堆疊式薄膜,較佳 咼折射率層110之厚度為奈米至1〇〇奈米。低折射率硬質 被覆層120之厚度範圍較佳為0.〇5微米至1〇 〇微米,及更佳 為0_07微求至0.12微米。若咼折射率層11〇及低折射率硬質 200923406 被覆層12〇個別厚度非於載明之範圍内,則無法滿足如上方 程式卜該堆疊式薄膜於低折射率硬質被覆層12〇該側之表 面不具有低反射比。 此外為了讓本發明之堆疊式薄膜於低折射率硬質被 5覆層國側表面具有低反射比,低折射率硬f被覆層12〇 之折射率係小於高折射率層110之折射率,亦即低折射率硬 質被覆層120之折射率/高折射率層m較佳係小於ι 〇及更 佳為0.6至0_95。低折射率硬質被覆層12〇之折射率較佳係不 大於1·47 ’及更佳為138及丨48。目前難以形成折射率小於 H) 1.38之低折射率硬質被覆請,折射率大於148導致高反 射比。 *於本發明形成高折射率層110及低折射率硬質被覆 層120時,可使用起始劑來協助所施用的黏結劑組分之硬 化。 15 起始劑係用來起始或協助所施用之黏結劑組分利用自 由基反應 '陰離子反應、陽離子反應等而進行聚合反應及/ 或交聯反應’習知之光聚合起始劑可用於本發明。特別起 始劑之實例包括硫化物例如曱基二硫代胺基曱酸硫化鈉、 二苯基一硫化物、二苯并嘍唑一硫化物、二硫化物等;硫 20 ^山酮衍生物例如硫"山酮、2-乙基硫《山酮、2-氣硫咕酮、2,4- 二乙基硫°山鲷等;偶氮化合物例如腙、偶氮貳異丁腈等; 重氮化合物例如并二重氮鏘鹽等;芳香族羰基化合物例如 為安息香、安息香甲醚、安息香乙醚、二苯甲酮、二甲基 胺基二苯甲_、麥克氏(Michler’s)酮 '苄基蒽醌、第三丁基 20 200923406 5 10 15 20 葱醒、2-甲基蒽酉昆、2-乙基蒽撼、2_胺基葱驅、2_氯葱酉昆等; 二烧基胺基S旨苯甲酸_例如對:甲基胺基甲基苯甲酸 醋、對二甲基胺基乙基苯甲酸s旨、D_甲基胺基丁基苯曱酸 醋、對二乙基胺基異丙基苯甲㈣等;過氧化物類例如過 氧化苯甲醯、過氧化二·第三丁基、過氧化二異丙苯、異内 苯過氧ΙιΚ储生物麻9_苯基YU對甲氧基苯基 十定、9·乙醯基胺基代、笨#„丫料;啡⑽生物例如 9,10-二甲基苯并啡讲、9_甲基苯并啡啡、1〇_曱氧基苯并啤 讲等;啥胺琳衍生物例如5,4,,4”.三甲氧基n基嗅二 琳等;2,4,5_三苯基咪虹聚體、2•硝基$、2,4,6_三苯基% 讀4氟化苯、2,4,6_參(三氯甲基)]#三啡、3,3,-縣寒 香草素、硫麥克氏酮、2,4,6·三甲基苯曱醯基二苯基氧化 膦、寡(2-經基-2-甲基小(4仆甲基乙稀基)苯基)丙n 节基-2-二甲基胺基小(4-咮琳)苯基.丁 _等。 此外當於本發明形成高折射率層11〇及低折射率 被覆層120時’胺化合物可共存於光聚合起始劑來避免起始 劑敏感度因氧抑制而降低。胺化合物非僅限㈣定類型,° 而可為脂肪族胺化合物或芳香族胺化合物,只要為非 性即可。胺化合物之實例為三乙醇胺、甲基二乙醇胺等。 於本發明中,以黏結劑組分對顆粒之重量比表示/言 折射率層110之各組分之混合比要求為咖至胸且較^ 為15/85至25/75。若顆粒含量係低於該範圍,則所得薄棋之 傳導性並不佳,但具有期望之透明度。若其含量係高於# 範圍,則所得薄膜不合所f,原因在於薄膜之物理強度及 21 200923406 化學強度不佳。以100份重I比黏結劑組分為基準,本發明 之光聚合起始劑之用量通常為0.1份至20份重量比,且較佳 為1.0份至15.0份重量比。若本發明之光聚合起始劑之含量 係小於0.1份重量比,則光聚合過程緩慢,可能需要照光長 5時間來獲得期望之硬度及防蝕性,薄膜偶而可能並未全然 硬化。若其含量係高於20份重量比,所得薄膜可能傳導性、 防蝕性、耐候性等性質降低。 根據本發明之良好反射效能之抗反射膜中之高折射率 層110之主要組分為如則文說明之黏結劑組分、傳導顆粒及 10光聚合起始劑’以及若有所需也可包含任一種添加劑,例 如聚合抑制劑、硬化催化劑、抗氧化劑、分散劑、均平劑、 矽烷偶合劑等。 為了讓高折射率層110之組成分具有傳導性,該層進一 步包含傳導聚合物例如聚吡咯及聚苯胺,及有機金屬化合 15 物例如金屬醇酸鹽及螯合化合物。為了改良高折射率層110 之表面硬度,該層110進一步包含無機顆粒例如烷基矽酸鹽 及其水解產物、膠體二氧化矽、乾二氧化矽、濕二氧化矽 以及氧化鈦或二氧化矽顆粒分散於膠體等作為組成分。 為了於本發明之高折射率層110獲得期望之消靜電效 20 能’高折射率層110之表面電阻較佳係不高於1 X 1011 (歐姆/ 平方(ohm/sq)及更佳不高於1 X 1010歐姆/平方。 本發明之高折射率層110具有總光透射比較佳不低於 40%,更佳不低於60%。 現在將說明本發明之供光學用之堆疊式薄膜之製法。 22 200923406 根據本發明之供光學用之堆疊式薄膜之製法係經由於 基材薄膜100之至少一側上堆疊包含含氟化合物樹脂及金屬 氧化物之高折射率層110,以及然後於高折射率層11〇上堆疊 低折射率硬質被覆層12〇,該層120包含(甲基)丙烯酸酯化合 物、月架中具有乙烯醚結構之含氟共聚物及金屬氧化物。 本發明中之尚折射率層11〇及低折射率硬質被覆層 之形成方式係經由控制被覆液,其中各個組分較佳係分散 於溶劑,將該被覆液施用於一基材薄膜上,以及然後乾燥 及硬化被覆後之薄膜。 叩%艰玖奉發明之高折射率層丨丨〇之溶劑經混合來改 良本發明之各組分被覆效能或印刷效能,同時也改良顆教 之刀政性’該溶劑並未限於特定類別,可為任一種習知之 有機冷劑,但限制條件為該溶劑可溶解黏結劑組分。特別, 15 、本發明之各組成物黏度安定性及乾燥效能表示,較 ”有'弗點6GC至180°C之有機溶劑。也較佳為含氧原子之有 機岭劑’原因在於其與金屬顆粒具有良好親和力。此 機〜1之實例為甲醇、乙醇、異丙醇、正丁醇、第三丁醇、 乙:醇-甲醚、"氧基_2_丙醇、丙二醇一甲醚、環已 乙酉夂丁醋、異丙基丙酮、異丁酮、甲基異丁基甲酮、二乙 2〇醯基丙嗣、乙醯基丙轉。此等有機溶劍可分開使用: 合兩類或多類使用。 ”、 此外’有機溶劑之用量可選擇讓組成物依據被覆手^ 或p刷手&而定獲得適當黏度因而有良好加卫性,但以差 成物之固體密度表*,通㈣不大於6()重量%且較佳不大 23 200923406 於50重量%。大致上,顆粒添加至溶液,於該溶液中黏劑 組分係溶解於有機溶劑’然後利用分散機器例如塗料振搖 器、球磨機、砂磨機、三輥磨機、亞萊特機(atHghter)、均 混機等分散,然後將光聚合起始劑添加至所得混合物來均 5 勻溶解於其中。 此外,當形成低折射率硬質被覆層12〇時,主要包含人 氟化合物之可硬化組成物係分散於選自於下列所组成之纽 群中之至少一型溶劑:曱醇、乙醇、異丙醇、正丁醇、第 三丁醇、乙二醇一曱醚、1-甲氧基-2-丙醇、丙二醇一曱醚、 10 環己酮、乙酸丁酯、異丙基丙_、異丁_、甲基異丁夷甲 酮、一乙酿基丙酮及乙醯基丙酿I。然後所得混合物較佳係 藉乾燥及硬化使用該混合物所被覆之薄膜來施用而形成低 折射率硬質被覆層120。於此種情況下,溶劑用量係隨組成 物之期望黏度、硬化膜之期望厚度、乾燥溫度等條件改變。 15 施用根據本發明之供光學用之堆疊式薄膜之顯示裝置 用之薄膜之製法,係經由於該堆疊式薄膜之低折射率硬質 被覆層120上形成一黏著層,以及然後將一保護膜黏著於該 黏著層上。黏著層並未囿限於特定類型,限制條件為可利 用黏著性達成黏著即可。用於形成該黏著層之黏著劑可為橡 20膠黏著劑、基於乙烯系聚合物之黏著劑、基於縮聚合之黏著 劑、基於熱塑性樹脂之黏著劑及基於聚矽氧之黏著劑等。 其中’橡膠黏著劑之實例為基於丁二烯_苯乙烯共聚物 (SBR)橡膠、基於丁二烯_丙烯腈共聚物(NBR)橡膠、基於氣 丁稀聚合物之橡膠、基於異丁烯_異戊間二烯共聚物橡膠(丁 24 200923406 基橡谬)等。基於乙烯系聚合物之黏著劑之實例為基於丙稀 酸系樹脂、基於苯乙稀樹脂、基^乙酸乙稀乙烯共聚物 及基於乙職-乙酸乙烯s旨共聚物等。基於縮聚合之黏著劑 之實例為基於聚酯樹脂之黏著劑。基於熱固性樹月旨之黏著 5劑之實例為基於環氧樹脂之黏著劑、基於胺基甲酸酿樹脂 之黏著劑、基於甲搭樹脂之黏著劑等。該等樹脂可分^ 用或組合其中二類或多類使用。 此外,黏著劑可為溶劑型黏著劑或非溶劑型黏著劑。 為了形成黏著層,可採用常用技術,例如以前述黏著劑被 W覆。此外,黏著層可包含著色劑。容易經由將例如含有顏 料或色料之著色劑混合入黏著劑來達成。於含有著色劑之 情況下’較佳根據本發明之供光學用之堆疊式薄膜於550奈 米之光透射比係於40%至80%。此外’當根據本發明之供光 學用之堆疊式薄膜用於電漿顯示器時,要求中灰或藍灰用 15於透射光,要求顯示器於發光有改良色純度及反差。因此, 經由使用此種含顏料之黏著劑層可達成此項目的。 由保護瞑所組成之樹脂材料並未限於特定類型,而可 選自於用於已知塑膠基材薄膜之樹脂材料。供保護臈用之 樹脂材料之實例包括酯、乙烯、丙烯、二乙酸酯、三乙酸 20酯、苯乙烯、碳酸酯、曱基戊烯、颯、醚乙酮、尼龍、丙 烯酸酯;具有選自於環脂族烯烴中之—個亞單元之聚合物 或共聚物。其中,較佳使用係由選自於由基於乙稀或基於 丙稀之聚合物或共聚物,例b聚乙稀、I丙稀等及基於酉旨 之聚合物或共聚物例如聚對苯二曱酸伸乙酯等所組成之組 25 200923406 群中之一個亞單元之聚合物或共聚物。特別,以基材為佳, 包含就透明度及機械性質而言由一個基於酯之聚合物或共 聚物亞單元之聚合物。 具有根據本發明之供光學用之堆疊式薄膜之顯示器之 5濾光片之獲得方式,係經由將堆疊式薄膜施用於螢幕之顯 示面及/或施用於顯示器例如LCD、PDP、ELD (電致發光顯 示器)或CRT、PDA之前面板表面上,其中該供光學用之堆 疊式薄膜係施用至該顯示器之薄膜,而黏著層設置於該堆 疊式薄膜與顯示面間。 10 具有供光學用之堆疊式薄膜之顯示器之獲得方式,係 經由將根據本發明之供光學用之堆疊式薄膜黏著至LCd、 PDP、ELD或CRT、PDA等之顯示膜之顯示側上,其中一黏 著層係没置於該堆疊式薄膜與該顯示膜兩面間。 將如此製造之堆疊式薄膜緊密黏著至顯示膜表面及/ I5或前面板表面之手段並未限於特定類別,且可用來將黏著 層施用至顯示構件或基材薄_〇;乾燥層狀薄膜,以及然 後使用加壓輥輪等連結基材薄膜】〇 〇該堆疊式薄膜,讓低折 射率硬質被覆層120變成表層,其中黏著層係設置於基材薄 膜1 〇 〇與該顯示構件間。具有供光學用之堆疊式薄膜之顯示 20器之遽光片及具有供光學用之堆疊式薄膜之顯示器係藉該 手段獲得。 後文將參,、?、本發明之較佳實施例說明本發明之進一步 、田節da技藝人士顯然易知本發明非僅限於該等實施 例。 26 200923406 [實施例1] 形成高折射率厝110 含掺錫氧化銦(ITO)顆粒之被覆材料[35·7%固型物 官能胺基甲酸酯(曱基)丙烯酸酯/ΙΤΟ顆粒(平均、多 5徑30奈米)=1〇/82](Ε1-3,市面上得自大曰本塗料公司(直 Nippon Paint Co·))係以1〇〇:2之重量比混合句冬& 幻 匕3虱之被覆材 料(10%固體’ LR-S6000,市面上得自東麗八 果鹿公司(T0rayIs 1, 2 or 3. The component derived from the fluorine-containing resin 15 having an alkoxyalkylene group is from 90%, preferably from 25% to 80%, and more preferably from 30% to 70%, in terms of the solid ratio. When the proportion of the component derived from the fluorine-containing resin having an alkoxyalkyl group is in the above preferred range, the obtained low refractive index hard coating layer 12 has a desired surface hardness and good optical characteristics such as low transparency. Reflectivity, etc. When the low refractive index hard coating layer 120 is formed in the present invention, a hard bismuth catalyst can be used to assist in accelerating the hardening of the coating liquid. Preferably, the hardening catalyst is a hardening catalyst which can assist in the condensation of a decane coupling agent such as an acidic compound. A preferred example of the acidic compound is a Lewis acid compound. Examples of Lewis acidic compounds are metal alkoxides such as ethyl ethoxide or metal chelates. The amount of the hardening catalyst can be appropriately selected, but it is 1 part by weight to 10 parts by weight based on 100 parts by weight of the stone smelting 17 200923406 coupling agent. In the present invention, a low refractive index hard f coating layer (10) is added, and various additives such as a polymerization inhibitor are added. "Chemical agent, dispersant, film ==: high transparency and good anti-reflection effect of the bright film. The turbidity value of the film is improved. ==::r high, _ period 10 15 In order to obtain the present invention The low-refractive-index hard coating layer 12 is well-preserved on the surface of the 'low-refractive-index hard coating layer (3). There must be fine wrinkles on the surface. The relationship between the surface roughness and the anti-retention property of the fine wrinkle surface is considered to be affected by the following machine In other words, for the finely pleated surface, when the steel wool is slid on the surface of the enamel, the steel wool contacts only the convex portion and slides, so that the contact area with the low refractive index hard coating layer 12 () is minimized as needed. As a result, the anti-surname improvement is particularly improved. The arithmetic mean roughness (Ra) of the wrinkled surface of the low refractive index hard coating layer 12 is substantially from 0.0003 μm to 〇〇25 μm, more preferably from 4 μm to 〇. _ 〇 22 μm and more preferably 004 004 μm to 〇 2 〇 micrometer. If the arithmetic mean roughness (Ra) of the pleated surface is higher than the above preferred range, the turbidity of the low refractive index hard coating layer 120 The value of the degree increases, resulting in a decrease in transparency. If the wrinkle surface is arithmetically averaged (Ra It is difficult to improve the anti-friction property in the range below the stated range. In order to form the fine wrinkle surface of the low-refractive-index hard coating layer 12 of the present invention, it is preferred that the hard coating layer 120 contains inorganic particles such as colloidal Cerium oxide, dry cerium oxide, wet cerium oxide, titanium oxide, glass beads, aluminum oxide, cerium carbide, cerium nitride, cerium oxide particles dispersed in a colloid, etc. More preferably, the hard coating 20 200923406 coating layer 120 comprises The two a bismuth telluride particles are dispersed in the colloid. In particular, it is preferred to use two or more kinds of diathenium particles of the plate diameter divergence component. For example, 丄 has an average particle diameter of 〇〇〇1 μm to 0.02. A mixture of micron and 二2 micrometers to 〇2 micrometers of dioxo-cut particles can form a fine wrinkle surface. 5 In order to allow the stacked film of the present invention to have a low reflectance on the side surface of the low refractive index hard coating layer 120, The maximum reflectance of the stacked film is required to be no more than 4.0%, and the small reflectance is not less than. If the reflectance is higher/lower than the specified range, the external light can be irradiated, and the surface of the stacked film cannot be made to have Low anti In order to make the stacked film of the present invention have a low reflectance on the side surface of the low refractive index hard coating layer 120, the product of the refractive index and the thickness of the high refractive index layer (10) and the low refractive index hard coating layer 12G is targeted. The ray (usually visible light) has a wavelength of 1/4. Therefore, four times the product of the thickness and the refractive index n of the high refractive index layer 11 and the low refractive index hard coating layer 12G is preferably 38 to 15 meters to 780. The relationship between the refractive index n and the thickness d of the preferred high refractive index layer 110 and the low refractive index hard coating layer 120 is in accordance with the following equation: (1) η · d = λ /4 > 20 where η indicates that the wavelength of visible light is usually 380 nm and $780 nm. In order to produce a stacked film of the present invention having a low reflectance, it is preferred that the thickness of the ytterbium refractive index layer 110 be from nanometers to 1 nanometer. The thickness of the low refractive index hard coating layer 120 is preferably from 0.5 to 5 μm to 1 μm, and more preferably from 0 to 07 to 0.12 μm. If the 咼 refractive index layer 11 〇 and the low refractive index hard 200923406 coating layer 12 〇 individual thickness is not within the range of the indication, the above formula cannot be satisfied. The stacked film is on the surface of the low refractive index hard coating layer 12 on the side. Does not have a low reflectance. In addition, in order to make the stacked film of the present invention have a low reflectance on the low-refractive-index hard surface of the 5-coated country side surface, the refractive index of the low-refractive-index hard f-cladding layer 12 is smaller than that of the high-refractive-index layer 110. That is, the refractive index/high refractive index layer m of the low refractive index hard coating layer 120 is preferably less than ι and more preferably from 0.6 to 0-95. The refractive index of the low refractive index hard coating layer 12 is preferably not more than 1.47 Å and more preferably 138 and 丨48. It is currently difficult to form a low refractive index hard coating having a refractive index of less than H) 1.38, and a refractive index greater than 148 results in a high reflection ratio. * When the high refractive index layer 110 and the low refractive index hard coating layer 120 are formed in the present invention, an initiator may be used to assist in the hardening of the applied binder component. 15 The initiator is used to initiate or assist the applied binder component to carry out the polymerization reaction and/or the crosslinking reaction by a radical reaction 'anion reaction, cationic reaction, etc.'. A conventional photopolymerization initiator can be used in the present invention. invention. Examples of specific initiators include sulfides such as sodium thiodithiocarbamic acid sulfonate, diphenyl monosulfide, dibenzoxazole monosulfide, disulfide, etc.; sulfur 20 ketone derivatives For example, sulfur " ketone, 2-ethyl sulphate, ketone, 2-oxathione, 2,4-diethylsulfanthene, etc.; azo compounds such as hydrazine, azobisisobutyronitrile, etc.; Diazo compounds such as diazonium salts; aromatic carbonyl compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzophenone, dimethylaminobenzophenone, and Michler's ketone 'benzyl Base, third butyl 20 200923406 5 10 15 20 Onion, 2-methyl fluorene, 2-ethyl hydrazine, 2-amino onion, 2 chloro onion, etc.; Amino S for benzoic acid _ for example: methylaminomethyl benzoic acid vinegar, p-dimethylaminoethyl benzoic acid s, D_methylaminobutyl phthalic acid vinegar, p-diethyl Amino isopropyl benzoyl (tetra), etc.; peroxides such as benzamidine peroxide, di-tert-butyl peroxide, dicumyl peroxide, iso-benzene benzene oxime YU pair Oxyphenyl phenyl decandyl, 9 ethionylamine amide, stupid; morphine (10) organisms such as 9,10-dimethylbenzophenone, 9-methylbenzophenone, 1 〇曱 苯 苯 啤 啥 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Base $, 2, 4, 6_ triphenyl % read 4 fluorinated benzene, 2, 4, 6 ginseng (trichloromethyl)] # trimorphine, 3, 3, - county cold vanillin, thiometh Ketone, 2,4,6-trimethylphenylnonyldiphenylphosphine oxide, oligo(2-carbo-2-methyl-small (4-methylethyl)phenyl)-propyl n-group 2-Dimethylamino group small (4-indolyl) phenyl. butyl _ and the like. Further, when the high refractive index layer 11 and the low refractive index coating layer 120 are formed in the present invention, the amine compound can coexist in the photopolymerization initiator to prevent the initiator sensitivity from being lowered by oxygen inhibition. The amine compound is not limited to the (4) type, and may be an aliphatic amine compound or an aromatic amine compound as long as it is non-existent. Examples of the amine compound are triethanolamine, methyldiethanolamine and the like. In the present invention, the mixing ratio of the components of the weight ratio of the binder component to the particle/refractive index layer 110 is required to be from coffee to chest and from 15/85 to 25/75. If the particle content is below this range, the resulting thin chess is not very conductive, but has a desired transparency. If the content is higher than the range of #, the resulting film does not conform to f because of the physical strength of the film and the poor chemical strength of 21 200923406. The photopolymerization initiator of the present invention is usually used in an amount of from 0.1 part by weight to 20 parts by weight, based on 100 parts by weight of the binder component, and preferably from 1.0 part to 15.0 part by weight. If the content of the photopolymerization initiator of the present invention is less than 0.1 part by weight, the photopolymerization process is slow, and it may take 5 hours to obtain the desired hardness and corrosion resistance, and the film may not be completely cured. If the content is more than 20 parts by weight, the resulting film may have lower properties such as conductivity, corrosion resistance, weather resistance and the like. The main component of the high refractive index layer 110 in the antireflection film according to the present invention is a binder component, a conductive particle and a 10 photopolymerization initiator as described herein, and may also contain if necessary Any of additives such as a polymerization inhibitor, a hardening catalyst, an antioxidant, a dispersing agent, a leveling agent, a decane coupling agent, and the like. In order to make the composition of the high refractive index layer 110 conductive, the layer further comprises a conductive polymer such as polypyrrole and polyaniline, and an organometallic compound such as a metal alkoxide and a chelate compound. In order to improve the surface hardness of the high refractive index layer 110, the layer 110 further contains inorganic particles such as alkyl silicate and its hydrolysis product, colloidal cerium oxide, dry cerium oxide, wet cerium oxide, and titanium oxide or cerium oxide. The particles are dispersed in a colloid or the like as a component. In order to obtain the desired antistatic effect for the high refractive index layer 110 of the present invention, the surface resistance of the high refractive index layer 110 is preferably not higher than 1 X 1011 (ohm/sq) and more preferably not high. The high refractive index layer 110 of the present invention has a total light transmittance of preferably not less than 40%, more preferably not less than 60%. The stacked film for optical use of the present invention will now be described. 22 200923406 The method for producing a stacked film for optics according to the present invention is to stack a high refractive index layer 110 comprising a fluorine-containing compound resin and a metal oxide on at least one side of a substrate film 100, and then to high The low refractive index hard coating layer 12 is stacked on the refractive index layer 11 and comprises a (meth) acrylate compound, a fluorinated copolymer having a vinyl ether structure in the moon frame, and a metal oxide. The refractive index layer 11 and the low refractive index hard coating layer are formed by controlling the coating liquid, wherein each component is preferably dispersed in a solvent, the coating liquid is applied onto a substrate film, and then dried and hardened. Rear Thin film. The solvent of the high refractive index layer of the invention is mixed to improve the coating performance or printing efficiency of the components of the present invention, and also improves the knives of the teaching. The solvent is not limited to a specific category. Any of the conventional organic refrigerants, but the limitation is that the solvent can dissolve the binder component. In particular, the viscosity stability and drying efficiency of each of the compositions of the present invention are higher than that of the "having" point 6GC to An organic solvent at 180 ° C. It is also preferably an organic ridge agent containing oxygen atoms 'because it has a good affinity with metal particles. Examples of this machine ~1 are methanol, ethanol, isopropanol, n-butanol, third Butanol, B: alcohol-methyl ether, "oxy-2-propanol, propylene glycol monomethyl ether, cyclohexane acetonide, isopropylacetone, isobutyl ketone, methyl isobutyl ketone, diethyl 2 〇醯基丙嗣,乙醯基丙转. These organic sifting swords can be used separately: in two or more categories. ”, In addition, the amount of organic solvent can be selected so that the composition can be brushed according to the coated hand ^ or p &definitely gain proper adhesion and therefore good sanity However, the solid density table of the difference is *, (4) is not more than 6 (% by weight) and preferably not more than 23, 23,230,406% by weight. In general, the particles are added to the solution, and the adhesive component is dissolved in the solution. The organic solvent 'is then dispersed by a dispersion machine such as a paint shaker, a ball mill, a sand mill, a three-roll mill, an atHghter, a homomixer, etc., and then a photopolymerization initiator is added to the resulting mixture. Further, when the low refractive index hard coating layer 12 is formed, the hardenable composition mainly containing the human fluorine compound is dispersed in at least one type of solvent selected from the group consisting of: Sterol, ethanol, isopropanol, n-butanol, tert-butanol, ethylene glycol monoterpene ether, 1-methoxy-2-propanol, propylene glycol monoterpene ether, 10 cyclohexanone, butyl acetate, Isopropyl propylene, isobutyl ketone, methyl isobutyl ketone, monoethyl ketone acetone and acetyl propyl ketone I. The resulting mixture is then preferably applied by drying and hardening a film coated with the mixture to form a low refractive index hard coating layer 120. In this case, the amount of the solvent varies depending on the desired viscosity of the composition, the desired thickness of the cured film, the drying temperature, and the like. 15 is a method for applying a film for a display device for a stacked film for optical use according to the present invention, by forming an adhesive layer on the low refractive index hard coating layer 120 of the stacked film, and then adhering a protective film On the adhesive layer. The adhesive layer is not limited to a specific type, and the restriction is that adhesion can be achieved by adhesion. The adhesive for forming the adhesive layer may be an rubber 20 adhesive, a vinyl polymer based adhesive, a polycondensation based adhesive, a thermoplastic resin based adhesive, and a polyoxygenated adhesive. Examples of 'rubber adhesives are based on butadiene-styrene copolymer (SBR) rubber, based on butadiene-acrylonitrile copolymer (NBR) rubber, rubber based on gas-butyl polymer, based on isobutylene-isoprene Metadiene copolymer rubber (Ding 24 200923406 base rubber) and the like. Examples of the adhesive based on the vinyl polymer are based on an acrylic resin, a styrene-based resin, a vinyl acetate copolymer, and a copolymer based on a vinyl-vinyl acetate. An example of a polycondensation-based adhesive is a polyester resin-based adhesive. Examples of the adhesion agent based on the thermosetting tree are an epoxy resin-based adhesive, an amine based formic acid-based adhesive, a nail-based resin-based adhesive, and the like. These resins may be used in combination or in combination of two or more of them. Further, the adhesive may be a solvent type adhesive or a non-solvent type adhesive. In order to form the adhesive layer, a conventional technique such as coating with the aforementioned adhesive may be employed. Further, the adhesive layer may contain a colorant. It is easily achieved by mixing, for example, a coloring agent containing a pigment or a colorant into an adhesive. In the case where a coloring agent is contained, the optical film for optical use according to the present invention is preferably 40% to 80% in light transmittance at 550 nm. Further, when the stacked film for optical use according to the present invention is used for a plasma display, it is required that the medium gray or the blue ash is used for transmitted light, and the display is required to have improved color purity and contrast in light emission. Therefore, this project can be achieved by using such a pigment-containing adhesive layer. The resin material composed of the protective crucible is not limited to a specific type, and may be selected from a resin material used for a film of a known plastic substrate. Examples of the resin material for protection include ester, ethylene, propylene, diacetate, triacetate 20 ester, styrene, carbonate, decylpentene, anthracene, ether ethyl ketone, nylon, acrylate; A polymer or copolymer derived from a subunit of a cycloaliphatic olefin. Preferably, the use thereof is selected from the group consisting of ethylene-based or propylene-based polymers or copolymers, examples b, polyethylene, I propylene, etc., and based on polymers or copolymers such as polyparaphenylene. A polymer or copolymer of one of the subunits of Group 25 200923406 consisting of decanoic acid and the like. In particular, it is preferred that the substrate comprises a polymer based on an ester-based polymer or copolymer subunit in terms of transparency and mechanical properties. A 5 filter having a display for a stacked film for optical use according to the present invention is obtained by applying a stacked film to a display surface of a screen and/or to a display such as an LCD, a PDP, an ELD (Electroelectrically On the front panel surface of the CRT or PDA, the optical film for stacking is applied to the film of the display, and the adhesive layer is disposed between the stacked film and the display surface. 10 A display having a stacked film for optics is obtained by adhering a stacked film for optical use according to the present invention to a display side of a display film of an LCd, PDP, ELD or CRT, PDA or the like, wherein An adhesive layer is not placed between the stacked film and the sides of the display film. The means for adhering the thus fabricated stacked film to the surface of the display film and/or the surface of the front panel is not limited to a specific class, and can be used to apply the adhesive layer to the display member or the substrate thinner; the dried layered film, And then, the base film is joined by using a pressure roller or the like. The stacked film is used to change the low refractive index hard coating layer 120 into a surface layer, wherein the adhesive layer is disposed between the substrate film 1 and the display member. A glazing sheet having a display film for optically stacked films and a display having a stacked film for optics are obtained by this means. Further embodiments of the present invention will be described hereinafter, and it will be apparent to those skilled in the art that the present invention is not limited to the embodiments. 26 200923406 [Example 1] Formation of high refractive index 厝110 coating material containing tin-doped indium oxide (ITO) particles [35.7% solid-type functional urethane (fluorenyl) acrylate/ruthenium particles (average , more than 5 diameters of 30 nm) = 1 〇 / 82] (Ε 1-3, available from Otsuka Paint Co., Ltd. (Nippon Paint Co.) on the market) with a weight ratio of 1〇〇:2 mixed with winter &; Magical 3 被 coated material (10% solid 'LR-S6000, commercially available from Toray 八果鹿公司(T0ray

Inc·))。然後使用微凹板被覆機,將混合物施用至1 $8货、, 厚度之聚酯薄膜(盧明流(Lumirror),市面上得自東麗八 10之一側上。然後薄膜於80t藉1 _〇焦耳/平方厘米紫外光照射 來硬化被覆層,形成厚約1〇〇奈米且具有折射率165之高折 射率層110。 形成低折射率硕晳被覆層120 包含多官能丙烯酸系樹脂之被覆材料(50〇/〇固型物) 15 (KZ7528 ’市面上得自JSR公司)以10:2之重量比混合包含含 氟烯烴/乙烯基醚共聚物)之被覆材料(1〇%固型物) (LR-S3000 ’市面上得自東麗公司)及中空二氧化石夕顆粒。 隨後使用微凹板被覆機將混合物施用於高折射率層 110表面。然後薄膜於8(TC乾燥5分鐘來藉1.0焦耳/平方厘米 2〇备、外光照射硬化被覆層’形成具有折射率1.40厚約〇 · 5微米 之低折射率硬質被覆層120。 [實施例2] 形成高折射率_】1Γ) 含掺錫氧化銦(ITO)顆粒之被覆材料[35.7%固型物、多 27 200923406 官能胺基甲酸酯(甲基)丙烯酸酯/ITO顆粒(平均—次顆粒直 徑30奈米)=10/82] (Ei_3,市面上得自大日本塗料公司)係以 100:10之重S比混合包含氟之被覆材料(10%固體, LR-S6_,市面上得自東麗公司)。然後使用微凹板被覆 5機,將混合物施用至188微米厚度之聚酯薄膜(盧明流,市 面上得自東麗公司)之一側上。然後薄膜於8〇它藉1 〇焦耳/ 平方厘米备、外光照射來硬化被覆層,形成厚約奈米且且 有折射率1.60之南折射率層no。 , 形成低折射率硬覽龙謂層 10 包含多官能丙烯酸系樹脂之被覆材料(5〇%固型物) (KZ7528,市面上得自JSR公司)以1〇:2之重量比混八包入八 氟烯烴/乙烯基醚共聚物)之被覆材料(1〇%固型3 (LR-S3000,市面上得自東麗公司)及中空二氧化矽顆粒 隨後使用微凹板被覆機將混合物施用於高折射率岸 15 U0表面。然後薄膜於80 °C乾燥5分鐘來藉1.〇焦耳/平方; 外光照射硬化被覆層,形成具有折射率^⑼厚 、 1 、 米之 低折射率硬質被覆層120。 [比較例1] 形成高折射率層11 0 20 含掺錫氧化銦(ITO)顆粒之被覆材料[3 5.7%固型物 官能胺基甲酸酯(曱基)丙烯酸酯/IT〇顆粒(平均— 多 i -人顆粒直 徑30奈米)=10/82] (E1-3,市面上得自大日本塗料公司)係、 100:2之重量比混合包含氟之被覆材料(1〇%固糸U LR-S6000’市面上得自東麗公司)。然後使用微四板=覆 28 200923406 機,將混合物施用至188微米厚度之聚酯薄膜(盧明流,市 面上得自東麗公司)之一側上。然後薄膜於80°C藉1.0焦耳/ 平方厘米紫外光照射來硬化被覆層,形成厚約100奈米且具 有折射率1.65之高折射率層110。 5 形成低折射率硬質被霜層120 包含含氟共聚物(含氟稀烴/乙烯基醚共聚物及中空二 氧化矽顆粒之被覆材料(10%固型物)(LR-S3000,市面上得 自東麗公司)及使用微凹板被覆機施用至高折射率層110表 面。然後薄膜於80°C乾燥5分鐘來藉1.0焦耳/平方紫外光照 10 射硬化被覆層,形成具有折射率1.36厚約0.5微米之低折射 率硬質被覆層120。 [比較例2] 形成高折射率層110 含掺錫氧化銦(ITO)顆粒之被覆材料[35.7%固型物、多 15 官能胺基曱酸酯(曱基)丙烯酸酯/ITO顆粒(平均一次顆粒直 徑30奈米)=10/82] (E1-3,市面上得自大日本塗料公司)係以 100:10之重量比混合包含氟之被覆材料(10%固體, LR-S6000,市面上得自東麗公司)。然後使用微凹板被覆 機,將混合物施用至188微米厚度之聚酯薄膜(盧明流,市 20 面上得自東麗公司)之一側上。然後薄膜於80°C藉1.0焦耳/ 平方厘米紫外光照射來硬化被覆層,形成厚約100奈米且具 有折射率1.60之高折射率層110。 形成低折射率硬質被覆層120 包含含氟共聚物(含氟稀烴/乙烯基醚共聚物及中空二 29 200923406 氧化矽顆粒之被覆材料(10%固型物)(LR-S3000,市面上得 自東麗公司)及使用微凹板被覆機施用於高折射率層110表 面。然後薄膜於80 °C乾燥5分鐘來藉1 ·〇焦耳/平方紫外光照 射硬化被覆層’形成具有折射率1.36厚約0.5微米之低折射 5 率硬質被覆層120。 [表1] 表面電阻 歐姆/平方 最大反射比 (%) 最小反射比 _(%1_ 鋼絲絨 硬度 濁度 (%) 反射效能 實施例1 108 3.8 0.18 5 0.98 良好 實施例2 109 3.9 0.21 5 1.01 良好 比較例1 108 4.5 0.31 4 1.24 強虹彩形 比較例2 109 4.9 0.32 3 1.14 極強虹彩形 後文將說明本發明之評估及測量方法。 [實驗例1 :評估鋼絲絨硬度] 藉施加250克力/平方厘米負載將一塊#〇〇〇〇鋼絲絨來 10回摩擦1〇次,觀察受損數目。依據受損數目將硬度分成下 列各級:(等級5 :受損,等級4 :⑴個損傷;等級3 : $至 10個損傷;等級2 :多於10個損傷及等級J :全表面受損)。 [實驗例2 :測量濁度] 濁度係使用市面上得自曰本蘇甲試驗機公司(Suga 15 Shikenk)之直接讀取濁度電腦測量。 [實驗例3 :評估表面電阻(消靜電效能 表面電阻係使用海維史塔(HIRESTA),市面上得自曰 本三菱優卡公司(Mitsbushi Yuka)測定。 [實驗例4 :測量反射比] 2〇 反射比係使用市面上得自日本曰立凱索古公司 30 200923406 (Hitachi Keisoku)之分光光度計U_3410測定。 使用一塊320至400之防水砂紙讓試樣薄膜之測量側的 另一側上均勻受損’將黑被覆液施用於其上來消除來自該 側的反射。入射光以6度至10度角度入射於該低折射率硬質 5被覆層120該侧進行測量。此種情況下之反射比表示於380 奈米S λ $780奈米之波長範圍之最小值。 根據本發明之供光學用之堆疊式薄膜具有良好抗反射 效能及防蝕性及降低製造成本之效果。 須注意前述實施例係舉例說明而非限制本發明,熟諳技 10藝人士可未悖離如隨附之申請專利範圍所界定之本發明之 範圍設計出多種其他實施例。「包含」一詞及其相關術語並 未排除存在有除了於申請專利範圍及說明書全文所列舉之 該等元件或步驟以外之元件或步驟。單數型元件並未排除多 數型元件,反之亦然。某些措施引述於彼此不同的申請專利 15範圍附屬項,並非指示此等措施之組合無法有利地使用。 【圖式簡單說^明】 第1圖係顯示抗反射膜原理; 第2圖示意顯示根據本發明之供光學用之堆疊式薄膜 之一堆疊結構之剖面圖。 20 【主要元件符號說明】 100…基材薄膜 110…南折射率層 120…低折射率硬質被覆層 31Inc.)). The mixture was then applied to a 1 $8, thickness film of polyester film (Lumirror) on the side of one of Toray 8 10 on the market using a micro-concave coating machine. The film was then borrowed at 80 lb.被 Joules per square centimeter of ultraviolet light is irradiated to harden the coating layer to form a high refractive index layer 110 having a thickness of about 1 nanometer and having a refractive index of 165. Forming a low refractive index sharp coating layer 120 comprising a coating of a polyfunctional acrylic resin Material (50〇/〇-type) 15 (KZ7528 'from the market from JSR) mixed with a fluorine-containing olefin/vinyl ether copolymer in a weight ratio of 10:2 (1% by weight solids) (LR-S3000 'from the market on the market from Toray, Inc.) and hollow dioxide dioxide granules. The mixture is then applied to the surface of the high refractive index layer 110 using a dicalytic coating machine. Then, the film was dried at 8 (TC dried for 5 minutes to provide a low refractive index hard coating layer 120 having a refractive index of 1.40 and a thickness of about 5 μm by using a 1.0 J/cm 2 coating and an external light irradiation hardening coating layer. 2] Formation of high refractive index _]1Γ) Coating material containing tin-doped indium oxide (ITO) particles [35.7% solids, more 27 200923406 functional urethane (meth) acrylate / ITO particles (average - Secondary particle diameter 30 nm) = 10/82] (Ei_3, available from Dainippon Coatings Co., Ltd.) is a mixture of fluorine-containing coating materials (10% solids, LR-S6_) on a 100:10 weight ratio. From the Toray company). The machine was then coated using a dicavity plate and the mixture was applied to one side of a 188 micron thick polyester film (Luming Stream, commercially available from Toray Corporation). Then, the film was cured by 8 〇 joules/cm 2 and external light to harden the coating layer to form a south refractive index layer no having a thickness of about 1.60 and having a refractive index of 1.60. , forming a low-refractive-index hard-dragon layer 10, a coating material containing a polyfunctional acrylic resin (5〇% solid) (KZ7528, commercially available from JSR), mixed in a weight ratio of 1〇:2 Coating material of octafluoroolefin/vinyl ether copolymer) (1% solids 3 (LR-S3000, commercially available from Toray) and hollow cerium oxide particles were then applied to the mixture using a micro-cavity coating machine High refractive index shore 15 U0 surface. Then the film is dried at 80 °C for 5 minutes to borrow 1. 〇 joules/square; external light is irradiated to harden the coating layer to form a low-refractive index hard coating with a refractive index ^(9) thickness and 1 and meters. Layer 120. [Comparative Example 1] Formation of a high refractive index layer 11 0 20 Coating material containing tin-doped indium oxide (ITO) particles [3 5.7% solid-functional urethane (mercapto) acrylate/IT〇 Granules (average - multi-i-human particle diameter 30 nm) = 10/82] (E1-3, available from Dainippon Coatings Co., Ltd.), a weight ratio of 100:2 mixed with a coating material containing fluorine (1〇 %固糸U LR-S6000' is available from Toray Corporation on the market. Then use the micro-four board = cover 28 200923406 machine, will mix Apply to a side of a 188 micron thick polyester film (Luming Stream, available from Toray Corporation). The film is then cured at 80 ° C with 1.0 joules per square centimeter of ultraviolet light to form a thick layer. 100 nm and a high refractive index layer 110 having a refractive index of 1.65. 5 Forming a low refractive index hard frost layer 120 comprising a fluorine-containing copolymer (a fluorine-containing diluted hydrocarbon/vinyl ether copolymer and a coating material of hollow cerium oxide particles) (10% solids) (LR-S3000, available from Toray Industries, Inc.) and applied to the surface of the high refractive index layer 110 using a dicavity coating machine. The film was then dried at 80 ° C for 5 minutes to borrow 1.0 joules per square. The ultraviolet light irradiated the hardened coating layer to form a low refractive index hard coating layer 120 having a refractive index of 1.36 and a thickness of about 0.5 μm. [Comparative Example 2] Formation of a high refractive index layer 110 A coating material containing tin-doped indium oxide (ITO) particles [ 35.7% solids, poly-15 functional phthalic acid decanoate (ITO) acrylate particles (average primary particle diameter 30 nm) = 10/82] (E1-3, available from Dainippon Coatings Co., Ltd. a mixture of fluorine-containing coating materials in a weight ratio of 100:10 (10% solids, LR-S6000, available from Toray Industries, Inc.). The mixture was then applied to a 188 micron thick polyester film using a micro-concave coating machine (Lu Mingliu, City No. 20 from Toray On one side of the company. The film is then cured by UV irradiation at 1.0 °C/cm 2 at 80 ° C to form a high refractive index layer 110 having a thickness of about 100 nm and having a refractive index of 1.60. The coating layer 120 comprises a fluorinated copolymer (fluorine-dilute hydrocarbon/vinyl ether copolymer and hollow slab 29 200923406 cerium oxide particle coating material (10% solids) (LR-S3000, commercially available from Toray Corporation) And applied to the surface of the high refractive index layer 110 using a dicavity coating machine. The film was then dried at 80 ° C for 5 minutes to form a low refractive index hard coating layer 120 having a refractive index of 1.36 and a thickness of about 0.5 μm by hardening the coating layer by 1 · 〇 joule / square ultraviolet light. [Table 1] Surface resistance ohms/square maximum reflectance (%) Minimum reflectance_(%1_ steel wool hardness turbidity (%) Reflection efficiency Example 1 108 3.8 0.18 5 0.98 Good example 2 109 3.9 0.21 5 1.01 Good Comparative Example 1 108 4.5 0.31 4 1.24 Strong iridescent shape Comparative Example 2 109 4.9 0.32 3 1.14 Very strong iridescent shape The evaluation and measurement method of the present invention will be described later. [Experimental Example 1: Evaluation of steel wool hardness] By applying 250 gram force /cmcm load will rub a piece of #〇〇〇〇 steel wool 10 times to rub 1 times, observe the number of damage. According to the number of damage, the hardness is divided into the following levels: (Level 5: Damaged, Grade 4: (1) Damage Level 3: $ to 10 damages; Grade 2: More than 10 damages and grade J: Full surface damage) [Experimental Example 2: Measurement of turbidity] Turbidity is obtained from the market Direct reading of turbidity computer measurement by Suga 15 Shikenk [Experimental Example 3: Evaluation of surface resistance (antistatic effect surface resistance system using HIRESTA), commercially available from 曰本三菱优卡公司(Mitsbushi Yuka) Determination [Experimental Example 4: Measurement Counter The ratio of 2 〇 reflectance is measured using a spectrophotometer U_3410 available from Japan 曰立凯索古公司30 200923406 (Hitachi Keisoku). Use a 320 to 400 waterproof sandpaper to allow another side of the measurement side of the sample film. Evenly damaged on the side's application of the black coating liquid to eliminate reflection from the side. The incident light is incident on the side of the low refractive index hard 5 coating layer 120 at an angle of 6 to 10 degrees. The reflectance is expressed as a minimum value in the wavelength range of 380 nm S λ $780 nm. The stacked film for optics according to the present invention has good anti-reflection performance and corrosion resistance and reduces manufacturing cost. The examples are intended to be illustrative, and not restrictive of the invention, and the various embodiments of the invention can be devised by the scope of the invention as defined by the appended claims. It is not excluded that there are elements or steps other than those listed in the full scope of the patent application and the specification. The singular elements do not exclude the majority of the components. And vice versa. Certain measures are cited in different scopes of the patent application 15 scope, and do not indicate that the combination of these measures cannot be used favorably. [Figure is simple] Figure 1 shows the principle of anti-reflection film; Figure 2 is a cross-sectional view showing a stacked structure of a stacked film for optics according to the present invention. 20 [Description of main elements] 100... Substrate film 110... South refractive index layer 120... Low refractive index hard coating Layer 31

Claims (1)

200923406 十、申請專利範圍: 1· 一種供光學用之堆疊式薄膜,其特徵在於其包含: 一基材薄膜; 一設於該基材薄膜之至少一側上之高折射率層,其 包含具含1化合物之樹脂、一金屬氧化物及―光聚a起 始劑,該層具有1.58至1.70之折射率及30奈米至1〇〇奈米 之厚度;以及 一設於該高折射率層上之低折射率硬質被覆層其 包含(甲基)丙烯酸酯化合物及骨架中具有乙烯酯結構之 含氟共聚物,以及一金屬氧化物,該層也具有i 38至】邮 折射率及0.05微米至10.0微米之厚度。 2.如申請專利範圍第1項之堆疊式薄膜,其特徵在於,在該 高折射率層中,該金屬氧化物含量為5重量%至9〇重量%2 3·如申請專利範圍第旧之堆疊式薄膜,其中於該高=斤〇射 率層中’該金屬氧化物為選自於由掺錫氧化錄顆粒、捧 鋅氧化銻雖、㈣氧化銦顺、氧料/氧化銘顆粒 及氧化銻顆粒所組成之組群中之至少一者。 4·如申請專利範圍第1項之堆疊式薄膜,其特徵在於,於 該低折射率硬質被覆層中,該金屬氧化物為具有二氧化 石夕/中空二氧化石夕顆粒。 5_如申請專利範圍第4項之堆疊式薄膜,其特徵在於,該 低折射率硬質被覆層中,該二氧靖空二氧切顆 粒具有顆粒直徑為0 001微米至〇 2微米。 6.如申請專利範圍第"之堆疊式薄膜,其特徵在於,該 32 200923406 二氧化矽/中空二氧化矽顆粒具有至少2組分之顆粒直 徑分佈。 7. 如申請專利範圍第5項之堆疊式薄膜,其特徵在於,該 低折射率硬質被覆層120之表面為凹凸面,及算術平均 粗度(Ra)為0.003微米至0.025微米。 8. 如申請專利範圍第1至7項中任一項之堆疊式薄膜,其特 徵在於,該堆疊式薄膜之反射率為0.1%至4%。 9. 如申請專利範圍第1至7項中任一項之堆疊式薄膜,其特 徵在於,該堆疊式薄膜之濁度值為0.5%至3.0%。 33200923406 X. Patent Application Range: 1. A stacked film for optical use, comprising: a substrate film; a high refractive index layer disposed on at least one side of the substrate film, comprising a resin containing a compound, a metal oxide, and a photopolymerization initiator, the layer having a refractive index of 1.58 to 1.70 and a thickness of 30 nm to 1 nm; and a layer disposed on the high refractive index layer The low refractive index hard coating layer comprises a (meth) acrylate compound and a fluorinated copolymer having a vinyl ester structure in the skeleton, and a metal oxide, the layer also having an i 38 to Å refractive index and 0.05 μm To a thickness of 10.0 microns. 2. The stacked film according to claim 1, wherein the metal oxide content is from 5% by weight to 9% by weight in the high refractive index layer. a stacked film in which the metal oxide is selected from the group consisting of tin-doped oxide particles, zinc-doped cerium oxide, (iv) indium oxide cis, oxygen/oxidized particles, and oxidation At least one of the group consisting of ruthenium particles. 4. The stacked film of claim 1, wherein in the low refractive index hard coating layer, the metal oxide has a cerium oxide/hollow dioxide dioxide granule. The stacked film of claim 4, wherein in the low refractive index hard coating layer, the dioxygenated dioxo prior particles have a particle diameter of from 0 001 μm to 〇 2 μm. 6. The stacked film of claim "", wherein the 32 200923406 cerium oxide/hollow cerium oxide particles have a particle diameter distribution of at least two components. 7. The stacked film of claim 5, wherein the low refractive index hard coating layer 120 has a concave-convex surface and an arithmetic mean roughness (Ra) of 0.003 micrometers to 0.025 micrometers. 8. The stacked film of any one of claims 1 to 7 wherein the stacked film has a reflectance of from 0.1% to 4%. 9. The stacked film of any one of claims 1 to 7 wherein the stacked film has a haze value of from 0.5% to 3.0%. 33
TW097106317A 2007-11-22 2008-02-22 Stacked film for optical use TWI374290B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070119696A KR100918916B1 (en) 2007-11-22 2007-11-22 Optical stacking Film

Publications (2)

Publication Number Publication Date
TW200923406A true TW200923406A (en) 2009-06-01
TWI374290B TWI374290B (en) 2012-10-11

Family

ID=40725800

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097106317A TWI374290B (en) 2007-11-22 2008-02-22 Stacked film for optical use

Country Status (3)

Country Link
KR (1) KR100918916B1 (en)
CN (1) CN101441282B (en)
TW (1) TWI374290B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10336043B2 (en) 2012-11-30 2019-07-02 Fujifilm Corporation Transfer film, transparent laminate, method for producing transparent laminate, capacitive input device, and image display device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102207597B (en) * 2011-05-27 2012-12-19 宁波永新光学股份有限公司 Optical window device with high hardness and low friction coefficient
KR20150024548A (en) * 2013-08-27 2015-03-09 동우 화인켐 주식회사 Anti-reflection Optical Laminate
KR101686644B1 (en) 2013-11-19 2016-12-14 주식회사 엘지화학 Plastic film laminate
WO2015076567A1 (en) * 2013-11-19 2015-05-28 주식회사 엘지화학 Plastic film laminate
JP6211485B2 (en) * 2013-12-03 2017-10-11 富士フイルム株式会社 Anti-reflective optical member
WO2015159517A1 (en) * 2014-04-14 2015-10-22 富士フイルム株式会社 Anti-reflection film and functional glass
KR20160112053A (en) 2015-03-17 2016-09-28 도레이첨단소재 주식회사 Hard coating film for lcd and anti-reflection film using the same
KR101697049B1 (en) * 2016-07-14 2017-01-16 주식회사 대현에스티 Protective film for display of mobile device having self bending function
CN117124507A (en) * 2016-08-26 2023-11-28 分子印记公司 Method for manufacturing monolithic photonic device and photonic device
CN106601340A (en) * 2016-12-21 2017-04-26 张家港康得新光电材料有限公司 Refractive index coupling film and ITO conductive film
US11413591B2 (en) 2017-11-02 2022-08-16 Magic Leap, Inc. Preparing and dispensing polymer materials and producing polymer articles therefrom
US20210114338A1 (en) * 2018-03-30 2021-04-22 Yupo Corporation Laminate and adhesive label
JP7238242B2 (en) * 2018-06-29 2023-03-14 エルジー・ケム・リミテッド Optical stack and display device
JP7275167B2 (en) * 2019-01-03 2023-05-17 京東方科技集團股▲ふん▼有限公司 Transparent laminated film, display device, and method for producing transparent laminated film
CN111993738B (en) * 2019-05-27 2023-11-07 宁波长阳科技股份有限公司 Multilayer co-extrusion optical anti-reflection film and preparation method thereof
CN110196461A (en) * 2019-05-30 2019-09-03 汕头万顺新材集团股份有限公司 A kind of anti-reflective film
JP7182804B2 (en) * 2019-12-03 2022-12-05 尾池工業株式会社 anti-reflection film
CN113372744B (en) * 2021-05-21 2022-07-19 武汉工程大学 High-refractive-index acrylic optical material and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4008203B2 (en) * 2001-03-28 2007-11-14 リンテック株式会社 Optical film
JP2003075605A (en) 2001-09-05 2003-03-12 Nitto Denko Corp Antireflective hard coat sheet, antireflective polarizing plate and image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10336043B2 (en) 2012-11-30 2019-07-02 Fujifilm Corporation Transfer film, transparent laminate, method for producing transparent laminate, capacitive input device, and image display device

Also Published As

Publication number Publication date
TWI374290B (en) 2012-10-11
KR20090053061A (en) 2009-05-27
KR100918916B1 (en) 2009-09-23
CN101441282A (en) 2009-05-27
CN101441282B (en) 2012-11-28

Similar Documents

Publication Publication Date Title
TW200923406A (en) Stacked film for optical use
TWI400476B (en) Anti-reflective film with excellent scratch resistance and surface slip property
TWI356769B (en)
TWI274662B (en) Laminated film, filter for display and display
CN102369108B (en) Nesa coating
TWI228530B (en) Coating composition, its coated film, reflection prevention film, reflection prevention thin film and image monitoring apparatus
JP6270068B2 (en) Polyester primer composition, optical film using the same, and polarizing plate including the same
TWI426102B (en) Metal oxide composition, hardened film, and laminated article
KR20050005785A (en) Hardcoat film, antireflection film and equipment for display
US9771491B2 (en) Laminated film and method for producing same
TWI552877B (en) Optical film comprising primer layer comprising polyester-resin and polarizing plate using the same
CN103518239A (en) Transparent conductive laminate and touch panel
TW200405030A (en) Antireflection film, polarizing plate and image display device
TW201137411A (en) Anti-glare film, manufacturing method for same, polarizing plate and image display device
TW201012647A (en) Continuous manufacturing method of acrylic resin sheet
KR20180070494A (en) Composition for forming optical film, optical film and polarizer comprising the same
JP2008242076A (en) Antistatic hard coat composition and optical article
CN108025526A (en) Antireflective coating and preparation method thereof
JP2006212987A (en) Transfer material
JP2003145689A (en) Laminated film, image display protective film, and image display device using the same
JP2004331744A (en) Curable composition and article coated with cured product of the same
TW200846694A (en) Antireflective film with reduced rainbow phenomenon and optimized antireflection effect
JP2001293818A (en) Reflection preventing hard coat film
JP2005313450A (en) Reflection preventing film
TW200916818A (en) Hard coating film for display with excellent reflective appearance