TW200923059A - Thermal interface material, electronic device containing the thermal interface material, and methods for their preparation and use - Google Patents

Thermal interface material, electronic device containing the thermal interface material, and methods for their preparation and use Download PDF

Info

Publication number
TW200923059A
TW200923059A TW97134900A TW97134900A TW200923059A TW 200923059 A TW200923059 A TW 200923059A TW 97134900 A TW97134900 A TW 97134900A TW 97134900 A TW97134900 A TW 97134900A TW 200923059 A TW200923059 A TW 200923059A
Authority
TW
Taiwan
Prior art keywords
thermally conductive
conductive metal
interface material
electronic component
particles
Prior art date
Application number
TW97134900A
Other languages
Chinese (zh)
Inventor
Donald Liles
Nick Evan Shephard
Dorab Edul Bhagwagar
Shengqing Xu
Zuchen Lin
Fazley G M Elahee
Original Assignee
Dow Corning
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning filed Critical Dow Corning
Publication of TW200923059A publication Critical patent/TW200923059A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01021Scandium [Sc]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/162Disposition
    • H01L2924/16251Connecting to an item not being a semiconductor or solid-state body, e.g. cap-to-substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12569Synthetic resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A thermal interface material includes a thermally conductive metal matrix and coarse polymeric particles dispersed therein. The composite can be used for both TIM1 and TIM2 applications in electronic devices.

Description

200923059 九、發明說明: 本申請案主張2007年9月U曰申請之美國臨時申請案第 6〇/971,299號之權利。美國臨時中請案第6()/971,299號以引 用的方式併入本文中。 & 【先前技術】 諸如半導體、電晶體、積體電路(IC)、分立裝置、發光 二極體(LED)及在此項技術巾已知之其他組件之發熱^子 組件經設計以在正常運轉溫度下或在正常運轉溫度範圍 (正常運轉溫度)内運轉。然而’若在運轉期間未充分移除 熱,則電子組件將在顯著高於其正常運轉溫度之溫度下運 轉。過高之溫度可不利地影響電子組件之效能及與之相關 之電子裝置的運轉且負面地影響平均故障時間_ between failure)。 為避免此等問題,熱可藉由使其自電子組件傳導至散埶 片來移除。隨後可藉由諸如對流或輕射技術之任何適宜; 法冷卻散熱片。在熱傳導期間,可藉由在電子組件與散熱 片之間之表面接觸或藉由電子組件及散熱片與熱界面材料 (TIM)之接觸將熱自電子組件轉移至散熱片。介質之執阻 抗越低,熱自電子組件向散熱片之流動越顯著。’、、、 電子組件及散熱片之表面通常並非完全光滑的,因此, 難以達成表面之間之完全接觸。作為不良熱導體之氣隙出 現於表面之間且增加阻抗。 填充此等空隙。 W由在表面之間插入ΤΙΜ來 -市售之TIM具有聚合物或彈性體之基質及分散於其 134393.doc 200923059 中之導熱填充劑。然而,彈性體基質遭受使其可能難於以 非固化狀態應用及若在應用之前固化則其不能與表面完全 黏著或喃合之缺點。聚合物基質遭受在應用之後其可流出 空隙之缺點。由於隨著電子裝置變得越來越小,電子組件 在較小區域產熱更多或由於隨著開發出以碳化矽(Sic)為主 之電子裝置,SiC電子組件具有比上文所論述之電子組件 南之正常運轉溫度,所以此等TIM亦可遭受缺乏足夠熱傳 導性之缺點。 亦已提議將焊料材料作為TIM。然而,熔點低於正常運 轉溫度之焊料可遭受需要用彈性體或障礙封裝以防止焊料 在應用之後流出空隙之缺點。熔融溫度高於正常運轉溫度 之焊料材料通常以顯著厚於習知TIM之厚度應用。由於較 多之焊料材料用於形成較厚之黏合層,因此造成成本增加 之缺點。對於一些TIM應用,含有諸如氧化鋁、氧化鋅及 石墨之低熱膨脹係數(CTE)材料之焊料材料可缺乏足夠之 延性或熱傳導性或兩者。此等TIM亦可由於原料成本而相 當昂貴。 【發明内容】 一種複合物包含導熱金屬及聚合顆粒。該複合物可用於 TIM應用。 【實施方式】 TIM包含導熱金屬及在該導熱金屬中之粗粒聚合顆粒(顆 粒)。該TIM適用於TIM1應用與TIM2應用。或者,丁说可 具有層狀結構。舉例而言,此TIM可包含: 134393.doc 200923059 i)複合物,其包含: a) 導熱金屬,及 b) 在第一導熱金屬中之顆粒;及 II)在複合物表面上之導熱材料。 導熱材料II)可為第二導熱金屬,其可具有低於導熱金屬 a)之 '熔點的溶點。或者,導熱材料η)可為導熱油脂(諸如 D⑽SC 102)或另外導熱化合物。 或者’複合物I)可形成具有第一相對表面及第二相對表 面之薄膜。該薄膜可在第一相對表面上具有導熱材料。 該薄膜可視情況進一步在第二相對表面上包含m)第二導 熱材料。導熱材料II)與ΠΙ)可相同或不同。舉例而言,導 熱材料II)與III)可為導熱金屬或導熱化合物,諸如導熱油 脂。導熱金屬II)與III)可相同或不同。 包含複合物而在複合物表面上無另外導熱金屬層之ΤΙΜ 適用於商業TIM應用。或者,在一側上具有導熱金屬層(且 視情況在另一側上具有第二導熱金屬層)之複合物可用於 各種電子裝置中之商業TIM應用。或者,當複合物在複合 物表面上具有作為導熱材料之導熱化合物時,此可適用於 測試積體電路晶片之測試媒劑應用。合適之導熱化合物可 講自 Midland, Michigan USA之 Dow Corning Corporation, 堵如 Dow Corwz'ng® SC 102及CWni’wg® 導熱化合物, 諸如 CN-8878、TC-5020 ' TC-5021、TC-5022、TC-5025、 TC-5026 ' TC-5121、TC-5600 及 TC-5688。導熱化合物可為 包含不可固化聚二有機矽氧烷及導熱填充劑之導熱油脂。 I34393.doc 200923059 基質 導熱金屬在此項技術中已知且為市售的。導熱金屬可為 如下金屬,諸如銀(Ag)、鉍(Bi)、鎵(Ga)、銦(In)、錫 (Sn)、鉛(Pb)或其合金;或者,導熱金屬可包含In、Sn、 Bi、Ag或其合金。Ag、Bi、Ga、In或Sn之合金可進一步 包含鋁(Al)、金(Au)、鎘(Cd)、銅(Cu)、鎳(Ni)、銻(Sb)、 鋅(Zn)或其組合。合適合金之實例包括計_入§合金、In_Ag 合金、In-Bi合金、Sn-Pb合金、Bi_Sn合金、Ga-ln_Sn合 金、In-Bi-Sn合金、Sn-In-Zn合金、Sn_In_Ag合金、Sn_Ag_200923059 IX. INSTRUCTIONS: This application claims the benefit of U.S. Provisional Application No. 6/971,299, filed on Sep. 2007. U.S. Provisional Application No. 6()/971,299 is incorporated herein by reference. & [Prior Art] Heat generating components such as semiconductors, transistors, integrated circuits (ICs), discrete devices, light-emitting diodes (LEDs), and other components known in the art wipes are designed to operate normally. Operate at temperature or within the normal operating temperature range (normal operating temperature). However, if heat is not sufficiently removed during operation, the electronic components will operate at temperatures significantly above their normal operating temperatures. Excessive temperatures can adversely affect the performance of the electronic components and the operation of the electronic devices associated therewith and negatively impact the mean failure time. To avoid these problems, heat can be removed by conducting it from the electronic component to the diffuser. The heat sink can then be cooled by any suitable means such as convection or light shot technology. During thermal conduction, heat can be transferred from the electronic component to the heat sink by surface contact between the electronic component and the heat sink or by contact of the electronic component and the heat sink with the thermal interface material (TIM). The lower the resistance of the medium, the more the heat flows from the electronic components to the heat sink. The surfaces of electronic components and heat sinks are generally not completely smooth, and therefore, it is difficult to achieve complete contact between the surfaces. An air gap that acts as a poor thermal conductor occurs between the surfaces and increases the impedance. Fill these gaps. W is inserted between the surfaces - a commercially available TIM having a matrix of a polymer or elastomer and a thermally conductive filler dispersed in 134393.doc 200923059. However, elastomeric matrices suffer from the disadvantages that make it difficult to apply in a non-cured state and which do not completely adhere or anneal to the surface if cured prior to application. The polymer matrix suffers from the disadvantage that it can flow out of the void after application. As electronic devices become smaller and smaller, electronic components generate more heat in smaller areas or because of the development of electronic devices based on silicon carbide (Sic), SiC electronic components have more than discussed above. The normal operating temperature of the electronic components south, so these TIMs can also suffer from the lack of sufficient thermal conductivity. Solder materials have also been proposed as TIMs. However, solders having a melting point lower than the normal operating temperature may suffer from the disadvantage of requiring an elastomer or barrier package to prevent the solder from flowing out of the gap after application. Solder materials having a melting temperature above normal operating temperature are typically applied in thicknesses that are significantly thicker than conventional TIMs. Since more solder material is used to form a thicker adhesive layer, it has the disadvantage of increased cost. For some TIM applications, solder materials containing low coefficient of thermal expansion (CTE) materials such as alumina, zinc oxide, and graphite may lack sufficient ductility or thermal conductivity or both. These TIMs can also be quite expensive due to the cost of raw materials. SUMMARY OF THE INVENTION A composite comprises a thermally conductive metal and polymeric particles. This composite can be used in TIM applications. [Embodiment] The TIM comprises a thermally conductive metal and coarsely divided polymer particles (particles) in the thermally conductive metal. This TIM is suitable for TIM1 applications and TIM2 applications. Alternatively, Ding said that it may have a layered structure. For example, the TIM can comprise: 134393.doc 200923059 i) a composite comprising: a) a thermally conductive metal, and b) particles in the first thermally conductive metal; and II) a thermally conductive material on the surface of the composite. The thermally conductive material II) may be a second thermally conductive metal which may have a melting point below the melting point of the thermally conductive metal a). Alternatively, the thermally conductive material η) may be a thermally conductive grease such as D(10)SC 102 or another thermally conductive compound. Alternatively 'Composite I) can form a film having a first opposing surface and a second opposing surface. The film can have a thermally conductive material on the first opposing surface. The film may optionally further comprise m) a second heat conducting material on the second opposing surface. The thermally conductive material II) and ΠΙ) may be the same or different. For example, the heat conducting materials II) and III) may be thermally conductive metals or thermally conductive compounds such as heat transfer greases. The thermally conductive metal II) and III) may be the same or different. Contains composites without additional thermally conductive metal layers on the surface of the composite Suitable for commercial TIM applications. Alternatively, a composite having a thermally conductive metal layer on one side (and optionally a second thermally conductive metal layer on the other side) can be used in commercial TIM applications in a variety of electronic devices. Alternatively, when the composite has a thermally conductive compound as a thermally conductive material on the surface of the composite, this can be applied to test media applications for testing integrated circuit wafers. Suitable thermally conductive compounds are available from Dow Corning Corporation of Midland, Michigan USA, such as Dow Corwz'ng® SC 102 and CWni'wg® thermally conductive compounds such as CN-8878, TC-5020 'TC-5021, TC-5022, TC-5025, TC-5026 'TC-5121, TC-5600 and TC-5688. The thermally conductive compound may be a thermally conductive grease comprising a non-curable polydiorganosiloxane and a thermally conductive filler. I34393.doc 200923059 Matrix Thermally conductive metals are known in the art and are commercially available. The thermally conductive metal may be a metal such as silver (Ag), bismuth (Bi), gallium (Ga), indium (In), tin (Sn), lead (Pb) or an alloy thereof; or, the thermally conductive metal may include In, Sn , Bi, Ag or its alloys. The alloy of Ag, Bi, Ga, In or Sn may further comprise aluminum (Al), gold (Au), cadmium (Cd), copper (Cu), nickel (Ni), bismuth (Sb), zinc (Zn) or combination. Examples of suitable alloys include alloys, In_Ag alloys, In-Bi alloys, Sn-Pb alloys, Bi_Sn alloys, Ga-ln_Sn alloys, In-Bi-Sn alloys, Sn-In-Zn alloys, Sn_In_Ag alloys, Sn_Ag_

Bi合金、Sn-Bi-Cu-Ag合金、Sn-Ag-Cu-Sb合金、Sn-Ag-Cu 合金、Sn-Ag合金、Sn-Ag-Cu-Zn合金及其組合。合適合金 之實例包括 Bi95Sn5、Ga95In5、In97Ag3、In53Sn47、 Iri52Sn48(可以 In 52 講自 Cranston, Rhode Island, USA 之 AIM)、Bi58Sn42(可以 Bi 58 購自 AIM)、In66 3Bi33 7、 In95Bi5、In60Sn40(可購自 AIM)、Sn85Pb15、Sn42Bi58、 Bi14Pb43Sn43(可以 Bi 14 購自 AIM)、Bi52Pb3〇Sn18、 In51Bi32.5Sn16.5 、 Sn42Bi57Agl 、 SnAg2.5Cu.8Sb.5(可以 CASTIN® 購自 AIM)、SnAg3 0Cu〇.5(可以 SAC305 購自 AIM)、Sn42Bi58(可購自 AIM)、In8〇pb15Ag4(可以 In 80購自 AIM) 、 SnAg3.8Cu〇.5(可以 SAC387 購自 AIM)、 SnAg4.0Cu0.5(可以 SAC405 購自 AIM)、Sn95Ag5、SN 100C(可購自 AIM)、Sn99,3Cu〇.7、Sn97Sb3、Sn36Bi52Zn12、 SnI7Bi57Zn26、Bi5〇Pb27Sn1()Cd13&Bi49Zn2!Pb18Sn12。或者, 合金可為上文所述之不含船之任何合金。不含錯意謂合金 134393.doc 200923059 含有少於〇.〇1重量%之外。或者,合金可為上文所述之包 含銦之任何合金,或者,合金可為上文所述之不含銦之任 何合金。不含銦意謂合金含有少於〇 〇1重量%之比。或 者’合金可為具有寬廣熔點範圍之非共熔合金。 導熱金屬之確切熔點可藉由此項技術中之一般技術者視 包括其中將使用TIM之電子裝置之類型的各種因素來選 擇。導熱金屬可具有高於電子裝置之正常運轉溫度之熔 點。而且,TIM可具有低於電子裝置之製造溫度之熔點❶ 舉例而言,TIM可具有高於電子裝置之正常運轉溫度至少 之熔點。舉例而言,當電子裝置含有諸如半導體、電 曰a體、1C或分立裝置之習知發熱電子組件時,導熱金屬可 具有在50°C至300t,或者60°C至250°C,又或者150°C至 300°C範圍内之熔點。或者,當TIM將與led—起使用時, 導熱金屬可具有在8(TC至300。〇,或者10CTC至300t:範圍内 之溶點。或者,當TIM將與Sic發熱電子組件一起使用 時’電子裝置之正常運轉溫度可高於使用習知發熱電子組 件時之正常運轉溫度。在此TIM應用中,導熱金屬可具有 在150。〇至300。(:,或者2〇〇。〇至300°C範圍内之熔點。 當TIM具有包含I)包含a)第一導熱金屬及b)在該導熱金屬 中之顆粒之複合物及II)在該複合物之表面上之第二導熱金 屬(第一導熱金屬與第二導熱金屬可選自上文給出之實例) 之層狀結構時,其限制條件為Π)第二導熱金屬具有低於3) 第一導熱金屬之熔點至少5。(:,或者至少3(TC之熔點。或 者’ II)第一導熱金屬之炫點可低於a)第一導熱金屬之溶點 134393.doc -10· 200923059 5°c至50°c °在層狀結構中,II)第二導熱金屬之熔點可高 於電子裝置之正常運轉溫度並低於該裝置之製造溫度至少 5C ’且a)第一導熱金屬之熔點可高於或低於電子裝置之製 造溫度(或者高於其至少5 °c)。 導熱金屬在TIM中之量視包括所選金屬或合金及所選顆 粒類型之各種因素而定,然而,該量足以使導熱金屬以連 續相存在於TIM中。或者,導熱金屬之量可在ΤΙΜ之50體 積〇/°至99體積%,或者60體積°/〇至90體積%,又或者55體積 %至60體積%之範圍内。 顆粒 粗粒聚合顆粒可減輕機械應力。該等顆粒可經受彈性變 形或塑性變形。該等顆粒具有低於導熱金屬彈性模數之彈 性模數。該等顆粒包含聚合物,其可為有機聚合物、聚矽 氧聚合物、聚矽氧-有機共聚物或其組合。適用於本文中 之有機顆粒在此項技術中已知且為市售的。例示性有機顆 粒包括聚碳酸酯、聚酯、聚醚硬、聚醚醚酮、聚異丁烯、 聚烯烴、聚苯硫醚、聚苯乙烯、聚胺基曱酸酯及其鹵化衍 生物。有機顆粒可視情況經鹵化。例示性氟化有機顆粒為 可以 VITON® 自 Wilmington,Delaware,U.S.A 之 DuPontBi alloy, Sn-Bi-Cu-Ag alloy, Sn-Ag-Cu-Sb alloy, Sn-Ag-Cu alloy, Sn-Ag alloy, Sn-Ag-Cu-Zn alloy, and combinations thereof. Examples of suitable alloys include Bi95Sn5, Ga95In5, In97Ag3, In53Sn47, Iri52Sn48 (A52 from Inch from Cranston, Rhode Island, USA), Bi58Sn42 (available from AIM from Bi 58), In66 3Bi33 7, In95Bi5, In60Sn40 (available From AIM), Sn85Pb15, Sn42Bi58, Bi14Pb43Sn43 (Bi 14 can be purchased from AIM), Bi52Pb3〇Sn18, In51Bi32.5Sn16.5, Sn42Bi57Agl, SnAg2.5Cu.8Sb.5 (acquired by CASTIN® from AIM), SnAg3 0Cu〇. 5 (can be purchased from AIM by SAC305), Sn42Bi58 (available from AIM), In8〇pb15Ag4 (available from AIM in In 80), SnAg3.8Cu〇.5 (available from AIM by SAC387), SnAg4.0Cu0.5 (can SAC405 was purchased from AIM), Sn95Ag5, SN 100C (available from AIM), Sn99, 3Cu〇.7, Sn97Sb3, Sn36Bi52Zn12, SnI7Bi57Zn26, Bi5〇Pb27Sn1()Cd13&Bi49Zn2!Pb18Sn12. Alternatively, the alloy may be any alloy described above that does not contain a boat. The absence of the meaning of the alloy 134393.doc 200923059 contains less than 〇.〇1% by weight. Alternatively, the alloy may be any of the above-described alloys containing indium, or the alloy may be any of the above-described alloys containing no indium. The absence of indium means that the alloy contains less than 〇1% by weight. Or the alloy may be a non-eutectic alloy having a broad melting point range. The exact melting point of the thermally conductive metal can be selected by various factors in the art to which the type of electronic device in which the TIM will be used is selected. The thermally conductive metal can have a melting point that is higher than the normal operating temperature of the electronic device. Moreover, the TIM can have a melting point lower than the manufacturing temperature of the electronic device. For example, the TIM can have a melting point that is at least higher than the normal operating temperature of the electronic device. For example, when the electronic device contains a conventional heat-generating electronic component such as a semiconductor, an electron, a 1C, or a discrete device, the thermally conductive metal may have a temperature of 50 ° C to 300 t, or 60 ° C to 250 ° C, or Melting point in the range of 150 ° C to 300 ° C. Alternatively, when the TIM is to be used with a led, the thermally conductive metal may have a melting point in the range of 8 (TC to 300. 〇, or 10 CTC to 300 t: or, when the TIM will be used with the Sic heating electronic component' The normal operating temperature of the electronic device can be higher than the normal operating temperature when using conventional heat-generating electronic components. In this TIM application, the thermally conductive metal can have a temperature of 150. 〇 to 300. (:, or 2 〇〇. 〇 to 300 ° Melting point in the range of C. When TIM has a second thermally conductive metal comprising I) a) a first thermally conductive metal and b) a particle in the thermally conductive metal and II) a surface on the surface of the composite (first When the thermally conductive metal and the second thermally conductive metal are selected from the layered structure of the example given above, the limitation is that the second thermally conductive metal has a melting point of at least 5 which is lower than 3) of the first thermally conductive metal. (:, or at least 3 (the melting point of TC. or 'II) The bright spot of the first thermally conductive metal may be lower than a) the melting point of the first thermally conductive metal 134393.doc -10· 200923059 5°c to 50°c ° In the layered structure, II) the melting point of the second heat conducting metal may be higher than the normal operating temperature of the electronic device and lower than the manufacturing temperature of the device by at least 5 C ' and a) the melting point of the first heat conducting metal may be higher or lower than the electronic device The manufacturing temperature (or at least 5 °c above it). The amount of thermally conductive metal in the TIM depends on various factors including the selected metal or alloy and the type of particle selected, however, this amount is sufficient to allow the thermally conductive metal to be present in the TIM as a continuous phase. Alternatively, the amount of thermally conductive metal may range from 50 体/° to 99 vol%, or 60 vol/〇 to 90 vol, or 55 vol% to 60 vol%. Granular Aggregate particles reduce mechanical stress. The particles can be subjected to elastic deformation or plastic deformation. The particles have an elastic modulus that is lower than the elastic modulus of the thermally conductive metal. The particles comprise a polymer which may be an organic polymer, a polyoxyl polymer, a polyoxy-organic copolymer or a combination thereof. Organic particles suitable for use herein are known in the art and are commercially available. Exemplary organic particles include polycarbonates, polyesters, polyethers, polyetheretherketones, polyisobutylenes, polyolefins, polyphenylene sulfides, polystyrenes, polyaminophthalates, and halogenated derivatives thereof. The organic particles may optionally be halogenated. Exemplary fluorinated organic particles are available from VITON® from Wilmington, Delaware, U.S.A. DuPont

Performance Elastomers L.L.C.購得。金屬塗佈之粗粒聚合 顆粒可自德國之microParticles GmbH得到。 該等顆粒可以在TIM之1體積%至5〇體積%,或者1〇體積 %至40體積%,或者40體積%至45體積%,又或者1〇體積% 至30體積%範圍内之量存在。顆粒形狀並非關鍵性的。舉 i34393.doc 200923059 例而言,顆粒可為球形、纖維樣、多孔狀(例如具有海綿 樣、。構)中空的或其組合。或者’顆粒可為球形或不規 、1的4者,顆粒可包含顆粒之聚集塊(聚集體)。顆粒之 形::視,製造方法而定。顆粒可為固化或未固化的,例 如问分子量聚合物。顆粒可為彈性體或樹脂或其組合。顆 粒在TIM中可為離散的且顆粒可形成不連續相。該等顆粒 可為交聯的。 、顆粒可具有至少1 5微米,或者至少5G微米之平均粒徑。 或者睪員粒可具有在15微米至⑼微米,或者%微米至 微米或者15微米至7G微米又或者5()微来至?峨米範圍内 之平均粒徑。在不希望受限於理論之情況下,認為例如且 有5微米或小於5微米之平均粒徑之精細顆粒不適合用於此 ⑽中精細顆粒可能具有不足以使其在簡應用中用作 間隔物之粒徑。精細顆粒可能不提供如本文所述之粗粒聚 :顆粒般之較高熱傳導性或較高柔度。在不希望受限於理 响之情況下,認為在相同體積負载下本文所述之粗粒聚合 顆粒將提供優於精細顆粒之„㈣(㈣ep π—)。 此外’由於精細顆粒始終不能以與粗粒聚合顆粒相同之 大體積併入’因此精細顆粒相比本文所述之粗粒聚合顆粒 可能更難以併入金屬基質中。因為由於彈性體性質及小粒 徑而使精細顆粒聚結,所以常常在生產該等精細顆粒之製 程中經由過遽始終不能可靠地回收精細顆粒。此等精細顆 粒生產中之回收步驟藉由例如冷;東乾燥或噴霧乾燥進行, 其在表面上留下不能完全移除之不合需要的界面活性劑。 134393.doc 200923059 精細顆粒亦可能具有不足以使其在TIM應用中用作間隔物 之粒徑。 。相比而言,適用於本文之粗粒聚矽氧顆粒可藉由相轉換 製程來製備,且此等粗粒聚矽氧顆粒可藉由過濾回收。界 面活性劑可完全移除且視情況可將不同塗層及/或表面處 理劑塗覆於聚矽氧顆粒上。舉例而言,適用於本文之粗粒 聚矽氧顆粒可藉由包含水性乳化聚合之相轉換製程來製 備。在此製程中,提供聚矽氧連續相(油相)且向此聚矽氧 連續相中添加界面活性劑與水之混合物。視情況可再添加 尺在不希望受限於理論之情況下,認為可調整界面活性 Μ與水之比率以控制粒徑。聚矽氧連續相在鉑基金屬觸媒 存在下可包含具有聚有機氫矽氧烷之烯基官能性聚有機矽 虱烷。在聚合之後,可洗滌且過濾所得聚矽氧彈性體顆粒 以移除界面活性劑。或者,可將熱穩定劑添加至製程中以 提供具有改良熱穩定性之聚矽氧彈性體顆粒。合適熱穩定 劑之實例包括金屬氧化物,諸如氧化鐵、四氧化三鐵、氫 氧化鐵、氧化鈽、氫氧化鈽'氧化鑭、煙霧狀二氧化鈦或 其組合。當複合物將用作用於sic電子組件之ΤΙΜ時,此 為尤其適用的。當添加穩定劑時,其可以在ΤΙΜ之〇 5重量 %至5重量%範圍内之量存在。 或者’ SiH官能性粗粒聚矽氧顆粒可用於基質中。在不 希望受限於理論之情況下,認為siH官能基可改良粗粒聚 石夕氧顆粒在包含銦之基質中之分散。合適siH官能性粗粒 聚石夕氧顆粒描述於下文第[0029]至[0033]段中。 134393.doc •13· 200923059 製造顆粒之方法 可藉由修改例如在美國專利第4,742,142號、美國專 4’743,670號及美國專利第5,387,624號中所述之製程來得到 製備此等粗粒聚矽氧顆粒之例示性方法。此項技術中之— 般技術者可使界面活性劑與水之比率不同於美國專^第 4,742,142號、美國專利第4,743,67〇號及$國專利第 5,387,624號之揭示内容以生產他或她所要尺寸之聚矽氧顆 粒:在此方法中,顆粒可藉由在具有—或多種在反應性聚 石夕氧組合物之G.1重量%至1()重量%範圍内之界面活性劑的 水中乳化反應性聚矽氧組合物來製造。以反應性聚矽氧組 合物重量計’所用水之量可在5重量%至95重量%範圍内或 者為50重量%。可以一個步驟中或以多次添加來添加水。 上文所述之粗粒聚合顆粒可視情況在其表面上具有金屬 或金屬氧化物。該金屬可與上文所述之導熱金屬相同或不 同。该金屬可包含Ag、Al、Au、Bi、鈷(Co)、Cu、In、鐵 (Fe)、Ni、!巴(Pd)、轴(Pt)、Sb、Sn、Zn 或其合金。或 者在顆粒上之金屬可為Ag。金屬氧化物可為任何上述金 屬之氧化物。金屬或金屬氧化物可藉由各種技術提供於顆 粒表面上。舉例而言,可藉由濕式金屬化塗佈顆粒。或 者,例如藉由過濾製備及回收顆粒且隨後藉由物理氣相沈 積(PVD)、化學氣相沈積(CVD)、無電極沈積、浸潰或噴 霧方法塗佈顆粒。在不希望受限於理論之情況下,認為金 屬或金屬氧化物對於上文所述之導熱金屬可具有親和力且 可提供改良之導熱金屬對顆粒之濕化。認為在TIM中,在 134393.doc 14 200923059 顆粒表面上之金屬或金屬氧化物可提供增加之熱傳導性、 改良之穩定性、改良之機械特性、&amp;良之CTE或其組合的 益處。 或者,可諸如藉由製備具有樹脂狀(支鏈)或直鏈聚合結 構之聚矽氧氫化物(SiH)官能性膠體及在其製備期間或之 後金屬化顆粒來製備且視情況用金屬塗佈粗粒聚矽氧彈性 體顆粒。製備此等膠體之方法包含在陰離子界面活性劑/ 諸如十二院基苯磺酸(DBSA)之酸觸媒存在下使用諸如 K(SiOMe)3、RJKOMe)2之矽烷進行乳化聚合,其中各尺為 單價烴基或氟化單價烴基,諸如Me、Et、Pr、Ph、 F3(CH2)2或C4F9(CH2)2 (其中Me表示曱基、Et表示乙基,Pr 表示丙基且Ph表示苯基)。例示性不含SiH之矽烷為 MeSi(〇Me)3,其導致產生膠狀τ樹脂。MQ型樹脂亦可藉由 乳化聚合Si(OEt)4 (TEOS)及六甲基二矽氧烷或MejiOMe來 製備。膠狀MQ樹脂之例示性起始物質為te〇S及六甲基二 石夕氧烷。可藉由將組合物之pH值升高至大於4來終止乳化 聚合。熟習此項技術者應認識到Μ、D、T及Q係指下列各 式之矽氧烷單元: R—Si-Ο一 —0—Si-0 R ' R (M) (D) 中R如上文所述。 可藉由使SiH官能性矽烷或低分子量SiH官能性矽氧燒&gt; 與Performance Elastomers L.L.C. purchased. Metal coated coarse particle granules are available from the German microParticles GmbH. The particles may be present in an amount ranging from 1% by volume to 5% by volume of the TIM, or from 1% by volume to 40% by volume, or from 40% by volume to 45% by volume, or from 1% by volume to 30% by volume. . The shape of the particles is not critical. For example, the particles may be spherical, fibrous, porous (e.g., having a sponge-like structure) hollow or a combination thereof. Alternatively, the particles may be spherical or irregular, and the particles may comprise aggregates (aggregates) of the particles. The shape of the particles: depending on the manufacturing method. The particles may be cured or uncured, such as a molecular weight polymer. The particles can be an elastomer or a resin or a combination thereof. The particles can be discrete in the TIM and the particles can form a discontinuous phase. The particles may be crosslinked. The particles may have an average particle size of at least 15 microns, or at least 5G microns. Or can the granules be from 15 microns to (9) microns, or % microns to microns or 15 microns to 7G microns or 5 () micro arrivals? Average particle size in the range of glutinous rice. Without wishing to be bound by theory, it is considered that fine particles having an average particle diameter of, for example, 5 μm or less are not suitable for use in this (10). Fine particles may have insufficientness to be used as spacers in a simple application. The particle size. Fine particles may not provide coarse particle size as described herein: high thermal conductivity or higher flexibility as particles. Without wishing to be bound by the rhetoric, it is believed that the coarse-grained polymeric particles described herein will provide superior to the fine particles of „(四)((四)ep π—) under the same volume load. Furthermore, since fine particles are always unable to The coarse-grained polymeric particles are in the same large volume incorporated 'so the fine particles may be more difficult to incorporate into the metal matrix than the coarse-grained polymeric particles described herein. Because the fine particles coalesce due to elastomeric properties and small particle sizes, Frequently, fine particles cannot always be reliably recovered in the process of producing such fine particles. The recovery step in the production of such fine particles is carried out, for example, by cold; east drying or spray drying, which leaves incomplete on the surface. Removal of undesirable surfactants. 134393.doc 200923059 Fine particles may also have insufficient particle size for use as spacers in TIM applications. In contrast, coarse-grained polyoxygens suitable for use herein. The granules can be prepared by a phase inversion process, and the coarse granules can be recovered by filtration. The surfactant can be completely removed and may or may not be The coating and/or surface treatment agent is applied to the polyoxynium oxide particles. For example, the coarse-grained polyoxynized particles suitable for use herein can be prepared by a phase inversion process comprising aqueous emulsion polymerization. Providing a poly-xylene continuous phase (oil phase) and adding a mixture of a surfactant and water to the poly-xylene continuous phase. Optionally, the ruler can be adjusted to adjust the interfacial activity without wishing to be bound by theory. The ratio of cerium to water to control the particle size. The polyoxynoxy continuous phase may comprise an alkenyl functional polyorganodecane having a polyorganohydrohalosiloxane in the presence of a platinum-based metal catalyst. After polymerization, it may be washed and The resulting polyoxyxene elastomer particles are filtered to remove the surfactant. Alternatively, a heat stabilizer can be added to the process to provide polyoxyxene elastomer particles having improved thermal stability. Examples of suitable heat stabilizers include metal oxidation. a substance such as iron oxide, ferroferric oxide, iron hydroxide, cerium oxide, cerium hydroxide cerium oxide, smoky titanium dioxide or a combination thereof. When the composite is to be used as a sic electronic component, This is especially suitable. When a stabilizer is added, it may be present in an amount ranging from 5 wt% to 5 wt% of the crucible. Or 'SiH functional coarse polyelectron oxide particles may be used in the matrix. Without being bound by theory, it is believed that the siH functional group can improve the dispersion of the coarse-grained agglomerated oxygen particles in a matrix comprising indium. Suitable siH functional coarse-grained polysulfide particles are described in [0029] to [below] below. </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; An exemplary method of such coarse-grained poly-xylene particles. In the art, the ratio of surfactant to water is different from that of U.S. Patent No. 4,742,142 and U.S. Patent No. 4,743,67. And the disclosure of U.S. Patent No. 5,387,624 to produce polythene oxide particles of the size he or she desires: in this method, the particles may be obtained by having - or a plurality of G.1 in a reactive poly-stone composition. Weight% to 1 ()% by weight Emulsified water interfacial active agent within the reactive poly silicon oxide compositions produced. The amount of water used may be in the range of 5% by weight to 95% by weight or 50% by weight based on the weight of the reactive polyoxymethylene composition. Water can be added in one step or in multiple additions. The coarsely divided polymeric particles described above may optionally have a metal or metal oxide on their surface. The metal may be the same or different than the thermally conductive metal described above. The metal may comprise Ag, Al, Au, Bi, cobalt (Co), Cu, In, iron (Fe), Ni, ! Bar (Pd), axis (Pt), Sb, Sn, Zn or alloys thereof. Or the metal on the particles may be Ag. The metal oxide can be an oxide of any of the above metals. Metal or metal oxides can be provided on the surface of the particles by a variety of techniques. For example, the particles can be coated by wet metallization. Alternatively, the particles may be prepared and recovered, for example, by filtration and then coated by physical vapor deposition (PVD), chemical vapor deposition (CVD), electrodeless deposition, dipping or spraying. Without wishing to be bound by theory, it is believed that the metal or metal oxide may have an affinity for the thermally conductive metal described above and may provide improved thermal conductivity of the thermally conductive metal to the particles. It is believed that in TIM, the metal or metal oxide on the surface of the particles at 134393.doc 14 200923059 can provide increased thermal conductivity, improved stability, improved mechanical properties, &amp; good CTE or combinations thereof. Alternatively, it can be prepared, for example, by preparing a polyfluorinated hydride (SiH) functional colloid having a resinous (branched) or linear polymeric structure and metallizing the particles during or after its preparation and optionally coating with a metal Coarse-grained polyoxynene elastomer particles. The method of preparing such colloids comprises emulsion polymerization using decane such as K(SiOMe)3, RJKOMe) 2 in the presence of an anionic surfactant/acid catalyst such as twelfth benzenesulfonic acid (DBSA), wherein each ruler Is a monovalent hydrocarbon group or a fluorinated monovalent hydrocarbon group such as Me, Et, Pr, Ph, F3(CH2)2 or C4F9(CH2)2 (where Me represents a thiol group, Et represents an ethyl group, Pr represents a propyl group and Ph represents a phenyl group ). An exemplary SiH-free decane is MeSi(〇Me)3, which results in the formation of a colloidal τ resin. The MQ type resin can also be prepared by emulsion polymerization of Si(OEt)4 (TEOS) and hexamethyldioxane or MejiOMe. Exemplary starting materials for the colloidal MQ resin are te〇S and hexamethyldiazepine. The emulsification polymerization can be terminated by raising the pH of the composition to greater than 4. Those skilled in the art should recognize that Μ, D, T, and Q refer to the following formulas of oxane: R—Si—Ο——————————— R — R (M) (D) As stated in the article. By using SiH functional decane or low molecular weight SiH functional oxirane &gt;

R ? 一0—Si—0— ——Ο—Si-〇- 0I (T) 及 0I (Q) 其 134393.doc • 15· 200923059 上文所述之矽烷共聚合來引入SiH官能基。例示性SiH官能 性矽烷為(MeOhSiMeH。例示性SiH官能性矽氧院為 (Me3SiO)2SiMeH及(HMe2Si)20。所用之SiH官能性矽烷或 SiH官能性矽氧烷之量可自0.001%至100%變化。 亦可進行SiH化合物之添加以製備結構化膠狀顆粒。舉 例而言’可在聚合之較後部分期間添加siH化合物使得顆 粒在接近顆粒外部處比顆粒内部具有更高之SiH含量。藉 由改變SiH化合物之含量與添加次數,此項技術中之一般 技術者應能夠製備多種負載SiH官能基之膠狀組合物。 本文所述之SiH官能性膠體可構成反應性分散液或乳 液。SiH部分可在膠體處於其分散狀態時經歷反應或其可 在移除水後以其聚結狀態經歷反應。 製備金屬塗佈之粗粒聚矽氧顆粒之方法包含用金屬鹽溶 液處理含SiH之聚合物乳液或膠體。siH部分充當使某些金 屬離子還原為其元素形式之還原劑。該等反應發生於室溫 下且可在數小時後完成。膠體及彈性體乳液可例如用Ag、 An、Cu及Pt之鹽處理。 或者,可使用低溫壓碎製程製備粗粒聚合顆粒。該等製 红在此項技術中已知且描述於例如美國專利第 號、美國專利第4,383,650號及美國專利第5,588,6〇〇號中。 無淪粗粒聚合顆粒在其表面上是否具有金屬及/或金屬 氧化物,顆粒均可具有表面處理。舉例而言,表面處理可 為表面處理劑、物理處理(例如電漿)或表面化學反應(原位 聚合)。表面處理劑在此項技術中已知且為市售的。合適 134393.doc 200923059 表面處理劑包括(但不限於)烷氧基矽烷,諸如己基三甲氧 基矽烷、辛基三乙氧基矽烷、癸基三甲氧基矽烷、十二烷 基二曱氧基矽烷、十四基三甲氧基矽烷、苯基三甲氧基矽 烷、苯基乙基三甲氧基矽烷、十八基三甲氧基矽烷、十八 基三乙氧基矽烷、乙烯基三甲氧基矽烷及甲基三甲氧基矽 烷、3-曱基丙烯醯氧基丙基三甲氧基矽烷、3_縮水甘油氧 基丙基二甲氧基矽烷、3_胺基丙基三甲氧基矽烷及其組 合;烷氧基官能性募矽氧烷;硫醇及烷基硫醇,諸如十八 基硫醇;聚硫化物,諸如硫離子基_矽烷;脂肪酸,諸如 油酸、硬脂酸;及醇,諸如十四烷基醇、十六烷基醇、硬 脂醯醇或其組合;官能性烷基聚矽氧烷,其中該官能基可 為烷氧基矽烷基、矽氮烷基、環氧基、醯氧基、肟醯基或 其組合。舉例而言,表面處理劑可為(環氧基丙氧基丙基) 曱基矽氧烷/二甲基矽氧烷共聚物、在一端具有式Si(〇R,)3 基團且在另-端具有式SiR&quot;3基團之二甲基碎氧院聚合 物,其中各R’獨立地表示單價烴基,諸如烷基且各R&quot;獨立 地表示單價烴基,諸如烷基或烯基。或者,表面處理劑可 為胺基官能性聚二曱基矽氧烷聚合物或醣_矽氧烷聚合 物。 表面處理劑之量視包括粗粒聚合顆粒之類型及量之各種 因素而定,然而,該量可在以粗粒聚合顆粒重量計之〇.1% 至5%範圍内。TIM可視情況進—步包含—或多種其他添加 劑。舉例而言,可添加諸如蠟之其他添加劑以改良加工。 TIM之導熱金屬可具有高於電子裝置之正常運轉溫度之 134393.doc 17 200923059 炼點。可製造具有厚度之TIM,例如作為襯墊,且粗粒聚 合顆粒可具有在TIM厚度之10%至1〇〇%範圍内之平均粒 控。舉例而言,#平均粒徑為厚度之着。時,顆粒在™ 中可用作間隔物。顆粒之平均粒徑視包括tim之黏合層厚 度及ΤΙΜ在其製造期間或之後是否I縮之各種因素而定。 然而,顆粒可具有至少】^辦卓 乂 15微米之平均粒徑。或者,顆粒可 具有在15微米至150微米,或者_米至⑽微米,或者15 微米至70微米又或者5〇微米至7〇微米範圍内之平均粒徑。 熟習此項技術者應認識到當粗粒聚合顆粒為球形時,本文 所述之平均粒徑表示粗粒聚合顆粒之平均顆粒直徑。 tim之製法 可藉由任何適宜方法來製備tim,諸如包含下列步驟之 套Ό將導熱金屬加熱至高於其炼點,及將顆粒盘炫 融之導熱金屬混合。或者’可藉由包含下列步驟之方法製 備TIM l)/m合導熱金屬顆粒與粗粒聚合顆粒,及此後2) 加熱步驟υ之產物以回焊導熱金屬。或者,該方法包 «石夕氧顆粒包裹於導熱金屬之薄片或箱中,及此後。回 焊導,、、、金屬等方法可視情況進—步包含3)例如藉由壓 縮視情況同時加熱將步驟2)之產物製造成所要之厚度。或 者’可使用擠塵或觀廢將TIM製造成所要之厚度。此等方 法可視情況進-步包含將步驟2)或步驟3)之產物切割成所 要之形狀。或者’可藉由模製·來形成所要之形狀。或 者》亥方法可包含U將顆粒及導熱金屬顆粒施加於基板 上’及此後2)在使用或不使用焊藥之情況下回焊導熱金 134393.doc • 18- 200923059 屬。熟習此項技術者應認識到若在製造期間或之後壓縮 TIM,則可改變粒徑,舉例而言’若使用球形彈性體顆 粒,則在壓縮之後顆粒形狀將改變成圓盤形且粒徑亦將改 變。或者,若使用粗粒樹脂顆粒,則粗粒樹脂顆粒可在 中充當間隔物。製造期間所用之確切壓力及溫度視包 括所選導熱金屬之熔點及所得複合物之所要厚度之各種因 素而定,然而,溫度可在環境溫度至恰好低於導熱金屬熔 點之範圍内,或者在601:至1 201:範圍内。 圖1展示上文所述之TIM之橫截面。在圖t中,tim 1〇〇 包含-基板ΗΗ及形成於基板1G1之相對側上之上文所述複 合物102之層。釋放襯墊1〇3施加於複合物1〇2之曝露表面 上0 當™具有層狀結構時’該方法可進—步包含將另外導 熱金屬之層廢於複合物表面上。該方法可進—步包含在擠 壓期間加熱。舉例而言,在製造期間所用之確切麗力及溫 度視包括所選導熱金屬之溶點及所得複合物之所要厚度而 定,然而,壓力可在30psi至45 psi範圍内且溫度可在:代 至&quot;(TC範圍内。或者,當複合物具有層狀結構時,該方 法可進一步包含在複合物表面上展布導熱金屬化合物,諸 :::。可藉由諸如刷塗或機器人分配之任何適宜方法進 士圖3展示如上文所述製造之替代™之橫截面。在圖3 ’ TIM 300為包含一複合物3〇2之層狀薄臈,在該複合物 之相對表面上具有導熱金屬3〇1之第一層及第二層。導熱 i34393.doc •19- 200923059 金屬301具有低於複合物3〇2之導熱金屬之熔點的熔點。導 熱金屬301可不含顆粒。”不含顆粒,,意謂導熱金屬3〇〗不具 有为政於其中之顆粒或具有相比複合物3〇2之導熱金屬少 之分散於其中之顆粒。TIM 3〇〇可藉由任何適宜方法來製 備,例如藉由將導熱金屬301壓於複合物3〇2之相對表面上 來製備。導熱金屬301可具有高於電子裝置正常運轉溫度 並低於電子裝置製造溫度之熔點。 電子裝置 電子裝置可包含上文所述之TIM。該電子裝置包含: i) 一第一電子組件, i〇 —第二電子組件, U1)上文所述之TIM,其中該TIM插入第一電子組件與 第二電子組件之間。第一電子組件可為半導體晶片且第1 電子、·且件可為散熱片。或者,第-電子組件可為半導體晶 片且第二電子組件可為散熱器(TIM1應用)。或者,第一電 子組件可為散熱器且第二電子組件可為散熱片⑺M2應 用)。在電子裝置+,丁⑽與丁驗可為相同或不同之熱界 面材料。 =子裝置可藉由包含使上文所述之TIM與第-電子組件 之第-表面接觸且將TIM加熱至高於導熱金屬熔點之溫度 之方法來製造。該方法視情況可進—步包含在加熱之前使 〃第電子組件之第二表面接觸。導熱金屬a)可經選 擇 ' 〃有间於電子裝置之正常運轉溫度並低於該裝置之製 度的;^點’《而當電子裝置運轉時使得為固體。 134393.doc •20- 200923059 希望又限於理淪之情況下,認為此製造方法提供在 -、電子組件之間形成接合而在正常運轉期間τΙΜ不流 出界面之益處。為促進此接合形成,當接觸電子組件表面 及加熱時可視情況使用焊藥。視情況可使電子組件之表面 屬化例如用Au塗佈以進一步改良黏附。當裝置運轉 牯,熱自第一電子組件擴散至第二電子組件。 或者,上文所述電子裝置中之TIM可具有層狀結構。此 TIM可包含複合物,該複合物包含具有第—炫點之第一導 :金屬及在第一導熱金屬中之顆粒,且其進一步包含在複 合物表面上之具有第二熔點之第二導熱金屬的層,其中第 熔點大於第二熔點。或者,TIM可包含製造成具有第一 相對表面及第二相對表面之薄膜的上文所述複合物,其中 第相對表面於其上具有具備第二熔點之第二導熱金屬的 層,且第二相對表面於其上具有具備第三熔點之第三導熱 金屬的層。 圖2展示例示性電子裝置2〇〇之橫截面。裝置2〇〇包含一 由έ有間隔物204之晶粒黏著層2〇3安裝至一基板2〇2之 電子組件(展不為1C晶片)201。基板2〇2具有經由襯墊206附 接於,、上之焊球205。第一熱界面材料(ΤΙΜ1) 2〇7插入1(:晶 二201與金屬覆蓋層2〇8之間。金屬覆蓋層2〇8充當散熱 盗。第二熱界面材料(ΤΙΜ2) 210插入金屬覆蓋層2〇8與散熱 片209之間。當裝置運轉時,熱沿由箭頭2ιι所表示之熱路 徑移動。 實例 134393.doc -21 . 200923059 包括此等實例以向此項技術中之—般技術者說明本發明 且不應將該等實例理解為限制巾請專利範圍中㈣述之本 發明的範《#。«本發明之揭示内容’熟f此項技術者應 瞭解可在不偏離巾請專職圍中_述之本發日月的精神及 疇之情況下在所揭示之特定實施例中做出許多改動且仍 得到相同或相似之結果。 參考實例1-製備聚矽氧顆粒 藉由稱取50 g具有107厘司(centist〇ke)之運動黏度、1〇〇 之近似聚合度及0.083%之氫含量的甲基氫/二甲基聚矽氧 烷流體置於100 g最大杯中來製備用於實例12中之聚矽氧 顆粒。此後稱取1.87 g己二烯及兩滴對應於近似〇 2 g於乙 烯基官能性矽氧烷中之由Pt二乙烯基四甲基二矽氧烷錯合 物組成之可溶性pt觸媒(該觸媒組合物含有〇 元素pt)置 於該杯中。將混合物在SpeedMixer® DAC-150中旋轉1〇 秒。添加1.3 g於水中72%之十二烷基醇(2〇)乙氧化物 (Brij® 35L) ’繼而添加8.〇 g 〇1水(初始水)。將該杯在 DAC-150 SpeedMixer®中以最大速度旋轉2〇秒。檢查杯中 内容物且觀察混合物以使其轉化為油/水(〇/w)乳液。 將該杯以最大速度再旋轉20秒,之後添加丨〇 g稀釋水。 將該杯以最大速度之近似丨/2旋轉15秒。此後再添加15 g稀 釋水且以最大速度之1/2旋轉15秒。進行水之最後添加使 得已添加稀釋水之總量為35 g。將該杯置於50。(:烘箱中歷 時2小時。使該杯冷卻且使用Malvern Mastersizer® S測定 所得聚矽氧橡膠分散液之粒徑。藉由使用裝備有標準實驗 134393.doc -22- 200923059 :遽::布赫—斗過據獲得顆粒。在過淚期 之濾餅。:Γ赫氧橡膠顆粒組成 自布赫、.減4移㈣餅且將其置於麵烤碟中且 产1㈣驗室條件下空氣乾燥隔夜(〜20小時),繼而 在5 0 C供箱中再乾燥2々、B聋 至用 ’、♦。用-張紙將乾燥之顆粒轉移 、存之玻璃瓶中。自光散射儀器得到之粒徑結果如 v5〇=15微米;Dv9〇=25微米。 參考實例2-製備聚矽氡橡膠顆粒 藉由下列方法製備用於實例η之顆粒。根據參考實命&quot; :方法製備球形聚石夕氧橡膠顆粒之分散液。替代過濾,將 刀散液倒人玻璃烤碟巾且使其在環境實驗室條件下蒸發隔 夜(=時)。用則及|備有螺帽之倒置小廣口玻璃瓶破 碎所得塊狀物。將聚矽氧顆粒在50t烘箱中進一步乾燥2 ^將聚矽氧顆粒轉移至用於儲存之玻璃瓶中。此等顆 粒由含有界面活性劑㈣⑧叫之聚碎氧橡勝顆粒組成。 參考實例3-製備Ag處理之顆粒 藉由下列方法製備用於實例2之聚矽氧顆粒。稱取5〇 g 具有135厘司之運動黏度、12〇之近似聚合度及〇 114%之氫 含里的甲基氫/二曱基聚矽氧烷流體置於100 g最大杯中。 此後稱取1.87 g己二烯及兩滴對應於近似〇·2 g於乙烯基矽 氧院中之主要由pt二乙烯基四甲基二矽氧烷錯合物組成之 可溶性Pt觸媒(觸媒組合物中有0.5%元素Pt)。將混合物在R ? 0 - Si - 0 - - Ο - Si - 〇 - 0I (T) and 0I (Q) 134393.doc • 15· 200923059 The above-described decane copolymerization to introduce a SiH functional group. An exemplary SiH functional decane is (MeOhSiMeH. The exemplary SiH functional oxime is (Me3SiO)2SiMeH and (HMe2Si) 20. The amount of SiH functional decane or SiH functional siloxane used may be from 0.001% to 100. % change. The addition of SiH compounds can also be carried out to prepare structured colloidal particles. For example, the addition of the siH compound during the latter part of the polymerization allows the particles to have a higher SiH content near the outside of the particles than inside the particles. By varying the amount of SiH compound and the number of additions, one of ordinary skill in the art would be able to prepare a variety of SiH functional group-loaded gel compositions. The SiH functional colloids described herein may constitute a reactive dispersion or emulsion. The SiH moiety may undergo a reaction while the colloid is in its dispersed state or it may undergo a reaction in its coalesced state after removal of the water. A method of preparing metal coated coarse-grained poly-xylene particles comprises treating a SiH-containing solution with a metal salt solution A polymer emulsion or colloid. The siH moiety acts as a reducing agent that reduces certain metal ions to their elemental form. These reactions occur at room temperature and can be completed in a few hours. The colloidal and elastomeric emulsions can be treated, for example, with salts of Ag, An, Cu, and Pt. Alternatively, the coarsely divided polymeric particles can be prepared using a low temperature crushing process. Such reddening is known in the art and is described, for example, in U.S. Patents. U.S. Patent No. 4,383,650 and U.S. Patent No. 5,588,6, the entire disclosure of which is incorporated herein by reference. The surface treatment may be a surface treatment agent, a physical treatment (for example, plasma) or a surface chemical reaction (in situ polymerization). Surface treatment agents are known in the art and are commercially available. Suitable 134393.doc 200923059 Surface treatment agent Including, but not limited to, alkoxydecanes such as hexyltrimethoxydecane, octyltriethoxydecane, decyltrimethoxydecane, dodecyldimethoxyoxydecane, tetradecyltrimethoxydecane Phenyltrimethoxydecane, phenylethyltrimethoxydecane, octadecyltrimethoxydecane,octadecyltriethoxydecane,vinyltrimethoxydecane and methyltrimethoxydecane,3-曱Alkoxy methoxypropyl trimethoxy decane, 3-glycidoxypropyl dimethoxy decane, 3-aminopropyltrimethoxy decane, and combinations thereof; alkoxy functional oxoxane; Mercaptans and alkyl mercaptans such as octadecyl mercaptan; polysulfides such as sulfonyl-decane; fatty acids such as oleic acid, stearic acid; and alcohols such as myristyl alcohol, cetyl An alcohol, stearyl sterol or a combination thereof; a functional alkyl polyoxyalkylene, wherein the functional group may be an alkoxyalkyl group, a decyl alkoxy group, an epoxy group, a decyloxy group, a fluorenyl group or a combination thereof For example, the surface treatment agent may be an (epoxypropoxypropyl) decyl decyl oxane/dimethyl methoxide copolymer having a group of the formula Si(〇R,)3 at one end and The other end has a dimethyl oxyhydrocarbyl polymer of the formula SiR&quot;3 wherein each R' independently represents a monovalent hydrocarbon group, such as an alkyl group and each R&quot; independently represents a monovalent hydrocarbon group, such as an alkyl or alkenyl group. Alternatively, the surface treatment agent can be an amine functional polydimethoxy fluorene polymer or a sugar oxime polymer. The amount of the surface treating agent depends on various factors including the type and amount of the coarsely divided polymer particles, however, the amount may be in the range of from 0.1% to 5% by weight based on the weight of the coarsely divided polymer particles. The TIM can be included as a step-by-step—or a variety of other additives. For example, other additives such as wax may be added to improve processing. The thermally conductive metal of the TIM can have a 134393.doc 17 200923059 refining point that is higher than the normal operating temperature of the electronic device. A TIM having a thickness can be produced, for example, as a liner, and the coarse-grained polymeric particles can have an average particle size in the range of 10% to 1% by weight of the TIM. For example, the #average particle size is the thickness. When used, the particles can be used as spacers in the TM. The average particle size of the particles will depend on a variety of factors including the thickness of the adhesive layer of tim and whether or not the crucible is reduced during or after its manufacture. However, the particles may have an average particle size of at least 15 microns. Alternatively, the particles may have an average particle size ranging from 15 microns to 150 microns, or from _m to (10) microns, or from 15 microns to 70 microns or from 5 microns to 7 microns. Those skilled in the art will recognize that when the coarsely divided polymeric particles are spherical, the average particle size described herein represents the average particle diameter of the coarsely divided polymeric particles. Tim can be prepared by any suitable method, such as a package comprising the steps of heating a thermally conductive metal above its refining point and mixing the thermally conductive metal that smashes the particle disc. Alternatively, the TIM l/m combined thermally conductive metal particles and the coarsely divided polymeric particles may be prepared by a process comprising the following steps, and thereafter 2) the product of the heating step to reflow the thermally conductive metal. Alternatively, the method package «Shixi oxygen particles are wrapped in a thin sheet or box of thermally conductive metal, and thereafter. The method of reflowing the lead, the metal, and the like may optionally include 3) manufacturing the product of the step 2) to a desired thickness, for example, by compression and simultaneous heating. Alternatively, the TIM can be made to a desired thickness using dusting or obsolescence. These methods may optionally include cutting the product of step 2) or step 3) into the desired shape. Alternatively, the desired shape can be formed by molding. Or the "Hai method" may include U applying particles and thermally conductive metal particles to the substrate 'and thereafter 2) reflowing the thermally conductive gold with or without the use of flux 134393.doc • 18- 200923059 genus. Those skilled in the art will recognize that if the TIM is compressed during or after manufacture, the particle size can be varied. For example, if spherical elastomer particles are used, the shape of the particles will change to a disk shape after compression and the particle size will also be Will change. Alternatively, if coarse resin particles are used, the coarse resin particles may serve as spacers therein. The exact pressure and temperature used during manufacture will depend on various factors including the melting point of the selected thermally conductive metal and the desired thickness of the resulting composite, however, the temperature may range from ambient to just below the melting point of the thermally conductive metal, or at 601. : to 1 201: range. Figure 1 shows a cross section of the TIM described above. In Figure t, tim 1 包含 comprises a substrate ΗΗ and a layer of the above-described composite 102 formed on the opposite side of the substrate 1G1. The release liner 1〇3 is applied to the exposed surface of the composite 1〇2. When TM has a layered structure, the method further comprises disposing a layer of the additional thermally conductive metal on the surface of the composite. The method can further comprise heating during the extrusion. For example, the exact brilliance and temperature used during manufacture will depend on the melting point of the selected thermally conductive metal and the desired thickness of the resulting composite, however, the pressure can range from 30 psi to 45 psi and the temperature can be: To &quot; (in the range of TC. Or, when the composite has a layered structure, the method may further comprise spreading a thermally conductive metal compound on the surface of the composite, wherein::: may be distributed by means such as brushing or robot Any suitable method, Figure 3, shows a cross section of an alternative TM made as described above. In Figure 3, TIM 300 is a layered thin crucible comprising a composite 3〇2 with a thermally conductive metal on the opposite surface of the composite. The first layer and the second layer of 3〇1. Thermal conduction i34393.doc •19- 200923059 The metal 301 has a melting point lower than the melting point of the thermally conductive metal of the composite 3〇2. The thermally conductive metal 301 may be free of particles.” , meaning that the thermally conductive metal 3〇 does not have particles which are in the middle of the particles or have less than the thermal conductive metal of the composite 3〇2. The TIM 3〇〇 can be prepared by any suitable method, for example By The hot metal 301 is prepared by pressing on the opposite surface of the composite 3〇 2. The heat conductive metal 301 may have a melting point higher than the normal operating temperature of the electronic device and lower than the manufacturing temperature of the electronic device. The electronic device electronic device may include the TIM described above. The electronic device comprises: i) a first electronic component, i〇 - a second electronic component, U1) the TIM described above, wherein the TIM is interposed between the first electronic component and the second electronic component. The component may be a semiconductor wafer and the first electron may be a heat sink. Alternatively, the first electronic component may be a semiconductor wafer and the second electronic component may be a heat sink (TIM1 application). Alternatively, the first electronic component may be The heat sink and the second electronic component can be used for the heat sink (7) M2. In the electronic device +, the D (10) and the test can be the same or different thermal interface materials. The sub-device can be comprised by including the TIM described above. The first surface of the first electronic component is contacted and the TIM is heated to a temperature above the melting point of the thermally conductive metal. The method may optionally include a second electronic component prior to heating. Surface contact. The heat-conducting metal a) can be selected as 'the normal operating temperature of the electronic device and lower than the system of the device; ^ point'" and when the electronic device is running, it is solid. 134393.doc •20- 200923059 It is hoped that, in the case of limitation, it is believed that this manufacturing method provides the benefit of forming a joint between the electronic components and not flowing out of the interface during normal operation. To facilitate the formation of the joint, when contacting the surface of the electronic component and heating The flux may be used as appropriate. The surface of the electronic component may be localized, for example, by Au coating to further improve adhesion. When the device is operated, heat is diffused from the first electronic component to the second electronic component. Alternatively, the TIM in the electronic device described above may have a layered structure. The TIM may comprise a composite comprising a first conductor having a first-thickness: a metal and particles in the first thermally conductive metal, and further comprising a second thermal conductivity having a second melting point on the surface of the composite a layer of metal in which the first melting point is greater than the second melting point. Alternatively, the TIM may comprise a composite as described above fabricated as a film having a first opposing surface and a second opposing surface, wherein the first surface has a layer of a second thermally conductive metal having a second melting point thereon, and the second The opposite surface has a layer having a third thermally conductive metal having a third melting point thereon. 2 shows a cross section of an exemplary electronic device 2A. The device 2A includes an electronic component (not shown as a 1C wafer) 201 mounted to a substrate 2〇2 by a die attach layer 2〇3 having a spacer 204. The substrate 2〇2 has solder balls 205 attached thereto via pads 206. The first thermal interface material (ΤΙΜ1) 2〇7 is inserted into 1 (: between the crystal two 201 and the metal cover layer 2〇8. The metal cover layer 2〇8 acts as a heat sink. The second thermal interface material (ΤΙΜ2) 210 is inserted into the metal cover. Between layer 2〇8 and heat sink 209. When the device is in operation, heat moves along the thermal path indicated by arrow 2 ι. Example 134393.doc -21 . 200923059 includes such examples to the general technology in the art The invention is described and should not be construed as limiting the scope of the invention. (4) The invention of the invention is described in the following paragraphs. The disclosure of the present invention should be understood by those skilled in the art. In the context of the spirit and scope of the present invention, many modifications are made in the specific embodiments disclosed and still achieve the same or similar results. Reference Example 1 - Preparation of Polyxonium Oxide Particles by Weighing Take 50 g of methyl hydrogen/dimethyl polyoxane fluid with a kinematic viscosity of 107 centistokes, an approximate polymerization degree of 1 及, and a hydrogen content of 0.083% in a 100 g max cup. The polyfluorene oxide particles used in Example 12 were prepared. Thereafter, 1.87 g was weighed. The diene and the two drops correspond to a soluble pt catalyst consisting of Pt divinyltetramethyldioxane complex in a ratio of approximately g2 g to the vinyl functional oxirane (the catalyst composition contains ruthenium) The element pt) was placed in the cup. The mixture was spun in a SpeedMixer® DAC-150 for 1 sec. Add 1.3 g of 72% dodecyl alcohol (2 〇) ethoxylate (Brij® 35L) in water' Add 8.〇g 〇1 water (initial water). Rotate the cup at maximum speed for 2 sec. in the DAC-150 SpeedMixer®. Check the contents of the cup and observe the mixture to convert it to oil/water (〇/ w) Emulsion. Rotate the cup for a further 20 seconds at maximum speed, then add 丨〇g of dilution water. Rotate the cup at a maximum speed of approximately 丨/2 for 15 seconds. Then add 15 g of dilution water at maximum speed. 1/2 rotation for 15 seconds. The final addition of water was carried out so that the total amount of dilution water added was 35 g. The cup was placed at 50. (: 2 hours in an oven. The cup was cooled and measured using a Malvern Mastersizer® S Particle size of the obtained polyoxyxene rubber dispersion. Equipped with standard experiment 134393.doc -22- 2009230 59 : 遽:: Buhe - fighting over the obtained particles. In the tearing period of the filter cake.: Γ 氧 oxy rubber particles composed from Buch, minus 4 shift (four) cake and placed in the baking dish and produced 1 (4) Air drying in the laboratory conditions overnight (~20 hours), then drying in the 50 ° C box for 2 々, B 聋 to use ', ♦. Transfer the dried particles with a sheet of paper, stored in a glass bottle The particle size results obtained from the light scattering instrument are v5 〇 = 15 μm; Dv 9 〇 = 25 μm. Reference Example 2 - Preparation of Polyruthenium Rubber Particles The particles for Example η were prepared by the following method. A dispersion of spherical polyoxo rubber particles was prepared according to the reference life &quot; method. Instead of filtering, the knife is poured onto a glass baking dish and allowed to evaporate overnight under ambient laboratory conditions (= hour). And use the inverted small wide-mouth glass bottle with the nut to break the resulting block. The polyxonium oxide particles were further dried in a 50 t oven. 2 ^ The polyfluorene oxide particles were transferred to a glass bottle for storage. These granules are composed of a polyaluminum rubber granule containing a surfactant (4). Reference Example 3 - Preparation of Ag-treated particles The polyfluorene oxide particles used in Example 2 were prepared by the following method. Weigh 5 〇 g with a kinetic viscosity of 135 centistokes, an approximate degree of polymerization of 12 〇, and a hydrogen-containing methylhydrogen/dimercaptopolyoxane fluid of 114% in a 100 g maxi cup. Thereafter, 1.87 g of hexadiene and two drops of soluble Pt catalyst corresponding to approximately 〇·2 g in a vinyl oxime, mainly composed of pt divinyltetramethyldioxane complex, were weighed. There is 0.5% element Pt) in the vehicle composition. Put the mixture in

SpeedMixer® DAC-150 中旋轉 1〇秒。添加 0.82 g於水中 60% 之第二院基磺酸鹽界面活性劑(H〇stapur(g) SAS 60),繼而 I34393.doc -23- 200923059 添加6,0 g DI水(初始水)。將該杯在daC-150 SpeedMixer® 中以最大速度旋轉20秒。檢查該杯之内容物且觀察混合物 以使其轉化為ο/w乳液。Rotate 1 minute in the SpeedMixer® DAC-150. 0.82 g of a second yard sulfonate surfactant (H〇stapur (g) SAS 60) in water was added, followed by I34393.doc -23- 200923059, adding 6,0 g of DI water (initial water). Rotate the cup at maximum speed for 20 seconds in the daC-150 SpeedMixer®. The contents of the cup were examined and the mixture was observed to convert it into an ο/w emulsion.

將戎杯以最大速度再旋轉20秒,繼而添加1〇 g稀釋水。 將該杯以最大速度之近似1/2旋轉15秒。此後再添加i5 g稀 釋水且以最大速度之1/2旋轉15秒。進行水之最後添加使 得已添加稀釋水之總量為35 g。將杯之内容物轉移至 ml觀中且將帶帽瓶置於耽烘箱歷時2小時。將瓶冷卻至 室溫且使用 Malvern Mastersizer(g) s 測定 散液之粒徑。㈣g3重量卿〇3水溶液添= 所含之乳液中且科將瓶搖動數分鐘。使該瓶在環境實驗 室溫度下保持靜止近似24小時。 乳液顏色自乳白色轉變為極深之黑褐色。藉由使用真空 遽瓶及裝備有普通實驗室I紙之布赫納漏斗過遽得到經處 理之聚⑦氧彈㈣齡。❹1水絲;㈣且使其在環境溫 度下乾無48小時。#由用倒置之2盘司廣口瓶輕輕地塵碎 聚結物來破碎乾燥之產物。顆粒之顏色為淺褐色。藉由X 射線螢光確定Ag之存在且發現其為“重量% θ 藉由光散射測定之水性乳液之平均粒徑為3。微米。 實例1-聚矽氧橡膠顆粒 藉由在作為觸媒之1白存在下自聚(乙婦基石夕氧燒)及聚(氫 石夕氧院)水性乳化聚合製備㈣氧顆粒。平均㈣&amp; 5〇微米(D9〇直徑為85微米)。將26.5體積%之1之仏'、、 氧顆粒與一 134393.doc -24- 200923059 70 C且用力攪拌5分鐘。在冷卻至室溫後,在6(rc下將所 得到之混合物壓縮成薄膜。將薄膜切割成較小尺寸之塊用 於導熱量測,其可根據針對導熱電絕緣材料之熱傳輸特性 之ASTM D5470標準測試方法藉由防刻熱板法來進行。在 36.2 psi之負載壓力下具有〇 185 mm厚度之薄膜具有 0.2521: .Cm2/W之熱阻抗及7.373 w/mK之視熱傳導率 (apparent thermal conductivity)。視熱傳導率意謂厚度除以 熱阻抗’對於單位差異進行校正。 f s 實例2-銀塗佈之聚矽氧橡膠顆粒 藉由在作為觸媒之鉑存在下自聚(乙烯基矽氧烷)及聚(氫 矽氧烷)水性乳化聚合製備聚矽氧顆粒,且隨後藉由原位 濕式金屬化來塗佈銀。平均顆粒直徑為25微米(D9〇直徑為 45微米)且銀係以用顆粒重量計之〇18%的量存在。將2〇 6 體積%之量之此等聚矽氧顆粒與74體積%(環氧基丙氧基丙 基)曱基矽氧烷/二曱基矽氧烷共聚物(其可以EMS_622自 1; M〇n*iSt〇Wn,PA,USA之以1如,Inc·賭得)一起作為表面處 理劑與InwBi^.sSn,6.5混合。將混合物加熱至7〇。〇且用力攪 拌2分鐘。冷卻至室溫後,在⑼它下將所得到之混合物壓 縮成薄膜。將薄膜切割成較小尺寸之塊用於導熱量測。在 36.2 psi負載壓力下一具有〇〇87 mm厚度之薄膜具有 〇.188°C.cm2/W之熱阻抗及4.413 w/mK之視熱傳導率。 比較實例3-無顆粒 在60°C下將InyBiusSn,65壓縮成薄膜。將薄膜切割成較 小尺寸之塊用於導熱量測。在36·2 psi之負載壓力下具有 134393.doc -25- 200923059 0.185 薄膜厚度之薄膜具有1.932°C.cm2/W的熱阻抗 且具有0.087 mm之薄膜厚度之薄膜具有〇 499。〇 ,crn2/w的 熱阻抗。厚度為0·185 mm之薄膜之視熱傳導率為0.958 W/mK且厚度為〇.〇87 mm之薄膜具有1 743 w/mK之熱傳導 率0 實例4-氧化鋁顆粒 將22·8%體積分率之氧化結粉末與In51Bi32.5Sn16.5混合。 將混合物加熱至70。〇且用力攪拌2分鐘。冷卻至室溫後, 在60°C下將所得到之混合物壓縮成薄膜。將薄膜切割成較 小尺寸之塊用於導熱量測。在36 2 psi之負載壓力下具有 0.182 mm厚度之薄膜具有〇 951〇c.cm2/w之熱阻抗及丨892 W/mK之視熱傳導率。本發明者令人驚奇地發現使用實例1 中未塗佈之聚矽氧橡膠顆粒產生相比該含氧化鋁顆粒之 TIM具有更低熱阻抗及更高熱傳導率之TIM。 實例5-具有5微米之平均直徑之精細聚矽氧橡膠顆粒 將27.7體積%之量之具有5.丨5微米之平均顆粒直徑及丨4〇 之多分散指數(PDI)的聚矽氧橡膠顆粒(D〇w CORNING® 9506)與Ii^Bin sSn!6.5混合。將混合物加熱至7〇〇c且用力 授拌2分鐘。冷卻至室溫後,在6〇它下將所得到之混合物 麼縮成薄膜。將薄膜切割成較小尺寸之塊用於熱傳導率量 測。在36.2 psi之負載壓力下一具有0.185 mm厚度之薄膜 具有〇.454〇C .cm2/W之熱阻抗及4.065 W/mK之視熱傳導 率。 實例6-具有2微米之平均直徑之精細聚矽氧橡膠顆粒 134393.doc •26· 200923059 將23.4體積%之量之具有丨.39微米之平均顆粒直徑及丨14 之多分散指數(PDI)的聚矽氧橡膠顆粒(DOW CORNING® EP-2I00)與In5IBi32 5Snι6.5混合。將混合物加熱至70。c且用 力攪拌2分鐘。冷卻至室溫後’在6〇。〇下將所得到之混合 物壓縮成薄膜。將薄膜切割成較小尺寸之塊用於熱傳導率 里測。在36.2 p si之負載壓力下一具有〇·ι 84 mm厚度之薄膜 具有1.095。(:.(^2/\¥之熱阻抗及1.677 \¥/1111&lt;:之視熱傳導率。 實例7-具有16微米之平均直徑之聚矽氧橡膠顆粒 藉由在作為觸媒之鉑存在下自聚(乙烯基矽氧烷)及聚(氫 矽氧烷)水性乳化聚合製備聚矽氧顆粒。平均顆粒直徑及 PDI分別為16.7微米與1_28。將28.7體積%之量之此等聚矽 氧顆粒與熔點6〇。〇混合。將混合物加熱至 70 C且用力攪拌5分鐘。冷卻至室溫後,在6〇〇c下將所得 到之混合物壓縮成薄膜。在36.2 psi之負載壓力下具有 〇· 145 mm厚度之薄膜具有〇 471。〇 .cm2/w之熱阻抗及3 〇81 W/mK之視熱傳導率。 實例8-具有15微米之平均直徑而無界面活性劑之聚矽氧 橡膠顆粒 藉由在作為觸媒之鉑存在下自聚(乙烯基矽氧烷)及聚(氫 夕氧烷)水性乳化聚合製備聚矽氧顆粒。平均顆粒直徑為 15微米。將28.7體積%之量之此等聚矽氧顆粒與 wBin.sSn〗6·5(熔點60 C)混合。將混合物加熱至7〇。〇且用 力攪拌5分4里。冷卻至室溫後,在6〇。〇下將所得到之混合 物壓縮成薄膜。在36.2 psi之負載壓力下具有〇 143職厚 I34393.doc -27- 200923059 度之薄膜具有〇.559t&gt;C.cm2/W之熱阻抗及2.556 W/mK之視 熱傳導率。 實例9-1矽氧橡膠顆粒體積對低熔點合金之複合物之熱傳 導率的影響 將不同量之具有0.77微米之平均顆粒直徑及126之多分 散指數(PDI)之聚矽氧橡膠顆粒(Dow Corning Trefill E-601)與In^Bi32 sSn〗6.5混合。將混合物加熱至7〇。〇且用力攪 (' 拌2分鐘。冷卻至室溫後,在6(TC下將所得到之混合物壓 縮成薄獏。將薄膜切割成較小尺寸之塊用於導熱量測。在 36.2 pS1之負载壓力下,對於具有24 2體積%之此等聚矽氧 顆粒之樣品’複合物薄膜之視熱傳導率為3,307 W/mK,且 對於具有3 2,3體積%之此等聚矽氧顆粒之樣品,複合物薄 膜之視熱傳導率為1.865 W/mK。 實例i〇-低熔點之軟金屬中之具有界面活性劑之聚矽氡 橡膠顆粒 藉由在作為觸媒之鉑存在下自聚(乙烯基矽氧烷)及聚(氫 石夕氧烧)水性乳化聚合製備聚矽氧顆粒。如上文中參考實 例1中所展示平均顆粒直徑為25微米。將28.1體積%之量之 此等聚石夕氧顆粒與軟銦(熔點156.6。〇混合。將混合物加熱 至1 60°C且與銦超音波混合5分鐘。冷卻至室溫後,在 120°C下將所得到之混合物壓縮成薄膜。在4〇 psi負載壓力 下具有0.225 mm厚度之薄膜具有0.309°C.cm2/W之熱阻抗 及7.282 W/mK之視熱傳導率。 實例11-聚石夕氧橡膠顆粒大小對低熔點金屬之複合物之熱 134393.doc -28· 200923059 傳導率的影響 如上文參考實例1中所展示,藉由在作為觸媒之钻存在 下自聚(乙稀基石夕氧院)及聚(氫石夕氧烧)水性乳化聚合製備 ,、有不同平均顆粒直徑之聚矽氧橡膠顆粒。將含有8體 積/。之聚石夕氧橡膠顆粒之混合物加熱至⑽。c且與钢超音波 混分鐘。冷卻至室溫後,在12〇。。下將所得到之混合物 壓縮成薄膜1薄膜切割成較小尺寸之塊用於導熱量測。The cup was rotated at maximum speed for a further 20 seconds, followed by the addition of 1 μg of dilution water. The cup was rotated at approximately 1/2 of maximum speed for 15 seconds. Thereafter, i5 g of diluted water was added and rotated at 1/2 of the maximum speed for 15 seconds. The final addition of water was carried out so that the total amount of diluted water added was 35 g. The contents of the cup were transferred to a ml view and the capped bottle was placed in a tanning oven for 2 hours. The bottle was cooled to room temperature and the particle size of the dispersion was measured using a Malvern Mastersizer (g) s. (4) g3 weight Qing 〇 3 aqueous solution added = contained in the emulsion and the bottle shakes for a few minutes. The bottle was held still at ambient temperature for approximately 24 hours. The color of the emulsion changed from milky white to very dark brown. The treated poly 7 oxygen bomb (four) age was obtained by using a vacuum crucible and a Buchner funnel equipped with ordinary laboratory I paper. ❹ 1 water wire; (d) and allowed to dry at ambient temperature for 48 hours. #Crush the dried product by gently dusting the agglomerate with the inverted 2 tray jar. The color of the particles is light brown. The presence of Ag was determined by X-ray fluorescence and found to be "% by weight θ. The average particle size of the aqueous emulsion as determined by light scattering was 3. Micron. Example 1 - Polyoxyxene rubber particles by acting as a catalyst (1) Oxygen particles prepared by aqueous emulsion polymerization of self-polymerization (Ethyl sylvestre) and poly (Hydrogen oxy-energy). Average (4) &amp; 5 〇 micron (D9 〇 diameter is 85 μm). 26.5 vol% 1), oxygen particles and a 134393.doc -24- 200923059 70 C and vigorously stirred for 5 minutes. After cooling to room temperature, the resulting mixture was compressed into a film at 6 (rc). The smaller size block is used for thermal conductivity measurement, which can be performed by the anti-scratch method according to the ASTM D5470 standard test method for the heat transfer characteristics of the thermally conductive electrically insulating material. 〇185 at a load pressure of 36.2 psi. The film of mm thickness has a thermal impedance of 0.2521: Cm2/W and an apparent thermal conductivity of 7.373 w/mK. The apparent thermal conductivity means the thickness divided by the thermal impedance 'corrected for the unit difference. fs Example 2 Silver coated polyoxyethylene The granules are prepared by aqueous emulsion polymerization of poly(vinyl siloxane) and poly(hydrogen oxane) in the presence of platinum as a catalyst, and then coated by in-situ wet metallization. Silver. The average particle diameter is 25 microns (D9 〇 diameter is 45 microns) and the silver is present in an amount of 〇 18% by weight of the granules. The amount of these fluorinated granules is 74 vol. % (epoxypropoxypropyl) decyl decyl oxane / dimercapto oxane copolymer (which can be EMS_622 from 1; M〇n*iSt〇Wn, PA, USA, 1 such as, Inc. The product was mixed with InwBi.ss.n. The film was cut into smaller pieces for thermal conductivity measurement. The film with a thickness of 〇〇87 mm at a load pressure of 36.2 psi has a thermal impedance of 188 ° C.cm 2 /W and a view of 4.413 w/mK. Thermal Conductivity. Comparative Example 3 - No Particles InyBiusSn, 65 was compressed into a film at 60 ° C. The film was cut into smaller sizes. For thermal conductivity measurement. Film with 134393.doc -25- 200923059 0.185 film thickness at a load pressure of 36·2 psi has a thermal impedance of 1.932 ° C.cm 2 /W and a film with a film thickness of 0.087 mm has 〇 499. 热, thermal resistance of crn2/w. The film with a thickness of 0·185 mm has a thermal conductivity of 0.958 W/mK and a thickness of 〇.〇87 mm has a thermal conductivity of 1 743 w/mK. - Alumina particles The 22.8% by volume oxidized knot powder was mixed with In51Bi32.5Sn16.5. The mixture was heated to 70. Stir vigorously for 2 minutes. After cooling to room temperature, the resulting mixture was compressed into a film at 60 °C. The film is cut into smaller pieces for thermal conductivity measurement. A film having a thickness of 0.182 mm at a load pressure of 36 2 psi has a thermal impedance of 951 〇 c.cm 2 /w and a viscous thermal conductivity of 丨 892 W/mK. The inventors have surprisingly found that the use of uncoated polyoxyxene rubber particles of Example 1 produces a TIM having a lower thermal impedance and a higher thermal conductivity than the TIM containing the alumina particles. Example 5 - Fine Polyoxyxene Rubber Particles Having an Average Diameter of 5 Micrometers Polyoxyphthalic rubber particles having an average particle diameter of 5. 5 micrometers and a polydispersity index (PDI) of 〇 4 Å in an amount of 27.7% by volume. (D〇w CORNING® 9506) is mixed with Ii^Bin sSn!6.5. The mixture was heated to 7 ° C and vigorously stirred for 2 minutes. After cooling to room temperature, the resulting mixture was condensed into a film under 6 Torr. The film is cut into smaller pieces for thermal conductivity measurement. A film having a thickness of 0.185 mm at a load pressure of 36.2 psi has a thermal impedance of 〇.454〇C.cm2/W and a thermal conductivity of 4.065 W/mK. Example 6 - Fine Polyoxyethylene Rubber Particles Having an Average Diameter of 2 Micron 134393.doc •26· 200923059 The amount of 23.4% by volume of the average particle diameter of 丨.39 μm and the polydispersity index (PDI) of 丨14 Polyoxyethylene rubber particles (DOW CORNING® EP-2I00) were mixed with In5IBi32 5Snι6.5. The mixture was heated to 70. c and stir vigorously for 2 minutes. After cooling to room temperature, 'at 6 〇. The resulting mixture is compressed into a film. The film is cut into smaller pieces for thermal conductivity measurement. The film having a thickness of 〇·ι 84 mm at a load pressure of 36.2 p si has 1.095. (:. (^2/\¥ thermal impedance and 1.677 \¥/1111&lt;: thermal conductivity. Example 7 - Polyoxyethylene rubber particles having an average diameter of 16 microns by the presence of platinum as a catalyst Polyfluorene granules were prepared by aqueous emulsion polymerization of poly(vinyl siloxane) and poly(hydrogen oxane). The average particle diameter and PDI were 16.7 micrometers and 1-28, respectively. The amount of these polyoxyxides was 28.7% by volume. The granules were mixed with a melting point of 6 Torr. The mixture was heated to 70 C and stirred vigorously for 5 minutes. After cooling to room temperature, the resulting mixture was compressed into a film at 6 ° C. It had a load pressure of 36.2 psi. 〇· 145 mm thick film has 〇 471. 热.cm 2 / w thermal impedance and 3 〇 81 W / mK thermal conductivity. Example 8 - 15 μm average diameter without surfactants The particles are prepared by aqueous emulsion polymerization of poly(vinylpyroxane) and poly(hydroxanthene) in the presence of platinum as a catalyst. The average particle diameter is 15 micrometers, and the amount is 28.7% by volume. These polysiloxane particles are mixed with wBin.sSn 6.5 (melting point 60 C). The mixture was heated to 7 Torr and stirred vigorously for 5 minutes and 4 liters. After cooling to room temperature, the resulting mixture was compressed into a film at 6 Torr. The 〇143 thickness was I34393 at a load pressure of 36.2 psi. Doc -27- 200923059 The film has a thermal impedance of 559.559t&gt;C.cm2/W and a thermal conductivity of 2.556 W/mK. Example 9-1 Thermal conductivity of the composite of low-melting alloy particles Effect of mixing different amounts of polyoxynized rubber particles (Dow Corning Trefill E-601) having an average particle diameter of 0.77 microns and a polydispersity index (PDI) of 126 with In^Bi32 sSn 6.5. Heating the mixture to 7 〇 〇 用 用 用 用 用 用 用 用 用 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' Under the loading pressure of pS1, the apparent thermal conductivity of the sample 'composite film with 24 2% by volume of these polyfluorene oxide particles was 3,307 W/mK, and for such polyfluorinated oxygen having 32% by volume For the sample of particles, the apparent thermal conductivity of the composite film is 1.865 W/mK. Example i〇-a low-melting soft metal having a surfactant-based polyruthenium rubber particles by self-polymerization (vinyl siloxane) and poly (hydrogen oxyhydrogenation) in the presence of platinum as a catalyst Aqueous emulsion polymerization was used to prepare polyfluorene oxide particles. The average particle diameter as shown in Reference Example 1 above was 25 μm. The amount of these polyoxo oxygen particles and soft indium (melting point 156.6) was 28.1% by volume. 〇 mix. The mixture was heated to 1 60 ° C and mixed with indium ultrasonic for 5 minutes. After cooling to room temperature, the resulting mixture was compressed into a film at 120 °C. A film having a thickness of 0.225 mm at a load pressure of 4 psi has a thermal impedance of 0.309 ° C.cm 2 /W and a thermal conductivity of 7.282 W/mK. Example 11 - Heat of a composite of polysulfide rubber particles to a low melting point metal 134393.doc -28 - 200923059 The effect of conductivity is as described above with reference to Example 1, by the presence of a drill as a catalyst Poly (Ethyl bentonite) and poly(hydrogen oxyhydrogenation) are prepared by aqueous emulsion polymerization, and have different average particle diameters of polyoxyethylene rubber particles. Will contain 8 volumes /. The mixture of poly-stone rubber particles is heated to (10). c and mixed with steel ultrasonic waves for a minute. After cooling to room temperature, at 12 Torr. . The resulting mixture was compressed into a film 1 and cut into smaller pieces for thermal conductivity measurement.

在4〇 PS1負載壓力下具有0.397 mm-G.425 mm厚度之複合物 薄膜之熱阻抗展示於圖4中。 實例12在用導熱聚矽氧油脂塗佈之銦薄膜中之聚矽氧 根據上文實例10中展示之方法製備在具有0190 _厚度 之銦薄膜中之含量為28.8體積%之㈣氧橡膠顆粒且將導熱 油脂DOW⑶⑽職⑧sc 1〇2(其可構自觀㈣Michigan, U.S.A之Dow Corning C〇rporati〇n)塗佈於銦複合物薄膜之頂 部與底部。在40 psi負載壓力下該薄膜具有〇181。〇 之熱阻抗及10.755 W/mK之視熱傳導率。此薄膜可適用於 測試媒劑中。 實例〜用具有㈣點金屬合金分層之銦薄膜中之聚石夕氧 橡膠顆粒 藉由如上文實例10中展示之相同方法製備具有〇263賴 厚度之銦複合物薄臈。將經由在⑽擠㈣備之兩塊 金屬合金(熔點138.5t)薄膜堆疊在銦複合物薄膜 兩側上且經由在50。(:下_吏其形成層狀薄膜。在4〇 _ 134393.doc -29- 200923059 負載壓力下總厚度為0.313 mm之層狀薄膜具有 3.558°C,cm2/W之熱阻抗及0.880 W/mK之視熱傳導率。在 不希望受限於理論之情況下,認為Sn^Bi58之剛性在此測 試方法中不利地影響傳導率及電阻率。 比較實例14-無顆粒 在132°C下將金屬合金Sn^Bi58壓縮成薄膜。將薄膜切割 成較小尺寸之塊用於導熱量測。在40 psi負載壓力下具有 〇·31〇 mm薄膜厚度之薄膜具有4.67l°C.cm2/W之熱阻抗且 金屬薄膜之視熱傳導率為0.664 W/mK。此比較實例、實例 13及實例1〇展示當不使用顆粒及使用較硬合金時不利地影 響視熱傳導率與熱電阻率。 實例15-在用具有低熔點之金屬合金分層之銦薄膜中之 聚矽氧橡膠顆粒-2 藉由如上文實例10中展示之相同方法製備具有〇 263 mm 厚度之銦複合物薄膜。將經由在50°c下擠壓製備之兩塊 BisoPb^Sn^Cdn金屬合金(具有70°C之熔點)薄膜堆疊在銦 複合物薄膜兩側上且經由在5〇t:下擠壓使其形成層狀薄 媒。在40 psi負載壓力下總厚度為〇.378 mm之層狀薄膜具 有〇.694t:.cm2/W之熱阻抗及5.45 4 W/mK之視熱傳導率。 實例在用具有低熔點金屬分層之銦薄膜中之聚矽氧 橡膠顆粒 藉由如上文實例1 〇中展示之相同方法製備具有〇_丨85 厚度之銦複合物薄膜。將經由在1 〇〇。〇下擠壓製備之兩塊 姻薄臈堆疊在銦複合物薄膜兩側上且經由在5(rc下擠壓使 134393.doc -30- 200923059 其形成層狀薄膜。在40 psi負載壓力下總厚度為〇 235 mm '專、/、有 C / 之熱 阻抗及7.271 W/mK之 視熱傳導率。 實例Π -銦複合物薄膜中之石墨顆粒 將來自 Graphite 3626 (Anthracite Industries,pA)顆粒之 膨脹石墨以19.3%之體積分率與銦混合。將混合物加熱至 170 C且與銦超音波混合3分鐘。冷卻至室溫後,在1〇(Γ(: ( 下將所得到之混合物壓縮成薄膜《將薄膜切割成較小尺寸 之塊用於導熱量測。在40 psi負載壓力下具有〇 33〇 mm厚 度之薄膜具有i/ost.cm'W之熱阻抗及2,335 w/mK之視 熱傳導率。使用實例10中之聚矽氧橡膠顆粒生產出相比此 3石墨顆粒之TIM具有更低熱阻抗及更高熱傳導率之 TIM。令人驚奇地發現含有傳導性(例如石墨)顆粒之複合 物相比含有實例10中之聚矽氧顆粒之複合物具有更高之熱 阻抗及更低之熱傳導率。 〇 實例18-在銦薄膜中之經氧化鋁改質之聚矽氧橡膠顆粒 用0.8重里。/〇之藉由使用異丙氧化鋁作為反應前驅物之溶 膠-凝膠化學製備之氧化鋁改質藉由如實例】中展示之相同 方法製備之聚碎氧橡膠顆粒^將經改質之聚矽氧顆粒與銦 - 之混合物加熱至17〇°C且超音波混合3分鐘。冷卻至室溫 後,在100 C下將所得到之混合物壓縮成薄膜。將薄膜切 割成較小尺寸之塊用於導熱量測。在40 psi負載壓力下具 有0.130 mm厚度之薄膜具有〇41〇。〇 cm2/w之熱阻抗及 3.248 W/mK之視熱傳導率。 134393.docThe thermal impedance of the composite film having a thickness of 0.397 mm to G.425 mm at 4 〇 PS1 load pressure is shown in Fig. 4. Example 12 Preparation of (IV) Oxygen Rubber Particles in an Indium Film Having a Thickness of 0190 Å in an Indium Film Coated with a Thermal Conductive Polyoxysulfide Oil According to the method shown in Example 10 above, The thermal grease DOW(3)(10), 8sc 1〇2 (which can be self-contained (4) Dow Corning C〇rporati〇n of Michigan, USA) is applied to the top and bottom of the indium composite film. The film has 〇181 at a load pressure of 40 psi. Thermal impedance and thermal conductivity of 10.755 W/mK. This film is suitable for use in test vehicles. Example ~ Polycarbide rubber particles in an indium thin film layered with a (four)-point metal alloy An indium composite thin crucible having a thickness of 〇263 was prepared by the same method as shown in Example 10 above. A film of two metal alloys (melting point 138.5 t) prepared by extrusion in (10) was stacked on both sides of the indium composite film and passed through 50. (: _ 吏 吏 形成 形成 形成 形成 形成 形成 形成 形成 形成 。 。 。 。 134 134 134 134 134 134 134 134 134 层 层 层 层 层 层 层 层 层 层 层 层 层 层 层 层 层The thermal conductivity is considered. Without wishing to be bound by theory, it is believed that the rigidity of Sn^Bi58 adversely affects conductivity and resistivity in this test method. Comparative Example 14 - No Particles Metal Alloy at 132 ° C Sn^Bi58 is compressed into a film. The film is cut into smaller pieces for thermal conductivity measurement. The film with a film thickness of 〇31〇mm at a load pressure of 40 psi has a thermal impedance of 4.67 l ° C.cm 2 /W. And the apparent thermal conductivity of the metal film was 0.664 W/mK. This comparative example, Example 13 and Example 1 show that the thermal conductivity and the thermal resistivity are adversely affected when no particles are used and a hard alloy is used. Example 15 - In Use Polyoxyethylene rubber particles-2 in a low-melting metal alloy layered indium film. An indium composite film having a thickness of 〇263 mm was prepared by the same method as shown in Example 10 above. Will pass at 50 ° C Two pieces of BisoPb^Sn^Cdn metal alloy prepared by extrusion A film having a melting point of 70 ° C is stacked on both sides of the indium composite film and formed into a layered thin medium by extrusion at 5 〇 t: a layer having a total thickness of 〇.378 mm at a load pressure of 40 psi. The film has a thermal impedance of 694.694t:.cm2/W and a thermal conductivity of 5.45 4 W/mK. An example is a polyoxyethylene rubber particle in an indium thin film layered with a low melting point metal by the above example 1 An indium composite film having a thickness of 〇_丨85 was prepared in the same manner as shown in 〇. Two slabs prepared by extrusion under a crucible were stacked on both sides of the indium composite film and passed through (The extrusion under rc makes 134393.doc -30- 200923059 a layered film. The total thickness is 〇235 mm at 40 psi load pressure, /, with C / thermal impedance and 7.271 W / mK of thermal conduction Example 石墨 Graphite particles in an indium composite film Expanded graphite from Graphite 3626 (Anthracite Industries, pA) particles was mixed with indium at a volume fraction of 19.3%. The mixture was heated to 170 C and mixed with indium ultrasonic waves. 3 minutes. After cooling to room temperature, at 1 〇 (Γ(: The mixture is compressed into a film. The film is cut into smaller pieces for thermal conductivity. The film with a thickness of 〇33〇mm at a load pressure of 40 psi has a thermal impedance of i/ost.cm'W and 2,335 w/ The thermal conductivity of mK. The polyoxycarbo rubber particles of Example 10 were used to produce a TIM having a lower thermal impedance and a higher thermal conductivity than the TIM of the 3 graphite particles. Surprisingly, it has been found that a composite containing conductive (e.g., graphite) particles has a higher thermal resistance and a lower thermal conductivity than a composite containing the polyfluorene oxide particles of Example 10.实例 Example 18 - Alumina modified polyoxyethylene rubber particles in an indium film with 0.8 weights. Alumina modification by sol-gel chemistry using isopropyl alumina as a reaction precursor. The poly oxy-rubber particles prepared by the same method as shown in the example will be modified. The mixture of helium oxide particles and indium was heated to 17 ° C and ultrasonically mixed for 3 minutes. After cooling to room temperature, the resulting mixture was compressed into a film at 100 C. The film is cut into smaller pieces for thermal conductivity measurement. The film with a thickness of 0.130 mm at a load pressure of 40 psi has 〇41〇.热 Thermal impedance of cm2/w and apparent thermal conductivity of 3.248 W/mK. 134393.doc

•3K 200923059 1, 實例19-在銦薄膜中之經聚合物改質之聚矽氧橡膠顆粒 藉由溶液摻合用16.2重量%之聚(二甲基石夕氧院)_亞 胺改質藉由如實例i中展示之相同方法製備之聚石夕氧橡勝 顆粒。將經改質之聚石夕氧顆粒與銦之混合物加熱至17代 且超音波混合3分鐘。冷卻至室溫後,在⑽[下將所得到 之混合物壓縮成薄膜。將薄臈切割成較小尺寸之塊用於導 熱量測。在40 psi負载堡力下具有〇.44〇麵厚度之薄膜且 有i .〇231 WAV之熱阻抗及4 3〇〇 w/mK之視熱傳導率。… 實卿-在銦薄m中之經聚合物改質之聚錢橡膠顆粒_2 藉由溶液摻合用9.3重量%之聚(雙紛A碳酸改質藉由 士實例1中展不之相同方法製備之聚石夕氧橡膠顆粒。將經 改質之聚石夕氧顆粒與銦之混合物加熱至170t且超音波混 合3分mu室溫後’在⑽將所得到之混合物壓 縮成薄膜。將薄膜切割成較小尺寸之塊用於導熱量測。在 4〇 Psi負載壓力下具有〇.42〇 mm厚度之薄膜具有 0.5 76。(: WAV之熱阻抗及7·296 w/‘之視熱傳導率。 實例在銦薄膜中之經聚合物改質之料氧橡膠顆粒] 精由溶液換合用9 &amp; a I» π .窒里/〇之熱塑性聚胺基甲酸酯(Estane 58238 ’聚醋聚胺基甲酸醋-75A,Nev_ Inc,0H)改質藉由 如上文實例1中展示夕缸n 士 4也丨_ 之相冋方法製備之聚矽氧橡膠顆粒。 將經改質之聚石夕氧顆粒與銦之混合物加熱至_且超音 波混合3分鐘。冷卻至室錢,在_下將所得到之混合 物I 缩成薄臈。將薄膜切割成較小尺寸之塊用於導熱量 測。在4〇 ^負載壓力下具有⑶3贿厚度之薄膜具有 134393.doc •32· 200923059 0.622°〇(:1112/\^之熱阻抗及5.224貿/1111*:之視熱傳導率。 實例22-在銦薄膜中之經聚合物改質之聚矽氧橡膠顆粒_4 藉由溶液摻合用9.4重量%之具有52°C之Tg之聚[磺化二 (乙二醇)/環己烧二甲醇-交替-間苯二甲酸](4 58716, Aldrich)改質藉由如實例1中展示之相同方法製備之聚石夕氧 橡膠顆粒。將經改質之聚矽氧顆粒與銦之混合物加熱至 1 7 0 C且超音波混合3分鐘。冷卻至室溫後,在1 〇 〇 下將 ^ 所得到之混合物壓縮成薄膜。將薄膜切割成較小尺寸之塊 用於導熱量測。在40 psi負載壓力下具有0.443 mm厚度之 薄膜具有0.717°C .cm2/W之熱阻抗及6·181 W/mK之視熱傳 導率。 比較實例2 3 -在銦複合物薄膜中之秒膠顆粒 將來自Merck Grade 9385之230-400目之40-63微米之顆 粒直徑的矽膠以19.3%之體積分率與銦混合。將混合物加 熱至1 70 C且超音波混合3分鐘。冷卻至室溫後,在1 〇〇。〇 下將所得到之混合物壓縮成薄膜。將薄膜切割成較小尺寸 之塊用於導熱量測。在40 psi負載壓力下具有〇 553 mm厚 度之薄膜具有之熱阻抗及3 136 w/mK之視 熱傳導率。使用實例10中之聚矽氧橡膠顆粒生產出相比此 含石夕膠顆粒之TIM具有更低熱阻抗及更高熱傳導率之 TIM。 λ例2 4 ·低溶點合金之複合物中之經電聚改質之聚石夕氧 橡膠顆粒 在表面上用CO,電漿改質具有6·23微米之顆粒直徑〇 (ν, 134393.doc -33- 200923059 〇·5)之聚矽氧橡膠顆粒Dow Corning DY33-719且將其與 InslBi32 sSn!6 5混合。將混合物加熱至7〇。〇且用力攪拌2分 在里Q卻至至溫後,在6 〇 C下將所得到之混合物壓縮成薄 膜。將薄膜切割成較小尺寸之塊用於導熱量測。在36.2 psi負載壓力下,對於具有0_2〇〇 mm厚度及29 7體積%之此 等聚矽氧顆粒之樣品,複合物薄膜的視熱傳導率資料為 2.173 W/mK。對於具有0.172 mm厚度及29 7體積%之此等 聚矽氧顆粒之樣品,具有未經任何表面改質之聚矽氧顆粒 的複合物薄膜具有Μ 58 W/mK之視熱傳導率。 繁低熔點合金之複合物中之經電漿改質之聚矽氧 橡膠顆粒-2 在表面上用正矽酸四乙酯(TE0S)電漿改質具有6.23微米 之顆粒直徑D (v,0.5)之聚矽氧橡膠顆粒D〇w c〇ming DY33-719,且將其與In5丨Bi32 5Sni65混合。將混合物加熱 至70 C且用力攪拌2分鐘。冷卻至室溫後,在6(Γ(:下將所 得到之混合物壓縮成薄膜。將薄膜切割成較小尺寸之塊用 於導熱量測。在36.2 psi負載壓力下,對於具有〇168 mm 厚度及28.7體積。/〇之此等聚矽氧顆粒之樣品,複合物薄膜 之視熱傳導率資料為1.724 W/mK。 工業應用 本文所述之TIM適用於TIM1應用與TIM2應用。與習知 TIM相比,本文所述之TIM可提供降低成本之益處。適用 作TIM中之導熱金屬之合金可能較為昂貴,尤其彼等含銦 者。在不希望受限於理論之情況下,認為與不含有粗粒聚 134393.doc •34- 200923059 &amp;顆粒或3有柔性車父差材料之顆粒(諸如氧化鋁顆粒)之導 熱金屬相比,粗粒聚合顆粒亦可改良柔度及延性。改良柔 度及延性可降低或消除對TIM中之導熱金屬中钢之需求且 可降低黏合層厚度。此外,增加之柔度及延性可降低對焊 冑或焊料回焊或兩者之需求。因此,可以料方法來達成 成本降低,亦即:首先藉由降低黏合層厚度及用顆粒替代 ^合金減少所需合金量、藉由改變合金之組成以包括較 ^ 廉價之元素及亦藉由降低加工期間對焊劑及/或焊料回焊 步驟之需求來達成成本降低。此外,增加之柔度及延性亦 可改良TIM之熱傳導性。 在不希望受限於理論之情況下,亦認為本發明之tim可 具有改良之機械耐久性。在不希望受限於理論之情況下, 認為增加視熱傳導係數意謂ΤΙΜ之柔度亦增加。在不希望 受限於理論之情況下,與含有精細顆粒之ΤΙΜ相比,粗粒 顆粒可改良TIM之柔度且從而改良界面接觸。 U 在不希望爻限於理論之情況下,認為與接觸基板之具有 較高熔點導熱金屬之TIM相比,圖3中展示之tim可提供改 良TIM接觸之基板上之間隙填充之更多益處。 【圖式簡單說明】 圖1為熱界面材料之橫截面。 圖2為電子裝置之橫截面。 圖3為替代熱界面材料之橫截面。 圖4為作為粒徑之函數之熱阻抗的曲線圖。 【主要元件符號說明】 134393.doc -35- 200923059 100 熱界面材料/TIM 101 基板 102 複合物 103 放襯墊 200 電子裝置 201 1C晶片/電子組件 ' 202 基板 203 粒黏著層 ^ 204 間隔物 205 焊球 206 襯墊 207 熱界面材料1/TIM1 208 金屬覆蓋層 209 散熱片 210 熱界面材料2/TIM2 / 211 (ί 熱路徑 300 熱界面材料/TIM 301 導熱金屬 ' 302 複合物 134393.doc -36-• 3K 200923059 1, Example 19 - Polymer-modified polyoxyxene rubber particles in indium film modified by solution blending with 16.2% by weight of poly(dimethyl oxalate)-imine Polychlorite rubber particles prepared in the same manner as shown in Example i. The modified mixture of polychlorinated particles and indium was heated to 17 passages and ultrasonically mixed for 3 minutes. After cooling to room temperature, the resulting mixture was compressed into a film under (10) [. The thin crucible is cut into smaller pieces for heat conduction measurement. The film has a thickness of 〇.44〇 at 40 psi load and has a thermal impedance of i. 〇 231 WAV and a thermal conductivity of 43 〇〇 w/mK. ... 实卿 - polymer-modified poly-coin rubber particles in indium thin m _2 by solution blending with 9.3% by weight of poly (double-A carbonation modified by the same method as in example 1) The prepared polyoxo rubber particles. The mixture of the modified poly-stone particles and indium is heated to 170 t and ultrasonically mixed for 3 minutes at room temperature, and then the obtained mixture is compressed into a film at (10). The block cut into smaller dimensions is used for thermal conductivity measurement. The film with a thickness of 〇.42〇mm at a load voltage of 4〇Psi has 0.576. (: thermal impedance of WAV and thermal conductivity of 7.296 w/' Example of polymer-modified oxyrubber particles in indium film] Finely converted from solution to 9 &amp; a I» π. 窒里/〇 thermoplastic polyurethane (Estane 58238 'polyacetate Ammonium hydroxyacetate-75A, Nev_ Inc, 0H) modified by the phased enthalpy method as shown in Example 1 above, which is prepared by the method of phase 冋 4 。 。 。 。 。 。 。 将 夕 夕 夕The mixture of oxygen particles and indium is heated to _ and ultrasonically mixed for 3 minutes. Cooled to room money, the mixture obtained under _ The material I is reduced to a thin crucible. The film is cut into smaller pieces for thermal conductivity measurement. The film with a thickness of (3) 3 under a load pressure of 〇3 has 134393.doc •32· 200923059 0.622°〇(:1112/ Thermal impedance and 5.224 trade / 1111*: thermal conductivity. Example 22 - polymer modified polyoxyn rubber particles in indium film _4 with solution 9.4% by weight with 52 ° Tg of C [sulfonated di(ethylene glycol) / cyclohexane dimethanol - alternating - isophthalic acid] (4 58716, Aldrich) modified by the same method as shown in Example 1 Oxygen rubber particles. The mixture of the modified polyfluorene oxide particles and indium is heated to 170 C and ultrasonically mixed for 3 minutes. After cooling to room temperature, the resulting mixture is compressed at 1 Torr. Film. The film is cut into smaller pieces for thermal conductivity measurement. The film with a thickness of 0.443 mm at a load pressure of 40 psi has a thermal impedance of 0.717 ° C.cm 2 /W and a thermal conduction of 6.181 W/mK. Comparative Example 2 3 - The second gel particles in the indium composite film will be from 40-63 of 230-400 mesh of Merck Grade 9385. The micron particle diameter of the tannin was mixed with indium at a volume fraction of 19.3%. The mixture was heated to 1 70 C and ultrasonically mixed for 3 minutes. After cooling to room temperature, the resulting mixture was compressed at 1 Torr. Film formation. The film was cut into smaller pieces for thermal conductivity measurement. The film with a thickness of 〇553 mm at 40 psi load pressure has thermal impedance and a thermal conductivity of 3 136 w/mK. The polyoxyethylene rubber particles of Example 10 were used to produce a TIM having a lower thermal resistance and a higher thermal conductivity than the TIM containing the zeolitic particles. λ Example 2 4 · The electropolymerized modified polyoxo rubber particles in the composite of the low melting point alloy are CO-modified on the surface, and the plasma is modified to have a particle diameter of 6.2 μm (ν, 134393. Doc -33- 200923059 矽·5) Polyoxyethylene rubber pellet Dow Corning DY33-719 and mixed with InslBi32 sSn!6 5 . The mixture was heated to 7 Torr. While stirring vigorously for 2 minutes, the mixture obtained was compressed into a film at 6 〇 C after the temperature was Q. The film is cut into smaller pieces for thermal conductivity measurement. At a load of 36.2 psi, the apparent thermal conductivity data of the composite film was 2.173 W/mK for samples of the polythene oxide particles having a thickness of 0 〇〇 mm and 277 vol%. For the samples of these polyfluorene oxide particles having a thickness of 0.172 mm and 277 vol%, a composite film having polyfluorene oxide particles without any surface modification had a viscous thermal conductivity of Μ 58 W/mK. The plasma-modified polyoxyn rubber particles 2 in the composite of the low melting point alloy are modified on the surface with tetraethyl orthosilicate (TE0S) plasma to have a particle diameter D of 6.23 μm (v, 0.5). Polyoxyethylene rubber particles D〇wc〇ming DY33-719, and mixed with In5丨Bi32 5Sni65. The mixture was heated to 70 C and stirred vigorously for 2 minutes. After cooling to room temperature, the resulting mixture is compressed into a film at 6 (the film is cut into smaller pieces for thermal conductivity measurement. For a load of 〇168 mm at a load pressure of 36.2 psi) And 28.7 vol. / 〇 of these samples of polythene oxide particles, the composite film thermal conductivity data is 1.724 W / mK. Industrial applications The TIM described in this paper is suitable for TIM1 applications and TIM2 applications. TIMs described herein can provide the benefit of reduced cost. Alloys that are suitable for use as thermally conductive metals in TIM can be relatively expensive, especially those with indium. Without wishing to be bound by theory, consider and not contain coarse The coarse-grained polymeric particles can also improve flexibility and ductility compared to the thermally conductive metal of particles or three particles of flexible car-wrap material (such as alumina particles). Improved flexibility and ductility Ductility reduces or eliminates the need for steel in thermally conductive metals in TIM and reduces the thickness of the adhesive layer. In addition, increased flexibility and ductility can reduce the need for solder or solder reflow or both. Come The cost is reduced, that is, by reducing the thickness of the adhesive layer and replacing the alloy with particles to reduce the amount of alloy required, by changing the composition of the alloy to include more inexpensive elements and also by reducing the flux during processing and/or Or the need for a solder reflow step to achieve cost reduction. In addition, increased flexibility and ductility may also improve the thermal conductivity of the TIM. Without wishing to be bound by theory, it is believed that the tim of the present invention may have improved machinery. Durability. Without wishing to be bound by theory, it is believed that increasing the apparent heat transfer coefficient means that the flexibility of the enthalpy is also increased. Without wishing to be bound by theory, coarse particles are compared to those containing fine particles. The particles improve the flexibility of the TIM and thereby improve the interface contact. U Without wishing to be bound by theory, it is believed that the tim shown in Figure 3 provides an improved TIM compared to a TIM having a higher melting point thermally conductive metal that contacts the substrate. More benefits of gap filling on the substrate being contacted. [Simple illustration of the drawing] Figure 1 is a cross section of the thermal interface material. Figure 2 is a cross section of the electronic device. Replace the cross section of the thermal interface material. Figure 4 is a graph of thermal impedance as a function of particle size. [Main component symbol description] 134393.doc -35- 200923059 100 Thermal interface material / TIM 101 Substrate 102 Composite 103 Pad 200 Electronic device 201 1C wafer/electronic component '202 substrate 203 grain adhesion layer ^ 204 spacer 205 solder ball 206 pad 207 thermal interface material 1/TIM1 208 metal cover layer 209 heat sink 210 thermal interface material 2/TIM2 / 211 (ί Thermal Path 300 Thermal Interface Material / TIM 301 Thermal Conductive Metal ' 302 Composite 134393.doc -36-

Claims (1)

200923059 、申請專利範圍: 1. 種熱界面材料,其包含: a) 導熱金屬, b) 在°亥導熱金屬中之粗粒聚合顆粒; 其中該導熱金屬具有 Φ&gt; 低”電…f 常運轉溫度並 亥電子裝置之製造溫度的熔點。 2. 如凊求们之熱界面材料,其中該導熱金屬不含鋼。 3. 如請求項丨之熱界面 銀、叙、链&amp; 付,、T该導熱金屬係選自由 贫鉍錄、銦、錫 4. U項1之熱界面材料,其中該等 至㈣積%之範圍内之量存在。 h在1體積/。 Θ长員1之熱界面材料,其中該等顆粒 米之平均直徑。 、旁至&gt; 15被 6. 如請求項1之熱界面 面材料厚度之卿至丨。。”圍I顆粒具有在該熱界 1 υυ 乾圍内之平均直徑。 0 7. 如請求項丨之熱界面材料, ^ «I ± ^ 再Τ4顆粒具有提供於該 荨顆粒表面上之金屬或金屬氧化物。 8. 如請求項1之熱界面材 美。 斗’其中该等顆粒具有SiH官能 ’其中該等顆粒包含選自由聚 、聚醚醚酮、聚異丁烯、聚烯 、聚胺基甲酸g旨及其_化衍生 機聚合物。 ’其中該等顆粒具有低於該導 9·如請求項1之熱界面材料 碳酸酯、聚酯、聚醚石風 烴、聚苯硫醚、聚苯乙稀 物及其組合組成之群的有 1 〇如請求項1之熱界面材料 134393.doc 200923059 熱金屬彈性模數之彈性模數。 1 1 ·如3月求項1之敎界面j 理。 …、界面材枓,其中該等顆粒具有表面處 12. —種電子裝置,其包含: i) 一第一電子組件, ii) —第二電子組件,及 出)一插入該第一電子 珩—電子組件之間之 .、、、界面材料,其中該熱界面材料包含 a) 導熱金屬,及 b) 在5亥導熱金屬中之粗粒聚合顆粒。 13. =ΓΓ置’其中該第一電子組件為-半導體晶 片亥第二電子組件為一散熱片。 ”=2之裝置’其中該第一電子組件為一半導體晶 片且§亥第二電子組件為-散熱器。 15·如請求項12之裝置,其 甲μ弟電子,·且件為一散熱器且 該第二電子組件為一散熱片。 &amp; 一種製造一電子裝置之方法,其包含: 〇使一熱界面材料與一第一電子組件之一第一表面 接觸,其中該熱界面材料包含 a) 導熱金屬,及 b) 在該導熱金屬中之粗粒聚合顆粒;及 …將該熱界面材料加熱至高於該導熱金屬熔點之溫 度。 17·如請求項16之方法,其中 焊藥層使用於該熱界面材料 134393.doc 200923059 與該第一電子組件及該第二電子組件之間。 :。月求項16之方法’其進一步包含在步驟…之前使該熱 ,面材料與-第二電子組件之一第二表面接觸。 19. 一種方法,其包含: 0將一熱界面材料沿一熱路徑插入一包含一第一電 子組件及一第二電子組件之電子裝置中,其中該熱界面 材料包含200923059, the scope of application for patents: 1. A kind of thermal interface material, which comprises: a) a thermally conductive metal, b) coarse-grained polymeric particles in a thermal conductive metal of °H; wherein the thermally conductive metal has Φ&gt; low" electric...f normal operating temperature The melting point of the manufacturing temperature of the electronic device. 2. If the thermal interface material of the device is required, the thermal conductive metal does not contain steel. 3. If the thermal interface of the request item is silver, Syria, chain & pay, T The thermal conductive metal is selected from the thermal interface materials of the poor, indium, and tin 4. U. 1, wherein the amount is within the range of (4)% of the product. h is at 1 volume /. , wherein the average diameter of the granules of rice, and the side of &gt; 15 are 6. If the thickness of the thermal interface material of claim 1 is from 卿 to 丨. "The surrounding I particles have a dry circumference within the thermal boundary 1 υυ The average diameter. 0 7. If the thermal interface material of the item 请求 is requested, ^ «I ± ^ Τ 4 particles have a metal or metal oxide provided on the surface of the ruthenium particles. 8. The thermal interface material of claim 1 is beautiful. The bucket&apos; wherein the particles have a SiH functionality&apos; wherein the particles comprise a polymer selected from the group consisting of poly(polyetheretherketone), polyisobutylene, polyene, polycarbamic acid, and the like. 'These particles have a group lower than the conductive material of the thermal interface material of claim 1, such as carbonate, polyester, polyether, hydrocarbon, polyphenylene sulfide, polystyrene, and combinations thereof. 1 For example, the thermal interface material of claim 1 134393.doc 200923059 The elastic modulus of the thermal metal elastic modulus. 1 1 · For example, in March, the interface of item 1 is evaluated. An interface material, wherein the particles have an electronic device at the surface, comprising: i) a first electronic component, ii) a second electronic component, and a first electronic component inserted into the surface. An interface material between the electronic components, wherein the thermal interface material comprises a) a thermally conductive metal, and b) coarsely divided polymeric particles in the 5 gal thermally conductive metal. 13. = ’' wherein the first electronic component is a semiconductor wafer and the second electronic component is a heat sink. The device of "=2" wherein the first electronic component is a semiconductor wafer and the second electronic component is a heat sink. 15. The device of claim 12, wherein the device is a heat sink, and the device is a heat sink And the second electronic component is a heat sink. A method of manufacturing an electronic device, comprising: contacting a thermal interface material with a first surface of a first electronic component, wherein the thermal interface material comprises a a thermally conductive metal, and b) a coarsely divided polymeric particle in the thermally conductive metal; and ... the thermal interface material is heated to a temperature above the melting point of the thermally conductive metal. 17. The method of claim 16, wherein the flux layer is used The thermal interface material 134393.doc 200923059 is between the first electronic component and the second electronic component. The method of the monthly claim 16 further comprises the step of: heating the surface material to the second electron One of the components is in contact with the second surface. 19. A method comprising: 0 inserting a thermal interface material along a thermal path into an electronic device including a first electronic component and a second electronic component, wherein The thermal interface material comprises t a) 導熱金屬,及 及 電子組件擴 b) 在該導熱金屬中之粗粒聚合顆粒; H)運轉該電子裝置,從而使熱自該第一 散至該第二電子組件。 20. —種方法,其包含: 1)將導熱金屬與粗粒聚合顆粒組合,從而形成一於咳 導熱金屬中包含該等粗粒聚合顆粒之複合物,及、Μ 視情況2)將該複合物製造成所要之厚度,及 視情況3)使該複合物形成所要之形狀。 21.如請求項20之方法,其中步驟1}係藉由包含下 製程來進行: 列步驟之 0將導熱金屬顆粒與該等粗粒聚合顆粒混合,及 此後ii)將該等導熱金屬顆粒加熱至高於其熔點。 22.如請求項20之方法,其中步驟υ係藉由包含 製程來進行: 0將該導熱金屬加熱至高於其炼點,及 Π)將該等粗粒聚合顆粒與步驟υ之產物混合 134393.doc 200923059 23.如請求項20之方法’其中步棘1)係藉由包含下列步驟之 製程來進行: 0將該等粗粒聚合顆粒包裹於該導熱金屬之一薄片或 箔中,及 此後ii)回焊該導熱金屬。 2 4 ·如請求項2 0之方法’其中步驟1)係藉由包含下列步驟之 製程來進行: i)將該等粗粒聚合顆粒及導熱金屬顆粒施加於—基板 上,及 此後ii)回焊該導熱金屬。 25.如請求項20之方法,其中存在步驟2),且步驟2)係藉由 選自下列步驟之製程來進行: a) 壓縮,視情況同時加熱; b) 擠壓;或 c)輥壓。 I) 26.如請求項20之方法,其中存在步驟3),且步驟3)係藉由 選自下列步驟之製程來進行: a) 將步驟1)或步驟2)之產物切割成該所要之形狀; b) 將步驟1)之產物模製成該所要之形狀。 27,一種熱界面材料,其包含: I) 一具有一表面之複合物,其中該複合物包含 a) 具有第一熔點之第—導熱金屬,及 b) 在邊第一導熱金屬中之粗粒聚合顆粒·,及 II) 在該表面上之具有第二熔點之第二導熱金屬; 134393.doc 200923059 其中該第-熔點大於該第二熔點。 28. 如明求項27之熱界面材料,其中該第一導熱金 銦。 卜3 29. 如凊求項27之熱界面材料’其中該第一導熱金屬係選自 由銀㉔、録、鋼、錫m &amp; Ha $ n 30. 如研求項27之熱界面材料,其中該等粗粒聚合顆粒係以 在該複合物之!體積%至5〇體積%之範圍内的量存在。 .如請求項27之熱界面材料,其中該等粗粒聚合顆粒具有 至少1 5微米之平均直徑。 32. 求項27之熱界面材料,其中該等粗粒聚合顆粒具有 提供於該等粗粒聚合顆粒表面上之金屬或金屬氧化物。 33. 如請求項27之熱界面材料,其中該等粗粒聚合顆粒具有 表面處理。 34. 如請求項27之熱界面材料,其中該第二導熱金屬係經選 擇使得該第二熔點低於該第一熔點至少5 °C。 35_如請求項27之熱界面材料,其中該複合物具有厚度,且 &quot;亥等粗粒聚合顆粒具有在該複合物之該厚度之1 〇%至 100°/。範圍内之平均直徑。 36. —種電子裝置,其包含 i) 一第一電子組件, Π) —第二電子組件, ui) —插入該第一電子組件與該第二電子組件之間之 熱界面材料,其中該熱界面材料包含 I)具有一表面之複合物,其中該複合物包含 134393.doc 200923059 a) 具有第—炫點之第—導熱金屬,及 b) 在該第_導熱金 馬Τ之粗拉聚合顆粒;及 有第二熔點之第二導熱金屬,其中該第二導 熱金屬在該複合物之該表面上;且 Λ 其中該第一炼點大於該第二溶點。 37.如請求項36之裝置,1 u 、 μ第一電子組件為一半導體晶 片且5亥第二電子組件為一散熱片。 38·如請求項36之裝置,豆 Η θ ^ ^ 、 '&quot;弟—電子組件為一半導體晶 片且6亥弟二電子組件為一散熱器。 39.如請求項36之裝置,其 外货^ 弟電子組件為一散熱器且 该第二電子組件為一散熱片。 4〇. 一種製造一電子裝置之方法,其包含: 1)使一熱界面材料輿—筮 ^ -7L J., 興4 —電子組件之一第-表面 接觸’其中該熱界面材料包含 I) -具有-表面之複合物’其中該複合物包含 a) 具有第一熔點之第一導熱金屬,及 b) 在該第—導熱金屬中之粗粒聚合顆粒;及 II) 具有第二溶點之第二導熱金屬,其中該第二導 熱金屬在該複合物之該表面上; 其中該第一炼點大於該第二熔點;及 ϋ)將該熱界面材料加熱至高於該第二熔點之溫度。 41. 如請求項4〇之方法,其中一焊藥層使用於該熱界面材料 與該第一電子組件及該第二電子組件之間。 42. 如請求項4G之方法,其進—步包含在步驟⑴之前使該熱 134393.doc -6 - 200923059 界面材料與一第二電子組件之一第二表面接觸。 43.如請求項4〇之方法,其中步驟⑴中之該溫度係低於該第 一溶點。 44. 一種方法,其包含: i)將一熱界面材料沿一熱路徑插入一包含一第一電 子組件及一第二電子組件之電子裝置中,其中該熱界面 材料包含 Ϊ) 具有一表面之複合物’其中該複合物包含 a) 具有第一熔點之第一導熱金屬,及 b) 在該第一導熱金屬中之粗粒聚合顆粒;及 II)具有第二熔點之第二導熱金屬,其中該第二導 熱金屬在該複合物之該表面上;及 H)運轉該電子裝置,你λ &amp; #為ώ +, ^ 攸而使熱自該第一電子組件擴 散至該第二電子組件。 45. —種方法,其包含: 46· 1)使第一導熱金屬與粗粒聚合顆粒組合,從而形成一 於該第-導熱金屬中包含該等粗粒聚合顆粒之複合物,及 視情況2)將該複合物製造成所要之厚度,及 視情況3)使該複合物形成所要之形狀,及 4)將第一導熱金屬施加於該複合物之—表面上。 ^請求項45之方法,#中步驟】)係藉由包含下列步驟之 1)使’熱金屬顆粒與該等粗粒聚合顆粒混合,及 此後W將料導熱金屬顆粒加熱至高於其炫點。 I34393.doc 200923059 47. 如請求項45之方法,其中步驟丨)係藉由包含下列步驟之 製程來進行: i)將該等導熱金屬顆粒加熱至高於其溶點,及 η)將該等粗粒聚合顆粒與步驟丨)之產物混合。 48. 如請求項45之方法,其中步驟1}係藉由包含下列步驟之 製程來進行: 〇將該等粗粒聚合顆粒包裹於該導熱金屬之一薄片或 箔中,及t a) a thermally conductive metal, and an electronic component extending b) coarsely divided polymeric particles in the thermally conductive metal; H) operating the electronic device such that heat is dissipated from the first to the second electronic component. 20. A method comprising: 1) combining a thermally conductive metal with coarsely divided polymeric particles to form a composite comprising the coarsely divided polymeric particles in a coughing thermally conductive metal, and, depending on the case 2) the composite The article is formed to the desired thickness and, as the case may be, 3) to form the composite into the desired shape. 21. The method of claim 20, wherein the step 1} is performed by including a lower process: 0 of the step of mixing the thermally conductive metal particles with the coarsely divided polymeric particles, and thereafter ii) heating the thermally conductive metal particles To above its melting point. 22. The method of claim 20, wherein the step is performed by including a process: 0 heating the thermally conductive metal above its refining point, and Π mixing the coarsely divided polymeric particles with the product of the step 134393. Doc 200923059 23. The method of claim 20, wherein the step 1 is performed by a process comprising the following steps: 0 wrapping the coarse-grained polymeric particles in a sheet or foil of the thermally conductive metal, and thereafter ii Reflowing the thermally conductive metal. 2 4 · The method of claim 20, wherein step 1) is carried out by a process comprising the following steps: i) applying the coarse-grained polymeric particles and thermally conductive metal particles to the substrate, and thereafter ii) Solder the thermally conductive metal. 25. The method of claim 20, wherein step 2) is present, and step 2) is performed by a process selected from the group consisting of: a) compression, heating as appropriate; b) extrusion; or c) rolling . I) 26. The method of claim 20, wherein step 3) is present, and step 3) is performed by a process selected from the group consisting of: a) cutting the product of step 1) or step 2) into the desired Shape; b) The product of step 1) is molded into the desired shape. 27. A thermal interface material comprising: I) a composite having a surface, wherein the composite comprises a) a first thermally conductive metal having a first melting point, and b) a coarse particle in the first thermally conductive metal Polymeric particles·, and II) a second thermally conductive metal having a second melting point on the surface; 134393.doc 200923059 wherein the first melting point is greater than the second melting point. 28. The thermal interface material of claim 27, wherein the first thermally conductive gold indium.卜3 29. The thermal interface material of claim 27, wherein the first thermally conductive metal is selected from the group consisting of silver 24, recording, steel, tin m &amp; Ha $ n 30. These coarse-grained polymeric particles are in the complex! An amount in the range of 5% by volume to 5% by volume is present. The thermal interface material of claim 27, wherein the coarsely divided polymeric particles have an average diameter of at least 15 microns. 32. The thermal interface material of claim 27, wherein the coarsely divided polymeric particles have a metal or metal oxide provided on the surface of the coarsely divided polymeric particles. 33. The thermal interface material of claim 27, wherein the coarsely divided polymeric particles have a surface treatment. 34. The thermal interface material of claim 27, wherein the second thermally conductive metal is selected such that the second melting point is at least 5 ° C below the first melting point. 35. The thermal interface material of claim 27, wherein the composite has a thickness, and the coarse-grained polymeric particles such as &quot;Hai have a thickness of from 1% to 100% of the thickness of the composite. The average diameter within the range. 36. An electronic device comprising: i) a first electronic component, a second electronic component, a ui) - a thermal interface material interposed between the first electronic component and the second electronic component, wherein the heat The interface material comprises I) a composite having a surface, wherein the composite comprises 134393.doc 200923059 a) a first conductive metal having a first-dao point, and b) a coarsely-drawn polymeric particle in the first conductive gold rim; And a second thermally conductive metal having a second melting point, wherein the second thermally conductive metal is on the surface of the composite; and wherein the first refining point is greater than the second melting point. 37. The device of claim 36, wherein the first electronic component is a semiconductor wafer and the second electronic component is a heat sink. 38. The apparatus of claim 36, wherein the bean θ ^ ^ , '&quot; the electronic component is a semiconductor wafer and the six electronic components are a heat sink. 39. The device of claim 36, wherein the electronic component is a heat sink and the second electronic component is a heat sink. A method of manufacturing an electronic device, comprising: 1) causing a thermal interface material 舆-筮^-7L J., Xing 4 - one of the electronic components - surface contact 'where the thermal interface material comprises I) a composite having a surface - wherein the composite comprises a) a first thermally conductive metal having a first melting point, and b) a coarsely divided polymeric particle in the first thermally conductive metal; and II) having a second melting point a second thermally conductive metal, wherein the second thermally conductive metal is on the surface of the composite; wherein the first refining point is greater than the second melting point; and ϋ) heating the thermal interface material to a temperature above the second melting point. 41. The method of claim 4, wherein a solder layer is used between the thermal interface material and the first electronic component and the second electronic component. 42. The method of claim 4, further comprising contacting the thermal 134393.doc -6 - 200923059 interface material with a second surface of a second electronic component prior to step (1). 43. The method of claim 4, wherein the temperature in step (1) is lower than the first melting point. 44. A method comprising: i) inserting a thermal interface material along a thermal path into an electronic device including a first electronic component and a second electronic component, wherein the thermal interface material comprises a surface a composite 'wherein the composite comprises a) a first thermally conductive metal having a first melting point, and b) a coarsely divided polymeric particle in the first thermally conductive metal; and II) a second thermally conductive metal having a second melting point, wherein The second thermally conductive metal is on the surface of the composite; and H) operating the electronic device, and λ &amp;# is ώ +, ^ 攸 to diffuse heat from the first electronic component to the second electronic component. 45. A method comprising: 46. 1) combining a first thermally conductive metal with coarsely divided polymeric particles to form a composite comprising the coarsely divided polymeric particles in the first thermally conductive metal, and optionally 2 The composite is made to a desired thickness, and optionally 3) to form the desired shape, and 4) a first thermally conductive metal is applied to the surface of the composite. ^ Method of claim 45, step #) is to mix the 'hot metal particles' with the coarse-grained polymeric particles by including 1) of the following steps, and thereafter heat the thermally conductive metal particles above their glare. I34393.doc 200923059 47. The method of claim 45, wherein the step 丨) is performed by a process comprising the steps of: i) heating the thermally conductive metal particles above their melting point, and η) The granulated polymeric particles are mixed with the product of step 丨). 48. The method of claim 45, wherein the step 1} is performed by a process comprising the steps of: encapsulating the coarse-grained polymeric particles in a sheet or foil of the thermally conductive metal, and 49. 步驟1)係藉由包含下列步驟之 此後ii)回焊該導熱金屬 如請求項45之方法,其中 製程來進行: 於一基板 i)將該等粗粒聚合顆粒及導熱金屬顆粒施加 上,及 此後ii)回焊該導熱金屬。 且步驟2)係藉由49. Step 1) is performed by the method comprising the following steps: ii) reflowing the thermally conductive metal, such as claim 45, wherein the process is performed: applying a coarse particle and a thermally conductive metal particle to a substrate i) And thereafter ii) reflowing the thermally conductive metal. And step 2) is by 50.如請求項45之方法,其中存在步驟。 選自下列步驟之製程來進行: a) 壓縮,視情況同時加熱; b) 擠壓;或 c) 輥壓。 51. 如請求項45之方法,其中存在步驟,且牛 選自下列步驟之製程來進行: v驟3)係藉由 a) 將步驟1)或步驟2)之產物切割成 b) 將步驟!)之產物模製成該所要之形狀。之形狀, 52. 如請求項45之方法’其中步驟4)係 ^ 3下列步驟之 I34393.doc 200923059 製程來進行: i)將第二導熱金屬壓於該複合物之一表面上;及 視情況Π)加熱。 53·如請求項45之方法,其進一步包含:5)將第三導熱金屬 施加於該複合物之一第二表面上。 54. —種熱界面材料,其包含: D 一具有一表面之複合物’其中該複合物包含 a) 導熱金屬,及 b) 在該導熱金屬中之粗粒聚合顆粒;及 Π) —在該複合物之該表面上之導熱材料。 55. 如請求項54之熱界面材料,其中該導熱金屬不含銦。 5 6.如請求項54之熱界面材料,其中該導熱金屬係選自由 銀、鉍、鎵、銦、錫、鉛及其合金組成之群。 57.如請求項54之熱界面材料,其中該等粗粒聚合顆粒係以 在該複合物之1體積%至50體積%範圍内之量存在。 5 8.如請求項54之熱界面材料,其中該等粗粒聚合顆粒具有 至少15微米之平均直徑。 5 9·如請求項54之熱界面材料,其中該等粗粒聚合顆粒具有 提供於該等粗粒聚合顆粒表面上之金屬或金屬氧化物。 60.如請求項54之熱界面材料,其中該等粗粒聚合顆粒具有 表面處理。 6 1 ·如請求項54之熱界面材料,其中該導熱材料為導熱化合 物。 62.如請求項54之熱界面材料,其中該複合物具有厚度,且 134393.doc 200923059 δ亥專粗粒聚合顆* 醫一 在該複合物之該厚度之1〇%至 1〇〇/〇粑圍内之平均直徑。 63. —種電子裝置’其包含 0 一第—電子組件, H)—第二電子組件, 出)—插入該筮 ^ ^ 苐一電子組件與該第二電子組件之間 熱界面材料,甘士 ^ A 1 J ^ 其中s亥熱界面材料包含 )具有一表面之複合物,其中該複合物包含 a) 導熱金屬,及 b) 在該導熱金屬中之粗粒聚合顆粒;及 ⑴—在該複合物之該表面上之導熱材料。 64.如睛求項63夕社班 片且,Γ,其中該第一電子組件為-半導體晶 第—電子組件為一散熱片。 :求項63之裝置,其中該第一電子組件 片㈣第二電子組件為一散熱器。 +導體曰曰 66. 如6月求項63之 該第_ ♦ 甲这弟電子組件為—散熱器且 一電子組件為一散熱片。 i)使 _ it該熱界面材料包含 υ —具有一表面之複合物,其中該複合物包含 a) 導熱金屬,及 b) 在該導熱金屬中之粗粒聚合顆粒;及 在邊複合物之該表面上之導熱材料;及 67. 種製造一雷不挞里 .^逼子裝置之方法,其包含: 界面材料與一第一電子組件之—第一表面 ϋτ也田 π ...... 134393.doc 200923059 U)加熱該熱界面材料β 68. 如請求項67之方法,其進一步包含在步驟ii)之前使該熱 界面材料與一第二電子組件之一第二表面接觸。 69. —種方法’其包含: i)將熱界面材料沿一熱路徑插入一包含一第一電 子組件及—第二電子組件之電子裝置中,其中該熱界面 材料包含 工)一具有一表面之複合物,其中該複合物包含 a) 導熱金屬,及 b) 在該導熱金屬令之粗粒聚合顆粒;及 H)在忒複合物之該表面上之導熱材料;及 丨丨)運轉5亥電子裝置’從而使熱自該第一電子組件擴 散至該第二電子組件。 、 70. —種方法,其包含: 1)使導熱金屬與粗粒聚合顆粒組合,從而形成一於該 導熱金屬中包含該等粗粒聚合顆粒之複合物,及 視情況2)將該複合物製造成所要之厚度,及 視情況3)使該複合物形成所要之形狀,及 4)將一導熱材料施加於該複合物之一表面上 71. 列步驟之 如請求項7G之方法’其中步驟1)係藉由包含下 製程來進行: υ:導熱金屬顆粒與該等粗粒聚合顆粒混合,及 此後η)將該等導熱金屬顆粒加熱至高於其:點。 72·如請求項7G之方法,其中步驟n係藉由包含下列步驟之 134393.doc 200923059 製程來進行: 73. Ο將該等導熱金屬顆粒加熱至高於其熔點,及 u)將該等粗粒聚合顆粒與步驟i}之產物混合。 如請求項7〇之方法 製程來進行: 其中步驟1)係藉由包含下列步驟之 i)將5亥等粗粒聚合顆粒 箔中,及 包裹於該導熱金屬之一薄片或 74. 此後ii)回焊該導熱金屬 如請求項70之方法,其中 製程來進行: 步驟1)係藉由包含下列步驟之 i)將δ亥專粗粒聚合顆粒 上,及 及導熱金屬顆粒施加於一基板 此後ii)回焊該導熱金屬。 75.如請求項70之方法,其中存在步驟” 選自下列步驟之製程來進行: a) 壓縮,視情況同時加熱; b) 擠壓;或 c) 輥壓。 且步驟2)係藉由 76. 如請求項70之方法,其中存 驟3),且步驟3)係藉由 選自下列步驟之製程來進行: a) 將步驟1)或步驟2)之產物切 刀口】成该所要之形狀,或 b) 將步驟1)之產物模製成該所要之形狀。 77. 如請求項70之方法,其進一步自 η A/包含.5)將一第二導熱材 料她加於該複合物之另一表面上。 134393.doc50. The method of claim 45, wherein the step is present. The process is carried out by the following steps: a) compression, heating as appropriate; b) extrusion; or c) rolling. 51. The method of claim 45, wherein the step is present, and the bovine is selected from the following steps: v) 3) by a) cutting the product of step 1) or step 2) into b) the step! The product is molded into the desired shape. Shape, 52. The method of claim 45, wherein step 4) is performed by the following steps I34393.doc 200923059: i) pressing the second thermally conductive metal against one surface of the composite; and optionally Π) Heating. 53. The method of claim 45, further comprising: 5) applying a third thermally conductive metal to the second surface of one of the composites. 54. A thermal interface material comprising: D a composite having a surface, wherein the composite comprises a) a thermally conductive metal, and b) a coarsely divided polymeric particle in the thermally conductive metal; and A thermally conductive material on the surface of the composite. 55. The thermal interface material of claim 54, wherein the thermally conductive metal is free of indium. 5. The thermal interface material of claim 54, wherein the thermally conductive metal is selected from the group consisting of silver, lanthanum, gallium, indium, tin, lead, and alloys thereof. 57. The thermal interface material of claim 54, wherein the coarsely divided polymeric particles are present in an amount ranging from 1% to 50% by volume of the composite. 5. The thermal interface material of claim 54, wherein the coarsely divided polymeric particles have an average diameter of at least 15 microns. The thermal interface material of claim 54, wherein the coarsely divided polymeric particles have a metal or metal oxide provided on the surface of the coarsely divided polymeric particles. 60. The thermal interface material of claim 54, wherein the coarsely divided polymeric particles have a surface treatment. The thermal interface material of claim 54, wherein the thermally conductive material is a thermally conductive compound. 62. The thermal interface material of claim 54, wherein the composite has a thickness, and 134393.doc 200923059 δ 专 专 粗 粗 * 在 在 在 在 在 在 在 在 在 在 在 〇 〇 〇 〇 〇 〇 〇 〇 〇 The average diameter within the circumference. 63. An electronic device 'which includes a 0-first electronic component, H) - a second electronic component, an output - a thermal interface material interposed between the electronic component and the second electronic component, Gans ^ A 1 J ^ wherein the s-heat interface material comprises a composite having a surface, wherein the composite comprises a) a thermally conductive metal, and b) coarsely divided polymeric particles in the thermally conductive metal; and (1) - in the composite a thermally conductive material on the surface of the object. 64. The method of claim 63, and wherein the first electronic component is a semiconductor chip-electronic component is a heat sink. The device of claim 63, wherein the first electronic component (4) second electronic component is a heat sink. +conductor 曰曰 66. As in June, the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ i) causing the thermal interface material to comprise a composite having a surface, wherein the composite comprises a) a thermally conductive metal, and b) coarsely divided polymeric particles in the thermally conductive metal; and a thermally conductive material on the surface; and a method of manufacturing a device, comprising: an interface material and a first electronic component - a first surface ϋτ 也 π ...... 134393.doc 200923059 U) Heating the thermal interface material β 68. The method of claim 67, further comprising contacting the thermal interface material with a second surface of a second electronic component prior to step ii). 69. A method comprising: i) inserting a thermal interface material along a thermal path into an electronic device comprising a first electronic component and a second electronic component, wherein the thermal interface material comprises a surface a composite, wherein the composite comprises a) a thermally conductive metal, and b) a coarsely divided polymeric particle in the thermally conductive metal; and H) a thermally conductive material on the surface of the tantalum composite; and 丨丨) operating 5 hai The electronic device ' thereby diffuses heat from the first electronic component to the second electronic component. 70. A method comprising: 1) combining a thermally conductive metal with a coarsely divided polymeric particle to form a composite comprising the coarsely divided polymeric particles in the thermally conductive metal, and optionally 2) the composite Manufactured to the desired thickness, and optionally 3) to form the desired shape, and 4) to apply a thermally conductive material to one of the surfaces of the composite. 71. The method of claim 7G wherein the steps are 1) By carrying out the following process: υ: thermally conductive metal particles are mixed with the coarsely divided polymeric particles, and thereafter η) the thermally conductive metal particles are heated above their point:. 72. The method of claim 7G, wherein step n is performed by a process 134393.doc 200923059 comprising the steps of: 73. heating the thermally conductive metal particles above their melting point, and u) the coarse particles The polymeric particles are mixed with the product of step i}. The method of claim 7 is carried out as follows: wherein the step 1) is carried out by including the following steps i) a coarse-grained polymeric particle foil of 5 liters, and wrapped in a sheet of the thermally conductive metal or 74. Thereafter ii) Reflowing the thermally conductive metal according to the method of claim 70, wherein the process is carried out: Step 1) is applied to the substrate by the i) containing the following steps, and the thermally conductive metal particles are applied to a substrate. Reflowing the thermally conductive metal. 75. The method of claim 70, wherein the step of presenting is performed by a process selected from the group consisting of: a) compression, heating as appropriate; b) extrusion; or c) rolling, and step 2) by means of 76 The method of claim 70, wherein the step 3) is performed, and the step 3) is performed by a process selected from the following steps: a) cutting the product of the step 1) or the step 2) into the desired shape. Or b) molding the product of step 1) into the desired shape. 77. The method of claim 70, further adding η A / comprising .5) a second thermally conductive material to the composite On the other surface. 134393.doc
TW97134900A 2007-09-11 2008-09-11 Thermal interface material, electronic device containing the thermal interface material, and methods for their preparation and use TW200923059A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US97129907P 2007-09-11 2007-09-11

Publications (1)

Publication Number Publication Date
TW200923059A true TW200923059A (en) 2009-06-01

Family

ID=40057595

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97134900A TW200923059A (en) 2007-09-11 2008-09-11 Thermal interface material, electronic device containing the thermal interface material, and methods for their preparation and use

Country Status (7)

Country Link
US (1) US8334592B2 (en)
EP (1) EP2188836A2 (en)
JP (1) JP2010539706A (en)
KR (1) KR20100069667A (en)
CN (1) CN101803010B (en)
TW (1) TW200923059A (en)
WO (1) WO2009035907A2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101449374B (en) * 2006-06-08 2011-11-09 国际商业机器公司 Highly heat conductive, flexible sheet and its manufacture method
KR20100075894A (en) * 2007-09-11 2010-07-05 다우 코닝 코포레이션 Composite, thermal interface material containing the composite, and methods for their preparation and use
TWI389272B (en) * 2009-04-22 2013-03-11 Delta Electronics Inc Heat dissipating module of electronic component and assembling method thereof
JP5619380B2 (en) * 2009-06-24 2014-11-05 株式会社東芝 Ultrasonic probe
EP2290680A1 (en) * 2009-08-27 2011-03-02 ABB Research Ltd. Power semiconductor module
US8322897B2 (en) 2010-04-05 2012-12-04 Cooper Technologies Company Lighting assemblies having controlled directional heat transfer
EP2572376A1 (en) * 2010-05-21 2013-03-27 Nokia Siemens Networks OY Method and device for thermally coupling a heat sink to a component
US9721872B1 (en) 2011-02-18 2017-08-01 Amkor Technology, Inc. Methods and structures for increasing the allowable die size in TMV packages
EP2699631A4 (en) 2011-04-14 2015-01-21 Ada Technologies Inc Thermal interface materials and systems and devices containing the same
US8617927B1 (en) 2011-11-29 2013-12-31 Hrl Laboratories, Llc Method of mounting electronic chips
KR101332866B1 (en) * 2012-02-16 2013-11-22 앰코 테크놀로지 코리아 주식회사 Semiconductor package and method for manufacturing the same
US9799592B2 (en) 2013-11-19 2017-10-24 Amkor Technology, Inc. Semicondutor device with through-silicon via-less deep wells
KR101366461B1 (en) 2012-11-20 2014-02-26 앰코 테크놀로지 코리아 주식회사 Semiconductor device and manufacturing method thereof
US10079160B1 (en) 2013-06-21 2018-09-18 Hrl Laboratories, Llc Surface mount package for semiconductor devices with embedded heat spreaders
KR101607981B1 (en) 2013-11-04 2016-03-31 앰코 테크놀로지 코리아 주식회사 Interposer and method for manufacturing the same, and semiconductor package using the same
US9385083B1 (en) 2015-05-22 2016-07-05 Hrl Laboratories, Llc Wafer-level die to package and die to die interconnects suspended over integrated heat sinks
US10272658B2 (en) * 2015-07-08 2019-04-30 The Boeing Company System and method for forming a composite part
US10026672B1 (en) 2015-10-21 2018-07-17 Hrl Laboratories, Llc Recursive metal embedded chip assembly
US9508652B1 (en) 2015-11-24 2016-11-29 Hrl Laboratories, Llc Direct IC-to-package wafer level packaging with integrated thermal heat spreaders
JP2017147163A (en) * 2016-02-19 2017-08-24 三菱マテリアル株式会社 Conductive paste and conductive film formed using the same
US9960328B2 (en) 2016-09-06 2018-05-01 Amkor Technology, Inc. Semiconductor device and manufacturing method thereof
US20180305563A1 (en) * 2017-04-19 2018-10-25 Electronics And Telecommunications Research Institute Liquid metal mixture and method of forming a conductive pattern using the same
US10607857B2 (en) * 2017-12-06 2020-03-31 Indium Corporation Semiconductor device assembly including a thermal interface bond between a semiconductor die and a passive heat exchanger
WO2019148267A1 (en) * 2018-01-30 2019-08-08 Celestica International Lp Flexible bobbin for electrical components
CN108912683B (en) * 2018-06-13 2021-02-26 中国科学院金属研究所 Thermal interface material based on low-melting-point metal/heat-conducting particle composite heat-conducting network and preparation method thereof
US10950562B1 (en) 2018-11-30 2021-03-16 Hrl Laboratories, Llc Impedance-matched through-wafer transition using integrated heat-spreader technology
US11282763B2 (en) 2019-06-24 2022-03-22 Amkor Technology Singapore Holding Pte. Ltd. Semiconductor device having a lid with through-holes
US11373929B1 (en) * 2020-02-03 2022-06-28 Xilinx, Inc. Thermal heat spreader plate for electronic device

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1454769A1 (en) * 1960-07-21 1969-04-30 Condux Werk Process for the very fine distribution of polymers, especially thermoplastics, and device for its implementation
FR2463642A1 (en) * 1979-08-21 1981-02-27 Air Liquide RUBBER MILLING DEVICE
JPS5968333A (en) * 1982-10-12 1984-04-18 Toray Silicone Co Ltd Spherical, cured polymer containing linear organopolysiloxane block or composition containing said polymer and production thereof
US4557857A (en) * 1984-05-30 1985-12-10 Allied Corporation High conducting polymer-metal alloy blends
JPS62243621A (en) * 1986-04-17 1987-10-24 Toray Silicone Co Ltd Production of granular silicone rubber
JPS62257939A (en) * 1986-05-02 1987-11-10 Shin Etsu Chem Co Ltd Production of spherical fine powder of silicone elastomer
US4743670A (en) * 1986-09-22 1988-05-10 Toray Silicone Co., Ltd. Method for producing silicone rubber powder
US5173256A (en) * 1989-08-03 1992-12-22 International Business Machines Corporation Liquid metal matrix thermal paste
US5198189A (en) * 1989-08-03 1993-03-30 International Business Machines Corporation Liquid metal matrix thermal paste
US5062896A (en) * 1990-03-30 1991-11-05 International Business Machines Corporation Solder/polymer composite paste and method
US5045972A (en) * 1990-08-27 1991-09-03 The Standard Oil Company High thermal conductivity metal matrix composite
US5286417A (en) * 1991-12-06 1994-02-15 International Business Machines Corporation Method and composition for making mechanical and electrical contact
JP3337232B2 (en) * 1991-12-26 2002-10-21 東レ・ダウコーニング・シリコーン株式会社 Method for producing powder mixture comprising cured silicone fine particles and inorganic fine particles
US5445308A (en) * 1993-03-29 1995-08-29 Nelson; Richard D. Thermally conductive connection with matrix material and randomly dispersed filler containing liquid metal
US5328087A (en) * 1993-03-29 1994-07-12 Microelectronics And Computer Technology Corporation Thermally and electrically conductive adhesive material and method of bonding with same
US5455738A (en) 1993-07-28 1995-10-03 E-Systems, Inc. High thermal conductivity, matched CTE. low density mounting plate for a semiconductor circuit
US5445738A (en) * 1993-08-19 1995-08-29 Fry; Darrel D. Vibrating filter
US5588600A (en) * 1995-06-07 1996-12-31 Perfido; Kenneth F. Process and apparatus for making crumb rubber from vehicle tires
US5738936A (en) * 1996-06-27 1998-04-14 W. L. Gore & Associates, Inc. Thermally conductive polytetrafluoroethylene article
EP0856376B1 (en) * 1996-12-03 2000-02-09 Lucent Technologies Inc. Article comprising fine-grained solder compositions with dispersoid particles
JP3810505B2 (en) * 1997-02-28 2006-08-16 独立行政法人科学技術振興機構 Conductive plastic, conductive circuit using the same, and method for forming the conductive circuit
WO1998046811A1 (en) * 1997-04-17 1998-10-22 Sekisui Chemical Co., Ltd. Conductive particles and method and device for manufacturing the same, anisotropic conductive adhesive and conductive connection structure, and electronic circuit components and method of manufacturing the same
US6114413A (en) * 1997-07-10 2000-09-05 International Business Machines Corporation Thermally conducting materials and applications for microelectronic packaging
US6110761A (en) * 1997-08-05 2000-08-29 Micron Technology, Inc. Methods for simultaneously electrically and mechanically attaching lead frames to semiconductor dice and the resulting elements
EP0915122B1 (en) 1997-10-09 2002-11-13 Dow Corning Corporation Prosess for preparing silicone latexes
US6027575A (en) * 1997-10-27 2000-02-22 Ford Motor Company Metallic adhesive for forming electronic interconnects at low temperatures
US6281573B1 (en) * 1998-03-31 2001-08-28 International Business Machines Corporation Thermal enhancement approach using solder compositions in the liquid state
JP2000150742A (en) * 1998-11-18 2000-05-30 Shibafu Engineering Kk Heat conductive sheet and manufacture thereof and semiconductor device
JP3204451B2 (en) * 1999-01-26 2001-09-04 インターナショナル・ビジネス・マシーンズ・コーポレーション Bonding material and bump
JP2001148451A (en) * 1999-03-24 2001-05-29 Mitsubishi Materials Corp Power module board
US6706219B2 (en) * 1999-09-17 2004-03-16 Honeywell International Inc. Interface materials and methods of production and use thereof
US6673434B2 (en) * 1999-12-01 2004-01-06 Honeywell International, Inc. Thermal interface materials
US6365973B1 (en) * 1999-12-07 2002-04-02 Intel Corporation Filled solder
US6940721B2 (en) * 2000-02-25 2005-09-06 Richard F. Hill Thermal interface structure for placement between a microelectronic component package and heat sink
US6984685B2 (en) * 2000-04-05 2006-01-10 The Bergquist Company Thermal interface pad utilizing low melting metal with retention matrix
US6797758B2 (en) * 2000-04-05 2004-09-28 The Bergquist Company Morphing fillers and thermal interface materials
US6339120B1 (en) * 2000-04-05 2002-01-15 The Bergquist Company Method of preparing thermally conductive compounds by liquid metal bridged particle clusters
US20020070445A1 (en) * 2000-06-29 2002-06-13 Advanced Micro Devices, Inc. Enveloped thermal interface with metal matrix components
US6448329B1 (en) * 2001-02-28 2002-09-10 Dow Corning Corporation Silicone composition and thermally conductive cured silicone product
AU2003291827A1 (en) * 2001-05-24 2005-07-21 Fry's Metals, Inc. Thermal interface material and solder preforms
JP2002368168A (en) * 2001-06-13 2002-12-20 Hitachi Ltd Composite member for semiconductor device, insulation- type semiconductor device or non-insulation type semiconductor device using the same
JP3926794B2 (en) * 2001-09-27 2007-06-06 日本科学冶金株式会社 High thermal conductive resin composition and method for producing the same
US7311967B2 (en) * 2001-10-18 2007-12-25 Intel Corporation Thermal interface material and electronic assembly having such a thermal interface material
US6504242B1 (en) * 2001-11-15 2003-01-07 Intel Corporation Electronic assembly having a wetting layer on a thermally conductive heat spreader
US6620515B2 (en) * 2001-12-14 2003-09-16 Dow Corning Corporation Thermally conductive phase change materials
US6597575B1 (en) * 2002-01-04 2003-07-22 Intel Corporation Electronic packages having good reliability comprising low modulus thermal interface materials
US6946190B2 (en) * 2002-02-06 2005-09-20 Parker-Hannifin Corporation Thermal management materials
US6926955B2 (en) * 2002-02-08 2005-08-09 Intel Corporation Phase change material containing fusible particles as thermally conductive filler
US7036573B2 (en) * 2002-02-08 2006-05-02 Intel Corporation Polymer with solder pre-coated fillers for thermal interface materials
US6815486B2 (en) * 2002-04-12 2004-11-09 Dow Corning Corporation Thermally conductive phase change materials and methods for their preparation and use
US7436058B2 (en) * 2002-05-09 2008-10-14 Intel Corporation Reactive solder material
US7147367B2 (en) * 2002-06-11 2006-12-12 Saint-Gobain Performance Plastics Corporation Thermal interface material with low melting alloy
US6791839B2 (en) * 2002-06-25 2004-09-14 Dow Corning Corporation Thermal interface materials and methods for their preparation and use
JP2005538535A (en) * 2002-07-15 2005-12-15 ハネウエル・インターナシヨナル・インコーポレーテツド Thermal interconnect and interface system, manufacturing method and use thereof
US6838022B2 (en) * 2002-07-25 2005-01-04 Nexaura Systems, Llc Anisotropic conductive compound
US6783692B2 (en) * 2002-10-17 2004-08-31 Dow Corning Corporation Heat softening thermally conductive compositions and methods for their preparation
US6665186B1 (en) * 2002-10-24 2003-12-16 International Business Machines Corporation Liquid metal thermal interface for an electronic module
AT412265B (en) * 2002-11-12 2004-12-27 Electrovac HEAT EXTRACTION COMPONENT
JP3812902B2 (en) * 2003-02-07 2006-08-23 北川工業株式会社 Low melting point metal sheet and manufacturing method thereof
JP2006518553A (en) * 2003-02-19 2006-08-10 ハネウエル・インターナシヨナル・インコーポレーテツド Method of generating thermal interconnect system and use thereof
EP1608699A2 (en) * 2003-04-01 2005-12-28 Aguila Technologies, Inc. Thermally conductive adhesive composition and process for device attachment
US7014093B2 (en) * 2003-06-26 2006-03-21 Intel Corporation Multi-layer polymer-solder hybrid thermal interface material for integrated heat spreader and method of making same
US7550097B2 (en) * 2003-09-03 2009-06-23 Momentive Performance Materials, Inc. Thermal conductive material utilizing electrically conductive nanoparticles
US20050056365A1 (en) * 2003-09-15 2005-03-17 Albert Chan Thermal interface adhesive
US20050061496A1 (en) * 2003-09-24 2005-03-24 Matabayas James Christopher Thermal interface material with aligned carbon nanotubes
US7695817B2 (en) * 2003-11-05 2010-04-13 Dow Corning Corporation Thermally conductive grease and methods and devices in which said grease is used
WO2005053021A2 (en) * 2003-11-19 2005-06-09 Heat Technology, Inc. Thermal interface and method of making the same
US7180174B2 (en) * 2003-12-30 2007-02-20 Intel Corporation Nanotube modified solder thermal intermediate structure, systems, and methods
US7504453B2 (en) * 2004-02-02 2009-03-17 The Board Of Trustees Of The Leland Stanford Junior University Composite thermal interface material including particles and nanofibers
US7622529B2 (en) * 2004-03-17 2009-11-24 Dow Global Technologies Inc. Polymer blends from interpolymers of ethylene/alpha-olefin with improved compatibility
TWI385246B (en) * 2004-05-21 2013-02-11 Shinetsu Chemical Co Silicone grease compositions
JP5015436B2 (en) * 2004-08-30 2012-08-29 東レ・ダウコーニング株式会社 Thermally conductive silicone elastomer, thermal conductive medium and thermally conductive silicone elastomer composition
US7316789B2 (en) * 2004-11-02 2008-01-08 International Business Machines Corporation Conducting liquid crystal polymer nature comprising carbon nanotubes, use thereof and method of fabrication
US7351360B2 (en) * 2004-11-12 2008-04-01 International Business Machines Corporation Self orienting micro plates of thermally conducting material as component in thermal paste or adhesive
DE602005023531D1 (en) * 2004-12-16 2010-10-21 Dow Corning AMIDSUBSTITUTED SILICONE AND METHOD FOR THE PRODUCTION AND USE THEREOF
US7219713B2 (en) * 2005-01-18 2007-05-22 International Business Machines Corporation Heterogeneous thermal interface for cooling
JP5166677B2 (en) * 2005-03-15 2013-03-21 東レ・ダウコーニング株式会社 Curable silicone composition and electronic component
JP4875312B2 (en) * 2005-03-15 2012-02-15 東レ・ダウコーニング株式会社 Organotrisiloxane, method for producing the same, curable resin composition containing the same, and cured product thereof
JP4828146B2 (en) 2005-03-30 2011-11-30 東レ・ダウコーニング株式会社 Thermally conductive silicone rubber composition
JP4828145B2 (en) * 2005-03-30 2011-11-30 東レ・ダウコーニング株式会社 Thermally conductive silicone rubber composition
JP4634891B2 (en) * 2005-08-18 2011-02-16 信越化学工業株式会社 Thermally conductive silicone grease composition and cured product thereof
US20080218825A1 (en) 2005-08-29 2008-09-11 Tae-Sun Song Optical Scanning Apparatus and Image Display Apparatus Using the Same
US20070051773A1 (en) * 2005-09-02 2007-03-08 Ruchert Brian D Thermal interface materials, methods of preparation thereof and their applications
CN101273106B (en) 2005-09-29 2012-09-26 陶氏康宁东丽株式会社 Heat-conduction silicone elastomer, heat-conduction silicone elastomer composition and heat conducting medium
US7332807B2 (en) * 2005-12-30 2008-02-19 Intel Corporation Chip package thermal interface materials with dielectric obstructions for body-biasing, methods of using same, and systems containing same
US20070166554A1 (en) * 2006-01-18 2007-07-19 Ruchert Brian D Thermal interconnect and interface systems, methods of production and uses thereof
WO2007106209A2 (en) 2006-02-23 2007-09-20 Dow Corning Corporation Thermally conductive grease and methods and devices in which said grease is used

Also Published As

Publication number Publication date
US8334592B2 (en) 2012-12-18
WO2009035907A4 (en) 2009-06-18
JP2010539706A (en) 2010-12-16
WO2009035907A3 (en) 2009-04-23
US20100208432A1 (en) 2010-08-19
EP2188836A2 (en) 2010-05-26
CN101803010B (en) 2014-01-29
KR20100069667A (en) 2010-06-24
WO2009035907A2 (en) 2009-03-19
CN101803010A (en) 2010-08-11

Similar Documents

Publication Publication Date Title
TW200923059A (en) Thermal interface material, electronic device containing the thermal interface material, and methods for their preparation and use
TW201425563A (en) Composite, thermal interface material containing the composite, and methods for their preparation and use
TWI464256B (en) Thermally conductive grease and methods and devices in which said grease is used
JP5305656B2 (en) Thermally conductive composition and method for producing the same
US6706219B2 (en) Interface materials and methods of production and use thereof
TWI428395B (en) A fine conductive silicone grease composition and a hardened product thereof
US20070241303A1 (en) Thermally conductive composition and method for preparing the same
US20190249007A1 (en) Gel-type thermal interface material
US20030234074A1 (en) Thermal interface materials and methods for their preparation and use
JP2006503166A (en) Thermally softened thermally conductive composition and method for preparing the same
WO2013191116A1 (en) Method of forming thermal interface material and heat dissipation structure
EP3686903A1 (en) Metal-containing particle, connection material, connection structure, method for manufacturing connection structure, conduction inspection member, and conduction inspection device
WO2008051947A2 (en) Highly filled polymer materials
CN115725273A (en) Diamond-based heat-conducting filler, preparation method thereof, composite heat-conducting material and electronic equipment
TW201625725A (en) Semiconductor device including heat-conductive silicone grease
JP2007059877A (en) Heat dissipation member
US20240199817A1 (en) Curable organopolysiloxane composition and semiconductor device
KR20230057268A (en) A thermal conductive silicone composition
WO2024084897A1 (en) Curable organopolysiloxane composition and semiconductor device
JP6959005B2 (en) Connection material and connection structure