TW200922983A - Highly heat-resistant masterbatch, heat ray-shielding transparent resin molding, and heat ray-shielding transparent laminate - Google Patents

Highly heat-resistant masterbatch, heat ray-shielding transparent resin molding, and heat ray-shielding transparent laminate Download PDF

Info

Publication number
TW200922983A
TW200922983A TW96143368A TW96143368A TW200922983A TW 200922983 A TW200922983 A TW 200922983A TW 96143368 A TW96143368 A TW 96143368A TW 96143368 A TW96143368 A TW 96143368A TW 200922983 A TW200922983 A TW 200922983A
Authority
TW
Taiwan
Prior art keywords
heat
resin
fine particles
tungsten oxide
heat ray
Prior art date
Application number
TW96143368A
Other languages
Chinese (zh)
Other versions
TWI401284B (en
Inventor
Kenichi Fujita
Original Assignee
Sumitomo Metal Mining Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co filed Critical Sumitomo Metal Mining Co
Publication of TW200922983A publication Critical patent/TW200922983A/en
Application granted granted Critical
Publication of TWI401284B publication Critical patent/TWI401284B/en

Links

Abstract

To provide a transparent resin molding which has good visible light transmittance and excellent heat ray-shielding capability, and is reduced in the yellowing due to the thermal degradation of a dispersant caused by melt kneading at molding. This masterbatch is used for manufacturing a transparent resin molding having heat ray-shielding capability, which comprises a thermoplastic resin, tungsten oxide fine particles expressed by general formula WOX and/or compound tungsten oxide fine particles expressed by general formula MYWOZ and having a hexagonal crystal structure, and a highly heat-resistant dispersant having ≥ 230 DEG C thermal decomposition temperature.

Description

200922983 九、發明說明: 【發明所屬之技術領域】 本,:係闕於一種製造使用於建築物屋頂材料和壁 扭r?車二電車、飛機等之開口部的窗材、被廣泛利用於 田、r天錢圓頂、車棚等的熱射線遮蔽成形體時,所 熱性母粒,與應用了該母粒之熱射線遮蔽透明樹 月曰成形體以及熱射線遮蔽透明層合體。 【先前技術】 f各種建築物和車輛之窗、門等之所謂開口部所 中’除了可見光線外尚包含紫外線和紅外線。此 係之紅外線中,波長8〇°〜25〇〇nm之近紅外線 熱射線,由於其自開口部進入而成為使室内溫度上 升的原因。為了消除此情況,近年來,於 輛之窗材等領域中,對於可充八摄入叮目=㈣和車 埶A 了、了充刀攝入可見先線亚同時遮蔽 二士、\,且在維持亮度之下抑制室内溫度上升的熱射線遮 心速牦加,而如案有許多關於熱射線遮 敝成形體的專利。 ,提案有將於透明樹脂薄膜上蒸鍍金屬、金屬氧化 酸酿板線反應薄膜’接黏至玻璃、丙稀酸板、聚碳 M\ “明成形體的熱射線遮蔽板。然而,由於此熱 牛驟反f賴本身非常高價且f要接黏步驟等之雜繁的 接黏性‘、、、问成本。又,由於透明成形體與反射薄膜間之 々不良,故具有因經時性變化而發生薄膜剝離的缺200922983 IX. Description of the Invention: [Technical Fields of the Invention] This is a window material that is used in the opening of building roofing materials and wall-wrenching r-cars, airplanes, etc., and is widely used in the field. When the heat ray shields the molded body such as the r-money dome or the carport, the heat-resistant masterbatch and the heat ray-shielding transparent slab-forming body and the heat ray-shielding transparent laminate are applied to the masterbatch. [Prior Art] f In the so-called opening portions of windows, doors, and the like of various buildings and vehicles, ultraviolet rays and infrared rays are included in addition to visible light. Among the infrared rays of this type, near-infrared heat rays having a wavelength of 8 〇 to 25 〇〇 nm cause the temperature of the room to rise due to the entry from the opening. In order to eliminate this situation, in recent years, in the field of window materials, etc., for the ingestible eight ingested eyes = (four) and the rut A, the filling of the knife can be seen in the first line and simultaneously obscuring the two, \, and The heat ray which suppresses the rise of the indoor temperature while maintaining the brightness is accelerated, and there are many patents concerning the heat ray concealer. It is proposed that a metal oxidized acid slab-line reaction film will be deposited on a transparent resin film to adhere to a heat ray shielding plate of glass, acrylic plate, polycarbon M\ "formed body. However, due to this heat The cows are very expensive and f have to be bonded to the sticky steps, etc., and the cost is also. Because of the poor relationship between the transparent molded body and the reflective film, it has a change with time. The lack of film peeling

Mb 。 200922983 另外’亦有許多於透明成形體表面上直接蒸鍍金屬或金 屬氧化物而成之熱射線遮蔽板的提案,但於製造此熱射線 遮蔽板時,由於必須有需要高真空且高精度之環境控制的 裝·置’故有量產性惡化、缺乏通用性的問題。 其他’提案有例如於聚對苯二曱酸乙二酯樹脂、聚碳酸 酯樹脂、丙烯酸系樹脂、聚乙烯樹脂、聚笨乙稀樹脂等之 熱可塑透明樹脂中,混練了以酞菁系化合物、蒽醌系化合 物所代表之有機近紅外線吸收劑的熱射線遮蔽板及薄膜 ((參照專利文獻1、2等)。 再者,亦提案有例如於丙稀酸系樹脂、聚碳酸酯樹脂等 之透明樹脂中’混練了具有熱射線反射能之氧化鈦或以氧 化鈦所被覆之雲母等無機粒子作為熱射線反射粒子的熱 射線遮蔽板(參照專利文獻3、4)。 另一方面,本案申請人係著眼於大量地保有自由電子作 為具有熱射線遮蔽效果之成分的六硼化物微粒子,而提案 了於聚碳酸醋樹脂和丙烯酸系樹脂中,分散了六硼化物微 ί粒子、或分散了六硼化物微粒子與π〇微粒子及/或ΑΤ0 微粒子的熱射線遮蔽樹脂片材(參照專利文獻5)。使六硼 化物微粒子單獨地分散、或使六硼化物微粒子與ΙΤ〇微粒 子及/或ΑΤ0微粒子分散的熱射線遮蔽樹脂片材的光學特 性’係於可見光區域中具有極大可見光穿透率,且於近紅 外線區域中表現強吸收而具有極小日射穿透率。結果,可 見光穿透率被改善至70%以上、日射穿透率被改善為50 多%。 200922983 另外,本案申請人係於專利文獻6中,提案有含有熱可 塑性樹脂與熱射線遮蔽成分6硼化物(XB6,其中,X為選 自 La、Ce、Pr、Nd、Gd、Tb、Dy、Η〇、γ、&、Eu、訏,Mb. 200922983 In addition, there are many proposals for heat-shielding sheets formed by directly vapor-depositing metal or metal oxide on the surface of a transparent molded body. However, when manufacturing the heat-ray shielding sheet, high vacuum and high precision are required. The environmental control device has a problem of deterioration in mass productivity and lack of versatility. Other proposals include, for example, a thermoplastic resin such as a polyethylene terephthalate resin, a polycarbonate resin, an acrylic resin, a polyethylene resin, or a polystyrene resin, and a phthalocyanine compound is kneaded. A heat ray shielding sheet and a film of an organic near-infrared ray absorbing agent represented by an oxime compound (see Patent Documents 1, 2, etc.) Further, for example, an acrylic resin, a polycarbonate resin, or the like is also proposed. In the transparent resin, a heat ray shielding plate in which inorganic particles such as titanium oxide having heat ray reflection energy or mica coated with titanium oxide are mixed as heat ray-reflecting particles is mixed (see Patent Documents 3 and 4). The applicant has focused on the hexaboride microparticles which have a large amount of free electrons as a component having a heat ray shielding effect, and it has been proposed to disperse hexaboride microparticles or disperse in a polycarbonate resin and an acrylic resin. a heat ray shielding resin sheet of hexaboride microparticles and π 〇 microparticles and/or ΑΤ0 microparticles (refer to Patent Document 5). The hexaboride microparticles are individually made. The optical characteristics of the heat ray-shielding resin sheet which disperse or disperse the hexaboride microparticles and the bismuth microparticles and/or the ΑΤ0 microparticles have a great visible light transmittance in the visible light region and strong absorption in the near-infrared region. As a result, the visible light transmittance is improved to more than 70%, and the solar penetration rate is improved to more than 50%. 200922983 In addition, the applicant of the present application is in Patent Document 6, and the proposal contains thermoplasticity. Resin and heat ray shielding component 6 boride (XB6, wherein X is selected from the group consisting of La, Ce, Pr, Nd, Gd, Tb, Dy, Η〇, γ, &, Eu, 訏,

Tm、Yb、Lu、Sr及Ca之至少1種以上)作為主成分之母 粒,與應用了此母粒之熱射線遮蔽透明樹脂成形體以及熱 射線遮蔽透明層合體。^,關於因應用該母粒而可維持 優越可見光線穿透能、且具有高熱射線遮蔽機能之各種形 狀的熱射線遮蔽透明樹脂成形體,將可不需使用高成本之 物理成膜法等,而依簡便的方法進行製作。 再者,本案申請人係於專利文獻7中,揭示有藉由應用 以一般式Wy〇Z(其中’ W為鎢,0為氧,2.0<z/y<3.〇) 所表不之鎢氧化物微粒子、及/或以一般式其中, W 為鶴 ’ 0 為氧,1,2.〇<ζ/0 3.〇)所表示 之複合鶴氧化物微粒子作為具有日射遮蔽機能的微粒 子’則可製造具有高日射遮蔽特、霧值小、生產成本便 且之曰射遮敝用合併構造體。 專利文獻1:日本專利特開平6-256541號公報 專利文獻2 :曰本專利特開平6-264050號公報 專利文獻3.曰本專利特開平2_173〇6〇號公報 專矛J文獻4 ’曰本專利特開平5-78544號公報 專利文獻5 :日本專利特開2__327717號公報 專利文獻6 :日本專利特開2004-59875號公報 專利文獻7:國際公開第W02005/87680A1號手冊 7 200922983 (發明所欲解決之問題) 二^而,根據本發明者等人之檢討,於專利文獻丨、2中 .A載之熱射線遮蔽板及薄膜巾,為了充分遮蔽熱射線,必 /頁》周配大里的近紅外線吸收劑。然而,若大量地調配近紅 外線吸收劑’則剩餘有可見光線穿透能降低的課題。再 者,由於使用*機化合物作4近紅外線吸收劑,故於時常 :晒於直射日光下之建築物和車輛之窗材等的應用中將 難以具有耐候性,未必可謂其適當。 、 C另外’於專利絲3、4所記^熱射線遮蔽板中 :提:么射線遮蔽能,必須大量地添加該熱射線反射粒 奴著熱射線反射粒子之調配量增 透能降低的課題。因此,芒泳,批6 ώ 」見尤線牙 * > Ι-! I# ^ - 右減シ熱射線反射粒子的添加 二見光線穿透能’但將使熱射線遮蔽能降 問題。再者以射線遮蔽能與可見光線穿透能的 W料力大1地調配熱射線 成形體之透明樹脂之物性、尤貝J7r有屬於 ◎之強度面的問題。 尤其疋耐的強度和勒性降低 熱射線遮材“ 遮:上材中:"透明樹脂片材發生黃變的情形有獅線 對具有可見井绩*、#处 形成者,其課題在於,針 了見先線牙透能及熱射線遮蔽機能 熱射線遮蔽透明樹脂成形體,提升二:之 成膜“而可依間便方法製作熱射線遮蔽透明樹脂 8 200922983 成形體,並可得到不發生黃變、可見光穿透性良好且 :===蔽機能之透明樹脂成形體的熱射線遮蔽透 月树月曰成形體用母粒,同時並提供應用了此母粒之孰射線 遮蔽透明樹脂成形體及熱射線遮蔽透明層合體。 (解決問題之手段) 本發明者等人為了解決上述課題而進行潛^研究,結果 U、,於所製成之熱射線遮蔽片材中,無法得到所期待 之可見光線穿透能及熱射線遮蔽機能的原因 線遮蔽片材發生黃變的原因,均起因於母粒中所含 Γ:二亦即’由於該母粒中所含之分散劑嶋 2故在將該母粒與同種或不同種之樹脂一起進行加敎並 分夺,該分散劑將發生熱改質,使該分散劑之 上,而防礙了母粒中所含之熱射線遮蔽微粒子 it法得到所期待之可見光線穿透能及熱射線遮 。再者’該經熱改質之分散劑將著色成黃〜茶色, 成為熱射線遮蔽片材發生黃變的原因。 到t ’本發明者等人更進一步進行研究,發想 且==刀解溫度為23(rc以上之高耐熱性分散劑’ 分散劑與熱射線遮蔽微粒子之混合比例 :耐乾圍内的高耐熱性母粒。而且發現,藉由將該 用熱可塑性樹脂進行稀釋、混練,且利用 薄膜:=、壓縮成形等公知方法成形為板狀、 具有搞士空、犬等之任意形狀,則可製作出於可見光區域 ^ °透率且於近紅外區具有強吸收而不發生黃變 200922983 :熱:::蔽透明樹脂成形體以及熱射 體:本發明即根據此種技術性見解而完成者。 π制、本《明之第1構成為—種高賴性母粒,传使用 =造熱射線遮蔽透明樹脂成形體者,其特=用 熱可塑性樹脂;以一妒守WA ,朴丄 n 5有· 示之貌ϋ π从⑶ 般式W〇x(其中,2.45$乂$ 2.999)所 勿微粒子及/或以一般式MvW〇z(其中,〇. jsy c Ϊ:广上2化3. 〇)所表示且具有六方晶結晶構造之複 j乳化物微粒子;與熱分解溫度為2抓以上之高耐熱 刀政劑,並為102 [高耐熱性分散劑之 錄子及/或複合鶴氧化物微粒子之重量^G5之乳範匕圍物 第^構成為如第1構成所記載之高时熱性母粒,其中, 上述同耐熱性分散劑係具有丙稀酸系主鏈、與羥基或環氧 基。 第3構成為如第丨或第2構成所記載之高耐熱性母粒, 其中,上述複合鎢氧化物微粒子中所含之M元素,係選自A mother particle as a main component of at least one of Tm, Yb, Lu, Sr, and Ca, and a heat ray shielding transparent resin molded body and a heat ray shielding transparent laminate to which the mother particle is applied. ^ Regarding the heat ray shielding transparent resin molded body which can maintain excellent visible light ray penetrating energy and has various shapes of high heat ray shielding function by applying the masterbatch, it is possible to eliminate the need for a high cost physical film forming method or the like. Made in a simple way. Furthermore, the applicant of the present application is disclosed in Patent Document 7, which discloses that by using the general formula Wy〇Z (where 'W is tungsten, 0 is oxygen, 2.0<z/y<3.〇) Tungsten oxide microparticles, and/or a composite crane oxide microparticle represented by a general formula wherein W is a crane '0 is oxygen, 1, 2. 〇 <ζ/0 3.〇) as a microparticle having an insolation function 'It is possible to manufacture a combined structure for glare concealing, which has high insolation shielding, small fog value, and low production cost. Patent Document 1: Japanese Patent Laid-Open No. Hei 6-256541, Patent Document 2: Japanese Patent Laid-Open No. Hei 6-264050, Patent Document 3. Japanese Patent Laid-Open No. Hei 2_173〇6〇 No. Japanese Patent Laid-Open No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. 2004-59875. In order to fully shield the heat ray, the heat ray shielding plate and the film towel contained in the patent documents 丨, 2, A, according to the review by the present inventors, etc. Near infrared ray absorber. However, if a large amount of near-infrared absorbent is disposed, there is a problem that visible light transmission energy is reduced. Further, since the alloy compound is used as the near-infrared ray absorbing agent, it is often difficult to have weather resistance in applications such as windows and the like which are exposed to direct sunlight, and it is not necessarily suitable. , C is also in the patented wire 3, 4 recorded in the heat ray shielding plate: mention: ray shielding energy, must add a large amount of the heat ray reflective particles slave heat ray reflective particles, the amount of antireflection can be reduced . Therefore, Mang swimming, batch 6 ώ ” see especially line teeth * > Ι-! I# ^ - right minus シ heat ray reflective particles added 2 see light penetration energy 'but will make the heat ray shielding energy drop problem. Further, the physical properties of the transparent resin of the heat ray-forming body and the yube J7r have a problem of the strength surface of the ◎. In particular, the strength and the resistance of the 降低 降低 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明Need to see the first-line tooth opacity and heat ray shielding function heat ray shielding transparent resin molded body, and enhance the film formation of the second: "The heat-ray shielding transparent resin 8 200922983 can be produced according to the method, and can be obtained without Yellowing, good visible light transmittance and: ===The heat-ray of the transparent resin molded body of the shielding function shields the mother particles of the moon-shaped moon-shaped molded body, and provides the ray-shielding transparent resin forming using the masterbatch. The body and the heat ray shield the transparent laminate. (Means for Solving the Problem) The inventors of the present invention conducted research on the above-mentioned problems, and as a result, U, the desired visible light ray penetrating energy and heat ray were not obtained in the produced heat ray shielding sheet. The reason for the function of the shielding function is that the yellowing of the line shielding sheet is caused by the cerium contained in the mother particle: the second is that the masterbatch is different from the same species or different species due to the dispersing agent 嶋2 contained in the masterbatch. The resin is twisted and separated together, and the dispersant is thermally modified to cause the dispersant to pass over, and the heat ray shielding microparticles contained in the masterbatch are prevented from obtaining the desired visible light ray. Translucent and heat ray cover. Further, the thermally modified dispersant is colored yellow to brown, which causes yellowing of the heat ray shielding sheet. The inventors of the present invention conducted further research, and thought that the == knife-cutting temperature is 23 (high heat-resistant dispersing agent of rc or higher), the mixing ratio of the dispersing agent and the heat-ray shielding fine particles: high heat resistance in the dry surrounding In addition, it is found that it can be produced by diluting and kneading with a thermoplastic resin, and forming it into a plate shape by a known method such as film:=, compression molding, or the like, and having any shape such as a gentleman or a dog. It has strong absorption in the visible light region and has strong absorption in the near-infrared region without yellowing. 200922983: Thermal::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: π system, the first part of the Ming dynasty is a kind of high-quality masterbatch, and the use of = heat ray shielding transparent resin molded body, its special = using thermoplastic resin; with a 妒 WA, Park 丄 n 5 · Appearance ϋ π From (3) General W〇x (where, 2.45$乂$ 2.999) Do not use microparticles and/or general formula MvW〇z (where 〇. jsy c Ϊ: 广上2化3. 〇 a complex J emulsion microparticle represented by a hexagonal crystal structure; The high temperature heat-resistant knife agent with a temperature of 2 or more is set to 102 [the weight of the high heat-resistant dispersant and/or the weight of the composite crane oxide particles ^G5 The heat-resistant masterbatch described above has an acrylic acid-based main chain, a hydroxyl group or an epoxy group, and the third structure is a high heat resistance as described in the first or second configuration. a masterbatch, wherein the M element contained in the composite tungsten oxide fine particles is selected from

Cs Rb 、 K 、 Tl 、 In 、 Ba 、 Li 、 Ca 、 Sr 、 Fe 、 Sn 、 Al 、 Cu ί 之至少1種以上。 第4構成為如第1至第3構成所記載之高耐熱性母粒, 其中,上述熱可塑性樹脂係選自丙烯酸系樹脂、聚碳酸酯 樹脂、聚苯乙烯樹脂、聚醚砜樹脂、氟系樹脂、聚烯烴樹 脂及聚酯樹脂之至少1種以上。 第5構成為如第丨至第4構成所記載之高耐熱性母粒, 其中’上述鎢氧化物微粒子、複合鎢氧化物微粒子係分散 粒徑200nm以下之微粒子。 200922983 第6構成為如第丨至第5構成所記載之高耐熱性母粒, 其中,上述鎢氧化物微粒子、複合鎢氧化物微粒子,係藉 -由選自石夕烧化合物、鈦化合物、錯化合物之至少㈠重以^ . 之化合物進行表面處理。 第7構成為一種熱射線遮蔽透明樹脂 二使々至第6構成之任一項所記載之高财熱性母= 母粒所含之熱可塑性樹脂為同種之熱可塑 f·生樹知、或與該高耐埶性 r溶性之不π磁以熱可塑性樹脂具有相 性樹脂混合’且形成為既定形狀。 第7 ΤΑ 熱射線遮蔽透明層合體,其特徵為,使 他透明成形體己上载之熱射線遮蔽透明樹脂成形體層合於其 (發明效果) 藉由將本發明之高耐埶 稀釋、混練,用熱可塑性樹脂進行 知方法成形為板狀、薄膜狀、球丄2形、壓縮成形等公 U製作出於可見光區域具有極大 之任意形狀’則可 強吸收而不發生黃變之熱射線遮^且於近紅外區具有 熱射線遮蔽透明層合體。......”、、〃明樹脂成形體以及 【實施方式】 以下,針對本發明之實施形態 $之:射線遮蔽透明樹脂成形體用4:::。本實施形 有.熱可塑性樹脂;以—般式w〇 ^熱性母粒,係含 所示之鎢氧化物微粒子(本說蚩^中2 · 4 5 S X g 2. 9 9 9 ) ^ ’有時附加(βΐ)之符 11 200922983 號)及 / 或以一般式 MyW0z(其中,〇·1^γ$〇.5,2 2<Z< 3· 0)所表示且具有六方晶結晶構造之複合鎢氧化物微粒 子(本說明書中,有時附加(Β2)之符號);與熱分解溫度為 230 C以上之高耐熱性分散劑(本說明書中,有時附加(c) 之符號);而且,該高耐熱性分散劑(c)、與鎢氧化物微粒 子(B1)及/或複合鎢氧化物微粒子〇2)之重量比,為1〇> [高耐熱性分散劑之重量/(鎢氧化物微粒子及/或複合鶴 氧化物微粒子之重量)]2 〇. 5之範圍。 ( 以下’依序說明構成該高财熱性母粒之1)具有熱射線 遮蔽機能之鎢氧化物微粒子(B1 )、複合鎢氧化物微粒子 (B2),2)高耐熱性分散劑(〇,3)熱可塑性樹脂(本說明書 中,有時附加(A)之符號),並針對4)具有熱射線遮蔽機 能之微粒子對於熱可塑性樹脂的分散方法、5)高耐熱性母 粒之製造方法進行說明,最後針對6 )熱射線遮蔽透明樹 脂成形體進行說明。 1)具有熱射線遮蔽機能之鎢氧化物微粒子(B1 )、複合鶴 D氧化物微粒子(B2) 於本實施形態之高耐熱性母粒中使用作為熱射線遮蔽 材料之鎢氧化物微粒子(B1 )、及/或複合鶴氧化物微粒子 (B2),係大幅地吸收近紅外線區域、尤其是波長1〇〇〇nm 附近之光,故其穿透色調大多成為藍色系色調。又,該熱 射線遮蔽材料之粒徑可根據其使用目的而適當選定。 首先,在使用於保持透明性之應用的情況下,鎢氧化物 微粒子(BO、及/或複合鎢氧化物微粒子(B2)較佳係具有 12 200922983 800mn以下之分散粒徑。其理由在於,小於綱⑽之分散 粒徑,將因為散射而不致完全遮蔽光,可保持可見光區域 之辨識性,同時可效率佳地保持透明性。尤其在重視可見 光區域之透明性的情況下,更佳係考慮到粒子所造成之散 射。 另外’在重視減低該粒子所造成之散射的情況下,鎢氧 化物微粒子(B1)、及/或複合鎢氧化物微粒子(β2)之分散 粒徑為20〇nm以下、較佳1〇〇nm以下。其理由在於,若分 散粒子之分散粒徑較小,則使幾何學散射或米氏散射所造 成之波長400nm〜780mn之可見光線區域的光散射減低。由 於使該光散射減低,故結果可迴避熱射線遮蔽膜成為霧破 璃而無法得到鮮明透明性的情形。亦即,若分散粒子之分 散粒徑成為20〇nm以下’則可減低上述幾何學散射或米氏 散射’成為雷利散射區域。於該雷利散射區域中,由於散 射光粒子將與粒子徑6次方成反比減低,故隨著分散粒^ 減少、散射減低’將使透明性提升。再者,若分散粒徑成 為lOOmn以下,則散射光變得非常少,故較佳。由迴避光 散射之觀點而言,係以分散粒徑以較小者為佳,若分散粒 徑為lnm以上,則容易進行工業性製造。 / a)鎢氧化物微粒子(B1) 作為上述以一般式W0x(其中,2 45$χ^ 2 999)所示之 鎢氧化物微粒子(Β1),可舉例如Wi8〇49、W2q〇58、Μ"等。 值為2. 45以上’則可完全地迴避於該熱射線遮蔽 材料中出現目的外之W〇2之結晶相的情況,並可得到材料 13 200922983 = 疋性。另-方面’若X之值為2.999以下,則生 以下二Π自由電子而成為熱射線遮蔽材料。若為2.95 ,'熱射線遮蔽材料更佳。於此,Χ範圍為2.45 二合物,W〇X化合物’係屬於所謂馬格埋職咖⑴ b)複合鎢氧化物微粒子(B2) :為以-般式酬其中, 可兴:二ί有六方晶結晶構造之複合鶴氧化物微粒子, FTe^r;^€iCS'Rb'K'T1'In'B-Li.Ca.S^ 化物微η粒子、CU之至少1種以上作為M元素的複合鎢氧 …。添加疋素M之添加量Y,較佳為〇· 1以上、 • 5以下,更佳為0.33附近。其理由在於,由六 士 晶構造理論上算出之值為〇 、曰曰、、口 糾妒社+ , 值為〇.33依此添加量左右將可得 車乂佳之光學特性。又’ z之範圍較佳 將在以請2所示之複合鶴氧化物材料,除了 ^ ”相.所示之鶴氧化物材料相同之機制,在 =3.〇之下,亦有上述元素Μ之添加所導致 供給的情形。尤其是由光學特性之觀點而言二圭由電子 $02.99,更佳為2 4Bd99。 钗仏為2.2 於此,作為該複合鎢氧化物材料之典型例子,可舉 如、.^。屬3、Rbo.33W〇3、K〇 33W〇3、Ba。秦等,若 γ、 上述範圍内,則可得到有效之熱射線遮蔽特性。 ’、、、 造;):氧化物微粒子(Β1)、複合鎢氧化物微粒子⑽之製 14 200922983 口上述鎢氧化物微粒子(Bl)、複合鎢氧化物微粒子(B2), 可將鎢化合物起始原料,於惰性氣體環境或還原性氣體環 境中進行熱處理而得。 一烏化S物起始原料中,較佳為選自下述之任一種以上: 二氧化鎢粉末、二氧化鎢粉末、氧化鎢之水合物、六氯化 鎢2末、鎢酸銨粉末、使六氯化鎢溶解於醇中後予以乾燥 烏氧化物之水合物粉末、使六氣化鎢溶解於醇中後 =添加水使其沉; 殿並予以乾燥而得之鎢氧化物之水合物 ^使谷液乾燥*得之鎢化合物粉末、金屬鶴 =此’在製造鶴氧化物微粒子時,由製 的觀點而言,更佳為使用鎮氧化物之水合物粉末、= ;造=酸録水溶液乾燥而得之鶴化合物粉末。 素可物微粒子時,由使起始原料為溶液之各天 液和合的觀點而言,更佳為使用鎢酸銨水溶 或還原性氣趙環境中進行熱處理,則可 線遮蔽材料微粒子。 勿铽拉子的熱射 另外,含有複合鎢氧化物微粒子(B 微粒子㈣化合物㈣原料,可與上線遮蔽材料 ⑽之鶴化合物起始原料相同,再者,化物微粒子 起始原料1-依^素單體或化合物之料^於該鶴化合物 作成複合鶴化合物的起始原料。 〜添加元素M’而 15 200922983 於此’為了製造使各成分於分 料,:為依溶液之形心合_。二;有起/= 溶媒中。可^丨心人為了轉於水和有機溶媒等之 牛如,3有70素Μ之鎢酸鹽、氯化物趨 酸鹽、硫酸鹽、草酸赜、惫 ” * 为 作不势 碳酸鹽、氫氧化物等, 仁不限疋於此等,若為溶液狀者即可。 作為惰性氣體環境中之熱處理 上。依,C以上進行熱處理之起始原料;= ='=:可有效作為熱射線遮蔽微粒;作= 乱體了使用Ar、…等之惰性氣體。 係ί先:Π,原性氣體環境中之熱處理條件’較佳 料於還原性氣體環境中依⑽。c以上、π。 下接著於情性氣體環境中依瞻以 下之咖度進行熱處理。此時之 無特別限定,較佳為H2。而且 ^性風體並 的情況下且在使用H2作為還原性氣體 之氣體環境之組成,較佳為例如於奸、 …專之6性氧體中依體積比〇 以上。若Η夕… "合迅,更佳為0.2% 原。Η2之體積比為〇.1%以上,則可效率佳地促進還 粉:含::有,境 即使為顯示良好之熱射線遮蔽特性, 較佳係使氧化物含之董 的應用擴大。於上:二=於耐候性方面 I奴精由將此含氳之氧化鎢化 16 200922983 合物於惰性氣體環境中、依65(TC以上、12〇(TC以下、隹— 熱處理,則可得到更穩定之熱射線遮蔽微粒子。此= ^上:曰T二之熱處理時的惰性氣體環境並無特別限 業性觀點而言,較佳為…、Ar。藉由該65〇。〇 以上、1200°C以下之熱處理,將於熱射線遮蔽微粒子 到馬格涅利相、使氫穩定化並提升耐候性。 ,本實施形態之發揮上述熱射線遮蔽機能的鎢氧化物微 粒子(B1)、複合鎢氧化物微粒子(B2),係藉由選自 合物、鈦化合物、錄化合物之至少丨種以上進行表面處 理’上述微粒子之表面將由含有Si、Ti、Zr、Αι之工種 以上之氧化物所被覆,而可較佳地提升耐候性。 另外,為了得到所需之熱射線遮蔽透明樹脂成形體,上 述鎢氧化物微粒子(B1)、複合鎢氧化物微粒子(B2)之粉體 色好滿足下述條件:於國際照明委員會(CIE)所推薦 之LW表色系(JISZ 8729)中之粉體色中,L*為25〜8〇’, a*為-10〜1〇 ’ b*為-15〜15 。 藉由使用上述鎢氧化物微粒子(B1)或複合鎢氧化物微 粒子(B2),則可得到作為熱射線遮蔽樹脂片材所需之光學 特性。 2)高耐熱性分散劑(c) 習知,一般使用作為塗料用之分散劑,其目的在於使各 種氧化物微粒子均勻地分散於有機溶劑中。然而,根據本 發明者等人之檢討,此等分散劑並未設想到於2〇(rc以上 之溫度下使用的情形而設計。具體而言,本實施形態中, 17 200922983 = 微可塑性樹脂進行_昆練 分散能力降低:伴;=^ 相對於此,本實黃:茶色等之不良情形。 係使用以TG-DTA 作為尚耐熱性分散劑(〇, ,9Rn〇r 所測定之熱分解溫度為23(TC以上妒 佳250 C以上者。作為 車又 造例’有如具有丙埽酸主鍵作為':鏈 f 較佳。 構造之分散劑因耐熱性高故 而且’右分散劑之熱分解溫度為23〇〇c以上 劑不致發生熱分解而可維持分散能力:二 射線避色:結果’於所製造之成形體中,熱 ^泉遮蔽❹子將充分分散’而可良好地確保可見光穿透 :並::到:有之光學特性’同時,成形體亦不著色為黃 (290^彳脸而"、’在進仃依聚碳酸酯之一般混練設定溫度 _ 字上述本發明之分散劑與聚碳酸酯樹脂進行混練 的5式驗時’混練物將呈現與僅混練了聚碳酸醋時完全一樣 的外觀’並4認到其呈無色透明而完全未著色。另一方 面,例如,在使用後述比較例丨中所使用之一般分散劑進 行同樣試驗的情況下,確認到混練物著色為茶色。 如上述般,本實施形態所使用之高耐熱性分散劑(c), 較佳係具有丙烯酸系主鏈、同時具有羥基或環氧基作為官 能基的分散劑。其理由在於,此等官能劑將吸附於鎢氧化 物微粒子之表面上,防止此等鎢氧化物微粒子之凝集,並 18 200922983 具有於成形體中使鶴氧化物微粒子均勻分散的效果。具體 而言,較佳例子有如具有環氧基作為官能基之丙烯酸系分 • 散劑、具有羥基作為官能基之丙烯酸系分散劑。 尤其是在使用聚碳酸酯樹脂、丙烯酸系樹脂等熔融混練 溫度較高之樹脂作為熱可塑性樹脂(A)的情況下,將顯著 發揮使用熱分解溫度為25(rc以上之具有丙烯酸系主鏈與 經基或環氧基之高耐熱性分散劑(c)的效果。 上述高耐熱性分散劑(c)、與鎢氧化物微粒子(B1)、複 (合鎢氧化物微粒子(B2)之重量比,較佳係1〇2 [高耐熱性 分散劑之重量/(鎢氧化物微粒子及/或複合鎢氧化物微粒 子之重畺)]20.5之範圍。若該重量比為〇·5以上,由於 可使鎢氧化物微粒子(Β1)或複合鎢氧化物微粒子充 分分散,故微粒子彼此不發生凝集,可得到充分之光學特 性。又,若該重量比為1〇以下,則不損及熱射線遮蔽透 明樹脂成形體本身的機械特性(彎曲強度、表面高度)。 3)熱可塑性樹脂(Α) ^ G 其次,作為本實施形態所使用之熱可塑性樹脂(Α),若 為可見光區域之光線穿透率較高之透明熱可塑性樹脂,則 無特別限制。例如’較佳可舉例如:作成3_厚之板狀成 形體時’ JIS R 3106所記載之可見光穿透率為5〇%以上、 JISmG5所記載之霧值為3η以下者。具體可舉例如:丙 稀酸系樹脂、聚碳酸酯樹脂、聚酯樹脂等,聚苯乙稀樹脂、 聚醚礙樹脂、氟系樹脂及聚烯烴樹脂。 在以將熱射線遮蔽透明樹脂成形體應用於各種建築物 19 200922983 和車輛之窗材等作為目的的情況下,若考慮到透明性、耐 衝擊性、耐候性等,則更佳為丙烯酸系樹脂、聚碳酸酯樹 脂、聚醚醯亞胺樹脂、氟系樹脂。 作為聚碳酸酯樹脂,較佳為芳香族聚碳酸酯。作為芳香 族聚碳酸酯,可舉例如:使2,2_雙(4_羥基苯基)丙烷、 2’2-雙(3, 5-二溴_4_羥基苯基)丙烷等為代表之二價酚系 化合物的一種以上,與光氣或碳酸二苯基酯等為代表之聚 碳酸酯前驅物,藉由界面聚合、熔融聚合或固相聚合等之 公知方法所得的聚合物。又,作為丙稀酸系樹脂,可舉例 如:以甲基丙烯酸甲醋、甲基丙烯酸乙醋、甲基丙烯酸丙 醋、甲基丙烯酸η旨作為主原料,視需要使用具有碳數 卜8之烧基的丙烯酸酯、醋酸乙烯、苯乙稀、丙 甲基丙烯腈等作為共聚合成分的聚合物、共聚物。又,亦 I進::使用依多階段進行聚合之丙烯酸系樹脂。又,作 = 舉例如聚氟乙埽、聚二氟乙婦、聚四氣乙 =乙H乙稀共聚物、乙蝉_四氟乙稀共聚物、 乙烯-王氟烷氧基乙烯共聚物等。 分熱射線遮蔽機能之微粒子對於熱可塑性樹脂的 粒3射線遮蔽機能之微粒子之鎢氧化物微 脂⑴的分散方法,若為可使微粒 方法,則可任意選擇。作為其例,首先,使用=中的 砂磨、超音波分散等之方法,調製 朱片磨、球磨、 成使上述鶴氧化物微粒 200922983 子(B1)及/或複合鎢氧化物微粒子(b 2 )分散於任意溶劑中 的分散液。其次,將該分散液、高耐熱性分散劑(c)、熱 - 可塑性樹脂(A)之粉粒體或顆粒、與視需要之其他添加 劑,使用帶式摻合機、滾筒、圓錐螺旋混合機、漢歇爾混 合機、超級混合機、行星型混合機等之混合機,及班伯里 混合機、捏合機、輥、捏合粗製機(kneader ruder)、單 軸擠出機、雙轴擠出機等之混練機’ 一邊自分散液去除溶 劑、一邊均勻地進行熔融混練,則可調製使鎢氧化物微粒 1子(B1)及/或複合鶴氧化物微粒子(B2)均勻分散於熱可塑 性樹脂(A)之混合物。混練時之溫度,係維持在所使用之 熱可塑性樹脂(A)不發生分解的溫度。 另外,作為其他方法,亦可於具有熱射線遮蔽機能之鎢 氧化物微粒子(B1)及/或複合鎢氧化物微粒子(B 2 )之分散 液中添加高耐熱性分散劑(c),依公知方法去除溶劑,將 所得之粉末與熱可塑性樹脂(A)之粉粒體或顆粒、及視需 要之其他添加劑進行均句溶融混合,而調製使鶴氧化物^ 粒子(Β1)及/或複合鎢氧化物微粒子(Β2)均勻分散於熱可 塑性樹脂(Α)中的混合物。此外,亦可使用下述方法:使 未經分散處理之職化物微粒子(Β1)、複合鶴氧化物微粒 Τ(Β2)之粉末與高耐熱性分散劑(c)直接添加於熱可塑性 樹脂(A)中,並均勻地進行熔融混合。分散方法若為使鎢 乳化物微粒子(β1)、複合鎢氧化物微粒子(B2)均勻分散於 熱可塑性樹脂(Α)中即可,並不限定於此等方法。 、 5)高耐熱性母粒之製造方法 21 200922983 將如此所彳旱> #、g A ,, 機進行混練,^ 排氣孔式單軸或雙轴之擠出 妖射1 ^並 為顆粒狀,藉此可得到本實施形態之 …、射線遮錢明樹脂成形體用之高耐熱性母粒。 士 =熱性母粒之顆粒,可藉由最一般之將經熔融擠 例如;知灿進仃切剎的方法而得。從而,作為其形狀可舉 勒或角柱狀。又,亦可採用將熔融擠出物直接切 彤:此二ί實施形態之高耐熱性母粒,可採用任意形態或 ^ ύ,、在使熱射線遮蔽透明樹脂成形體成形時,較佳 材^ ΐ用於稀釋該高耐熱性母粒之熱可塑性樹脂成形 材枓相同之形態及形狀。 再者’亦可對本實施形態之高❹性母粒進—步調配一 =加:。例如’視需要為了賦予任意之色調,可調配有 斜:^里,偶氮系木料、菁系染料、醌啉系染料、芘系染 /、奴黑等一般利用於熱可塑性樹脂著色的染料、顏料。 i刑ΐ可調配有效表現量之受_系、❹、等之穩定劑、 一 ,^,羥基二苯基_系、水楊酸系、HALS系、三唑系、 =系等之紫外線吸收劑,偶合劑、界面活性劑、抗靜電 6)熱射線遮蔽透明樹脂成形體 由 種 其次’本實施形態之熱射線遮蔽透明樹脂成形體,係藉 將上述高㈤熱性母粒’⑽該母料之熱可塑性樹脂相同 之熱可塑性卵成形材料、或與該母料之熱可塑性樹脂 22 200922983 具有相溶性之不同種之熱可塑性樹脂成形材料進行稀 釋、混練,並成形為既定形狀而獲得。 本實施形態之熱射線遮蔽透明樹脂成形體,係使用高耐 熱性母粒,故成形時之熱劣化非常少。因此,鶴氧化物微 粒子(B1)、複合鶴氧化物微粒子⑽等之熱射線遮蔽微粒 子,將充分分散於熱射線遮蔽透明樹脂成形體中,結果可 良好地確保可見光穿透率。再者,由於分散劑不變色為黃 〜余色,故成形體亦不著色為黃色。 上述熱射線遮蔽透明樹脂成形體之形狀,視需要亦可成 形為任意形狀’並可成形為卯>八平面狀及曲面狀。又, 熱㈣遮蔽透明樹脂成形體之厚度可視需要調整成板狀 的任意厚度。再者’形成為平面狀之樹脂片材, 猎由後加工成形為球面狀等之任意形狀。 作為上述熱射線遮蔽透明樹脂成形體之成形方法,可舉 m成形、擠出成形、壓縮成形或旋轉成形等之任音 縣為採用藉射出成形而得到成形品之方法、= 出成形而得到成形品之方法。 狀、薄膜狀之出fσ 為猎擠出成形而得到板 出機而棬Φ ^口的方法,係藉由將使用T字模等之擠 出機而擠出之熔融埶可塑 卻、一邊予以ΜΓ 邊以冷卻觀進行冷 使用於汽車之方法而製造。上述射出成形品係適合 之板狀二二車頂等之車體上,藉擠出成形所得 造物上。、 ,係適合使用於拱廊和車棚等建 述…射線遮敵透明樹脂成形體,除了僅將其本身使用 23 200922983 璃、棋廊等之構造材上之外,亦可依任意方法層合 上了、為玻璃、樹脂玻璃、樹脂薄膜等之其他透明成形體 為體化之熱射線遮蔽透明層合體,而使用於構造 例如’藉由將預先成形為薄膜狀之熱射線遮蔽透明 及曰,形體於無機玻璃上以熱層合法進行層合一體化,藉 $可仔到具有熱射線遮蔽機能、防飛散機能之熱射線遮蔽 舢!層合體:又’藉由熱層合法、共擠出法、壓製成形法、 、成开"去等’纟進行熱射線遮蔽透明樹脂成形體之成形 C的同時,使其與其他透明成形體層合一體化,藉此亦可得 ^射線遮蔽透明層合體。上述熱射線遮蔽透明層合體, 將㈣發揮彼此成形體所具有之優點,同時互補彼此的缺 點,藉此可使用作為更有用之構造材。 以上’如已詳述般’藉由使用使作為熱射線遮蔽成分之 鶴氧化物微粒子⑽、複合嫣氧化物微粒子⑽,使用高 耐熱性分散劑⑹均勾地分散於熱可塑性樹脂⑴中的本 實施形態之熱射線遮蔽透明樹脂成形體用的高耐熱性母 W粒,則可提供不需使用高成本之物理成膜法和複雜步驟, 具有熱射線遮蔽機能且於可見光區具有高穿透性能,㈣ 形時之熔融料所造成之分散劑熱劣化所引起之黃變較 少的熱射㈣㈣明樹脂成形體及熱射線遮蔽透明層合 體。 [實施例] 以下更具體《兒明本發明之實施例與比較例。但本發明 並不限定於以下實施例。 24 200922983 各實施例中,鎢氧化物微粒子和複合鎢氧化物微粒子之 粉體色(10。視野、光源D65)、及熱射線遮蔽樹脂另材之 可見光穿透率與日射穿透率,係使用日立製作所(股)製之 分光光度計11-4刚所測定。此日射穿透率係表示熱射線 遮蔽性能的純。隸錢料上色彩技術研究所(股) 公司製之HR_200,根據jIS κ 71〇5所測定。 [實施例1 ] 將裝入了細啊之石英船安置於石英管狀爐中,供給 C以Ν2氣體作為載體之⑽Η2氣體並進行加熱,以6〇(rc之溫 度,仃1小時之還原處理後,於N2氣體環境下依進 巧=〇分鐘而得到微粒子a。此微粒子a之粉體色係 為 36.9288、a 為 1526,以粉末 =射進行結晶相之較,結果觀察到Wi8()49之結晶相。 量該微粒子a5重量%、高耐熱性分散劑“(具有 =j為官能基之丙稀酸系分散劑,以TG_m所測定之 厂。,'刀解^度為25rc)5重量%、甲苯9〇重量%,以裝入了 、:_0Zr〇2珠球之塗料振盪器進行粉碎、分散處理 I:氧Si調製鶴氧化物微粒子分散液Ur〇。於此,測定、 =液)中之鶴氧化物微粒子之= 散劑二此高二:=1::=:加高耐熱性分 子]成為4的方式進行 液)去除甲苯,得氧化物微粒子分散液At least one of Cs Rb , K , Tl , In , Ba , Li , Ca , Sr , Fe , Sn , Al , Cu ί . The fourth heat-resistant masterbatch according to the first to third aspects, wherein the thermoplastic resin is selected from the group consisting of an acrylic resin, a polycarbonate resin, a polystyrene resin, a polyether sulfone resin, and a fluorine system. At least one of a resin, a polyolefin resin, and a polyester resin. The fifth heat-resistant masterbatch according to the fourth to fourth aspects, wherein the tungsten oxide fine particles and the composite tungsten oxide fine particles have fine particles having a particle diameter of 200 nm or less. 200922983 The sixth embodiment is a high heat resistant masterbatch according to the first to fifth embodiments, wherein the tungsten oxide fine particles and the composite tungsten oxide fine particles are selected from the group consisting of a ceramsite compound, a titanium compound, and a wrong At least one of the compounds of the compound is surface treated with a compound of . The seventh configuration is a heat ray shielding transparent resin, and the thermoplastic resin contained in the high-calorie parent material of the sixth aspect is a thermoplastic resin of the same kind, or The high-resistance r-solubility is not π-magnetic, and the thermoplastic resin has a phase-like resin mixture' and is formed into a predetermined shape. The seventh aspect is a heat ray-shielding transparent laminate characterized in that a heat ray-shielding transparent resin molded body on which a transparent molded body has been applied is laminated (the effect of the invention) by diluting and kneading the high enthalpy of the present invention. The thermoplastic resin is formed into a plate shape, a film shape, a spherical shape, a compression molding, or the like, and is formed by a heat ray which is strong in the visible light region and has a large arbitrary shape. There is a heat ray shielding transparent laminate in the near infrared region. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 In the general formula w〇^heat masterbatch, containing the tungsten oxide microparticles shown (this is said to be 2 · 4 5 SX g 2. 9 9 9 ) ^ 'sometimes attached (βΐ) symbol 11 200922983) and/or composite tungsten oxide fine particles represented by the general formula MyW0z (where 〇·1^γ$〇.5, 2 2 <Z<3·0) and having a hexagonal crystal structure (in this specification , sometimes the symbol of (Β2) is added; and the heat-resistant dispersing agent having a thermal decomposition temperature of 230 C or higher (in the present specification, the symbol of (c) is sometimes added); and the high heat-resistant dispersing agent (c) And the weight ratio of the tungsten oxide fine particles (B1) and/or the composite tungsten oxide fine particles 〇2) is 1〇> [the weight of the high heat-resistant dispersant/(tungsten oxide fine particles and/or composite crane oxidation) The weight of the fine particles)]2 〇. 5 range. (The following '1 in order to constitute the high-calorie masterbatch 1) has thermal ray shielding Functional tungsten oxide fine particles (B1), composite tungsten oxide fine particles (B2), 2) high heat-resistant dispersant (〇, 3) thermoplastic resin (in this specification, the symbol of (A) may be added), and 4) The method of dispersing the fine particles having the heat ray shielding function for the thermoplastic resin, and 5) the method for producing the high heat resistant masterbatch, and finally, the 6) heat ray shielding transparent resin molded body will be described. Tungsten oxide fine particles (B1) and composite crane D oxide fine particles (B2) of the shielding function. The tungsten oxide fine particles (B1) as a heat ray shielding material and/or composite are used in the high heat resistant mother particle of the present embodiment. The crane oxide fine particles (B2) greatly absorb the near-infrared region, especially the light having a wavelength of around 1 〇〇〇 nm, so that the penetration color is mostly a blue color tone. Further, the particle size of the heat ray shielding material It can be suitably selected according to the purpose of use. First, in the case of application for maintaining transparency, tungsten oxide fine particles (BO, and/or composite tungsten oxide fine particles (B2) are preferably used. There are 12 200922983 below 800 nm dispersed particle size. The reason is that the dispersed particle size smaller than the outline (10) will not completely block the light due to scattering, and the visibility of the visible light region can be maintained, and the transparency can be maintained efficiently. When the transparency of the visible light region is emphasized, it is better to consider the scattering caused by the particles. In addition, the tungsten oxide fine particles (B1) and/or the composite tungsten oxide are oxidized while focusing on reducing the scattering caused by the particles. The dispersed particle diameter of the fine particles (β2) is 20 〇 nm or less, preferably 1 〇〇 nm or less. The reason for this is that if the dispersed particle diameter of the dispersed particles is small, light scattering in a visible light region having a wavelength of 400 nm to 780 nm caused by geometric scattering or Mie scattering is reduced. Since the light scattering is reduced, the heat ray shielding film can be prevented from being fogged and the transparent transparency cannot be obtained. That is, if the dispersed particle size of the dispersed particles is 20 〇 nm or less, the above-described geometric scattering or Mie scattering can be reduced to become a Rayleigh scattering region. In the Rayleigh scattering region, since the scattered light particles are inversely proportional to the sixth-order particle diameter, the transparency is improved as the dispersed particles are reduced and the scattering is reduced. Further, when the dispersed particle diameter is 100 nm or less, the scattered light is extremely small, which is preferable. From the viewpoint of avoiding light scattering, the dispersed particle diameter is preferably the smaller one, and when the dispersed particle diameter is 1 nm or more, industrial production is easy. / a) Tungsten oxide fine particles (B1) As the above-mentioned tungsten oxide fine particles (Β1) represented by the general formula W0x (including 2 45 $ χ ^ 2 999), for example, Wi8〇49, W2q〇58, Μ&quot ;Wait. A value of 2.45 or more can completely avoid the occurrence of the crystal phase of W〇2 outside the target in the heat ray shielding material, and the material 13 200922983 = 疋 can be obtained. On the other hand, if the value of X is 2.999 or less, the following two free electrons are generated and become a heat ray shielding material. If it is 2.95, 'the heat ray shielding material is better. Here, the range of bismuth is 2.45 di-compound, W〇X compound 'belongs to the so-called Mage buried coffee (1) b) composite tungsten oxide microparticles (B2): for the general-style remuneration, can be: two Composite helium oxide fine particles of hexagonal crystal structure, FTe^r; ^iCS'Rb'K'T1'In'B-Li.Ca.S^ compound η particles, at least one type of CU as M element Composite tungsten oxygen... The addition amount Y of the halogen M is preferably 〇·1 or more, • 5 or less, and more preferably 0.33 or so. The reason is that the theoretically calculated values of the six crystal structure are 〇, 曰曰, and 妒 妒 妒 , and the value is 〇.33 depending on the amount added, the optical characteristics of the rut can be obtained. Also, the range of 'z is better in the composite crane oxide material shown in Please. 2, except for the same mechanism as the crane oxide material shown in Fig. 2, under the =3.〇, the above elements are also present. The addition causes the supply to be caused. Especially from the viewpoint of optical characteristics, the second is made of electrons of $02.99, more preferably 2 4Bd99. 钗仏 is 2.2. Here, as a typical example of the composite tungsten oxide material, , ^. genus 3, Rbo.33W 〇 3, K 〇 33 W 〇 3, Ba. Qin, etc., if γ, within the above range, can obtain effective heat ray shielding characteristics. ',,, build;): oxidation Microparticles (Β1), composite tungsten oxide microparticles (10) 14 200922983 The above tungsten oxide microparticles (Bl), composite tungsten oxide microparticles (B2), can be used as a starting material for tungsten compounds in an inert gas environment or reducing It is preferably obtained by heat treatment in a gas atmosphere. The starting material of the sulphurized S material is preferably selected from any one of the following: tungsten dioxide powder, tungsten dioxide powder, tungsten oxide hydrate, tungsten hexachloride 2, ammonium tungstate powder, after dissolving tungsten hexachloride in alcohol The hydrated powder of the eutectic oxide is dissolved, and the hexa-tungsten hydride is dissolved in the alcohol, and the hydrate of the tungsten oxide is obtained by drying the hydrate of the tungsten oxide. Powder, metal crane = this 'in the manufacture of the crane oxide microparticles, from the viewpoint of production, it is more preferable to use the hydrated powder of the town oxide, =; the product of the acid solution is dried to obtain the crane compound powder. In the case of the fine particles, it is more preferable to use a solution of ammonium tungstate in a water-soluble or reducing atmosphere to heat the particles, and to shield the material particles. In addition, the heat of the sub-mass contains the composite tungsten oxide microparticles (B microparticle (4) compound (4) raw material, which can be the same as the starting material of the crane compound of the upper shielding material (10), and further, the microparticle starting material 1 - monomer monomer or The compound material is used as a starting material for the compound crane compound. The additive element M' is 15 and 200922983. Here, in order to manufacture the ingredients, the composition is in the form of a solution. /= In the solvent, it can be used to transfer water to water and organic solvents, such as 3, 70 sulphate, chloride, sulphate, sulphate, sputum. Potential carbonates, hydroxides, etc., are not limited to this, if it is a solution. As a heat treatment in an inert gas environment, according to C, the starting material for heat treatment; = = '=: It can be effectively used as a heat ray shielding particle; as an inert gas using Ar, etc.. ίFirst: Π, the heat treatment condition in the original gas environment is better than in a reducing gas environment (10). The above, π. Next, the heat treatment is carried out in the atmosphere of the inert gas in the atmosphere of the atmosphere. The amount is not particularly limited, and is preferably H2. Further, in the case of a gas body and a composition of a gas atmosphere using H2 as a reducing gas, it is preferable to use, for example, a volume ratio of 〇 or more. If the evening ... " He Xun, better 0.2% original. When the volume ratio of Η2 is 〇.1% or more, the powder can be efficiently promoted: Containing:: Having, even if it exhibits good heat ray shielding characteristics, it is preferable to expand the application of the oxide containing dong. In the above: two = in terms of weather resistance, I slavery by this bismuth oxide oxidized 16 200922983 in an inert gas environment, according to 65 (TC or more, 12 〇 (TC below, 隹 - heat treatment, you can get A more stable heat ray shields the fine particles. This = ^: The inert gas atmosphere during the heat treatment of 曰T 2 is not particularly limited, and is preferably ..., Ar. By the above 65 〇. In the heat treatment below °C, the heat ray shields the fine particles to the Magniglious phase, stabilizes the hydrogen, and improves the weather resistance. In the present embodiment, the tungsten oxide fine particles (B1) and the composite tungsten exhibiting the heat ray shielding function described above. The oxide fine particles (B2) are surface-treated by at least one selected from the group consisting of a compound, a titanium compound, and a recorded compound. The surface of the fine particles is covered with an oxide of a work substance containing Si, Ti, Zr, or Αι. In addition, in order to obtain a desired heat ray shielding transparent resin molded body, the powder color of the tungsten oxide fine particles (B1) and the composite tungsten oxide fine particles (B2) satisfies the following requirements. condition In the powder color of the LW color system (JISZ 8729) recommended by the International Commission on Illumination (CIE), L* is 25~8〇', a* is -10~1〇' b* is -15~15 By using the above tungsten oxide fine particles (B1) or composite tungsten oxide fine particles (B2), optical characteristics required as a heat ray shielding resin sheet can be obtained. 2) High heat resistant dispersant (c) Conventionally A dispersant for use as a coating material is generally used, and the purpose thereof is to uniformly disperse various oxide fine particles in an organic solvent. However, according to the review by the inventors of the present invention, such dispersing agents are not assumed to be 2 〇 (rc) Specifically, in the present embodiment, 17 200922983 = microplastic resin _ 昆 练 分散 : : : : : = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = The use of TG-DTA as a heat-resistant dispersant (〇, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ': chain f is preferred. The dispersant of the structure is high in heat resistance. Moreover, the thermal decomposition temperature of the right dispersing agent is 23 〇〇c or more, and the disintegration ability can be maintained without thermal decomposition: two-ray opacity: the result 'in the formed body, the hot-spring shielding scorpion will be sufficiently dispersed 'And can ensure good visible light penetration: and :: to: have optical characteristics' at the same time, the shaped body is not colored yellow (290 ^ 彳 face and "," in the general mix of polycarbonate Temperature_ Word The above-mentioned type of dispersant of the present invention is mixed with a polycarbonate resin, and the type 5 test "mixture will exhibit exactly the same appearance as when only polycarbonate is kneaded" and 4 recognizes that it is colorless and transparent. Coloring. On the other hand, for example, when the same test was carried out using a general dispersant used in the comparative example described later, it was confirmed that the kneaded material was colored brown. As described above, the highly heat-resistant dispersing agent (c) used in the present embodiment is preferably a dispersing agent having an acrylic main chain and a hydroxyl group or an epoxy group as a functional group. The reason for this is that these functional agents are adsorbed on the surface of the tungsten oxide fine particles to prevent aggregation of the tungsten oxide fine particles, and 18 200922983 has an effect of uniformly dispersing the crane oxide fine particles in the molded body. Specifically, preferred examples are an acrylic dispersion having an epoxy group as a functional group, and an acrylic dispersion having a hydroxyl group as a functional group. In particular, when a resin having a high melt-kneading temperature such as a polycarbonate resin or an acrylic resin is used as the thermoplastic resin (A), the use of a thermal decomposition temperature of 25 (rc or more) has an acrylic main chain and The effect of the high heat-resistant dispersing agent (c) based on a base or an epoxy group. The weight ratio of the above high heat-resistant dispersing agent (c) to tungsten oxide fine particles (B1) and complex tungsten oxide fine particles (B2) Preferably, it is a range of 20.5 [weight of high heat-resistant dispersant / (weight of tungsten oxide fine particles and/or composite tungsten oxide fine particles)] 20.5. If the weight ratio is 〇·5 or more, Since the tungsten oxide fine particles (Β1) or the composite tungsten oxide fine particles are sufficiently dispersed, the fine particles are not aggregated, and sufficient optical characteristics can be obtained. Further, if the weight ratio is 1 Å or less, the heat ray shielding is not damaged. Mechanical properties (bending strength, surface height) of the resin molded body itself. 3) Thermoplastic resin (Α) ^ G Next, as the thermoplastic resin (Α) used in the present embodiment, if it is light in the visible light region, The transparent thermoplastic resin having a high transmittance is not particularly limited. For example, it is preferable that, for example, when a plate-shaped molded body having a thickness of 3 mm is formed, the visible light transmittance described in JIS R 3106 is 5 % by or more. The haze value described in JISmG5 is 3 η or less, and specific examples thereof include an acrylic resin, a polycarbonate resin, and a polyester resin, and a polystyrene resin, a polyether resin, a fluorine resin, and a polyolefin resin. In the case where the heat ray-shielding transparent resin molded body is applied to various buildings 19 200922983 and window materials of vehicles, etc., it is more preferably acrylic in consideration of transparency, impact resistance, weather resistance, and the like. Resin, polycarbonate resin, polyether sulfimide resin, fluorine-based resin. The polycarbonate resin is preferably an aromatic polycarbonate. Examples of the aromatic polycarbonate include 2, 2 - double One or more of divalent phenolic compounds represented by (4-hydroxyphenyl)propane, 2'2-bis(3,5-dibromo-4-hydroxyphenyl)propane, etc., and phosgene or diphenyl carbonate Ester and the like represent polycarbonate precursors, through the interface A polymer obtained by a known method such as a combination of a melt polymerization or a solid phase polymerization, and examples of the acrylic resin include methyl methacrylate, ethyl methacrylate, propyl methacrylate, and A. The base acryl η is intended to be a main raw material, and if necessary, a polymer or a copolymer having a propylene group having a carbon number of 8, or vinyl acetate, styrene, propyl methacrylonitrile or the like as a copolymerization component is used. I Jin:: Use acrylic resin which is polymerized according to multiple stages. Also, for example, such as polyvinyl fluoride, polydifluoroethylene, polytetraethylene, ethylene, ethylene, ethylene, ethylene, ethylene, ethylene a dilute copolymer, an ethylene-wine fluoroalkoxyethylene copolymer, etc. a method of dispersing a fine particle of a heat ray shielding function for a tungsten oxide microlipid (1) of a particulate 3 ray shielding function of a thermoplastic resin The particle method can be arbitrarily selected. As an example, first, a method of sanding, ultrasonic dispersion, or the like is used to prepare a slab grinding, ball milling, or the above-mentioned crane oxide particles 200922983 (B1) and/or composite tungsten oxide fine particles (b 2 ) a dispersion dispersed in any solvent. Next, the dispersion, the high heat-resistant dispersant (c), the powder or granule of the thermoplastic resin (A), and other additives as needed, use a belt blender, a drum, and a conical spiral mixer. Mixers of Hanschel mixers, super mixers, planetary mixers, and Banbury mixers, kneaders, rolls, kneader ruders, single-axis extruders, twin-axis extrusion When the solvent is removed from the dispersion and the mixture is uniformly melted and kneaded, the tungsten oxide fine particles 1 (B1) and/or the composite coated oxide fine particles (B2) can be uniformly dispersed in the thermoplastic resin. a mixture of (A). The temperature at the time of kneading is maintained at a temperature at which the thermoplastic resin (A) to be used does not decompose. Further, as another method, a high heat-resistant dispersant (c) may be added to a dispersion of tungsten oxide fine particles (B1) and/or composite tungsten oxide fine particles (B 2 ) having a heat ray shielding function, which is known. The method removes the solvent, and melts and mixes the obtained powder with the powder or granules of the thermoplastic resin (A) and other additives as needed, thereby preparing the oxide oxide particles (Β1) and/or the composite tungsten. A mixture of oxide fine particles (Β2) uniformly dispersed in a thermoplastic resin (Α). Further, a method of directly adding a powder of the non-dispersion-treated fine particles (Β1), the composite crane oxide fine particles (Β2), and the high heat-resistant dispersing agent (c) to the thermoplastic resin (A) may be used. In the process, melt mixing is performed uniformly. In the dispersion method, the tungsten emulsion fine particles (β1) and the composite tungsten oxide fine particles (B2) are uniformly dispersed in the thermoplastic resin, and the method is not limited thereto. 5) Manufacturing method of high heat-resistant masterbatch 21 200922983 The so-called drought >#, g A , , machine kneading, ^ venting uniaxial or biaxial extrusion enchantment 1 ^ and granules In this way, the high heat resistant masterbatch for the ray-blocking resin molded body of the present embodiment can be obtained.士 = hot masterbatch granules, which can be obtained by the most common method of melt-squeezing, for example, tangling into a cutting brake. Therefore, the shape thereof may be in the form of a column or a column. Further, it is also possible to directly cut the melt-extruded product: the high-heat-resistant masterbatch of the embodiment may be in any form or in a form, and when the heat-ray-shielding transparent resin molded body is molded, the material is preferably used. ^ The same shape and shape of the thermoplastic resin molding material used to dilute the high heat resistant masterbatch. Furthermore, the high-strength masterbatch of the present embodiment may be further blended with one plus:. For example, 'in order to impart an arbitrary color tone, it is possible to adjust the slanting: ^, azo wood, cyanine dye, porphyrin dye, lanthanide dye, black, etc., which are generally used for coloring thermoplastic resins. pigment. i ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ , a coupling agent, a surfactant, and an antistatic 6) heat ray shielding transparent resin molded body. The heat ray shielding transparent resin molded body of the present embodiment is the same as the high (five) thermal masterbatch '(10). The thermoplastic plastic molding material having the same thermoplastic resin or the thermoplastic resin molding material having a compatibility with the thermoplastic resin 22 200922983 of the master batch is diluted, kneaded, and formed into a predetermined shape. In the heat ray-shielding transparent resin molded body of the present embodiment, since the heat-resistant mother particles are used, the heat deterioration during molding is extremely small. Therefore, the heat ray shielding fine particles such as the crane oxide fine particles (B1) and the composite crane oxide fine particles (10) are sufficiently dispersed in the heat ray shielding transparent resin molded body, and as a result, the visible light transmittance can be satisfactorily ensured. Further, since the dispersant does not change color to yellow to the remaining color, the molded body is not colored yellow. The shape of the heat ray-shielding transparent resin molded body may be formed into an arbitrary shape as needed, and may be formed into a 卯> eight-plane shape and a curved shape. Further, the thickness of the heat (four) masking transparent resin molded body may be adjusted to any thickness in a plate shape as needed. Further, 'the resin sheet is formed into a flat shape, and the hunting is formed into any shape such as a spherical shape by post-processing. In the method of forming the heat ray-shielding transparent resin molded body, any of Yen-Yin, which is formed by extrusion molding, extrusion molding, compression molding, or rotational molding, is a method of obtaining a molded article by injection molding, and forming a shape by molding. The method of the product. The method of forming the shape and the film shape fσ is a method of obtaining a sheet-out machine by squeezing and extruding, and pulverizing the enthalpy by extrusion using an extruder such as a T-shaped mold. It is manufactured by a method of cooling and using it in a car. The injection molded article is applied to a vehicle body such as a plate-shaped second and second roof, and is formed by extrusion molding. It is suitable for use in arcades and carports. The ray-shielding transparent resin molded body can be laminated on any other method except for the use of 23 200922983 glass, chess and other structural materials. A heat ray shielding transparent laminate in which another transparent molded body such as glass, plexiglass, or a resin film is formed is used for the structure, for example, by shielding a transparent ray from a heat ray which is formed into a film shape in advance, and a shape Lamination and integration on the inorganic glass by thermal layering, and borrowing from the heat ray shielding function with heat ray shielding function and anti-flying function! Laminated body: In addition, by heat layering, co-extrusion method, press forming method, forming, and "cutting", heat wave shielding of the forming of the transparent resin molded body is performed, and other transparent molded body layers are formed. The integration is integrated, whereby the transparent laminate can be shielded by the ray. The heat ray shields the transparent laminate, and (4) exhibits the advantages of the molded bodies of each other while complementing each other's disadvantages, whereby a more useful structural material can be used. As described above, the heat-resistant resin (1) is uniformly dispersed in the thermoplastic resin (1) by using the heat-resistant dispersing agent (6) as the heat ray shielding component. The high heat-resistant mother W grain for the heat ray shielding transparent resin molded body of the embodiment can provide a physical film forming method and a complicated step without using a high cost, have a heat ray shielding function, and have high penetration performance in the visible light region. (4) The heat radiation caused by the thermal deterioration of the dispersant caused by the molten material in the form of the heat is less (4) (4) the bright resin molded body and the heat ray shielding transparent laminate. [Examples] Hereinafter, the examples and comparative examples of the present invention will be more specifically described. However, the present invention is not limited to the following embodiments. 24 200922983 In each of the examples, the powder color of the tungsten oxide fine particles and the composite tungsten oxide fine particles (10. Field of view, light source D65), and the visible light transmittance and the solar transmittance of the heat ray shielding resin are used. The spectrophotometer 11-4 manufactured by Hitachi, Ltd. was just measured. This in-situ penetration rate indicates the purity of the heat ray shielding performance. The HR_200 manufactured by the Color Technology Research Institute Co., Ltd. is measured according to jIS κ 71〇5. [Example 1] A quartz vessel equipped with a fine quartz was placed in a quartz tubular furnace, and (10) Η 2 gas was supplied as a carrier of C gas, and heated to 6 Torr (temperature of rc, after 1 hour of reduction treatment) The microparticles a were obtained in a N2 gas atmosphere according to the frequency of 〇 = 〇 minutes. The powder color of the microparticles a was 36.9288, and a was 1526. The comparison was carried out by powder = shot, and the result was observed that Wi8 () 49 was observed. Crystalline phase. The amount of the fine particles a5 wt%, high heat-resistant dispersant "(acrylic acid-based dispersant having =j is a functional group, the factory measured by TG_m, 'knife resolution is 25 rc) 5 wt% Toluene 9 〇% by weight, pulverized and dispersed by a coating shaker filled with: _0Zr 〇 2 beads, I: Oxygen Si-modulated crane oxide fine particle dispersion Usr. Here, measured, = liquid) The crane oxide microparticles = powder 2 this high 2: = 1:: =: high heat resistance molecules] 4 to carry out liquid) to remove toluene, to obtain oxide microparticle dispersion

、,‘‘乳化物微粒子分散粉(以下簡稱為A 25 200922983 粉)。 將所得之A粉、與屬於埶可塑 粒,依^〇49濃度成為2 〇、重量%之=之聚碳酸醋樹脂顆 合機進行均勻混人後,以傳έ 4 法進仃混合,使用摻 練’將榜出之股:物切割為=幾 熱性母粒(以下簡稱為母叫 將所仔之母粒A,以聚碳酸醋樹 A之聚石厌酸酯樹脂稀釋物 八私W…, 传到使鶴氧化物微粒子均勻 :4 =f:的實施例1之熱射線遮蔽透明樹脂成 射線遮蔽透明樹脂成形體中之該鶴氧化物微粒 為75nm°經測定實施例1之熱射線遮蔽透 月树月曰成形體之光學特性’結果係如表1所示,可見光穿 透率71.1%時之日射穿透率為48肩,霧值為^ [實施例2] ' 除了將母粒A以聚碳酸醋樹脂顆粒稀釋為ι8〇49濃度 0.60重量。/0 ’並使用τ字模成形為厚度〇.丄舰以外,盥實 施例i同樣地進行而得到實施例2之熱射線遮蔽透明樹 脂成形體。熱射線遮蔽樹脂片材中之該鶴氧化物微粒子的 分散粒徑為72nm。經測定實施例2之熱射線遮蔽透明樹 脂成形體之光學特性,結果係如表!所示,可見光穿透率 72. 2%時之日射穿透率為4δ. 7%,霧值為i找。 [實施例3] 26 200922983 將使 H2W〇450g 與 Cs(〇H)217.0g(相當於 cs/胙〇.3) 竭研銖予以充分混合的粉末,於供給以N2氣體作為, 5%H2氣體之下進行加熱,以6〇(rc之溫度進行工小 f處理後,於n2氣體環境下依綱。c進行燒成3()分於= :到微粒子b(組成式為CsQ 3W〇3,粉體色係L、: =娜、b、-5·謂。其次,秤量該微粒子二 Γη二施例' 1所說明之高耐熱性分散劑α 5重量%、甲裳 ^ 里%,以裝入了 G.3则^Zr〇2珠球之塗料振盪 ί ::'分散處理6小時,藉此調製鎢氧化物微粒子;散: 氧化1 °於此’測定鶴氧化物微粒子分散液(β液)中之銘 乳化物微粒子之分散粒徑,結果為75nm。對 、烏 -步添加高耐熱性分散劑α,依此高耐埶性 1進 氧化物微粒子之重量比[高财熱 ^^與嫣 子]成為4的方式進行調製。其次,使微粒 甲苯,得到鎢氧化物微粒子分散粉(以下去除 將所得之B粉添加至屬於熱可塑性粉)。 -月旨顆粒中,使Cs。·规濃度成為2·〇重^曰=碳酸酉旨樹 :將該Β粉與聚碳酸咖顆粒之混合物亍::摻: 以雙轴擠出機進行熔融混練,將 =二混合 顆粒狀’得到熱射線遮蔽透明樹脂成形體物切割為 粒(以下簡稱為母粒Β)。 體用之尚耐熱性母 將所得之母# β,以聚碳酸 “愚漠度成為0G5重量%。將進行稀釋,使 進行均勻混合後,使帛τ 、粒β稀釋物以滾筒 使用τ子模擠出成形為厚度 27 200922983 到使複。鎢氧化物微粒子均勾分散於樹丨 線遮蔽透明樹脂成形體。該熱射線遮蔽透明樹=的熱射 之該鶴氧化物微粒子的分散粒徑為72月j形體中 之熱射線遮蔽透明樹脂成形體之光學特性、、,2實施例3 所示,可見光穿透率71·1%時:果係如表1 值為1.1%。 ㈣透率為37肩,霧 [實施例4] 除了使用丙烯酸系樹脂作為埶 / L· 例嶋地進行而調製成實施例4之==^ 明樹脂成形體用之高耐熱性母粒(以下=熱^線遮蔽透 得到熱射線遮蔽透明樹脂成形體。熱射 :C),再 施例4之熱射線遮蔽透明樹脂成形體之光學特性,社果= 如表i所示’可見光穿透率721%時之日透。為 38· 1% ’霧值為2. U。 透羊為 [實施例5] 之:了I吏:聚'苯二甲酸乙二酿樹脂作為熱可塑性樹脂 、、貫W列同樣地進行而調製成實施例5之複合敎 =遮蔽透明樹脂成形體用之高耐熱性母粒(以下簡稱為 ::I)),再得到熱射線遮蔽透明樹脂成形體。熱射線遮 旨成形體中之該氣化物微粒子的分散粒徑為 ^η。經測定實施例5之熱射線遮蔽透明樹脂成形體之光 干特性’結果係如表1所示,可見光穿透率71. 5%時之日 射穿透率為37. Γ/。,霧值為1. 0%。 28 200922983 [實施例6] 除了使用乙烯-四氟乙稀樹脂作為熱可塑性樹脂之外, 與實施例3同樣地進行而調製成實施例6之複合熱射線遮 敝透明樹脂成形體用<高耐熱性母粒(以下簡稱為母粒 E)。其次,將母粒E以乙烯—四氟乙烯樹脂顆粒稀釋成 CsuW〇3濃度為i重量%。將該母粒E稀釋物以滾筒進行均 ,混合後,使用T字模擠出成形為^如,得到使複合鎮 乳化物微粒子均勻分散於樹脂整體中的熱射線遮蔽透明 樹脂成形體。經測定實施例6之熱射線遮蔽透明樹脂成形 ^之光學特性’結果係如表1所示,可見光穿透率60. 5% 時之日^穿透率為32.1%,霧值為27%。X,該霧值雖顯 :了車乂同值之27% ’但此係乙烯-四氟乙烯樹脂本身即呈 混濁所致’並非霧值變高。 [實施例7 ], ‘‘Emulsion microparticle dispersion powder (hereinafter referred to as A 25 200922983 powder). The obtained A powder and the polystyrene resin granules which belong to the 埶 埶 plastic granules and the concentration of 〇 49 are 2 〇, wt% = are uniformly mixed, and then mixed by using the έ 4 method, and mixed Practice 'will be listed in the stock: the material is cut into = several hot masterbatch (hereinafter referred to as the mother's mother will be the masterbatch A, with the polycarbonate tree A of the polysilicate resin dilution of eight private W... The heat-ray-shielding transparent resin of the heat-ray-shielding transparent resin of Example 1 which was passed to the heat-shielding transparent resin of Example 1 was 75 nm. The heat ray shielding of Example 1 was measured. The results of the optical characteristics of the Moon Tree Moonworm formed body are shown in Table 1. The solar radiation transmittance at the visible light transmittance of 71.1% is 48 shoulders, and the haze value is ^ [Example 2] ' In addition to the master batch A The polycarbonate pellets were diluted to a concentration of 0.60 by weight of ι 8 〇 49. /0 ' and formed into a thickness 〇 using a τ-shaped mold. The heat ray-shielding transparent resin molded body of Example 2 was obtained in the same manner as in Example i. The dispersed particle diameter of the crane oxide fine particles in the heat ray shielding resin sheet is 72 nm The optical characteristics of the heat ray-shielding transparent resin molded body of Example 2 were measured, and the result was as shown in Table!, the visible light transmittance was 72. 2%, the solar radiation transmittance was 4 δ. 7%, and the haze value was found. [Example 3] 26 200922983 A powder in which H2W〇450g and Cs(〇H) 217.0g (corresponding to cs/胙〇.3) were thoroughly mixed and supplied with N2 gas, 5% H2 Heating under the gas, after 6 〇 (the temperature of rc is processed by small f, and then in the n2 gas environment, the c is calcined 3 () is divided into =: to the microparticle b (the composition formula is CsQ 3W 〇 3 , powder color system L, : = Na, b, -5 ·. Secondly, weigh the fine particles of the high-temperature dispersing agent α 5% by weight, and the amount of After loading G.3, the coating of ^Zr〇2 beads is shaken ί :: 'dispersion treatment for 6 hours, thereby modulating the tungsten oxide fine particles; dispersing: oxidizing 1 ° here to determine the dispersion of the crane oxide microparticles (β In the liquid), the dispersed particle size of the emulsion microparticles is 75 nm. The high heat-resistant dispersing agent α is added to the U-step, and the high-resistance to the oxide microparticles is accordingly The weight ratio [high-yield heat and scorpion] is adjusted to 4. Then, the particulate toluene is obtained to obtain a tungsten oxide fine particle-dispersed powder (the following B-powder is added to the thermoplastic powder). In the granules, the Cs. concentration is 2 〇 曰 曰 酉 = 酉 酉 : : : : : : : : : : : 亍 亍 亍 亍 亍 亍 亍 亍 亍 亍 亍 亍 亍 亍 亍 亍 亍 亍 亍 亍 亍 亍 亍= two mixed granules 'obtained heat ray-shielding transparent resin shaped body cut into granules (hereinafter referred to as masterbatch Β). The body is still heat-resistant mother will get the mother # β, to polycarbonate, "stiffness becomes 0G5 weight%. After dilution, the mixture is uniformly mixed, and the 帛τ, granule β dilution is extruded into a thickness of 27, 2009, 983 by a τ sub-die. The tungsten oxide fine particles are uniformly dispersed in the tree ridge line to shield the transparent resin molded body. The heat ray shielding transparent tree = heat radiation, the dispersed particle diameter of the crane oxide fine particles is the optical characteristic of the heat ray shielding transparent resin molded body in the 72-shaped j-shaped body, and the visible light penetration is shown in Embodiment 3. When the rate is 71.1%, the fruit value is 1.1% as shown in Table 1. (4) The surface of the resin is 37, and the mist is [Example 4]. The high heat resistant masterbatch for the resin molded body of the fourth embodiment is prepared by using the acrylic resin as the 埶/L. =Hot wire shielded to obtain a heat-shielding transparent resin molded body. Heat radiation: C), and the heat ray of Example 4 shields the optical properties of the transparent resin molded body, and the effect = visible light transmittance as shown in Table i 721% of the time. The value of 38. 1% 'haze is 2. U. In the case of [Example 5]: I 吏: Poly' phthalic acid styrene resin was used as a thermoplastic resin, and the composite enthalpy of Example 5 was prepared in the same manner as in the W column. The heat-resistant masterbatch (hereinafter referred to as: I) is used to obtain a heat-ray-shielding transparent resin molded body. The dispersed particle diameter of the vapor microparticles in the heat ray-obtained molded body is ??. Γ/。 The solar light transmittance of the heat ray-shielding transparent resin molded body of Example 5 was as shown in Table 1. The visible light transmittance was 71.5%, and the solar transmittance was 37. 0重量。 The haze value of 1. 0%. 28 200922983 [Example 6] In the same manner as in Example 3 except that an ethylene-tetrafluoroethylene resin was used as the thermoplastic resin, the composite heat ray concealing transparent resin molded body of Example 6 was used. Heat resistant masterbatch (hereinafter referred to as masterbatch E). Next, the master batch E was diluted with ethylene-tetrafluoroethylene resin pellets to have a CsuW〇3 concentration of i% by weight. The masterbatch E was diluted with a roller and mixed, and then extruded into a T-die to obtain a heat ray-shielding transparent resin molded body in which the composite emulsified fine particles were uniformly dispersed in the entire resin. The optical characteristics of the heat ray-shielding transparent resin formed in Example 6 were as shown in Table 1. The visible light transmittance was 60.5%, the penetration rate was 32.1%, and the haze value was 27%. X, although the fog value is: 27% of the same value of the rutting 但, but this is because the ethylene-tetrafluoroethylene resin itself is turbid, and the haze value is not high. [Example 7]

L 二脂作為熱可塑性樹脂之外,與實施例 二丄T丁而調製成實施例7之複合熱射線遮蔽透明樹 月曰成开;^體用之高耐執柯具止 熱射線遮蔽透明上:=(:下簡稱為母粒F)’再得到 ,^ ^ . ^曰成形體。熱射線遮蔽透明樹脂成形體 中之該乳化物微粒子的八 之熱射線遮蔽透明樹為9〇,經測定實施例7 所示,可見光穿透率;成=之光學特性’結果係如表1 值為15%。又,315%時之曰射穿透率為33·2%,霧 乙烯樹脂本身即顯示了較高值之15%’但此係聚 [實施例8]呈把濁所致,並非霧值變高。 29 200922983 ”了將尚耐熱性为政劑與複合鎢氧化物微粒子之重量 比[高耐熱性分散劑/複合鶴氧化物微粒子]調整為〇. 外,與實施j列3同樣地進行而調製成實施μ 8之複合熱 :遮。蔽透明,脂成形體用之高耐熱性母粒(以下簡稱;母 4日曰枯#付到熱射線遮蔽透明樹脂成形體。熱射線遮蔽 透月樹脂成形體中之該氧化物微粒子的分散粒徑為 風':疋實施例8之熱射線遮蔽透明樹脂成形體之光 ,二穿透率:t係如表1所示’可見光穿透率7〇.5%時之曰 1射穿透率為36. 9%,霧值為i 9%。 [實施例9 ] 予以二::了添加甲基—三甲氧基-矽烷,以機械攪拌器 卞以視拌在合1小時後,傕用嗆 刭以功μ人, 霧乾無益將甲苯去除,得 i以石夕烷化合物實施了表面處理之 (以下簡稱為微粒子C)。除了以該微粒子二子 ^卜’與實施例3同樣地進行而調製成實施例9=^埶 蔽透明樹脂成形則之高耐熱性母 = ί母粒H)與熱射線遮蔽透明樹脂成 下間稱為 樹脂成形體中之該氧化物微粒子的分散位Α 線遮蔽透明 測定竇始彻0 4 Τ卞的刀政粒徑為9〇nm。經 性,結果俜如表=射線遮蔽透明樹腊成形體之光學特 透率為可見光穿透率72.5%時之日射穿 处午馬利.1% ’霧值為1. 5%。 [實施例1 〇 ] 除了使用高耐熱性分散劑万( _系分漱劑™Α測定之熱二= 的) 30 200922983 作為高耐熱性分散劑之外,與實施例3同樣地進行而調製 成實施例10之複合熱射線遮蔽透明樹脂成形體用之高耐 $性母粒(以下簡稱為母粒丨)與熱射線遮蔽透明樹脂成形 ~ +二射線遮蔽透明樹脂成形體中之該氧化物微粒子的分 政粒徑為75nm。經測含每—/丨 成形體之光學特性,例10之熱射線遮蔽透明樹脂 71.⑽時之日射穿透率如表1所示,可見光穿透率 率為37. 1%,霧值為丨.5%。 200922983 ψ ./%. 〔ϊ <〕 ό學特性 霧值 /-N r ( 1—Η T—K οα 〇 ^-H 卜 CN1 LO r- 1 LO τ-Η LO 曰射穿 透率 0 oo 寸 卜 〇6 卜 CO τ—Η oo CO 1—Η r—Η 〇J CO C<1 CO 00 ¢3^ CO CO OO CO 可見光穿 透率 0 T—< l—H CO 1—Η τ—< c^a LO 1—H L〇 § LO s LO LO CO r—Η 卜 ism 成形體之 厚度 (mm) CD CV3 <3> CD οα CD οα C25 r-H 〇 (M oa CM 微粒子濃 度 (wt°/〇) 0. 03 CO cz> s CZ5 s 0* S CD 〇 1 H S CD S 0 S C3> 母粒組成 分散劑 重量比 1 (*/*) 寸 寸 寸 寸 寸 LO C3’ 寸 種類 微粒子 濃度 (wt%) oa 03 C<1 οα oo oa (N1 oa oa CV3 種類 Wl8〇49 Wl8〇49 CS0.3WO3 Cs〇. 3WO3 Cso. 3WO3 1 Cso. 3WO3 Cso. 3ΨΟ3 Cso. 3WO3 CS0.3WO3 Cso. 3WO3 熱可塑性樹脂 聚碳酸酯 聚碳酸酯 聚碳酸酯 丙稀酸 聚對苯二曱基乙二酯 乙稀-四氟乙稀樹脂 聚乙烯 聚碳酸酯 聚碳酸酯 聚碳酸酯 實施例1 實施例2 實施例3 實施例4 實施例5 ] 實施例6 1實施例7 1 實施例8 1實施例9 Ί 實施例10 。(#«tos 骤 W6MS3 嘁606/(»|»|«运夥>£/嘁;0)羿«(*/关),缶械In addition to the thermoplastic resin, the L-diester is prepared in the same manner as the second embodiment of the composite heat-ray-shielding transparent tree of the seventh embodiment; the high-resistance of the body is used to block the transparent radiation. :=(: hereinafter referred to as masterbatch F) 'regain, ^ ^ . ^曰formed body. The heat ray shielding transparent granules of the emulsified fine particles in the heat ray-shielding transparent resin molded body were 9 〇, and the visible light transmittance as shown in the measurement example 7; the optical characteristics of the forming = the results are as shown in Table 1. It is 15%. Moreover, the sputtering transmittance at 35% was 33.2%, and the fogged vinyl resin itself showed 15% of the higher value. However, this polymerization [Example 8] was caused by turbidity, not fog value. high. 29 200922983 "The weight ratio of the heat-resistant chemical agent to the composite tungsten oxide fine particles [high heat-resistant dispersant / composite crane oxide fine particles] is adjusted to 〇. The composite heat of μ 8 is used to cover the transparent heat-resistant masterbatch for the lip-shaped molded body (hereinafter referred to as the mother-made dry heat-resistant molded resin body. The dispersed particle diameter of the oxide fine particles is wind: the light of the heat ray shielding transparent resin molded body of Example 8 is used, and the transmittance is t: as shown in Table 1, 'visible light transmittance is 7〇.5 The % penetration rate was 36.9%, and the haze value was i 9%. [Example 9] Two:: Methyl-trimethoxy-decane was added, and the mixture was stirred by a mechanical stirrer. After 1 hour, the ruthenium was used to remove the toluene by the use of hydrazine, and the surface treatment was carried out with the oxalate compound (hereinafter referred to as the granule C). The same procedure as in Example 3 was carried out to prepare a high heat resistance in the case of Example 9 = masking transparent resin molding. The mother = ί masterbatch H) and the heat ray shielding transparent resin are referred to as the dispersion of the oxide microparticles in the resin molded body. 遮蔽 遮蔽 透明 透明 透明 透明 测定 测定 测定 测定 测定 0 0 0 0 0 0 0 0 0 0 0 0 0 0 The spectroscopy results, such as the table = ray-shielded transparent tree wax shaped body, the optical transmittance is 72.5% of the visible light penetration rate of the day of the penetrating of the horse. 1% 'haze value of 1. 5%. Example 1 〇] In the same manner as in Example 3, except that a highly heat-resistant dispersing agent 10,000 (the heat of the bismuth agent TM Α) was used as a high heat-resistant dispersing agent, it was prepared and carried out in the same manner as in Example 3. In the composite heat ray shielding transparent resin molded article of Example 10, the high-resistance masterbatch (hereinafter referred to as masterbatch) and the heat ray-shielding transparent resin are formed in the +2-ray-shielding transparent resin molded body. The particle size of the sub-government is 75 nm. The optical properties of each of the formed bodies are measured, and the heat radiation shielding transparent resin of Example 10 is shown in Table 1. The visible light transmittance is 37. 1%, the fog value is 丨.5%. 200922983 ψ ./%. 〔ϊ <〕 dropout characteristics /-N r ( 1—Η T—K οα 〇^-H 卜 CN1 LO r- 1 LO τ-Η LO 穿透 穿透 0 0 — — — — — — — — Η 〇J CO C<1 CO 00 ¢3^ CO CO OO CO Visible light transmittance 0 T—< l—H CO 1—Η τ—< c^a LO 1—HL〇§ LO s LO LO CO r—Η ism ism thickness of the formed body (mm) CD CV3 <3> CD οα CD οα C25 rH 〇 (M oa CM microparticle concentration (wt°/〇) 0. 03 CO cz> s CZ5 s 0* S CD 〇1 HS CD S 0 S C3> Masterbatch composition dispersant weight ratio 1 (*/*) inch inch inch inch LO C3' inch type particle concentration (wt%) oa 03 C<1 οα oo oa (N1 oa oa CV3 type Wl8〇49 Wl8〇49 CS0.3WO3 Cs〇. 3WO3 Cso. 3WO3 1 Cso. 3WO3 Cso. 3ΨΟ3 Cso. 3WO3 CS0.3WO3 Cso. 3WO3 Thermoplastic Resin Polycarbonate Polycarbonate Polycarbonate Poly(p-phenylene) Diethylene glycol diester ethylene-tetrafluoroethylene resin polyethylene polycarbonate polycarbonate polycarbonate Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 1 Example 7 1 Example 8 1 Example 9 实施 Example 10. (#«tos step W6MS3 嘁606/(»|»|«运伙>£/嘁;0)羿«(*/关), mechanical

Gos ^ ..Gol^sss ^ .· d^ .. i =s 200922983 [比較例1] f 除了使用-般之分散劑7(具有胺基作為官能基之聚喊 系分散劑,以TG—騎測定之熱分解溫度為2UTC)以外, ί實施例3同樣地進行而調製成比較例1之複合熱射線遮 敝透明樹脂成形體用之高耐熱性母粒(以下簡稱為母粒^ 與熱射線遮蔽透明樹脂成形體。熱射線遮蔽it㈣脂^彡 體中之該氧化物微粒子的分散粒徑為78nm。經測定比較 例1之熱射線遮蔽透明樹脂成形體之光學特性,結果係如 表2所示,可見光穿透率55.6%時之日射穿透率為341%, 務值為1 · 8%。可見光穿透率變低,無法得到複合鎢氧化 2微粒子原有之熱射線遮蔽特性。再者,由於使用了不具 南耐熱性之分散劑,故該分散劑在熔融混練時發生熱分 解,所得之熱射線遮蔽樹脂成形體著色為褐色,而無法得 到複合鶴氧化物微粒子原有的色調。 [比較例2] 除了將高耐熱性分散劑與複合鎢氧化物微粒子之重量 f•比[高耐熱性分散劑/複合鎢氧化物微粒子]調整為〇. 4以 外’與實施例3同樣地進行而得到比較例2之複合熱射線 遮蔽透明樹脂成形體用之高耐熱性母粒(以下簡稱為母粒 K)與熱射線遮蔽透明樹脂成形體。熱射線遮蔽透明樹脂成 形體中之該氧化物微粒子的分散粒徑為300〜500nm,該氧 化物微粒子呈凝集。經測定比較例2之熱射線遮蔽透明樹 月曰成开> 體之光學特性,結果係如表2所示,可見光穿透率 78· 5%時之日射穿透率為65. 9%,霧值為16. 7%。此可認為 33 200922983 「係二為 =熱性分散劑與複合鶴氧化物微粒子之㈣ 散劑/複合鎢氧化物微粒子]4 0.4,分散劑 之里不足,故鎢氧化物微粒子盔 發生凝集,而益法得到充八夕粒子彼此 而有損聚碳酸醋樹脂本身的透明性。 務值方“ [比較例3 ] 除了將南耐熱性分散劑與複合鶴氧化物微粒子之重詈 =[向财熱性分散劑/複合鶴氧化物微粒子]調整為^以 f外,與實施例2同樣地進行而得到比較例3之 ==形體用之高耐熱性母粒(以下簡稱 L卜熱射線遮蔽透明樹脂成形體。熱射線遮蔽透明樹脂成 形體中之該氧化物微粒子的分散粒徑為79抓。經測定比 較例3之熱射線遮蔽透明樹脂成形體之光學特性,社果係 如表2所示,可見光穿透率72 7%時之日射穿透°為 49. 〇%’霧值為L4%,但因為高耐熱性分散劑與複合鶴氧 化物微粒子之重量比[高耐熱性分散劑/複合鎢氧化物微 L粒子]為U,分散劑之量過剩,故所得之熱射線遮蔽透明 樹脂成形體之表面強度顯著降低,以指曱到擦即容易造成 損傷,可知已損及聚碳酸酯樹脂原有的機械強度。& 34 200922983 〔2<〕 光學特性 1 霧值 S oo 16.7 〇 «Ifriil w\ rO m Τ0Γ V ^ CO 曰射穿透率 0 CO 05 LO CO CT5 寸 可見光穿透率 S CD L〇 L〇 78.5 卜 C^" 透明樹脂成形體 成形體之厚度 'Nw/ oi C=5 cvi 1 1 <=> 微粒子濃度 (wt%) 0.05 S o" CD CD* 母粒組成 分散劑 重量比 (*/*) ci τ—Η y "Η 種類 0 〇〇 /-N Φ㈣ ttftlil η»η tO m fflF «\νφ 's·^ P 微粒子 濃度 1 (wt%) 1 οα CM 種類 1 Cs〇.3w〇3 1 | Cso. 3WO3 j ff.8〇49 熱可塑性樹脂 聚碳酸酯 聚碳酸酯 聚碳酸酯 比較例1 1 1比較例21 比較例3 -fi- (posz嫦制朗珑癍令二#癯令喊韶裝肊w^韶恤嫦毋4澈杷*: s)Gos ^ ..Gol^sss ^ .· d^ .. i =s 200922983 [Comparative Example 1] f In addition to the use of a general dispersant 7 (a polydisperse dispersant having an amine group as a functional group, TG-riding The high heat-resistant masterbatch for the composite heat ray concealing transparent resin molded article of Comparative Example 1 (hereinafter referred to as masterbatch and heat ray) was prepared in the same manner as in Example 3 except that the thermal decomposition temperature of the measurement was 2 UT. The transparent resin molded body was shielded, and the dispersed particle diameter of the oxide fine particles in the heat ray shielding of the (four) lipid was 78 nm. The optical characteristics of the heat ray shielding transparent resin molded body of Comparative Example 1 were measured, and the results are shown in Table 2. It shows that the solar radiation transmittance is 341% when the visible light transmittance is 55.6%, and the duty value is 1 · 8%. The visible light transmittance is low, and the original heat ray shielding characteristics of the composite tungsten oxide 2 microparticles cannot be obtained. Since the dispersant having no south heat resistance is used, the dispersant is thermally decomposed during melt-kneading, and the obtained heat ray-shielding resin molded body is colored brown, and the original color tone of the composite crane oxide fine particles cannot be obtained. Comparative Example 2] except that high heat resistance The composite heat ray shielding of Comparative Example 2 was carried out in the same manner as in Example 3 except that the weight ratio of the dispersing agent to the composite tungsten oxide fine particles was adjusted to [high heat-resistant dispersing agent/composite tungsten oxide fine particles]. a high heat resistant mother particle for a transparent resin molded body (hereinafter referred to as a mother particle K) and a heat ray shielding transparent resin molded body. The dispersed particle diameter of the oxide fine particles in the heat ray shielding transparent resin molded body is 300 to 500 nm. The oxide fine particles were agglomerated. The optical characteristics of the transparent ray-blocking transparent tree of the comparative example 2 were measured, and the results were as shown in Table 2, and the penetration of the visible light was 78.5%. The ratio is 65.9%, and the haze value is 16.7%. This can be considered as 33 200922983 "System 2 is = thermal dispersant and composite crane oxide microparticles (4) powder / composite tungsten oxide microparticles] 4 0.4, dispersant Insufficient, so the tungsten oxide micro-mirror is agglomerated, and the method of obtaining the octagonal particles to each other is detrimental to the transparency of the polycarbonate resin itself. [Comparative Example 3] In addition to the South heat-resistant dispersant Compound crane oxidation In the same manner as in Example 2, the weight of the fine particles = [to the heat-dissipating agent/composite crane oxide fine particles] was adjusted to be the same as in Example 2, and the high heat-resistant masterbatch for the shape of the comparative example 3 was obtained (below) The heat ray shielding transparent resin molded body is abbreviated as follows. The dispersed particle diameter of the oxide fine particles in the heat ray shielding transparent resin molded body is 79. The optical characteristics of the heat ray shielding transparent resin molded body of Comparative Example 3 were measured. As shown in Table 2, the solar penetration rate at a visible light transmittance of 72 7% is 49. 〇%' fog value is L4%, but because of the weight ratio of the high heat-resistant dispersant to the composite crane oxide particles [ The high heat-resistant dispersant/composite tungsten oxide micro-L particles] is U, and the amount of the dispersant is excessive. Therefore, the surface strength of the obtained heat ray-shielding transparent resin molded body is remarkably lowered, and it is easy to cause damage by rubbing to the rubbing. The original mechanical strength of the polycarbonate resin has been compromised. & 34 200922983 [2<] Optical characteristics 1 Haze value S oo 16.7 〇«Ifriil w\ rO m Τ0Γ V ^ CO 穿透 transmittance 0 CO 05 LO CO CT5 inch visible light transmittance S CD L〇L〇78.5卜C^" Thickness of the transparent resin molded body molded body 'Nw/ oi C=5 cvi 1 1 <=> Microparticle concentration (wt%) 0.05 S o" CD CD* Masterbatch composition dispersant weight ratio (* /*) ci τ—Η y "Η Type 0 〇〇/-N Φ(4) ttftlil η»η tO m fflF «\νφ 's·^ P Microparticle concentration 1 (wt%) 1 οα CM Type 1 Cs〇.3w 〇3 1 | Cso. 3WO3 j ff.8〇49 Thermoplastic resin polycarbonate polycarbonate polycarbonate Comparative Example 1 1 1 Comparative Example 21 Comparative Example 3 -fi- (posz嫦制珑癍珑癍二#癯Make shouting 肊 w^ 韶 嫦毋 4 杷 杷*: s)

Claims (1)

200922983 十、申請專利範圍: 1.-種高耐熱性母粒’係使用於製造熱射線遮蔽透明樹 脂成形體者,其特徵為,含有:熱可塑性樹脂;以一般式 W0x(/、中,2.45SXS2.999)所示之鶴氧化物微粒子及/或 以一般式 Μ〇ζ(其中,o.hY^o.5,2 hZ^3〇)所表 不且具有六方晶結晶構造之複合鎢氧化物微粒子;與熱分 解溫度為23(TC以上之高耐熱性分散劑;而且為1〇^ [高 ,耐熱性分散劑之重量/(鎢氧化物微粒子及/或複合鎢氧化 、物微粒子之重量)]2〇.5之範圍。 2·如申請專利範圍第丨項之高耐熱性母粒,其中,上述 同耐熱性分散劑係具有丙烯酸系主鏈、與 3:如申請專利範圍第丨或2項之高耐熱性; 上述複合鎢氧化物微粒子中所含之M元素,係選自、 仙、K、Π、In、Ba、Li、Ca、Sr、Fe、%、M、Cu 之至 少1種以上。 η 4.如申請專利範圍第1至3項中任一項之高耐熱性母 赤'、中上述熱可塑性樹脂係選自丙烯酸系樹脂、聚碳 齩S曰樹知、聚苯乙烯樹脂、聚醚颯樹脂、氟系樹脂、聚烯 烴樹脂及聚酯樹脂之至少1種以上。 、5.:申凊專利範圍$ 1至4項中任-項之高耐熱性母 粒,其中,上述鎢氧化物微粒子、複合鎢氧化物微粒子係 分散粒徑200nm以下之微粒子。 、6. 士申。月專利範圍第1至5項中任一項之高耐熱性母 粒,其中,上述鎢氧化物微粒子、複合鎢氧化物微粒子係 36 200922983 藉由選自錢化合物、鈦化合物、錄化合物之至少工種以 上之化合物進行表面處理。 7.:種熱射線遮蔽透明樹脂成形體,其特徵為,使申請 專利範圍第1至6項中任—項之高对熱性母粒,及與該高 耐熱性母粒所含之熱可塑性樹脂為同種之熱可塑性樹 脂、或與該高耐熱性母粒所含之熱可塑性樹脂具有相溶性 之不同種之熱可塑性樹脂混合,且成形為既定形狀。’ 8·—種熱射線遮蔽透明層合體,其特徵為 y 。 {範圍第7項之熱射線遮蔽透明樹脂成形辨使申請專利 明成形體上。 _層合於其他透 37 200922983 七、指定代表圖: (一) 本案指定代表圖為:無 (二) 本代表圖之元件符號簡單說明: 無 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:200922983 X. Patent application scope: 1.-High heat-resistant masterbatch' is used in the manufacture of heat-ray shielding transparent resin molded body, which is characterized by containing: thermoplastic resin; with general formula W0x (/, medium, 2.45) The composite oxide tungsten oxide represented by SXS2.999) and/or the composite tungsten oxide represented by the general formula (where o.hY^o.5, 2 hZ^3〇) and having a hexagonal crystal structure Microparticles; and thermal decomposition temperature of 23 (high heat resistance dispersant of TC or higher; and 1 〇 ^ [high, weight of heat-resistant dispersant / (tungsten oxide microparticles and / or composite tungsten oxidation, weight of microparticles The range of 2〇.5. 2. The high heat resistant masterbatch according to the scope of the patent application, wherein the heat resistant dispersant has an acrylic backbone, and 3: as claimed in the scope of the patent or High heat resistance of two items; the M element contained in the composite tungsten oxide fine particles is at least one selected from the group consisting of: sin, K, yttrium, In, Ba, Li, Ca, Sr, Fe, %, M, and Cu η 4. The high heat resistance of the parent red, as described in any one of claims 1 to 3, The plastic resin is selected from at least one selected from the group consisting of an acrylic resin, a polycarbohydrate, a polystyrene resin, a polyether oxime resin, a fluorine resin, a polyolefin resin, and a polyester resin. The high heat resistant masterbatch of any one of the above-mentioned items, wherein the tungsten oxide fine particles and the composite tungsten oxide fine particles are dispersed in the fine particles having a particle diameter of 200 nm or less. 6. The patent range of the patent. The high heat resistant masterbatch according to any one of items 1 to 5, wherein the tungsten oxide fine particles and the composite tungsten oxide fine particle system 36 200922983 are carried out by a compound selected from the group consisting of a money compound, a titanium compound, and a recorded compound. 7. Surface treatment. The heat-ray-shielding transparent resin molded body is characterized in that the high-heat masterbatch of any one of the claims 1 to 6 and the high heat-resistant masterbatch are included. The thermoplastic resin is a thermoplastic resin of the same kind or a thermoplastic resin having a compatibility with a thermoplastic resin contained in the high heat resistant mother particle, and is molded into a predetermined shape. The heat ray shielding transparent laminate is characterized by y. {The heat ray shielding transparent resin forming of the seventh item of the scope is determined by applying the patent to the molded body. _Laminating to other penetrations 37 200922983 VII. Designation of representative drawings: (1) The representative representative figure of this case is: None (2) The symbolic symbol of the representative figure is simple: No. 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW96143368A 2006-07-25 2007-11-16 High heat resistance masterbatch, heat ray shielded transparent resin molded body and heat ray shielded transparent laminate TWI401284B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006202525A JP4632094B2 (en) 2006-07-25 2006-07-25 Manufacturing method of high heat-resistant masterbatch, heat ray shielding transparent resin molding, and heat ray shielding transparent laminate

Publications (2)

Publication Number Publication Date
TW200922983A true TW200922983A (en) 2009-06-01
TWI401284B TWI401284B (en) 2013-07-11

Family

ID=39115874

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96143368A TWI401284B (en) 2006-07-25 2007-11-16 High heat resistance masterbatch, heat ray shielded transparent resin molded body and heat ray shielded transparent laminate

Country Status (2)

Country Link
JP (1) JP4632094B2 (en)
TW (1) TWI401284B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510578B (en) * 2010-05-10 2015-12-01 Bayer Materialscience Ag Polymer composition having heat-absorbing properties and improved colour properties
CN111344375A (en) * 2017-11-14 2020-06-26 住友金属矿山株式会社 Infrared absorber
CN112513176A (en) * 2018-07-31 2021-03-16 三菱化学株式会社 Resin molded body, heat ray shielding plate, ceiling material, and window material
TWI840589B (en) 2019-07-23 2024-05-01 日商住友金屬礦山股份有限公司 Printing ink and method for producing the same

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2925060B1 (en) * 2007-12-13 2012-12-21 Essilor Int PROCESS FOR PREPARING TRANSPARENT POLYMER MATERIAL COMPRISING THERMOPLASTIC POLYCARBONATE AND MINERAL NANOPARTICLES
JPWO2010055570A1 (en) * 2008-11-13 2012-04-05 住友金属鉱山株式会社 Infrared shielding fine particles, method for producing the same, infrared shielding fine particle dispersion using the same, and infrared shielding base material
WO2010085472A1 (en) * 2009-01-20 2010-07-29 Ppg Industries Ohio, Inc. Transparent, colorless infrared radiation absorbing compositions comprising non-stoichiometric tungsten oxide nanoparticles
JP5898397B2 (en) * 2009-07-24 2016-04-06 住友金属鉱山株式会社 Near-infrared shielding polyester resin composition, near-infrared shielding polyester resin laminate, molded article and method for producing the same
DE102009058200A1 (en) 2009-12-15 2011-06-16 Bayer Materialscience Ag Polymer composition with heat-absorbing properties and high stability
ITRM20100225A1 (en) 2010-05-10 2011-11-10 Bayer Materialscience Ag COMPOSITION OF POLYMERS WITH HEAT-ABSORPTION CHARACTERISTICS AND IMPROVED COLOR CHARACTERISTICS.
ITRM20100226A1 (en) 2010-05-10 2011-11-10 Bayer Materialscience Ag STABILIZING COMPOSITIONS.
ITRM20100227A1 (en) 2010-05-10 2011-11-10 Bayer Materialscience Ag POLYMER COMPOSITION WITH HIGH STABILITY HEAT ABSORPTION CHARACTERISTICS.
JP5423636B2 (en) * 2010-10-04 2014-02-19 住友金属鉱山株式会社 Manufacturing method of composite tungsten oxide fine particle-dispersed polycarbonate resin masterbatch, composite tungsten oxide fine particle-dispersed polycarbonate resin masterbatch obtained by the manufacturing method of the masterbatch, and molded body and laminate obtained using the masterbatch body
AU2012324995C1 (en) 2011-10-18 2016-12-15 Covestro Deutschland Ag Polymer composition with heat-absorbing properties
JP5942466B2 (en) * 2012-02-22 2016-06-29 住友金属鉱山株式会社 Composite tungsten oxide fine particle dispersed polycarbonate resin composition, heat ray shielding molded article and heat ray shielding laminate using the same
JP5888053B2 (en) * 2012-03-28 2016-03-16 住友金属鉱山株式会社 Heat ray shielding film, heat ray shielding laminated transparent base material, and automobile on which the heat ray shielding laminated transparent base material is mounted as a window material
US9870842B2 (en) 2013-06-12 2018-01-16 Ppg Industries Ohio, Inc. Rapidly curable electrically conductive clear coatings
TWI503346B (en) * 2014-06-11 2015-10-11 Zirco Applied Materials Co Ltd A near infrared light shielding film, and a method of producing the near infrared light shielding
GB201418604D0 (en) * 2014-10-20 2014-12-03 Colorant Chromatics Ag Polymeric materials
JP6511918B2 (en) * 2015-03-31 2019-05-15 東レ株式会社 Laminated film
JP6904262B2 (en) 2016-01-28 2021-07-21 住友金属鉱山株式会社 Polycarbonate resin composition, heat ray shielding molded body and heat ray shielding laminated body
WO2018122142A1 (en) 2016-12-28 2018-07-05 Covestro Deutschland Ag Additive fabrication process with a structural material comprising an ir absorber
US11787949B2 (en) * 2017-07-24 2023-10-17 Sumitomo Metal Mining Co., Ltd. Infrared absorbing fine particle dispersed powder, dispersion liquid containing infrared absorbing fine particle dispersed powder, ink containing infrared absorbing fine particle dispersed powder, and anti-counterfeit ink, and anti-counterfeit printed matter
JP7183200B2 (en) 2018-02-15 2022-12-05 共同印刷株式会社 Infrared absorbing resin composition and molded article and fiber containing the same
WO2020129919A1 (en) * 2018-12-18 2020-06-25 住友金属鉱山株式会社 Organic-inorganic hybrid infrared beam absorbing particle production method and organic-inorganic hybrid infrared beam absorbing particle
CN109912990A (en) * 2019-03-29 2019-06-21 台州见龙科技有限公司 Color masterbatch is used in a kind of ETFE coloring
JP7371376B2 (en) * 2019-07-23 2023-10-31 住友金属鉱山株式会社 Composition containing infrared absorbing fine particles and method for producing the same
US20230075446A1 (en) 2020-03-31 2023-03-09 Kyodo Printing Co., Ltd. Infrared-absorbent resin composition and infrared-absorbent fiber

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2518492B2 (en) * 1992-08-11 1996-07-24 株式会社日本触媒 Binder for manufacturing inorganic sintered body
JP2001139381A (en) * 1999-11-08 2001-05-22 Mitsui Chemicals Inc Ceramic caking agent
JP4349779B2 (en) * 2002-07-31 2009-10-21 住友金属鉱山株式会社 Heat ray shielding transparent resin molding and heat ray shielding transparent laminate
US8083847B2 (en) * 2003-10-20 2011-12-27 Sumitomo Metal Mining Co., Ltd. Fine particle dispersion of infrared-shielding material, infrared-shielding body, and production method of fine particles of infrared-shielding material and fine particles of infrared-shielding material
WO2005087680A1 (en) * 2004-03-16 2005-09-22 Sumitomo Metal Mining Co., Ltd. Sun screening laminated structure
JP4355945B2 (en) * 2004-11-08 2009-11-04 住友金属鉱山株式会社 Near-infrared absorbing fiber and fiber product using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510578B (en) * 2010-05-10 2015-12-01 Bayer Materialscience Ag Polymer composition having heat-absorbing properties and improved colour properties
CN111344375A (en) * 2017-11-14 2020-06-26 住友金属矿山株式会社 Infrared absorber
CN111344375B (en) * 2017-11-14 2023-03-24 住友金属矿山株式会社 Infrared absorber
CN112513176A (en) * 2018-07-31 2021-03-16 三菱化学株式会社 Resin molded body, heat ray shielding plate, ceiling material, and window material
CN112513176B (en) * 2018-07-31 2023-07-07 三菱化学株式会社 Resin molded body, heat ray shielding plate, ceiling material, and window material
TWI840589B (en) 2019-07-23 2024-05-01 日商住友金屬礦山股份有限公司 Printing ink and method for producing the same

Also Published As

Publication number Publication date
JP4632094B2 (en) 2011-02-16
TWI401284B (en) 2013-07-11
JP2008024902A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
TW200922983A (en) Highly heat-resistant masterbatch, heat ray-shielding transparent resin molding, and heat ray-shielding transparent laminate
JP5257626B2 (en) High heat resistant masterbatch, heat ray shielding transparent resin molding, and heat ray shielding transparent laminate
KR101320228B1 (en) Masterbatch with high heat resistance, heat-ray-shielding transparent molded resin, and heat-ray-shielding transparent layered product
KR101507186B1 (en) Composition for producing vinyl chloride film for shielding heat ray, method for production of the composition, and vinyl chloride film for shielding heat ray
JP4349779B2 (en) Heat ray shielding transparent resin molding and heat ray shielding transparent laminate
JP4655105B2 (en) Ultraviolet light shielding transparent resin molding and method for producing the same
JP3982466B2 (en) Heat ray shielding component dispersion, method for producing the same, heat ray shielding film forming coating solution, heat ray shielding film and heat ray shielding resin molding obtained by using this dispersion
JP4998781B2 (en) UV / NIR light shielding dispersion for windows and UV / NIR light shielding for windows
JP5942466B2 (en) Composite tungsten oxide fine particle dispersed polycarbonate resin composition, heat ray shielding molded article and heat ray shielding laminate using the same
JP5050470B2 (en) Solar radiation shielding dispersion, solar radiation shielding body, and manufacturing method thereof
JP2006077075A (en) Resin composition, transparent molded resin article for ultraviolet-shielding and transparent resin laminate for ultraviolet-shielding
JP2012082326A (en) Master batch containing high heat-resistant heat ray shielding component, production method of the master batch, high heat-resistant heat ray shielding transparent resin molded article, and high heat-resistant heat ray shielding transparent laminate
JP5898397B2 (en) Near-infrared shielding polyester resin composition, near-infrared shielding polyester resin laminate, molded article and method for producing the same
JP5423636B2 (en) Manufacturing method of composite tungsten oxide fine particle-dispersed polycarbonate resin masterbatch, composite tungsten oxide fine particle-dispersed polycarbonate resin masterbatch obtained by the manufacturing method of the masterbatch, and molded body and laminate obtained using the masterbatch body
JP5257381B2 (en) Near-infrared shielding polyester resin composition, molded article thereof, and laminate thereof
JP6949304B2 (en) Masterbatch containing heat ray absorbing component and its manufacturing method, heat ray absorbing transparent resin molded body, and heat ray absorbing transparent laminate
JP5061665B2 (en) Masterbatch, method for producing the same, molded body using the masterbatch, and laminate using the molded body
JP2009235303A (en) Antimony-doped tin oxide fine particles dispersion for addition to polycarbonate resin, its manufacturing method, and antimony-doped tin oxide dispersed polycarbonate resin molded product
JP2009144037A (en) Tungsten oxide microparticle dispersion for addition to resin, molded product of tungsten oxide microparticle-dispersed vinyl chloride resin, and method for producing molded product of tungsten oxide microparticle-dispersed vinyl chloride resin
JP2000351904A (en) Heat ray-shielding glazing material and holding thereof