TW200923207A - Electricity generation device and method by using temperature - Google Patents

Electricity generation device and method by using temperature Download PDF

Info

Publication number
TW200923207A
TW200923207A TW96145538A TW96145538A TW200923207A TW 200923207 A TW200923207 A TW 200923207A TW 96145538 A TW96145538 A TW 96145538A TW 96145538 A TW96145538 A TW 96145538A TW 200923207 A TW200923207 A TW 200923207A
Authority
TW
Taiwan
Prior art keywords
layer
temperature
generating
conductor layer
insulating layer
Prior art date
Application number
TW96145538A
Other languages
Chinese (zh)
Inventor
Fuh-Cheng Jong
Original Assignee
Fuh-Cheng Jong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuh-Cheng Jong filed Critical Fuh-Cheng Jong
Priority to TW96145538A priority Critical patent/TW200923207A/en
Priority to DE102008045550A priority patent/DE102008045550A1/en
Priority to US12/203,552 priority patent/US7919709B2/en
Priority to AU2008211989A priority patent/AU2008211989B2/en
Publication of TW200923207A publication Critical patent/TW200923207A/en

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

The present invention relates to an electricity generation device and method by using temperature, it is used as electricity generation device. The electricity generation device comprises a temperature reaction layer, a thermo-electron generation layer, a first insulation layer, a first conductive layer, a second insulation layer, a second conductive layer, an external power source and a package hood. The electricity generation method comprises the following steps: (A). disposing a thermal electron generation layer, (B). disposing a first insulation layer, (C). disposing a first conductive layer, (D). disposing a second insulation layer, (E). disposing a second conductive layer, and (F). Applying an external electric field. Accordingly, thermo-electrons can be generated. The generated thermo-electrons are transported to the loads, and are power supply source.

Description

200923207 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種溫度發電裝置及方法(二),以低 功函數材料與高吸收熱能材料,透過外加的電場,將產生的 電子以電場吸引方式誘導到導體層,&而產±電能之發電裝 【先前技術】 按,由於科技發展的快速,加上全球人口的增長,能源 的使用,不斷地增加,目前最重要的能源應屬石油,現今石 油的存量JE在迅速減対,專家預估可能在半世紀後會有供 $上的危機’此-世界性的能源危機,迫使人們再度致力於 寻找新的可利用能源’故許多研究者已致力於減少現有能源 使用的浪費,及新能源的開發,近年來由於在技術上熱電材 料f生此的不斷提升,及環保議題上溫室效應/二氧化碳減量 ^因素’因此利用熱電轉換技術,進—步將大量廢熱回收轉 :'、電能的方式,普遍得到日、美、歐料進國家的重視。而 f案發明人亦設計如巾華關專财請號第MW·號之 /皿度發電裝置及方法」提供另外—種比傳統發電更方便與 :經濟的新能源’以減少地球日益暖化的危機,以及能源的 消耗,達到環保的目的。 然’前述之「溫度發電裝置及方法」係應用於供給外部 Z及Μ,其應用層面有所舰,為了更提升溫度發電裝 及方法之應騎面及價值,本㈣人另外提供—種溫度發 200923207 電裝置及方法(二)’透過改變其内部電場的位置,擴大在 電子電機系統上的應用。 、 【發明内容】 本發明係為一種溫度發電裝置(二),包括有: 溫度反應層’係以低比熱、 黑體放射率之材料製成、呈^陽放射及收率接近1且低 m雌成’具有相對之第—面及第二面, 一面係用以吸收熱能; /、币 熱電子生成層’具有相對之第—面及第二面,其第 與溫度反應層之第二面相德 料製成; 相連,係以低功函數或低游離能之材 10—8二_:^有㈣之第—面及第二面’其厚度係為 第一係與熱電子生成層之第二面相連; 第-導體層,具有相對之第一 與第一絕緣層之第二面相連; ,、第面係 ^二絕緣層,其厚度係為1(rVl(r2 m,具有相對之第一 苐-面,其第-面係與第一導體層之第二面相連. 第二導體層,具有相對之第一面 與第二絕緣層第二面相連; U-面係 負極連接溫度反應 外接電源,其正極連接第二導 層,於兩極之間提供一電場; 輸出端,係以溫度反應層與第一導體層作為輸 上述之溫度發電裝置(二),装中、 不銹鋼、氧化銅、鎳及鉻所組成材料群組之 6 200923207 溫度反應層之太陽敌射吸收率接近丨時大氣質量為2。該溫 度反應層之黑體放射率係為對1 〇 〇 t黑體放射的放射率,且 放射率趨近0。其第一面係為深色。 上述之溫度發電裝置(二),該低功函數或低游離能之 材料係選自鑭、鋁、铪、化學週期表的鹼金族元素之鋰、 鈉、鉀、铷、鉋及化學週期表的鹼土族元素之鈹、鎂、鈣、 錯、、鎖、錯及化合物六硼化鑭(LaB6)所組成材才斗群組之杯一 種。豆中兮敎番^仕一 八以”,、電子生成層之低功函數材料係於 於糾之材料。低游離能材料係指其游離二、功函數係小 (kcal/ mole) 之材料。 4㉟材料小於200 上述之溫度發電裝置(二),其中 介電層。該第-絕緣 4 —絕緣層係為 之材料係輩付h 真或氣體絕緣層。該介雷廢 糸早位截面積電阻係數大於1〇1。、增U層 為二氧化矽、氮化功 cm以上的材料,係 夕、氧化I呂、鈦酸鋇及杯 料群組之中的任何〜種。 及鈦酸鉛鋇所組成材 上述之溫度發電裝 位截面積電阻係數 ^ ,该第一導體層係單 導體層之形狀係片體或網狀片體。”阻材質。該第- 上述之溫度發電裝置复 ”電層。該第一絕 ' /、中,該第二絕緣層係為 之材料係單位截面稽:係為真工層,,體絕緣層。該介電層 為二氧化矽、氮化矽阻係數大於10 以上的材料,係 料群組之中的任何〜種魏铭、鈦_及鈦酸㈣所組成材 200923207 上ift夕、:Η奋雨壯® ,200923207 IX. Description of the Invention: [Technical Field] The present invention relates to a temperature generating device and method (2) for using an electric field with a low work function material and a high absorption thermal energy material through an applied electric field. The attraction mode is induced to the conductor layer, and the power generation device that produces ± electric energy [previous technology] According to the rapid development of science and technology, coupled with the growth of the global population, the use of energy continues to increase, and the most important energy source is currently Oil, the stock of today's oil JE is rapidly declining, experts predict that there may be a crisis for $ half a century later. This - a worldwide energy crisis, forcing people to renew their efforts to find new energy sources. Researchers have been working to reduce the waste of existing energy use and the development of new energy sources. In recent years, due to the continuous improvement of thermoelectric materials in technology, and the greenhouse effect/carbon dioxide reduction in environmental protection issues, the use of thermoelectric conversion technology Into the step to recycle a large amount of waste heat: ', the way of electric energy, generally get the weight of Japan, the United States, Europe into the country Vision. The inventor of the f case also designed the MW-No. MW/No. Power Generation Device and Method to provide another kind of more convenient than traditional power generation: economical new energy' to reduce the planet's warming The crisis, as well as the consumption of energy, achieves the goal of environmental protection. However, the above-mentioned "temperature power generation device and method" is applied to the supply of external Z and Μ, and its application level has a ship. In order to improve the riding surface and value of the temperature generating device and method, the (4) person additionally provides a temperature. Issue 200923207 Electrical Installations and Methods (2) 'Expand the application of electronic motor systems by changing the position of its internal electric field. SUMMARY OF THE INVENTION The present invention is a temperature power generating device (2) comprising: a temperature reaction layer 'made of a material having a low specific heat and a black body emissivity, and having a solar radiation yield and a yield close to 1 and a low m female The 'having a relative first side and a second side, one side for absorbing heat energy; /, the coin hot electron generating layer 'having a relative first side and a second side, the second side of the temperature reaction layer Made of materials; connected, with a low work function or low free energy material 10-8 _: ^ have (four) the first face and the second face 'the thickness of the first system and the second generation of the thermoelectric layer The first conductor layer has a first surface opposite to the first surface of the first insulating layer; and the first surface is a second insulating layer having a thickness of 1 (rVl (r2 m, having a relative first) The first surface of the first conductor layer is connected to the second surface of the first conductor layer. The second conductor layer has a first surface opposite to the second surface of the second insulating layer; a power source having a positive electrode connected to the second conductive layer to provide an electric field between the two poles; The reaction layer and the first conductor layer are used as the temperature generating device (2), and the group of materials consisting of medium, stainless steel, copper oxide, nickel and chromium is included in the group of 200923207. The mass is 2. The black body emissivity of the temperature reaction layer is the emissivity of the black body radiation of 1 〇〇t, and the emissivity approaches 0. The first side is dark. The above temperature generating device (2), The low work function or low free energy material is selected from the group consisting of lanthanum, aluminum, lanthanum, lithium, sodium, potassium, cesium, planer and alkaline earth elements of the chemical periodic table, magnesium, Calcium, erroneous, lock, wrong and compound lanthanum hexaboride (LaB6) are composed of a cup of a bucket group. Beans in the ^ ^ ^ ^ 一 , , , , , , , , , , , , , , , , , , , , , , , For the material to be corrected, the low free energy material refers to the material which is free and has a small kcal/ mole. The 435 material is less than 200. The above temperature generating device (2), wherein the dielectric layer. 4 — The insulation layer is the material that pays for the true or Body insulation layer. The dielectric constant coefficient of the early cross-sectional area of the Jielei waste is greater than 1〇1, and the U layer is a material of cerium oxide and nitriding work cm or more, which is oxidized, oxidized Ilu, barium titanate and cup Any of the groups of the group and the composition of lead strontium titanate, the above-mentioned temperature generating device cross-sectional area resistivity ^, the first conductor layer is a single conductor layer shaped by a sheet or a mesh sheet." The first-to-be-temperature electrical power generation device has a plurality of electrical layers. The first insulating layer is a material-based unit cross-section of the first insulating layer: a true working layer, and a bulk insulating layer. The dielectric layer is a material having a cerium oxide and a cerium nitride resistance coefficient of more than 10, and any of the materials in the group of Wei Ming, titanium _, and titanic acid (4) is composed of 200923207. Rain Zhuang®,

’利用串聯或並聯組合多個 溫度發電裝置(二)。 本發明係-種溫度發電方法(二),係包括: 為以 間提 .。又置熱電子生成層.係於一溫度反應層上披覆一層 以低游離能或低功函數材料所構成之熱電子生成層; Β.汉置一第一絕緣層:於上述熱電子生成層上設置極薄 之第一絕緣層; C·設置一第一導體層:設置一層第一導體層與第一絕緣 層相連; D.設置一第二絕緣層:於第一導體層上設置極薄之第二 絕緣層; Ε.設置一第二導體層:設置一第二導體層與第二絕緣層 相連; θ F.外加一電場:於溫度反應層與第二導體層外加一電場, 誘使熱電子生成層產生熱電子,而於溫度反應層與第—導體 層輸出電源。 上述之溫度發電方法(二)’其中步驟A,其熱電子生 成層披覆之方式係選自蒸鍍、濺鍍、物理氣相磊晶法、化學 氣相蟲晶法或物理化學氣相遙晶法其中任何一種。 上述之溫度發電方法(二),其中步驟B中,該極薄之 第一絕緣層之厚度係10 8m~ 10 2πι。設置第一絕緣層之方式係為 200923207 .鍍上介電層。設置第一絕緣層之方式係真空絕緣或氣體絕 緣。鍍上介電層之方式係為蒸鍍、濺鍍、物理氣相磊晶法、 化學氣相磊晶法或物理化學氣相磊晶法其中任何一種。 上述之溫度發電方法(二),其中步驟c,其第一導體 層之設置方式係選自蒸鍍、濺鍍、物理氣相磊晶法、化學氣 相磊晶法或物理化學氣相磊晶法其中任何一種。該第一導體 層係以蝕刻技術或光罩其中任何一種做出網狀孔洞。 上述之溫度發電方法(二),其中步驟D中,該極薄之 第二絕緣層其厚度係W8m〜1〇_2 m。設置第二絕緣層之方式係 為鍍上介電層。設置第二絕緣層之方式係真空絕緣或氣體絕 緣。鍍上介電層之方式係為蒸鍍、濺鍍、物理氣相磊晶法、 化學氣相磊晶法、物理化學氣相磊晶法其中任何一種。 上述之溫度發電方法(二),其中步驟E中,其第二導 體層之設置方式係選自蒸鍍、濺鍍、物理氣相磊晶法、化學 氣相磊晶法或物理化學氣相磊晶法其中任何一種。 : 上述之溫度發電方法(二),其中步驟F係置換為:於 溫度反應層與第一導體層外加一電場,誘使熱電子生成層產 生熱電子,而於溫度反應層與第二導體層輸出電源。 本發明之優點如下: 1.本發明係以低功函數或低游離能材料製備熱電子生成 層,以高吸收熱能材料製備溫度反應層,透過外接電源產生 一電場,吸引因溫度所產生的熱電子,透過外界的能量與電 場之間的配合,產生高於外加的電場能量,故可有效降低能 源成本。 200923207 2.本發明於常溫常壓下即可操作,不需外在的壓力平衡 設計,而且重量輕,系統結構簡單。 3. 本發明於產生電能後’不會有毒性副產物產生,具有 良好的環保性。 4. 本發明之溫度發電裝置係可作為發電器使用,可廣泛 應用於各種機電領域。 【實施方式】 本發明之第一實施例,為一種溫度發電裝置(二),請 參見第一圖,包括有: 溫度反應層(1),係以低比熱、太陽放射吸收率接近j 且低黑體放射率之材料製成,具有相對之第一面(1 1 )及第 二面(12),其第-面⑴)係用以吸收熱能,該溫度反應 層(1)係為不銹鋼、氧化銅、鎳或鉻其中任何一種;該溫度 反應層(1)之太陽放射吸收率接近i時大氣質量為2 ;其低 黑體放射率係指對1G(rc黑體放射的放射率,且放射率趨近 〇;該溫度反應層⑴之第—面⑴)係為深色,本實施例 中係指黑色或近似黑色,本發明選擇之溫度反應層⑴材料 相關數據,如下表所示: 代號 溫度反應層材料 a £ p A 理想溫度反應層 1. 00 0.00 B 一面塗成黑色之不鍤鋼 0. 93 0.11 c 氧化銅 0. 90 0. 10 200923207 D 一面塗成黑色之鎳 ---— _0. 90 ------- s 0. 12 I? 一面塗成黑色之鉻 ~~---- L· 0. 93 Π 1 η α :對大氣質量等於2之太陽放射吸收率。 e ρ .對100°C黑體放射之放射率。 ⑴由上:甘可知’ 一面塗成黑色之鎳最近似理想溫度反應層 (1),”、、、其成本較高,基於經濟考量,本實施例中係以一面 塗成黑色之不錄鋼作為溫度反應層(1 )。 熱電子生成層⑴,具有相對之第—面(21)及第二面 (22 ),其第一面(21 )與溫度反應層(1)之第二面 (12)相連’係為產生熱電子的來源,其材料係為低功函數 或低游離能材料,係指其功函數小於3eV之材料或游離能低 於200kcal/g-mole以下之材料,係選自鑭、鋁、铪、化學 週期表的鹼金族元素之鋰、鈉、鉀、铷及化學週期表的鹼土 族元素之鈹、鎂、鈣、锶、鋇、鐳、六硼化鑭(LaBe)所組成 材料群組之任一種。 本第一實施例之熱電子生成層(2)材料相關數據,如下 表所示: 鑭 is 給 鋰 納 卸 鈣 鋇 游離能 1 /mole) 129 138 127 124 119 100 121 131 120 熔點rc) 920 660. 4 2222 180. 5 98 63.7 839 768 714 材料名稱 4 鋁 鋰 鶴 鉀 鈣 銘 六硼化鑭 11 200923207 功函數 (eV) 3. 5 4. 1 1.4 4. 5 ---— 2. 2 3.2 4. 1 2. 4 熔點(°c) 638. 8 660. 4 180. 5 3410 ------ 63.65 839 1245 -38.87 本第一實施例中,係選用鋁作為熱電子生成層(2)。 第-絕緣層(3),具有相對之第—面⑶曰)及第二面 (32卜其厚度係為1(rvi(r2m,其第一面(31)係與熱 電子生成層(2)之第二面(22)相連用以隔離熱電子生成層 ⑴與後述之第-導體層⑷,該第一絕緣層⑺係為介 電層、真空層或氣體絕緣層中任—種,該介電層係以單位截 ,積電阻係數大於1Ο10Ω-誠上之介電材料構成,係選自二 氧化石夕、1化秒、氧化銘、鈇酸鋇及鈦酸錯鋇所組成材料群 組之中的任何—種,本第—實施例選用二氧切作為介電層 之介電材料。 第-導體層(4) ’具有相對之第一面⑷)及第二面 (42),其第—面(41)係與第一絕緣層(3)之第二面 (32)相連,係用以吸收熱電子生成層⑴所生成之電荷, 並傳輸到外界,該第-導體層⑷係以高㈣且高游離能材 料製成之金屬層,其單位戴面積電阻係數小於1〇2〇_咖以 下如銅鐵、銀、矽、鈦等,本第一實施例係選用銅材料 作為第-導體層⑷,其形狀係片體或網狀片體,前述之第 —層(4 )」才_相關數據,如下表所示: 材料名稱 銅 鐵 銀 y 1 > · 矽 鈦 ~—--1 鋁 138 游離能 (kcal/mole) ·* . * ' 1 178 170 175 188 158 12 200923207 熔點(°c) 1083 1535 962 1410 1660 660.4 第二絕緣層(5),具有相對之第一面(51)及第二面 (52) ’其厚度係為10—8m〜l〇-2m ’其第一面(51)係與第 -導體層(4)之第二面(42)相連,用以隔離供應吸引熱電 子的電壓之第-導體層(4) ’該第二絕緣層(5)係為介電 層、真空層或氣體絕緣層中任一種,該介電層係以單位截面 積電阻係數大於1〇1()Ω-αη以上之介電材料構成,係選自二氧 化矽、氮化矽、氧祀鋁、鈦酸鋇及鈦酸鉛鋇所組成材料群組 之中的任何一種,本第一實施例選用二氧化矽作為介電層之 介電材料。 第二導體層⑴’具有相對之第—面(61)及第二面 (62) ’其第一面(61 )係與第二絕緣層(5)之第二面 (52)相連’ _以提供吸引產生熱電子生成層(2)所生成 之電荷的電場’該第二導體層(5)係以高熔點且高游離能材 料製成之金屬層,其單位截面積電阻係數小於1〇2〇_⑽以 下如銅、鐵、銀、矽、鈦等,本第一實施例係選用銅材料 作為第二導體層(6)。 外接電源(7),其正極連接第二導體層(6),負極連 接溫度反應層⑴’提供本第一實施例所需電場。 輸出端(8),係以溫度反應層(1)與第一導體層(4) 作為輪出端(8),供應外界電源。 上述外接電源(7)與輸出端(8)之接線方式亦可置換 為以正極連接第一導體層(4) ’負極連接溫度反應層 13 200923207 (1) ,而以溫度反應層(1)與第二導體層(6)作為輸出 端。 本第一實施例之第一導體層(4)係採片體之金屬層,於 溫度反應層(1 )與第二導體層(6 )外加一電場 (>102V/Cm)時,由於第一絕緣層(3)與第二絕緣層(5) 都很薄,因此熱電子生成層(2)與第二導體層(6)之距離 非常短,外接電源(7 )產生之電場將吸引熱電子生成層 (2) 產生之熱電子,熱電子離開熱電子生成層(2)之表面 往第一導體層(4)移動,透過熱電子生成層與第一導 體層(4)之間的電容與第一導體層(4)與第二導體層(6) 之間的電容,以電路學的耦合觀念,將來自第二導體層 的電壓分壓到第一導體層(4)上,以便在熱電子生成層 (2)與第一導體層⑷之間因第一導體層⑷的電壓形成 電場,誘使並吸引熱電子生成層⑴產生熱電子,並傳輸到 外界,做為輸出電源。 本發明之第二實施例,如第二圖所示,係將兩個溫度發 電裝置以第二導體層(6) &中心以面對面的方式合併,形成 一明^狀對稱結構,以減少製造成本與該溫度發電裝置 (二)所佔用的面積,並隨著應用領域之不同,而串聯組合 多個溫度發電裝置,本發明亦可以並聯組合以增加電流量。 請參見第一圖和第三圖所示,係本發明之第三實施例, 第導體層(4)網狀片體之金屬層,其具有細孔徑網狀結 構,於溫度反應層(丨)與第二導體層(6 )外加一電場 (>io2v/cm)時,透過電場吸引熱電子生成層(2)產生之 14 200923207 熱電子’熱電子離開熱電子生成層(2)之表面並往第一導體 層(4)移動’部份的熱電子被第一導體層(4)所捕獲,部 份的熱電子會穿過第一導體層(4)的孔洞而到達第二導體層 (6) ’也就是真正會產生電流而且消耗掉外加的電源電力, 預估將會損失部份的比例,第一導體層(4)吸引熱電子生成 層(2)產生的部份的熱電子,並傳輸到外界,做為輸出電 源。 本發明之第四實施例,請參照第四圖所示,並配合第一 圖之裝置,係一溫度發電方法,係包括: Α. β又置熱電子生成層:係於一溫度反應層(1)上披覆 一層以低游離能或低功函數材料所構成之熱電子生成層 (2) ’其熱電子生成層⑴披覆之方式係選自蒸鑛、錢 錢、物理氣相m、化學氣相蟲晶法或物理化學氣相蠢晶 法其中任何一種。 B. 設8置一第2一絕緣層:於上述熱電子生成層(2)上設置 厚度係1〇 m〜1(T2 m之極薄第—絕緣層⑴設置第一絕緣 層(3)之方式係為鑛上介電層、真空絕緣或氣體絕緣其中任 二種,^上介電層之方式係為謎、舰、物理氣相遙晶 > 、化干乳相蟲晶法或物理化學氣相蠢晶法其中任何一種。 C. 設置-第一導體層:設置一層第一導體層⑷與第一 絕緣層(3)相連,其箆_道 札户第導體層()之設置方式係選自蒸 曰、、Γ i φ理氣相蠢晶法、化學氣相蠢晶法或物理化學氣 目猫曰…、任何-種’該第—導體層⑷可有兩種樣態, 15 200923207 一即片體狀,另一種則以蝕刻技術或光罩其中任何一種做出 在片體狀之第一導體層(4)做出網狀孔洞。 8 D.=置一第二絕緣層:於第一導體層(4 )上設置厚度係 ι〇Λι〜ι〇Λι之極薄第二絕緣層(5),設置第二絕緣層(5) 之方式係為鍍上介電層、真空絕緣或氣體絕緣其中任一種, 鍍上介電層之方式係為蒸鍍H物理氣減晶法、化學 氣相磊晶法或物理化學氣相磊晶法其中任何一種。 Ε.設置一第二導體層:設置一第二導體層(6)與第二絕 緣層(5)相連,其第二導體層(6)之設置方式係選自蒸 鍍、濺鑛、物理氣減晶法、化學氣相蟲晶法或物理化學氣 相蟲晶法其中任何一種。 F.外加一電場:於溫度反應層〇)與第二導體層(6) 外加-電场(>l〇2v/cm;),誘使熱電子生成層(2)產生熱 電子’而於溫度反應層⑴與第—導體層⑷輸出電源。… 曾上述之步驟F係亦可置換為:於溫度反應層⑴與第一 、導體層(4)外加-電場,誘使熱電子生成層⑴產生熱電 子’而於溫度反應層⑴與第二導體層⑴輸出電源。本 毛月之/皿度發電方法係以低功函數或低游離能材料製備熱電 子生成層(2),以高吸收熱能材料製備溫度反應層⑴, 透過外接電源產生-電場,吸引因溫度所產生的熱電子,使 熱電子生成層⑴產生熱電子,並且吸引熱f子往第一導體 層⑷移動,利用第一導體層⑷的特殊幾何構造,鮮 將被吸引前往第二導體層⑷的熱電子,再以導體傳導到夕= 面來供應電源,在此過程中熱能會被消耗,所以必須不斷地 16 200923207 故可有效 熱能’而熱能在自然界中垂手可得 【圖式簡單說明】 第一圖本發明之第一實施例裝置能帶圖示意圖。 第:圖本發明之第二實施例之裝置串聯能帶圖示意圖 第三圖本發明之網狀金屬層之樣態示意圖。 “ 第四圖本發明之第三實施例之方法流程圖。 【主要元件符號說明】 (1) 溫度反應層 (11) 第 一面 (12) 第二面 (2) 熱電子生成層 (21) 第一面 (22) 第' 二面 (3) 第一絕緣層 (31 ) 第 一面 (32) 第二面 (4) 第 一導體層 (41) 第一面 (42) 第. 二面 (5) 第二絕緣層 (51 ) 第 —面 (52) 第二面 (6) 第. =導體層 (61) 第一面 (62) 第, 二面 (7) 外接電源 (8) 輪出端 17'Multiple temperature power generating devices (2) are combined in series or in parallel. The invention relates to a temperature generating method (2), which comprises: Further, a thermoelectron generating layer is disposed on a temperature reaction layer coated with a layer of a low electron energy or a low work function material; and a first insulating layer is disposed on the thermoelectron generating layer. Providing an extremely thin first insulating layer; C·setting a first conductor layer: providing a first conductor layer connected to the first insulating layer; D. providing a second insulating layer: providing a thin layer on the first conductor layer a second insulating layer; 设置 a second conductor layer: a second conductor layer is connected to the second insulating layer; θ F. an electric field is applied: an electric field is applied to the temperature reaction layer and the second conductor layer to induce The hot electron generating layer generates hot electrons, and the temperature reacting layer and the first conductor layer output power. The above temperature power generation method (2) 'where step A, the method of coating the hot electron generating layer is selected from the group consisting of evaporation, sputtering, physical vapor epitaxy, chemical vaporization or physical chemical vaporization Any of the crystal methods. In the above temperature power generation method (2), in the step B, the thickness of the extremely thin first insulating layer is 10 8 m to 10 2π. The first insulating layer is provided in the form of 200923207. The dielectric layer is plated. The first insulating layer is provided by vacuum insulation or gas insulation. The method of plating the dielectric layer is any one of vapor deposition, sputtering, physical vapor epitaxy, chemical vapor epitaxy, or physical chemical vapor epitaxy. The above temperature power generation method (2), wherein the step c, the first conductor layer is arranged in a manner selected from the group consisting of evaporation, sputtering, physical vapor epitaxy, chemical vapor epitaxy or physical chemical vapor epitaxy Any one of them. The first conductor layer is made of a mesh hole by any one of an etching technique or a reticle. In the above temperature power generation method (2), in the step D, the extremely thin second insulating layer has a thickness of W8m~1〇_2 m. The second insulating layer is provided by plating a dielectric layer. The second insulating layer is provided by vacuum insulation or gas insulation. The method of plating the dielectric layer is any one of vapor deposition, sputtering, physical vapor epitaxy, chemical vapor epitaxy, and physical chemical vapor epitaxy. In the above temperature power generation method (2), in the step E, the second conductor layer is arranged in a manner selected from the group consisting of evaporation, sputtering, physical vapor epitaxy, chemical vapor epitaxy or physical chemical vapor deposition. Any of the crystal methods. The above temperature power generation method (2), wherein the step F is replaced by: applying an electric field to the temperature reaction layer and the first conductor layer to induce the hot electron generation layer to generate hot electrons, and the temperature reaction layer and the second conductor layer Output power. The advantages of the invention are as follows: 1. The invention prepares a thermoelectron generating layer by using a low work function or a low free energy material, prepares a temperature reaction layer with a high absorption thermal energy material, generates an electric field through an external power source, and attracts heat generated by temperature. The electrons, through the cooperation between the external energy and the electric field, generate energy higher than the applied electric field, so the energy cost can be effectively reduced. 200923207 2. The invention can be operated under normal temperature and normal pressure without external pressure balance design, and has light weight and simple system structure. 3. The present invention produces no electrical energy and does not produce toxic by-products, and has good environmental protection. 4. The temperature power generating device of the present invention can be used as a power generator and can be widely applied to various electromechanical fields. [Embodiment] A first embodiment of the present invention is a temperature power generating device (2). Please refer to the first figure, including: a temperature reaction layer (1), which has a low specific heat and a solar radiation absorption rate close to j and low. The black body emissivity material is made of a first surface (1 1 ) and a second surface (12) opposite to each other (the first surface (1)) for absorbing heat energy, and the temperature reaction layer (1) is stainless steel and oxidized. Any one of copper, nickel or chromium; the solar radiation absorption rate of the temperature reaction layer (1) is close to i, the atmospheric mass is 2; the low blackbody emissivity refers to the emissivity of 1G (rc blackbody radiation, and the emissivity tends to The first surface (1) of the temperature reaction layer (1) is dark, in this embodiment, it refers to black or nearly black, and the temperature-reactive layer (1) material selected by the present invention is related to the material, as shown in the following table: Layer material a £ p A ideal temperature reaction layer 1. 00 0.00 B One side coated with black stainless steel 0. 93 0.11 c Copper oxide 0. 90 0. 10 200923207 D One side painted black nickel ----- _0. 90 ------- s 0. 12 I? One side painted black chrome~~---- L· 0 93 Π 1 η α : Solar radiation absorption rate for air mass equal to 2. e ρ . The emissivity of blackbody radiation at 100 °C. (1) From the above: Gan Kezhi 'One side of the black nickel is most similar to the ideal temperature reaction layer (1),",,, its cost is high, based on economic considerations, in this embodiment, it is painted black on one side. As the temperature reaction layer (1), the thermoelectron-generating layer (1) has a first surface (21) and a second surface (22) opposite to the first surface (21) and the second surface of the temperature reaction layer (1) ( 12) "connected" is a source of hot electrons. The material is a low work function or a low free energy material. It refers to a material whose work function is less than 3 eV or a material with a free energy lower than 200 kcal/g-mole. Lithium, sodium, potassium, strontium and alkaline earth elements of the chemical periodic table, strontium, magnesium, calcium, strontium, barium, radium, lanthanum hexaboride (LaBe) Any one of the group of materials. The material of the thermoelectron-generating layer (2) of the first embodiment is as shown in the following table: 镧is for the lithium-loaded calcium 钡 free energy 1 / mole) 129 138 127 124 119 100 121 131 120 Melting point rc) 920 660. 4 2222 180. 5 98 63.7 839 768 714 Material name 4 Lithium crane potassium calcium Ming hexaboride 镧11 200923207 Work function (eV) 3. 5 4. 1 1.4 4. 5 ---- 2. 2 3.2 4. 1 2. 4 Melting point (°c) 638. 8 660. 4 180. 5 3410 ------ 63.65 839 1245 -38.87 In the first embodiment, aluminum is used as the thermoelectron generating layer (2). The first insulating layer (3) has a relative first surface (3)曰) and the second side (32) has a thickness of 1 (rvi (r2m, the first side (31) of which is connected to the second side (22) of the thermoelectron generating layer (2) for isolating the thermoelectron generating layer (1) The first insulating layer (7), which will be described later, is any one of a dielectric layer, a vacuum layer or a gas insulating layer, and the dielectric layer is unit-cut, and the resistivity is greater than 1 Ο 10 Ω. The dielectric material is selected from any group consisting of a group of materials consisting of sulphur dioxide, 1 sec, oxidized, bismuth citrate and strontium titanate. The first embodiment uses dioxotomy. a dielectric material as a dielectric layer. The first conductor layer (4) has an opposite first surface (4) and a second surface (42), and the first surface (41) and the first insulating layer (3) The second side (32) is connected to absorb The charge generated by the hot electron generating layer (1) is transmitted to the outside, and the first conductor layer (4) is a metal layer made of a high (four) and high free energy material, and the unit wearing area resistivity is less than 1〇2〇_咖For example, copper, iron, tantalum, titanium, etc., in the first embodiment, a copper material is selected as the first conductor layer (4), and the shape is a sheet body or a mesh sheet body, and the aforementioned first layer (4) is only relevant. The data is shown in the table below: Material Name Copper Iron Silver y 1 > · Neodymium Titanium ~---1 Aluminum 138 Free Energy (kcal/mole) ·* . * ' 1 178 170 175 188 158 12 200923207 Melting Point (°c 1083 1535 962 1410 1660 660.4 The second insulating layer (5) has a first side (51) and a second side (52) having a thickness of 10-8 m~l〇-2 m' of the first side ( 51) is connected to the second surface (42) of the first conductor layer (4) for isolating the first conductor layer (4) supplying a voltage for attracting hot electrons. The second insulating layer (5) is dielectric Any one of a layer, a vacuum layer or a gas insulating layer, the dielectric layer being composed of a dielectric material having a unit cross-sectional area resistivity greater than 1 〇 1 () Ω-αη, selected Silicon dioxide, silicon nitride, Si aluminum oxide, barium titanate, barium titanate and lead of any material among the group consisting of, a first embodiment of the present embodiment chosen silicon dioxide as the dielectric material of the dielectric layers. The second conductor layer (1)' has a first surface (61) and a second surface (62) with a first surface (61) connected to the second surface (52) of the second insulating layer (5). Providing an electric field that attracts a charge generated by the hot electron generating layer (2). The second conductor layer (5) is a metal layer made of a high melting point and high free energy material, and has a unit sectional area resistivity of less than 1〇2. 〇_(10) is as follows, such as copper, iron, silver, rhodium, titanium, etc., in the first embodiment, a copper material is selected as the second conductor layer (6). An external power source (7) has a positive electrode connected to the second conductor layer (6), and a negative electrode connected to the temperature reaction layer (1)' to provide the electric field required in the first embodiment. The output terminal (8) is provided with a temperature reaction layer (1) and a first conductor layer (4) as a wheel terminal (8) for supplying an external power source. The connection mode of the external power supply (7) and the output terminal (8) may also be replaced by connecting the first conductor layer (4) with the positive electrode to the negative electrode connection temperature reaction layer 13 200923207 (1), and the temperature reaction layer (1) and The second conductor layer (6) serves as an output. The first conductor layer (4) of the first embodiment is a metal layer of the pick-up body, and an electric field (>102V/Cm) is applied to the temperature reaction layer (1) and the second conductor layer (6). An insulating layer (3) and the second insulating layer (5) are both thin, so the distance between the thermoelectron generating layer (2) and the second conductor layer (6) is very short, and the electric field generated by the external power source (7) will attract heat. The electrons generated by the electron generating layer (2), the hot electrons leaving the surface of the hot electron generating layer (2) moving toward the first conductor layer (4), and transmitting the capacitance between the hot electron generating layer and the first conductor layer (4) And the capacitance between the first conductor layer (4) and the second conductor layer (6), in a circuit coupling concept, the voltage from the second conductor layer is divided onto the first conductor layer (4) so as to An electric field is formed between the hot electron generating layer (2) and the first conductor layer (4) due to the voltage of the first conductor layer (4), and the hot electron generating layer (1) is induced and attracted to generate hot electrons and transmitted to the outside as an output power source. A second embodiment of the present invention, as shown in the second figure, combines two temperature generating devices in a face-to-face manner with the second conductor layer (6) & center to form a symmetrical structure to reduce manufacturing. The cost and the area occupied by the temperature generating device (2), and a plurality of temperature generating devices are combined in series depending on the application field, and the present invention can also be combined in parallel to increase the amount of current. Referring to the first embodiment and the third figure, in a third embodiment of the present invention, the metal layer of the first conductor layer (4) mesh sheet has a fine pore network structure at a temperature reaction layer (丨) When an electric field (> io2v/cm) is applied to the second conductor layer (6), the hot electron generating layer (2) is attracted by the electric field. 14 200923207 The hot electron 'thermal electrons leave the surface of the hot electron generating layer (2) and The part of the hot electrons moved to the first conductor layer (4) is captured by the first conductor layer (4), and part of the hot electrons pass through the holes of the first conductor layer (4) to reach the second conductor layer ( 6) 'That is, it will actually generate current and consume the applied power, and it is estimated that the proportion will be lost. The first conductor layer (4) attracts some of the hot electrons generated by the hot electron generating layer (2). And transmitted to the outside world, as an output power. For the fourth embodiment of the present invention, please refer to the fourth figure, and the apparatus of the first figure is a temperature power generation method, which comprises: Α. β and a hot electron generating layer: a temperature reaction layer ( 1) a layer of hot electron generating layer composed of low free energy or low work function material (2) is coated with a hot electron generating layer (1) selected from the group consisting of steamed ore, money, and physical gas. Any one of the chemical vapor phase crystal method or the physical chemical vapor phase stupid crystal method. B. 8 is provided with a second insulating layer: a thickness system of 1 〇 m 1 is provided on the above-mentioned thermoelectron generating layer (2) (the extremely thin first insulating layer (1) of T2 m is provided with the first insulating layer (3) The mode is any one of the upper dielectric layer, vacuum insulation or gas insulation. The way of the upper dielectric layer is mystery, ship, physical vapor crystals, crystallization, dry milk phase crystal method or physical chemistry. Any one of the gas phase stupid crystal methods. C. Setting - First conductor layer: a layer of the first conductor layer (4) is connected to the first insulating layer (3), and the arrangement of the first conductor layer () of the 箆_道It is selected from the group consisting of steamed bismuth, Γ i φ 理 蠢 、 、 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , That is, the sheet shape, and the other is made by any one of an etching technique or a reticle to make a mesh hole in the first conductor layer (4) in the form of a sheet. 8 D.=Set a second insulating layer: An extremely thin second insulating layer (5) having a thickness of ι〇Λι~ι〇Λι is disposed on a conductor layer (4), and the second insulating layer (5) is provided by plating Any one of a layer, a vacuum insulation or a gas insulation, and the dielectric layer is plated by any one of an evaporation H physical gas reduction method, a chemical vapor epitaxy method or a physical chemical vapor phase epitaxy method. a second conductor layer: a second conductor layer (6) is connected to the second insulating layer (5), and the second conductor layer (6) is arranged in a manner selected from the group consisting of evaporation, sputtering, and physical gas reduction. Any one of chemical gas phase crystal method or physical chemical vapor phase crystal method F. Additional electric field: temperature reaction layer 〇) and second conductor layer (6) plus-electric field (>l〇2v/ Cm;), induces the hot electron generating layer (2) to generate hot electrons' and outputs power to the temperature reaction layer (1) and the first conductor layer (4). The above step F may be replaced by: applying an electric field to the temperature reaction layer (1) and the first and conductor layers (4) to induce the hot electron generating layer (1) to generate hot electrons' in the temperature reaction layer (1) and the second layer. The conductor layer (1) outputs power. The Maoyue/Dish power generation method is to prepare a thermoelectron generating layer (2) with a low work function or a low free energy material, and to prepare a temperature reaction layer (1) with a high absorption thermal energy material, and generate an electric field through an external power source to attract the temperature. The generated hot electrons cause the hot electron generating layer (1) to generate hot electrons, and attract the heat f to the first conductor layer (4). With the special geometric structure of the first conductor layer (4), the fresh metal will be attracted to the second conductor layer (4). The hot electrons are then supplied to the power source by the conduction of the conductors. In the process, the heat energy is consumed, so it must be continuously 16 200923207, so it can be effective heat energy' and the heat energy is available in the natural world. [Simple description] The device of the first embodiment of the present invention can be schematicly shown. Fig.: Fig. Schematic diagram of a series energy band diagram of a device according to a second embodiment of the present invention. Fig. 3 is a schematic view showing a state of a mesh metal layer of the present invention. "Fourth Diagram Flowchart of the Third Embodiment of the Invention. [Explanation of Main Component Symbols] (1) Temperature Reaction Layer (11) First Surface (12) Second Surface (2) Thermo Electron Generation Layer (21) First side (22) first 'two sides (3) first insulating layer (31) first side (32) second side (4) first conductor layer (41) first side (42) first two sides ( 5) Second insulation layer (51) First surface (52) Second surface (6) No. = Conductor layer (61) First side (62) First, two sides (7) External power supply (8) Wheel end 17

Claims (1)

200923207 十、申請專利範圍: 1· 一種溫度發電裝置(二),包括有: μ度反應層,係以低比熱、太陽放射吸收率接近丨且低 黑體放射率之材料製成,具有相對之第—面及第二面,立第 一面係用以吸收熱能; 熱電子生成層 與溫度反應層之第 料製成; ’具有相對之第一面及第二面,其第一面 二面相連,係以低功函數或低游離能之材 々、/、第面係與熱電子生成層之第 二面相連; 盘第:導體層’具有相對之第-面及第二面,其第-面係 與第-絕緣層之第二面相連; 囬你 第:絕、=,其厚度係為10ν10、,具有相對之 及第面道其第一面係與第—導體層之第二面相連; 面及第二面’其第一面係 外接電源,其正極連接坌_ 層’於兩極之間提供—電場;—導體層,負極連接溫度反應 輸出端,係以溫度反 2·如申請專利範圍第1項/ 一導體層作為輸出端。 其中該溫度反應層係選自不之溫度發電裝置(二), 料群級之任一種。 、氧化銅、鎳及鉻所組成材 第一導體層,具有相對之第一 與第二絕緣層第二面相連; 200923207 3.如申請專利範圍第1項所述之溫度發電裝置(二), 其中該溫度反應層之太陽放射吸收率接近1時大氣質量為 4.如申請專利範圍第1項所述之溫度發電袋置(二), 其中黑體放射率係為對l〇〇°C黑體放射的放射率,且放射率 趨近0。 5.如申請專利範圍第1項所述之溫度發電裝置(二), 其中該溫度反應層之第一面係為深色。 6 ·如申凊專利範圍第1項所述之溫度發電裝置(二), 其中該熱電子生成層之低功函數材料係指其功函數 3eV之材料。 ' L如申請專利 。χ溫度發電裝置(二), 其中該熱電子生成層之低_綺料係指其游龍材料小於 200 ( kcal/ mole )之材料。 、 8. 如申請專利範圍第!項所述之溫度發電裝置(二), 其中該低功函數或低游離能之材料係選自鑭、銘、給 週期表的鹼金族元素之鋰、鈉、鉀 .. 予 鹼土族元素之鈹、鎮1在田鉀鎖,學週期表的 ⑽相組成材料群組之任—種/1及化σ物六领化鑭 9. 如巾請專職_丨韻述之溫度發電裝置( 〃中該第一絕緣層係為介電層。 (二?.,::請專八利範圍第9項所述之溫度發 大於1心、’該介電層之介電㈣係單位截面積電阻軸 大於1υ Ω-cm以上的材料。 电丨且係數 19 200923207 1 1.如申請專利範圍第1 〇項所述之溫度發電裝置 (一)’该介電材料係為二氧化矽、氮化矽、氧化鋁、鈦酸 鋇及鈦酸鉛鋇所組成材料群組之中的任何一種。 12. 如申請專利範圍第1項所述之溫度發電裝置 (一)’其中’該第一絕緣層係為真空層或氣體絕緣層。 13. 如申凊專利範圍第丨項所述之溫度發電裝置 (一),其中,該第一導體層係單位截面積電阻係數小於1〇2 Ω-cm以下之低電阻材質。 14·如申請專利範圍第丨項所述之溫度發電裝置 (一),其中,該第一導體層之形狀係片體。 15. 如申明專利範圍第1項所述之溫度發電裝置 (一) ,其中,該第一導體層之形狀係網狀片體。 16. 如申明專利範圍第丨項所述之溫度發電裝置 (二) ,其中,該第二絕緣層係為介電層。 17. 如申π專利範圍第丨6項所述之溫度發電裝置 4·於⑽0。、中該;1電層之介電材料係單位戴面積電阻係數 大於ιυ Ω-cm以上的材料。 ,:u利圍第17項所述之溫度發電裝置 相芬―該”電材料係為二氧化矽、氮化矽、氧化鋁、鈦酸 鋇及鈦酸錯鋇所組成材料群組之中的任何一種。 (二),:::\^利範圍第/項所述之溫度發電裝置 -u —絕緣層係為真空層或氣體絕緣層。 20 200923207 • 20.如申請專利範圍第丨項所述之溫度發電200923207 X. Patent application scope: 1. A temperature power generation device (2), comprising: a μ degree reaction layer, which is made of a material with low specific heat, solar radiation absorption rate close to 丨 and low black body emissivity, and has a relative - the first side and the second side, the first side is for absorbing heat energy; the hot electron generating layer and the temperature reaction layer are made of the first material; 'having the opposite first side and the second side, the first side and the second side are connected , the low work function or the low free energy material 々, /, the first surface is connected to the second side of the thermoelectronic generation layer; the disk: the conductor layer 'has a relative first side and a second side, the first - The face is connected to the second side of the first insulating layer; back to you: the absolute, =, the thickness is 10ν10, and the first side of the first side is connected to the second side of the first conductive layer The front side and the second side 'the first side is an external power supply, the positive connection 坌 _ layer' provides an electric field between the two poles; the conductor layer, the negative electrode is connected to the temperature reaction output end, and the temperature is reversed. Range 1 / A conductor layer as an output. Wherein the temperature reaction layer is selected from the group consisting of no temperature generating devices (2), and a batch group level. a first conductor layer composed of copper oxide, nickel and chromium, having a first surface connected to the second surface of the second insulating layer; 200923207 3. The temperature generating device (2) according to claim 1 of the patent application, Wherein the solar radiation absorption rate of the temperature reaction layer is close to 1 and the air mass is 4. The temperature power generation bag set according to item 1 of the patent application scope (2), wherein the black body emissivity is black radiation of l〇〇°C Emissivity, and the emissivity approaches zero. 5. The temperature power generating device (2) according to claim 1, wherein the first surface of the temperature reaction layer is dark. 6. The temperature power generating device (2) according to claim 1, wherein the low work function material of the hot electron generating layer is a material having a work function of 3 eV. 'L as applied for a patent. χ Temperature power generation device (2), wherein the low-temperature material of the hot electron generation layer refers to a material whose tour material is less than 200 (kcal/mole). 8. If you apply for a patent scope! The temperature generating device (2), wherein the low work function or the low free energy material is selected from the group consisting of lithium, sodium and potassium of an alkali gold element of the periodic table.铍, town 1 in the field of potassium lock, the periodic table of the (10) phase of the composition of the material group - species / 1 and sigma six collars 镧 9. If the towel please full-time _ 丨 述 之 温度 temperature generating device (〃中The first insulating layer is a dielectric layer. (2?.,:: Please refer to the temperature range of item 9 of the special eight-profit range is greater than 1 heart, 'the dielectric layer of the dielectric layer (four) is the unit cross-sectional area resistance axis A material of more than 1 υ Ω-cm or more. Electric enthalpy and coefficient 19 200923207 1 1. The temperature generating device (1) as described in claim 1 ''The dielectric material is cerium oxide, tantalum nitride, Any one of a group of materials consisting of alumina, barium titanate, and lead strontium titanate. 12. The temperature generating device (1) as described in claim 1, wherein the first insulating layer is a vacuum layer or a gas insulating layer. 13. The temperature generating device (1) according to the scope of the patent application, wherein The first conductor layer is a low-resistance material having a unit cross-sectional area resistivity of less than 1 〇 2 Ω-cm. The temperature generating device (1) according to the invention, wherein the first conductor The shape of the layer is a sheet body. The temperature generating device (1) according to claim 1, wherein the shape of the first conductor layer is a mesh sheet. The temperature generating device (2), wherein the second insulating layer is a dielectric layer. 17. The temperature generating device 4 according to Item 6 of the π patent scope is at (10) 0. The dielectric material of the electric layer is a material having a resistivity of more than ιυ Ω-cm. The temperature of the power generation device described in item 17 of the Uliwei is the cerium oxide and nitriding. Any of a group of materials consisting of bismuth, aluminum oxide, barium titanate, and strontium titanate. (b),:::\^The temperature generating device described in item / item -u - insulating layer It is a vacuum layer or a gas insulating layer. 20 200923207 • 20. If the scope of patent application is 丨The temperature of the power generation -),其中,該第二導體層係單位截面積電阻係數棒 cm以下之低電阻材質。 j % υ .如申請專利範圍第"員所述之溫度發電裝置 (-)’其中,該外接電源係置換為以正極連接苐 層’負極連接溫度反應層,於兩極之間提供—電場,而 度反應層與第二導體層作為輸出端。 现 2 2.如申吻專利範圍第1項所述之溫度發電襞置 (一),利用串聯或並聯組合多個溫度發電裝置(二)。 23.—種溫度發電方法(二),係包括: Α·設置一熱電子生成層··係於一溫度反應層上披覆—層 以低游離能或低功函數材料所構成之熱電子生成層; Β.設置一第一絕緣層:於上述熱電子生成層上設置極 之第一絕緣層; C. 設置一第一導體層:設置一層第一導體層與第一絕緣 層相連; D. 設置一第二絕緣層:於第一導體層上設置極薄之第二 絕緣層; Ε.設置一第二導體層:設置一第二導體層與第二絕緣層 相連; F.外加一電場··於溫度反應層與第二導體層外加一電 場’誘使熱電子生成層產生熱電子,而於溫度反應層與第一 導體層輸出電源。 21 200923207 24. 如申睛專利範圍第μ 中牛驟A 返之溫度發電方法 (-)/、中步驟A,其熱電子生成層披 鍍、濺鍍、物理氣相磊晶法、化學 ;,、選自蒸 相蠢晶法其t任何-種。 Η相以法或物理化學氣 25. 如申請專利範圍第μ r - ) , R ^ 貝所述之溫度發電方法 C 一) 具中步驟B中,該極薄夕键 10—8m〜10_2 ra。 專之第一絕緣層之厚度係 26.如申請專利範圍 (二),其中步驟B中, 電層。 第23項所述之溫度發電方法 設置第-絕緣層之方式係為鍍上介 27.如申請專利範圍第26項所 .,X貞所述之溫度發電方法 (了)、、中鑛上”電層之方式係為蒸鑛、濺鑛、物理氣相 蠢晶法、化學氣撼晶法或物理化學氣相蟲晶法其中任何一 種。 所述之溫度發電方法 緣層之方式係為真空絕 28.如申請專利範圍第23項 (二)’其中步驟B中,設置第一絕 緣或氣體絕緣。 29·如申請專利範圍第23項所述之溫度發電方法 (二)中步驟C,其第一導體層之設置方式係選自蒸 鍵、錢鍍、物理氣相蠢晶法、备與*丄= 日日忐化學虱相磊晶法或物理化學氣 相蟲晶法其中任何一種。 30.如申請專利範圍第23 布0項所述之溫度發電方法 (一),其中步驟C ’該第一導t ^导體層係以蝕刻技術或光罩做 出網狀孔洞。 22 200923207 帛23項所述之溫度發電方法 io_Vio—2 )’其中步驟D中,兮朽續 _ -、。 T該極潯之弟二絕緣層其厚度係 32.如申請專利範 (二),其中步驟D中 電層。 圍第23項所述之溫度發電方法 ,设置第二絕緣層之方式係為鍍上介 33·如中請專利範圍第32項所述之溫度發電方法 石乂: 鑛f介電層之方式係為蒸鍍、濺鍍、物理氣相 ^曰法化學氣相蟲晶法或物理化學氣減晶法其中任何一 種。 34.如申請專利範圍第23項所述之溫度發電方法 (一)’其中步驟D中,設置第二絕緣層之方式係為真空絕 緣或氣體絕緣。 23項所述之溫度發電方法 二導體層之設置方式係選自蒸 化學氣相磊晶法或物理化學氣 35.如申請專利範圍第 (二)’其中步驟E中,其第 鍍、濺鍍、物理氣相磊晶法、 相日日法其中任何*種。 36·如申請專利範圍第23項所述之溫度發電方法 (一)’其中步驟F係置換為:於溫度反應層與第—導體層 外加%場’誘使熱電子生成層產生熱電子,而於溫度反應 層與第二導體層輸出電源。 23-) wherein the second conductor layer is a low-resistance material having a unit cross-sectional area resistivity rod cm or less. j % υ . As claimed in the patent application scope " temperature generator (-)', wherein the external power supply is replaced by a positive electrode connection layer 'negative electrode connection temperature reaction layer, providing an electric field between the two poles, The degree reaction layer and the second conductor layer serve as outputs. Now 2 2. For example, the temperature power generation device (1) described in the first paragraph of the patent application section uses a plurality of temperature power generation devices (2) in series or in parallel. 23. A method for generating temperature by temperature (2), comprising: 设置 setting a thermoelectron generating layer··coating on a temperature reaction layer—a layer of hot electrons formed by low free energy or low work function materials a layer; a first insulating layer: a first insulating layer disposed on the thermoelectric generating layer; C. a first conductor layer: a first conductor layer is connected to the first insulating layer; a second insulating layer is disposed on the first conductor layer; a second insulating layer is disposed on the first conductor layer; a second conductor layer is disposed: a second conductor layer is disposed adjacent to the second insulating layer; F. an electric field is applied Adding an electric field to the temperature reaction layer and the second conductor layer induces the thermoelectron generating layer to generate hot electrons, and outputs a power source to the temperature reaction layer and the first conductor layer. 21 200923207 24. For example, the temperature-generating method (-)/, step A of the temperature-generating method, the thermal electron-generating layer is plated, sputtered, physic-gas epitaxy, chemistry; , selected from the steam phase stupid crystal method, any of its kind. Η phase or physicochemical gas 25. For example, the temperature range of the application of the range of μ r - ), R ^ shell power generation method C a) in step B, the extremely thin 夕 key 10-8m~10_2 ra. The thickness of the first insulating layer is specifically 26. As claimed in the patent scope (2), in step B, the electrical layer. The method for setting the first insulating layer in the temperature generating method according to Item 23 is to plate the upper layer. 27. According to the scope of claim 26, the temperature generating method described in X贞, and the middle mine. The method of the electric layer is any one of steaming, splashing, physical vapor stupid crystal method, chemical gas twinning method or physical chemical vapor crystal method. The method of the temperature generating method is vacuum 28. For example, in the scope of the patent application, item 23 (b), in which the first insulation or the gas insulation is provided in step B. 29) The temperature generation method (II) in the scope of claim 23, step C, the first The arrangement of a conductor layer is selected from the group consisting of steaming, money plating, physical vapor phase staggering, preparation, and 丄 日 日 忐 忐 忐 或 或 或 或 或 或 或 或 或 或 或 或 或 或. The temperature generating method (1) of claim 23, wherein the first conductive layer is formed by etching or a mask to form a mesh hole. 22 200923207 帛23 items The temperature generation method io_Vio—2) is described in step D.兮 续 _ _ 该 该 该 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T The way of the insulating layer is to plate the upper layer 33. The temperature generating method described in the 32nd patent of the patent scope is as follows: the method of depositing the dielectric layer is vapor deposition, sputtering, physical vaporization Any one of a gas phase crystallization method or a physicochemical gas crystallization method. 34. The temperature power generation method according to claim 23 (1), wherein in the step D, the second insulating layer is provided in a vacuum Insulation or gas insulation. The method for setting the two conductor layers of the temperature generation method described in item 23 is selected from the group consisting of steam chemical vapor phase epitaxy or physicochemical gas 35. As in the scope of claim (II), in step E, The first plating method, the sputtering method, the physical vapor phase epitaxy method, and the phase-to-day method. 36. The temperature generating method according to claim 23 (1) wherein the step F is replaced by: The reaction layer and the first conductor layer plus the % field' induce thermoelectricity Electron generating layer generates heat, and the temperature of the reaction layer on the second conductor layer and power output. 23
TW96145538A 2007-09-04 2007-11-30 Electricity generation device and method by using temperature TW200923207A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW96145538A TW200923207A (en) 2007-11-30 2007-11-30 Electricity generation device and method by using temperature
DE102008045550A DE102008045550A1 (en) 2007-09-04 2008-09-03 Thermoelectric power generation apparatus and method for thermoelectric power generation
US12/203,552 US7919709B2 (en) 2007-09-04 2008-09-03 Temperature power generation device and temperature power generation method
AU2008211989A AU2008211989B2 (en) 2007-09-04 2008-09-04 Temperature power generation device and temperature power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96145538A TW200923207A (en) 2007-11-30 2007-11-30 Electricity generation device and method by using temperature

Publications (1)

Publication Number Publication Date
TW200923207A true TW200923207A (en) 2009-06-01

Family

ID=44728466

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96145538A TW200923207A (en) 2007-09-04 2007-11-30 Electricity generation device and method by using temperature

Country Status (1)

Country Link
TW (1) TW200923207A (en)

Similar Documents

Publication Publication Date Title
Dargusch et al. Thermoelectric generators: alternative power supply for wearable electrocardiographic systems
Li et al. Multifunctional wearable thermoelectrics for personal thermal management
Siddique et al. A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges
Li et al. 3D Hierarchical Electrodes Boosting Ultrahigh Power Output for Gelatin‐KCl‐FeCN4−/3− Ionic Thermoelectric Cells
TWI360901B (en) Thermoelectric device with thin film elements, app
WO2014119467A1 (en) Thermoelectric power generation module
CN107623067B (en) A kind of miniature vertical structure thermo-electric device and preparation method thereof of portable high aspect ratio interlayer connection
US20090158750A1 (en) Novel solid state thermovoltaic device for isothermal power generation and cooling
CN104701449A (en) Flexible pyroelectric thin film device
CN105870314A (en) Flexible silicon-based nanometer thin film thermoelectric device
CN101587934A (en) Diaphragm type thermoelectric converting component and manufacturing method thereof
CN104835872A (en) Flexible heterojunction film solar cell and preparation method thereof
Liu et al. Evolution of thermoelectric generators: From application to hybridization
CN103545440B (en) Thermoelectric conversion structure and heat dissipation structure using same
CN101604931B (en) Alkali metal thermo-electric direct converter
TW200923207A (en) Electricity generation device and method by using temperature
Rowe Thermoelectric generators as alternative sources of low power
JP2012212838A (en) Thermoelectric thin film device
KR100187292B1 (en) Thin film heater
Misra et al. Optimizing the energy balance to achieve autonomous self-powering for vigilant health and IoT applications
Van Toan et al. High performance micro-thermoelectric generator based on metal doped electrochemical deposition
AU2008211989B2 (en) Temperature power generation device and temperature power generation method
WO2012064595A2 (en) Getter self-heating device
CN208337911U (en) A kind of polyester film fever tablet
CN108447974A (en) A kind of apsacline thermoelectric components of apsacline thermoelectric element and its composition