TW200922529A - Artificial implant with voids on surface thereof and method for producing the same - Google Patents

Artificial implant with voids on surface thereof and method for producing the same Download PDF

Info

Publication number
TW200922529A
TW200922529A TW96145703A TW96145703A TW200922529A TW 200922529 A TW200922529 A TW 200922529A TW 96145703 A TW96145703 A TW 96145703A TW 96145703 A TW96145703 A TW 96145703A TW 200922529 A TW200922529 A TW 200922529A
Authority
TW
Taiwan
Prior art keywords
implant
cathode
temperature
treatment
plating solution
Prior art date
Application number
TW96145703A
Other languages
Chinese (zh)
Inventor
hong-jun Zheng
Original Assignee
Hung Chun Technology In
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hung Chun Technology In filed Critical Hung Chun Technology In
Priority to TW96145703A priority Critical patent/TW200922529A/en
Publication of TW200922529A publication Critical patent/TW200922529A/en

Links

Landscapes

  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The present invention provides an artificial implant with voids on the surface thereof. The surface of implant at least partially includes a porous structure, which is characterized that the porous structure substantially is a titanium oxide film nano and/or micro void structure. Furthermore, the void structure at least partially includes voids substantially in size of 10 nanometers to 10 micrometers. The thickness of titanium oxide film is 0.1 to 1 micrometer. The present invention also includes a method of forming a titanium oxide film nano and/or micro void structure on the surface of artificial implant.

Description

200922529 九、發明說明: 【發明所屬之技術領域^ 本發明係有關一種表面具有孔洞之人工植ϋ,及使植 體表面氣成孔洞結構的方法;尤指-種表面具有氧化鈦薄 膜奈米及/或微米孔洞結構之人工植體,及使植體表面形成 氧化鈦薄膜奈米及/或微米孔洞結構的方法。 【先前技術】 鈦金屬對人體的生物相容性(Bi〇c⑽patibiUty)有很 回的評價,很適合為人體的植體。TW_491714(申請案號 88121518,同案在美國專利案號為us—6, 485, 521 )教示: 使鈦金屬表面具有孔洞之人工植體及其製造方法,但該發 明表面孔洞之孔口大小為丨〇至8〇〇微米,雖然具有使骨 細胞在表面孔洞增殖的功能,但對細胞初始的攀附行為、 增殖及分化能力仍顯不足,且依該方法製成的植體,也無 法有效提高抗菌能力、降低免疫反應及避免微生物感染。 發明人經長期研究,發現若使鈦金屬植體表面的多孔 結構,其孔洞大小為10奈米至10微米,且該多孔結構為 氧化鈦薄膜奈米及/或微米孔洞結構,即可大幅提升細胞初 始的攀附行為、增殖及分化能力’並能有效提高抗菌能力、 降低免疫反應及避免微生物感染。 【發明内容】 本發明之一目的在提供一種可大幅提升細胞初始攀附 行為、增殖及分化能力,且表面具有孔洞的人工植體。 本發明之另一目的在提供一種可有效提高抗菌能力及 5 200922529 避免微生物感染,且表面具有孔洞的人工植體。 本發明之又-目的在提供一種可降低免疫反應且表面 具有孔洞的人工植體。 本鉍明之再一目的在提供一種具有錨定功效且表面具 有孔洞的人工植體。 本發明之又一目的在提供一種表面具有1〇奈米至1〇 微米孔洞結構的人工植體。 本發明之再一目的在提供一種表面具有氧化鈦薄膜奈 米及/或微米孔洞結構的人工植體。 本發明之又一目的在提供—種使人工植體表面具有】〇 奈米至1 〇微米孔洞結構的方法。 本發明之再一目的在提供一種使人工植體表面具有氧 化鈦薄膜奈米及/或微米孔洞結構的方法。 本發明之又一目的在提供一種藉由表面改質,使人工 植體大幅提升細胞初始攀附行為、增殖及分化能力的方 法。 本發明之再一目的在提供一種藉由表面改質,使人工 植體有效提高抗菌能力及避免微生物感染的方法。 本發明之再一目的在提供一種藉由表面改質,使人工 植體降低免疫反應的方法。 本發明之再一目的在提供—種藉由表面改質,使人工 植體具有錫定功效的方法。 本發明之又一目的在提供一種容易控制的人工植體表 面改質方法。 6 200922529 月係各一種表面具有孔洞之人工 面至少部分且右夕, 植胆,该植體表 有夕孔結構,其特徵在. 為氧化敍,¾胺w夕孔結構實質上 氧鈦4娱孔洞結構,且該孔洞結構至少邱八,, 實質上為]〇太毕$ 7Λ 傅至少。卩分孔洞大小 μ +不赤至10微米,氧化鈦膜厚為(JJ至^ 述人工植體適用於骨科及/或牙 /、 科。 卞尤其適用於牙200922529 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to an artificial vegetable tanned surface having a hole on the surface, and a method for forming a pore structure on the surface of the implant; in particular, the surface has a titanium oxide film and / or micro-porous structure of the artificial implant, and a method of forming a titanium oxide film nano and/or micron pore structure on the surface of the implant. [Prior Art] Titanium has a very good evaluation of the biocompatibility (Bi〇c(10) patibiUty) of the human body, and is very suitable for human body implants. TW_491714 (Application No. 88114518, the same in U.S. Patent No. 6, 485, 521) teaches: an artificial implant having a hole in a titanium metal surface and a manufacturing method thereof, but the size of the opening of the surface hole of the invention is丨〇 to 8 〇〇 micron, although it has the function of proliferating bone cells in the surface pores, but the initial climbing behavior, proliferation and differentiation ability of the cells is still insufficient, and the implants made according to this method can not effectively improve Antibacterial ability, reduce immune response and avoid microbial infection. After long-term research, the inventors found that if the porous structure of the surface of the titanium metal implant has a pore size of 10 nm to 10 μm, and the porous structure is a titanium oxide film nanometer and/or a micron pore structure, it can be greatly improved. The initial adherence behavior, proliferation and differentiation ability of the cells can effectively improve the antibacterial ability, reduce the immune response and avoid microbial infection. SUMMARY OF THE INVENTION One object of the present invention is to provide an artificial implant which can greatly enhance the initial climbing behavior, proliferation and differentiation of cells, and has pores on the surface. Another object of the present invention is to provide an artificial implant which is effective in improving the antibacterial ability and which avoids microbial infection and which has pores on the surface. Still another object of the present invention is to provide an artificial implant which can reduce an immune response and has pores on its surface. A further object of the present invention is to provide an artificial implant having anchoring effect and having a hole in its surface. It is still another object of the present invention to provide an artificial implant having a pore structure of 1 〇 nanometer to 1 微米 micrometer on its surface. A further object of the present invention is to provide an artificial implant having a titanium oxide film nano- and/or micro-hole structure on its surface. A further object of the present invention is to provide a method for imparting a pore structure of from 〇 nanometer to 1 〇 micron on the surface of an artificial implant. A further object of the present invention is to provide a method for imparting a titanium oxide film nano- and/or micro-hole structure to the surface of an artificial implant. It is still another object of the present invention to provide a method for artificially increasing the initial climbing behavior, proliferation and differentiation of an artificial plant by surface modification. Still another object of the present invention is to provide a method for artificially improving the antibacterial ability and preventing microbial infection by surface modification by surface modification. A further object of the present invention is to provide a method for reducing the immune response of an artificial implant by surface modification. A further object of the present invention is to provide a method for imparting a tinning effect to an artificial implant by surface modification. It is still another object of the present invention to provide an easily controlled artificial implant surface modification method. 6 200922529 Each type of artificial surface with a hole on the surface is at least partially and right-handed, planted with gallbladder. The implant has a crater structure, which is characterized by oxidized sulphur, 3⁄4 amine w 孔 pore structure is substantially oxy titanium The structure of the hole, and the structure of the hole is at least Qiu, and is essentially at least 〇 毕 $ $ $ Λ 傅 傅. The pore size of the pores is μ + not red to 10 microns, and the thickness of the titanium oxide film is (JJ to ^ artificial implants are suitable for orthopedics and / or teeth /, family. 卞 especially suitable for teeth

上述所謂該植體表面至少部分具有多孔結 植粗表面形成氧化鈦薄膜,該氧化鈦薄膜可以Τ10表W 其h之值為〗·〇至2.0(即至少一半 :表不, 至2 0发h y土 / 取1ι(^2〉專膜)’以15 為較佳(即至少75%形成Τι〇2薄膜),以 佳(即至少90%形成Tl〇2薄膜)。 為更 上述微孔洞結構的孔洞大小 佳,u in太L '丁…卡至1〇微米為較 以10奈米至1微米為更佳, 最佳。 以10奈米至100奈米為 本發明使人工植體表面形成氣 风軋化鈦溥馭奈米及/或微米 孔洞結構的方法,其包括: 陽極處理方法,使該人工植體表面,形成多孔結構; 其特徵在:該多孔結構實質上為 , q A 4胺的奈未及/或 城米孔洞結構,其中x之值為 κ ,丨、值局κο至2·〇,且該孔洞結構至 y。卩分孔洞大小實質上為丨〇夺乎 u不木至1 〇微米,氧化鈦膜厚 馬〇 · 1微米至1微米。 上述方法’以進'一 ^ Jr nj- J-TT m 在%極處理之前包括一陰極處理 200922529 為較佳。該陰極處理用 用以使人工植體的鈦金屬表面至少部 分形成氫化鈦(TiH2) ’其係為該陽極處理之前處理。 上述陰極處理為任意可使鈦金屬表面含氫的處理,以 可使欽金屬特定表面至,丨 至夕4刀形成氫化鈦(TiH2)的陰極處 理為較佳;亦即表面成為 ,〇 ^ ι n 至0.3為較佳。巧Tl、其中y為〇至u,以〇 :極處理方式’係以酸液做為處理液使敍的植體表面 產生氮化欽。該酸液以臨 社· 及以鹽酸或硫酸為較佳,以氫氟酸為更 處理時間以HO分鐘為/為佳,以°.5讀為最佳。 、ώ _ ,’為仫,以5〜15分鐘為最佳。處理電 流也、度以卜30為較佳,5]〇為最佳。 電 :述陽極處理為任意可使該人工植體表面形成 化鈦薄膜奈米及/吱料半 乳 極前户理沾本… 構的陽極處理’以可使經陰 :里的表面形成具有氧化鈦薄膜奈米 構的陽極處理為較佳;以可經陰 心 氧化鈦薄膜夺乎及%上 處的表面形成具有 太米至1η 或从米孔洞結構且孔洞大小實質上為10 …至10微米,且氧化鈦膜厚 理為更佳.彻4 h .1至1试米的%極處 氧留下使苴盥叙主^ 用以將虱化鈦帶走而將 化鈦薄膜。 制y子度及孔洞大小的氧 陽極處理方式,係以鹼性溶液做為产理y 表面產生羞A # u為處理液使鈦的植體 鈉及哎1P ^ _ 飞虱化鈉、氟化鈉'碳酸 溶液為更俨.w 7 匕鈉加齓化鈉或其緩衝 以可以形成齡12的溶液為較佳,可以形 8 200922529 成ΡΗ-9〜1〇的溶液為 理帝&玄# 處理時間以卜60分鐘為佳, 理私流植、度以卜3〇為較 巧1土 、 勺罕又1土,〗〇~15為最佳。 上述多孔結構,係指該植 氧化欽薄臈可以Tl _ I面形成氧化鈦缚膜,該 少一半开厂成τ.η “ X "不,〆' 中X之值為h〇至2.0(即至 y 千办成Τι〇2溥膜), 形成Tl〇 以L5至2·〇為較佳(即至少75% ❿风1 υ2溥Μ ),以1 8〜2 〇或s 薄膜)。 ·.為更佳(即至少90%形成Ti〇2 上述孔洞大小和膜厚,均如前述。 較佳的是,陰極處理時採用以〇」 鍍液作用於25 。(:之、、w痒·^ 。辽齓駄作為 ASD, '里度下,通入的電流密度為0.卜1〇 A6D ’ %極處理時採用〇 1 °c ^ ,ra ^ 氧氧化鈉作為鍍液作用於25 :度下,通入的電流密度為〇.卜2〇 ASD。 較佳的是,陰極處理時採 f 作用於25 t之溫m _卜3 M硫酸作為鑛液 又 I入的電流密度為0.卜10 ASD, %極處理時採用〇. i〜5M氟化 、、w择丁 、s 納作為鍍液作用於25 °C之 ㈣度下,通入的電流密度為0.1〜20ASD。 較佳的是,陰極處理時採 作用於25 t之溫度下,通 M硫酸作為銀液 ^ . ± 勺電w岔度為0.卜10 ASD, 陽極處理時採用q 7 Μ备_ & . 之、”下a M乳氧化納作為锻液作用於25 X: 之,皿度下,通入的電流密度為〇·卜2〇 Α^。 較佳的是,陰極處理時採 钿y从m 乂 U.卜3 Wt%氫氟酸作為 鍍液作用於25 t之溫度下, — Π ! 1ηΛ〇„ 通入的電流密度為 〇· 1〜10ASD,陽極處理時採用〇.卜 0 1 Μ/此炎結 風氧化鈉混合氟化鈉 υ. 1〜5/q作為鍍液作用於25 。〇之、'洚 '里度下’通入的電流密度 200922529 為 〇.卜20ASD。 較佳的是’陰極處理 液作用於之0下, t%鹽酸作為錢 陽極處理時採用n〜7M山 ’ . 兔酸鈉混合氟化鈉〇. 作A 〇 液作用於25 t之π _·χ. , Α X作為鍍 A a '凰度下,通入的電流密度為〇·1〜2〇ASD。 後疋’人卫植體於經過喷砂或電子束或放電加工 後’再做陰極處理時採用 用於25 t之溫度T,、t 氫氟酸作為錢液作 ,. 又、入的電流密度為〇. 1〜10ASD,陽 处王0“木用〇.卜7M氫氧化鈉作為鍍液作用於25。。之、-度下’通入的電流密度為0.1〜2_。 '现 “的疋’人工植體於經過噴砂或電子束或放電加工 後’再做陰極處理時採用 9, 、 了鉍用以0·1〜3 Μ硫酸作為鍍液作用於 士 λ之溫度下,通入的電流密度為〇.1〜10ASD,陽極處理 日可採用〇.卜5Μ氟化鈉作為鑛液作用於25 ^之溫度下, 通入的電流密度為0.1〜20ASD。 从奴㈣X ’人工植體於經過噴砂或電子束或放電加工 1,。再做陰極處理時採用以Q•卜3 M 4酸作為鑛液作用於 c之溫度下,通入的電流密度為〇 l〜i〇 asd,陽極 Ή木用Ο」〜7 Μ氫氧化納作為鍍液作用於25 〇c之溫度 下,通入的電流密度為〇.卜2〇ASI)。 ^較仫的疋,人工植體於經過噴砂或電子束或放電加工 後’再做陰極處理時採用以A a酸作為鐘液 作用衣25 C之溫度下,通入的電流密度為〇·卜1〇 AS]), 陽極處理時採用°," Μ氫氧化納混合氟化納。.卜5%作 10 200922529 為鍍液作用於25它之溫度下’通入的電流密度為〇卜The above-mentioned so-called implant surface has at least part of a porous planted rough surface to form a titanium oxide film, and the titanium oxide film can be Τ10, and its h value is 〗·2.0 to 2.0 (ie at least half: no, to 20, hy Soil / take 1ι (^2> special film) '15 is preferred (ie at least 75% to form Τι〇2 film), preferably (ie at least 90% to form Tl〇2 film). For the above microporous structure The size of the hole is good, u in too L 'd... card to 1 〇 micron is better than 10 nm to 1 micron, best. The surface of artificial implant is formed by 10 nm to 100 nm. A method for gas-rolling titanium nano-nano and/or micro-porous structures, comprising: an anodizing method for forming a porous structure on the surface of the artificial implant; characterized in that the porous structure is substantially q A 4 The structure of the amine and/or the city hole, wherein the value of x is κ, 丨, the value of κο to 2·〇, and the pore structure is to y. The size of the pore is substantially 丨〇 乎 不 不 至1 〇 micron, titanium oxide film thickness · 1 micron to 1 micron. The above method 'to enter ' a ^ Jr nj- J-TT m in the % pole It is preferred to include a cathode treatment 200922529. The cathode treatment is used to at least partially form titanium hydride (TiH2) on the surface of the titanium metal of the artificial implant, which is treated before the anode treatment. The treatment of hydrogen on the surface of the titanium metal is preferably carried out by a cathode treatment for forming a specific surface of the metal to a titanium hydride (TiH2); that is, the surface is preferably 〇^ ι n to 0.3. Clever Tl, where y is 〇 to u, to 〇: the extreme treatment method is based on the acid solution as the treatment liquid to produce nitriding on the surface of the implant. The acid solution is based on Linshe and hydrochloric acid or sulfuric acid. Preferably, hydrofluoric acid is used for more processing time with HO minutes as /, and reading with °. 5 is the best. ώ _ , ' is 仫, 5 to 15 minutes is the best. Processing current is also Bu 30 is preferred, and 5] is the best. Electric: The anode treatment is any which can form the surface of the artificial implant into titanium film and/or the material of the semi-emulsion. 'In order to make the surface of the yin: the anode formed with a titanium oxide film nanostructure as Preferably, the surface formed by the negative-yield titanium oxide film has a structure of from about 10,000 Å to 1 η or from a pore structure of the rice and the pore size is substantially 10 ... to 10 μm, and the thickness of the titanium oxide film is better. The oxygen at the extreme pole of the 4 h.1 to 1 test is left to make the titanium oxide film used to remove the titanium oxide. The oxygen anode treatment method for the y sub-degree and the hole size is The alkaline solution is used as the production y surface to produce shame A # u as the treatment liquid to make the titanium implant sodium and 哎1P ^ _ fly sodium, sodium fluoride 'carbonate solution is more 俨.w 7 匕 sodium plus Sodium hydride or its buffer is preferably formed into a solution of age 12, which can be shaped as a solution of 200922529 into -9-9 〇 为 玄 玄 玄 玄 玄 玄 处理 处理 处理 处理 处理 处理 处理 处理 处理 处理 处理 处理 处理 处理 处理 处理 处理 处理 60 The degree is better than 1 soil, the spoon is a little and 1 soil, 〗 〖~15 is the best. The above porous structure means that the oxidized zirconia can form a titanium oxide binding film on the Tl_I surface, and the lesser half is opened into a τ.η "X " 〆, where the value of X is h〇 to 2.0 ( That is, to y 千 Τ Τ 〇 〇 2 溥 film), the formation of Tl 〇 L5 to 2 · 〇 is preferred (ie at least 75% hurricane 1 υ 2 溥Μ), to 1 8~2 〇 or s film). More preferably (i.e., at least 90% of the above-mentioned pore size and film thickness of Ti〇2 are formed as described above. Preferably, the cathode treatment is carried out by using a ruthenium plating solution for 25). ^. Liaojing as ASD, 'Lid, the current density is 0. Bu 1〇A6D '% pole treatment with 〇1 °c ^, ra ^ sodium oxyhydroxide as a plating solution at 25: degrees Next, the current density of the inlet is 〇. 2 2 ASD. Preferably, during the cathode treatment, the f is applied to the temperature of 25 t m _ 3 M sulfuric acid as the mineral liquid and the current density of the I input is 0. 10 ASD, % pole treatment using 〇. i~5M fluorination, w butyl, s nano as a bath at 25 ° C (four degrees), the current density of the input is 0.1~20ASD. At the cathode treatment, it is applied to 25 t At the temperature, the M sulfuric acid is used as the silver liquid. ± The scoring power w is 0. Bu 10 ASD, and the anodizing treatment is performed by using q 7 _ _ & 25 X: In the case of the dish, the current density is 〇·卜2〇Α^. It is preferable that the cathode is treated with y from m 乂 U. Bu 3 Wt% hydrofluoric acid as the plating solution. At a temperature of 25 t, Π 1 1 Λ〇 Λ〇 通 通 通 通 通 通 通 通 通 通 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 卜 卜 卜 卜 卜 卜 卜 卜 卜 卜 卜 卜5/q acts as a bath on the 25th. The current density of 200922529 is 〇. Bu 20ASD. It is better to use the cathode treatment solution at 0, t% hydrochloric acid as When the money is anodized, n~7M mountain' is used. Sodium sulphate is mixed with sodium fluoride 〇. As A sputum acts on 25 t π _·χ. , Α X as the current under plating A a 'nucleus The density is 〇·1~2〇ASD. After the 人 疋 人 人 喷 喷 喷 喷 喷 喷 喷 喷 喷 喷 喷 喷 喷 喷 喷 喷 喷 喷 喷 喷 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人Liquid work, In addition, the current density is 〇. 1~10ASD, Yang Wang Wang 0" wood used 卜. Bu 7M sodium hydroxide as a plating solution on the 25. The degree of current density under the - degree is 0.1~2_ 'Currently' 人工' artificial implants are used after blasting or electron beam or electric discharge machining, and then used for cathode treatment. 9, 铋 is used for 0·1~3 Μ sulfuric acid as the plating solution. Next, the current density of the inlet is 〇.1~10ASD, and the anode treatment time can be carried out by using 〇. 5 5 Μ sodium fluoride as a mineral liquid at a temperature of 25 °, and the current density is 0.1 to 20 ASD. From the slave (four) X ' artificial implants after sandblasting or electron beam or electrical discharge machining 1, 1. When the cathode treatment is carried out, Q:Bu 3 M 4 acid is used as the mineral liquid at the temperature of c, and the current density is 〇l~i〇asd, and the anode eucalyptus is used as 矿~~7 Μ The bath is applied at a temperature of 25 〇c and the current density is 〇. 2〇ASI). ^Awkward 疋, the artificial implant is subjected to sandblasting or electron beam or electric discharge processing, and then the cathode is treated with A a acid as the clock liquid at a temperature of 25 C, and the current density is 〇·卜1〇AS]), anode treatment with °, " Μ Μ 混合 mixed with sodium fluoride. 5% 作作 10 200922529 The current density of the plating solution is 25 at its temperature.

ASD。 U 較佳的是’人工植體於經過喷砂或電子束或放電加工 後,再做陰極處理時採用以〇.〗~3. 〇 wt%鹽酸作為鍍液作 用於25 C之溫度下’通入的電流密度為〇1〜1〇asd,陽 極處理%採用〇·卜7M碳酸鈉混合氟化鈉〇•卜作為錢液 作用方、25 C之溫度下,通入的電流密度為〇.卜別八如。 【實施方式】 。月芩照第1(a)圖與第1(b)圖所示,人工植體(1〇〇)經 本發明之陰極處理與陽極處理後,可於表面形成氧化欽薄 膜(110)及多孔洞結構。請參照第2⑷圖所示,此人工植 體(湖即可應用於牙科上,如將此人工㈣⑴⑽^ 齦(㈣設置於齒槽(關上,而位於正常牙齒(竭間, 此時新生骨細胞(130)即可增殖於人工植體(ι〇〇)表面,而 使人工植體U〇〇)與*槽(160)穩固結合,人工牙冠(⑽) 結合於人工植體(100)上而不會脫落。 i,.. 以下各實施例的製備條件盘所制/θ 背仟興所製得之氧化鈦薄膜之孔 洞大小如表1所示: 表1 陰 極 處 實施 例 孔洞 電解液 濃度 (M) 電流密度 (ASD) 時 間 — 溫 度 1 奈米 HF 0.5 5 10 25 2 奈微 HF 0.5 5 J 10 25 — 米 3 奈米 h2so4 1 5 一 To~ 陽ASD. U is preferably 'the artificial implant is subjected to sandblasting or electron beam or electric discharge processing, and then used for the cathode treatment. ~~3. 〇wt% hydrochloric acid is used as the plating solution to act at the temperature of 25 C. The current density is 〇1~1〇asd, and the anode treatment is 〇·卜 7M sodium carbonate mixed with sodium fluoride 〇• Bu as the liquid solution, at a temperature of 25 C, the current density is 〇. Don't be like eight. [Embodiment] As shown in Fig. 1(a) and Fig. 1(b), the artificial implant (1〇〇) can form an oxidized film (110) and a porous hole on the surface after the cathode treatment and the anode treatment of the present invention. structure. Please refer to Figure 2(4) for the artificial implant (the lake can be applied to dentistry, such as this artificial (4) (1) (10) ^ 龈 ((4) is placed in the alveolar (closed, but in the normal teeth (exhaustion, at this time, new bone cells) (130) can be proliferated on the surface of the artificial implant (ι〇〇), and the artificial implant U〇〇) is firmly combined with the * groove (160), and the artificial crown ((10)) is bonded to the artificial implant (100). The pore size of the titanium oxide film prepared by the preparation condition disk of the following examples was as shown in Table 1: Table 1 The electrolyte concentration of the hole in the example at the cathode (M) Current Density (ASD) Time - Temperature 1 Nano HF 0.5 5 10 25 2 Nai HF 0.5 5 J 10 25 — Meter 3 Nano h2so4 1 5 One To~ Yang

電解液 濃度 (M) |電流密度 (ASD) 5 m 5 — 15 1 15 31 200922529 4 奈微 米 h2so4 1 5 10 25 NaF 1 15 10 25 5 奈米 h2so4 1 5 10 25 NaOH 5 15 10 25 6 奈微 米 h2so4 1 5 10 25 NaOH 5 15 10 25 7 奈米 HF 0.5 5 10 25 NaOH+ NaF 5+1 15 10 25 8 奈微 米 HF 0.5 5 10 25 NaOH+ NaF 5+1 15 10 25 9 奈米 HC1 2 5 10 25 Na^+NaF 3+1 15 10 25 10 奈微 米 HC1 2 5 10 25 NajCOj+NaF 3+1 15 10 25 實施例1 : 將清洗過的鉢金屬植體(如第1 (a)圖所示)分別置於陰 極(陽極為鉑片)’以表1所列濃度的氫氟酸(HF)作為鍍液 進行陰極極化。陰極處理中’温度、電流密度、時間控制 分別如表1所列。 將上述陰極處理後的植體,迅速置於陽極(陰極為鉑 片),並在下述條件進行陽極極化。以表1所列濃度的 (NaOH) t ’於表1所列溫度下,通入表1所列的電 流密度’時間控制如表1所列。結果產生如圖二所示的植 體。表面結構如圖三(a)。 實施例2 : 將清洗過的鈦金屬植體(如第丨(a)圖所示)先經過噴砂 或兒子束或放電加工後,再將經過喷砂或電子束或放電加 工後之欽金屬植體(如圖la所示)清洗過後分別置於陰極 12 200922529 (陽極為鉑片),以表1所列濃度的氫氟酸(HF)作為鑛液進 行陰極極化。陰極處理中,溫度、電流密度、時間控制分 別如表1所列。 將上述陰極處理後的植體,迅速置於陽極(陰極為鉑 片)’並在下述條件進行陽極極化。以表1所列濃度的屋^ 氧化鈉(NaOH)中,於表1所列溫度下’通入表1所列的電 流松、度’時間控制如表1所列。結果產生如第2圖所示的 植體。表面結構如第3 (b)圖。 實施例3 : 將清洗過的鈦金屬植體(如第1 (a)圖所示)分別置於陰 極(陽極為鉑片)’以表1所列濃度的硫酸(HnSOi)#為鍍液 進行陰極極化。陰極處理中’溫度、電流密度、時間控制 分別如表1所列。 將上述陰極處理後的植體,迅速置於陽極(陰極為鉑 片)’並在下述條件進行陽極極化。以表1所列濃度的氟 中,於表1所列溫度下,通入表丨所列的電流 也度’時間控制如表1所列。結果產生如第2圊所示的植 體。表面結構如第3(c)圖。 貫施例4 : 將清洗過的鈦金屬植體(如第1 (a)圖所示)先經過.嘴砂 或電子束或放電加工後,再將經過噴砂或電子束或放電加 工後之鈦金屬植體(如第i(a)圖所示)清洗過後分別置於陰 13 200922529 極(陽極為鉑片),以表1所列濃度的硫酸(立4i#為鍍液 進行陰極極化。陰極處理中,溫度、電流密度、時間控制 分別如表1所列。 將上述陰極處理後的植體,迅速置於陽極(陰極為鉑 片),並在下述條件進行陽極極化。以表1所列濃度的皇_ 中,於表1所列溫度下,通入表1所列的電流 密度,時間控制如表1所列。結果產生如第2圖所示的植 體。表面結構如第3 (d)圖。 實施例5 : 將清洗過的鈦金屬植體(如第1 (a)圖所示)分別置於陰 極(陽極為鉑片),以表1所列濃度的硫酸dSOd作為鍍液 _ — 進行陰極極化。陰極處理中,溫度 '電流密度、時間控制 分別如表1所列。 將上述陰極處理後的植體,迅速置於陽極(陰極為鉑 片)’並在下述條件進行陽極極化。以表1所列漢度的氫 中’於表1所列溫度下,通入表1所列的電 流岔度,時間控制如表1所列。結果產生如第2圖所示的 植體。表面結構如第3(e)圖。 實施例6 : 將清洗過的鈦金屬植體(如第1 (a )圖所示)先經過喷砂 或電子束或放電加工後,再將經過噴砂或電子束或放電加 工後之鈦金屬植體(如第丨(a)圖所示)清洗過後分別置於陰 14 200922529 極(陽極為鉑片),以表1所列濃度的硫酸(Η/Ορ作為鍍液 進行陰極極化。陰極處理中,溫度、電流密度、時間控制 分別如表1所列。 將上述陰極處理後的植體,迅速置於陽極(陰極為鉑 片)’並在下述條件進行陽極極化。以表1所列濃度的1 皇^ ΑΙΜΜ1中’於表1所列溫度下,通入表1所列的電 流密度’時間控制如表1所列。結果產生如第2圖所示的 植體。表面結構如第3 (f)圖。 實施例7 : 將清洗過的鈦金屬植體(如第1 ( a)圖所示)分別置於陰 極(陽極為鉑片),以表i所列濃度的氫氟酸(HF)作為鍍液 進行陰極極化。陰極處理中’溫度、電流密度、時間控制 分別如表1所列。 將上述陰極處理後的植體,迅速置於陽極(陰極為鉑 片)’並在下述條件進行陽極極化。以表丨所列濃度的惠^ + &乳化納(NaF + NaOH)_中,於表1所列溫度下,通入 表1所列的電流密度’時間控制如表1所列。結果產生如 第2圖所示的植體。表面結構如第3 (g)圖。 實施例8 : 將清洗過的鈦金屬植體(如第丨(a)圖所示)先經過噴砂 或電子束或放電加工後,再將經過噴砂或電子束或放電加 工後之鈦金屬植體(如第1(a)圖所示)清洗過後分別置於陰 15 200922529 極(陽極為鉑片),以表i所列濃度的氳氟酸(HF)作為鍍液 進行陰極極化。陰極處理中,溫度、電流密度、時間控制 分別如表1所列。 將上述陰極處理後的植體,迅速置於陽極(陰極為鉑 片)’並在下述條件進行陽極極化。以表1所列濃度的羞^ ik納+氫氧化鈉(NaF + NWin中,於表1所列溫度下,通入 表1所列的電流密度,時間控制如表1所列。結果產生如 第2圖所示的植體。表面結構如第3(h)圖。 實施例9 : 將清洗過的鈦金屬植體(如第丨(a)圖所示)分別置於陰 極(陽極為鉑片),以表丨所列濃度的鹽酸(HC1)作為鍍液 進行陰極極化。陰極處理中,溫度、電流密度、時間控制 分別如表1所列。 將上述陰極處理後的植體,迅速置於陽極(陰極為鉑 片),並在下述條件進行陽極極化。以表1所列濃度的& 也納+碳酸鈞+ 中,於表1所列溫度下,通入表 1所列的電流密度,時間控制如表丨所列。結果產生如第 2圖所示的植體。表面結構如第3 (丨)圖。 實施例1 0 : 將清洗過的鈦金屬植體(如第丨(a)圖所示)先經過喷砂 或電子束或放電加工後,再將經過喷砂或電子束或放電加 工後之鈦金屬植體(如第1 (a)圖所示)清洗過後分別置於陰 16 200922529 極(陽極為鉑片),以表1所列濃度的鹽酸(HC1)作為鍍液 進行陰極極化。陰極處理中,溫度、電流密度、時間控制 分別如表1所列。 將上述陰極處理後的植體,迅速置於陽極(陰極為鉑 片),並在下述條件進行陽極極化。以表1所列濃度的复 ^星复迦£±^姆中,於表i所列溫度下,通入表 1所列的電流密度,時間控制如I 1戶斤列。結果產生如第 2圖所示的植體。表面結構如第3(j)圖。 結果產生如第2圖所示的植體,其中實施例}至1〇實 :掃描電子顯微鏡觀察圖,參見第3⑷至3⑴圖,由以: 、-果顯不’鈦植體經陰極處理與陽極處理後,表面確實可 產生氧化鈦薄膜奈米及/微米孔洞姓槿,Η π .η + β 太 構,且孔洞大小為1〇 不未至10微米,氧化鈦膜厚為〇1至】微米。 第4圖為植體經由AES檢測鈦氧化層厚度結果。 圖中植體表面經過電子束垂直轟 長’轟擊深度加深分析1氧 f鮮化間加 乳原子分佈,判斷出氧化層厚度。 實施例1 2: 、類似於“匕例一之方法,分別 備條件為改變鍍液之濃度,濃、種植體,其製 …M、測定植體對大腸桿::.1Μ·、°.5Μ、1Μ、1.5 ㈣的抗g效果,結果如灿)及金黃葡萄球菌 币b圖。 17 200922529 弟6圓係為大腸捍菌(hw)在植體表面接觸後 心免子顯微鏡觀察所見變昱 4ψ 氕異丨月形其中在未經過處理之Μ 體與玻璃片上之大腊护〜如θ t 王 < 植 乃上之大知#囷數量相較於經過表面 明顯增生許多。 疫疋·植體 實施例13: 第7圖係為以類似於實施例-之方法,分別製成五種 植體,其製備條件為改變期鍍液之濃度,濃度為。· 1M、〇· 5 Μ、1 Μ' 1·5 Μ與2 M,於類骨母細胞⑽_63)在實施例植 體表面增殖情形。 第8圖係為類骨母細胞(MG —63)在植體表面生長速率。 产類月母細胞在植體表面增殖的情形與鈦金屬表面上的 層;|膜有M ’而此種鈦金屬與骨頭的關係我們稱之為 口(〇s se οι integration)。於一些研究及文獻亦顯示植 入^物體内材料表面的孔徑大小、粗糙度和細胞初始的攀 附仃^、増殖及分化有密切的關係。植體另外一個重要問 題為提间抗菌旎力,提高抗菌能力能有效的降低免疫反應 及避免微生物感染’本發明係一種改良植體之表面結構方 法:尤指一種鈦金屬經陰極處理後令其表面產生氫氧化鈦 之後再做陽極氧化處理使其表面產生奈求多孔性二氧化 鈦,使其成為能促進及加速骨整合之植體,其特徵係使植 表面佈有一層均勻之奈米多孔性二氧化鈦,以此來引 18 200922529 導骨細胞的向内生异,、杜二L t 長進而加速骨整合速度,另外再做一 次陽極處理目的將氟離 丁 U疋在植肢上,本發明除 效提高骨癒合外,而_ M工越山s ^ 、 氣雒子釋出更能提高植體抗菌能力, 最重要的作用為促進骨在 a頊在礦化的作用,除了提升未來植 體的手術的成功率外,p 1 更間短了 a頭癒合時間及有效增進 植體的穩固度。 ( 本發明之實施例另關於一種促進及加速骨整合之技 術,經處理完植體表而W & 表面除了會有立體狀奈米多孔性二氧化 欽外,亦有氣離子披覆於其上,除了能有效引導骨細跑聚 集使骨向植體内生長,而有效促進及加速骨整合,更能有 效抗菌減低免疫反應及促進骨頭再礦化作用提高植體穩固 度及提升手術的成功率。 最近的二十年内,隨科學研究的進步,生物材料的發 展及臨床知識的累積,你强古 糸檟使付植體已能達到長期穩固度。 植體乃是植入人體中,因此其生物相容性就顯得格外 重要,如果植體要有好的生物相容性 (Bwccnnpamuny),必要條件為當植體植人人體本身不 可釋放或解離出有毒物質引起組織周圍發生病變,亦不能 造成凝血⑻ood coaguuuu】at刚)或溶血(Hem〇】ysi幻反 應,意即植體需具安定性與生物體相容性。 鈦金屬及銥合金的植體表面氧化層組織及結構在移植 入人體時,由於多孔性的氧化層有助於人體骨組織向内成 長’可迅速的使鈦金屬及鈦合金的植體表面和人體的骨組 19 200922529 織結合’且植入人體中無排斥及高穩定性等特質。 於進行陰極處理盥陽搞(考?田乂 + , 、刼桎處理剛,可先於植體表面進行 $石_>、、電子束加工與微义 ^ ^ 冤力 寻刖處理加工,使植體表 片神士 欽俾使後續之陰極處理與陽極 ^ , 各種則處加工製備方式如下所述。 I備方式一,多孔柯-条 ^ ^ . —乳化鈦是將鈦金屬浸泡於高溫 的痕%鹼液中一段报長的時 方彳趑好# 7 所i作而成,再用離子植入 方式將既綠子打入植體中,蕤 猎此達到抗菌效果。 氣備方式二,製備多孔性_ 氧化、、ϋ π g β 一軋化鈦薄膜可以利用陽極 乳化去與化學蝕刻將鈦 液,以巧ft π 4 ’ /又/包(I_ersing)於鹼性溶 以虱虱化鈉(NaOH)的溶液,Electrolyte concentration (M) | Current density (ASD) 5 m 5 — 15 1 15 31 200922529 4 Nai micron h2so4 1 5 10 25 NaF 1 15 10 25 5 Nano h2so4 1 5 10 25 NaOH 5 15 10 25 6 Nai micron H2so4 1 5 10 25 NaOH 5 15 10 25 7 Nano HF 0.5 5 10 25 NaOH + NaF 5+1 15 10 25 8 Nano HF 0.5 5 10 25 NaOH + NaF 5+1 15 10 25 9 Nano HC1 2 5 10 25 Na^+NaF 3+1 15 10 25 10 nanometer HC1 2 5 10 25 NajCOj+NaF 3+1 15 10 25 Example 1: Washed base metal implant (as shown in Figure 1 (a)) Cathodic polarization was carried out by placing the hydrofluoric acid (HF) at the concentration listed in Table 1 as a plating solution at the cathode (anode is a platinum plate). The temperature, current density, and time control in the cathode treatment are listed in Table 1, respectively. The above-mentioned cathodic treated implant was quickly placed on the anode (the cathode was a platinum plate), and anodic polarization was carried out under the following conditions. The current density indicated in Table 1 at the temperatures listed in Table 1 at the concentrations listed in Table 1 (NaOH) t' are listed in Table 1. The result is an implant as shown in Figure 2. The surface structure is shown in Figure 3 (a). Example 2: The washed titanium metal implant (as shown in Fig. (a)) is subjected to sand blasting or son beam or electric discharge processing, and then subjected to sand blasting or electron beam or electric discharge processing. The body (shown in Figure la) was cleaned and placed on the cathode 12 200922529 (anode is a platinum plate), and the concentration of hydrofluoric acid (HF) listed in Table 1 was used as a mineral liquid for cathodic polarization. In the cathode treatment, temperature, current density, and time control are listed in Table 1. The above-mentioned cathodic treated implant was quickly placed on the anode (the cathode was a platinum plate)' and anodic polarization was carried out under the following conditions. In the sodium oxyhydroxide (NaOH) at the concentrations listed in Table 1, the currents listed in Table 1 were controlled by the temperatures listed in Table 1 as shown in Table 1. As a result, an implant as shown in Fig. 2 was produced. The surface structure is shown in Figure 3 (b). Example 3: The washed titanium metal implants (as shown in Fig. 1(a)) were respectively placed on the cathode (the anode was a platinum plate), and the sulfuric acid (HnSOi)# at the concentration listed in Table 1 was used as a plating solution. Cathodic polarization. The temperature, current density, and time control in the cathode treatment are listed in Table 1, respectively. The above-mentioned cathodic treated implant was quickly placed on the anode (the cathode was a platinum plate)' and anodic polarization was carried out under the following conditions. The concentrations listed in Table 1 for the fluorines listed in Table 1 are also listed in Table 1. As a result, an implant as shown in Fig. 2 was produced. The surface structure is as shown in Fig. 3(c). Example 4: The cleaned titanium metal implant (as shown in Figure 1 (a)) is passed through a mouth sand or electron beam or electrical discharge, and then subjected to sandblasting or electron beam or electric discharge machining. The metal implants (as shown in Figure i(a)) were cleaned and placed on the cathode 13 200922529 (anode is a platinum plate), and the cathodic polarization was carried out with the concentration of sulfuric acid listed in Table 1 (Li 4i# as the plating solution). In the cathode treatment, the temperature, current density, and time control are respectively listed in Table 1. The cathodically treated implant was quickly placed on the anode (the cathode was a platinum plate), and anodic polarization was performed under the following conditions. The listed concentrations of the _, in the temperature listed in Table 1, the current density listed in Table 1, the time control is listed in Table 1. The result is the implant shown in Figure 2. Surface structure as in the first 3 (d) Fig. Example 5: The washed titanium metal implants (as shown in Figure 1 (a)) are placed at the cathode (the anode is a platinum plate), and the concentration of sulfuric acid dSOd listed in Table 1 is used. Plating solution _ — Cathodic polarization. In the cathode treatment, the temperature 'current density and time control are listed in Table 1. The cathodically treated implant was quickly placed on the anode (the cathode was a platinum plate)' and anodicly polarized under the following conditions. The hydrogen in the Hande listed in Table 1 was at the temperature listed in Table 1. The current mobility listed in 1 and the time control are listed in Table 1. The result is an implant as shown in Fig. 2. The surface structure is as shown in Fig. 3(e). Example 6: The washed titanium metal implant (as shown in Figure 1 (a)) After blasting or electron beam or electrical discharge, the titanium metal implant after sandblasting or electron beam or electric discharge machining (as shown in Figure (a)) After cleaning, they are placed on the cathode 14 200922529 (anode is platinum), and the concentration of sulfuric acid (Η/Ορ as the plating solution in Table 1) is used for cathodic polarization. In the cathode treatment, the temperature, current density and time control are as follows. 1. The above-mentioned cathodic treated implants were quickly placed on the anode (cathode is a platinum plate)' and anodic polarization was carried out under the following conditions: 1 in the concentration listed in Table 1 'in Table 1' At the column temperature, the current density listed in Table 1 'time control is listed in Table 1. The result is The implant shown in Fig. 2. The surface structure is shown in Fig. 3(f). Example 7: The washed titanium metal implant (as shown in Fig. 1(a)) is placed at the cathode (the anode is platinum). The film was subjected to cathodic polarization using hydrofluoric acid (HF) at the concentration listed in Table i. The temperature, current density, and time control in the cathode treatment are listed in Table 1. The cathodic treated implants described above. , quickly placed at the anode (cathode is a platinum plate)' and anodic polarization under the following conditions. In the concentration listed in Table 惠 + & emulsified sodium (NaF + NaOH) _, at the temperature listed in Table 1. The current density 'time control' listed in Table 1 is listed in Table 1. As a result, the implant shown in Fig. 2 was produced. The surface structure is as shown in the third (g) diagram. Example 8: The washed titanium metal implant (as shown in Fig. (a)) is subjected to sandblasting or electron beam or electric discharge processing, and then subjected to sandblasting or electron beam or electric discharge processing of the titanium metal implant. (As shown in Figure 1(a)) After cleaning, it is placed on the cathode 15 200922529 (anode is platinum), and the concentration of fluorinated acid (HF) listed in Table i is used as the plating solution for cathodic polarization. In the cathode treatment, temperature, current density, and time control are listed in Table 1, respectively. The above-mentioned cathodic treated implant was quickly placed on the anode (the cathode was a platinum plate)' and anodic polarization was carried out under the following conditions. The current densities listed in Table 1 were obtained at the concentrations listed in Table 1 at the concentrations listed in Table 1 for Naf + Na2 + sodium hydroxide (NaF + NWin). The time control is as listed in Table 1. The results are as follows. The implant shown in Fig. 2. The surface structure is shown in Fig. 3(h). Example 9: The washed titanium metal implant (as shown in Fig. (a)) is placed at the cathode (the anode is platinum). The film was subjected to cathodic polarization using hydrochloric acid (HC1) at the concentration listed in Table 。. In the cathode treatment, the temperature, current density, and time control were respectively listed in Table 1. The above-mentioned cathodic treated implants were quickly Placed on the anode (the cathode is a platinum plate) and anodicly polarized under the following conditions. The concentrations listed in Table 1 are also in the range of Table 1 and are listed in Table 1. The current density and time control are listed in Table 2. The result is an implant as shown in Fig. 2. The surface structure is shown in Fig. 3 (Example): Example 1 0: The washed titanium metal implant (such as丨(a) shown in the figure) After sandblasting or electron beam or electric discharge machining, titanium after sandblasting or electron beam or electric discharge machining The genus (as shown in Figure 1 (a)) is cleaned and placed in the cathode 16 200922529 (anode is platinum), and the cathodic polarization is carried out using hydrochloric acid (HC1) at the concentration listed in Table 1 as the plating solution. During the treatment, the temperature, current density, and time control are respectively listed in Table 1. The above-mentioned cathodic treated implant was quickly placed on the anode (the cathode was a platinum plate), and anodic polarization was performed under the following conditions. In the column concentration, in the temperature of Table i, the current density listed in Table 1 is passed, and the time control is as shown in Figure 1. The result is as shown in Figure 2. The surface structure is as shown in Fig. 3(j). The result is an implant as shown in Fig. 2, in which the examples} to 1 are: scanning electron microscope observation, see Figs. 3(4) to 3(1), by: After the cathode treatment and the anodic treatment, the surface of the titanium implant can produce titanium oxide film nano and / micron pores, Η π . η + β too, and the pore size is 1 〇 To 10 microns, the thickness of the titanium oxide film is 〇1 to μm. Figure 4 shows the thickness of the titanium oxide layer in the implant by AES. Results: The surface of the implant was vertically elongated by the electron beam. The depth of the bombardment was deepened. The distribution of the milk atom was added between the oxygen f-fresh and the thickness of the oxide layer. Example 1 2: Similar to the method of the first example, The conditions are separately changed to change the concentration of the plating solution, the concentration, the implant, the system...M, and the anti-g effect of the implant on the large intestine rod::.1Μ·, °.5Μ, 1Μ, 1.5 (4), the result is as follows) Golden Staphylococcus aureus b. 17 200922529 The 6th line of the genus Corydalis (hw) is exposed to the surface of the implant after the contact with the microscope. The 丨 丨 ψ 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中On the film, the big wax protector ~ such as θ t king <植乃上之大知# 囷 囷 明显 明显 明显 明显 明显 明显 明显 明显 明显 明显 明显 明显 明显 明显 明显 明显 明显 明显Phytophthora and Implants Example 13: Figure 7 is a method in which five kinds of implants were prepared in a manner similar to the method of Example - and the preparation conditions were the concentration of the plating solution at the changing period, and the concentration was . · 1M, 〇·5 Μ, 1 Μ '1·5 Μ and 2 M, in the case of osteoblasts (10)_63) on the surface of the implants of the examples. Figure 8 shows the growth rate of osteoblasts (MG-63) on the surface of the implant. The progenitor cells are proliferated on the surface of the implant and the layer on the surface of the titanium metal; the membrane has M ′ and the relationship between the titanium and the bone is called 〇s se οι integration. In some studies and literatures, it has also been shown that the pore size and roughness of the surface of the material implanted in the object are closely related to the initial climbing, differentiation and differentiation of the cells. Another important problem of the implant is to raise the antibacterial force, improve the antibacterial ability, and effectively reduce the immune response and avoid microbial infection. The present invention is a method for improving the surface structure of the implant: especially a titanium metal after being subjected to cathodic treatment. The surface is made of titanium hydroxide and then anodized to produce porous titanium dioxide on the surface, which makes it an implant that promotes and accelerates osseointegration. It is characterized by a uniform layer of nanoporous titanium dioxide on the surface of the plant. In order to induce the inward differentiation of the osteoblasts of the 200922529, the growth rate of the osseointegration, and the speed of osseointegration, and the purpose of anodizing again, the fluoride is removed from the implant, and the invention is effective. Improve bone healing, while _ Mgong Yueshan s ^, gas scorpion release can improve the antibacterial ability of the implant, the most important role is to promote the role of bone in a mineralization, in addition to improving the operation of future implants In addition to the success rate, p 1 shortens the healing time of a head and effectively improves the stability of the implant. (An embodiment of the present invention further relates to a technique for promoting and accelerating osseointegration. After processing the implant surface, the W & surface has a three-dimensional nanoporous oxidizing capsule, and there is also a gas ion coating thereon. In addition, it can effectively guide the bone run and gather to make the bone grow into the implant body, and effectively promote and accelerate the osseointegration. It can effectively reduce the immune response and promote bone remineralization to improve the stability of the implant and improve the success of the operation. In the last two decades, with the advancement of scientific research, the development of biological materials and the accumulation of clinical knowledge, you have been able to achieve long-term stability with implants. The implants are implanted in the human body. Its biocompatibility is particularly important. If the implant is to have good biocompatibility (Bwccnnpamuny), the necessary condition is that when the implant is implanted, the human body cannot release or dissociate the toxic substances, causing lesions around the tissue. Causes coagulation (8) ood coaguuuu] at) or hemolysis (Hem〇) ysi phantom reaction, meaning that the implant needs to be stable and biocompatible. Titanium and strontium alloy implant surface oxygen When the layered structure and structure are transplanted into the human body, the porous oxide layer contributes to the inward growth of the human bone tissue', and the implant surface of the titanium metal and the titanium alloy can be quickly combined with the human bone group 19 200922529. Implanted in the human body without repulsion and high stability. For the cathodic treatment of Fuyang (test? Tian 乂 +, 刼桎 treatment, just before the implant surface $ stone _ >, electron beam processing With the micro-sense ^ ^ 冤 force seeking processing, so that the implant surface of the gods will make the subsequent cathode treatment and anode ^, the various processing methods are as follows. I preparation method one, porous Ke-Article ^ ^ . — Emulsified titanium is made by immersing titanium in a high-temperature trace of lye in a high-temperature lye, and then using ion implantation to drive both greens into the implant.蕤 Hunting to achieve antibacterial effect. Gas preparation method 2, preparation of porosity _ oxidation, ϋ π g β a titanium nitride film can be anodic emulsified and chemically etched titanium liquid, ft ft π 4 ' / / / package (I_ersing) a solution of sodium bismuth (NaOH) dissolved in alkaline,

Ak ?£ m t成一層多孔性的二氧化 鈦屬膜’再用離子植入方式 乳化 到抗®效果。 f氟離子打人植體中,藉此達 ‘備方式三’利用令紗古 化鈦薄膜,再用離子措' X植體上產生多孔性二氧 達到抗菌效果。 子亂維子打入植體中,藉此 製備方式四,利用電子束 氧化鈦薄膜,# $ 纟植體上產生多孔性二 此達到抗菌效果。 #軋離子打入植體中,藉 製備方式五,利用微放電加 氧化鈦_,制離子植人 植體上產生多孔性二 此達到抗菌效果。 ;夺軋離子打入植體中,藉 製備方式六,制锯夕3, 酸進行陰極處理後再以於驗性:==:以利用“ 從遵仃%極乳化處理,形 20 200922529 成一層多孔性的二氧化鈦薄膜, 佳,以硫酸陰極氫化為佳,以蜂λ 弗飞陰極氫化為最 以氫氧化納議)鹼性溶液::陰極氫化處理為次佳, 納及氣化納混合液的陽極氧化==理為二:以碳酸 氟化納混合液的陽極氧化處 社、^ u⑨乳化納及 【圖式簡單說明】 為更i此達到抗菌效果。 第uo圖係為人工植體的剖面示意圖。 第1(b)圖係為利用陰極處理 於人工植體表面產生奈未多用陽極處理的方式 —乳化鈦的剖面示意圖。 第UO圖係為人工植體表面產生太 植體後’應用於牙科的剖面示意圖。夕孔性二氧化鈦 第2圖係為人工植體表面產生 _ 體後之電子顯微鏡拍攝圖。 v '夕丨生一氧化鈦植 第(a ) ( j)圖係為經過不同方 植體表面構造經電 处直體後,各階段 子颂Ί政鏡拍攝圖。 第4圖#盔乂 _ 度結果。…’植體經由歐傑能譜儀檢測鈦氧化層厚 第5圖传主/ …工植體對大腸桿菌(“")及金黃葡萄 21 200922529 球菌(51· 抗菌結果。 第6圖係為大腸桿菌(昃c〇y/)在植體表面接觸後由電 子顯微鏡所見變異情形。 ’ 第7圖係為類骨母細胞(MG-63)在植體表面增殖情形< 第8圖係為類骨母細胞(MG_63)在植體表面生長速率 【主要元件符號說明】 (1 0 0 )人工植體 (11 〇)氧化鈦薄膜 (120)人工牙冠 (1 3 0)新生骨細胞 (140)正常牙齒 (1 50)牙齦 (1 6 0)齒槽 22Ak ? £ m t is a layer of porous titanium dioxide film' and then emulsified to the anti-® effect by ion implantation. f fluoride ion hits the human implant, thereby achieving the 'preparation mode three' use of the yarn to refine the titanium film, and then using the ion method 'X implant to produce porous dioxane to achieve antibacterial effect. The child chaos is inserted into the implant, thereby preparing the fourth method, using the electron beam titanium oxide film, and the porosity is generated on the #纟 implant to achieve the antibacterial effect. #压离子Into the implant, by the preparation method 5, using micro-discharge and titanium oxide _, the ion implanted on the implant to produce porosity, which achieves the antibacterial effect. The etched ion is driven into the implant, and the preparation method is six, the sawing is performed, and the acid is subjected to the cathodic treatment, and then the test is performed: ==: to utilize the "from the 仃 仃 极 乳化 , , 形 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 Titanium dioxide film, preferably, cathode hydrogenation with sulfuric acid, hydrogenation of bee λ feifei cathode is the most alkaline solution: alkaline treatment of cathode is the second best, anode of sodium and gasification mixture Oxidation == rationality is two: the anodizing solution of the sodium carbonate carbonate mixed solution, ^ u9 emulsified sodium and [simple description of the figure] to achieve the antibacterial effect. The uo diagram is a schematic diagram of the artificial implant Figure 1(b) is a schematic cross-sectional view of the emulsified titanium by means of cathodic treatment on the surface of the artificial implant to produce the nano-anodized method. The UO image is applied to the dental implant after the artificial implant surface is produced. Schematic diagram of the cross-section. The second figure of the titanium dioxide is the electron microscopy image of the surface of the artificial implant. v 'Xi Yusheng Titanium-titanium plant (a) ( j) is a different type of implant Surface structure is electrically connected After that, each stage of the 颂Ί 镜 mirror shot. Figure 4 # 乂 乂 _ degree results. ... 'plants through the Ou Jie energy spectrometer to detect the thickness of titanium oxide layer 5th map / ... plant implants on E. coli ("") and Golden Grape 21 200922529 Cocci (51. Antibacterial results. Fig. 6 is the variation of E. coli (昃c〇y/) observed by electron microscopy after contact on the surface of the implant. ' Figure 7 is Proliferation of osteoblasts (MG-63) on the surface of implants<Fig. 8 shows the growth rate of osteoblasts (MG_63) on the surface of implants [Main component symbol description] (1 0 0) Artificial implants ( 11 〇) titanium oxide film (120) artificial crown (1 30) new bone cells (140) normal teeth (1 50) gingiva (1 60) gullet 22

Claims (1)

200922529 十、申請專利範圍: 1、 一種表面具有孔洞之人工植體,該植體表面至少 卩二::有夕孔結構’其特徵在:該多孔結構實質上為氧化 鈦溥膜孔洞結構,且該孔洞結構至少部分孔洞大小實質上 為10奈米至1 〇微米。 ' 2、 如申請專利範圍第1項所述之表面具有孔洞之人 植體’其中該孔洞結構至少部分孔洞大 奈米至1微米。 貝貝上為10 工植二、Π’專利範圍第2項所述之表面具有孔洞之人 /、中違乳化鈦薄膜厚度為01微米至】微米。 -植申:專利範圍第3項所述之表面具有孔洞之人 、、中該孔洞結構至少部分孔洞 奈米至100奈米。 人】貫貝上為10 工植5 凊專利範圍第4項所述之表面具有孔洞之人 植=其中該氧化欽薄膜厚度為0.25微来至〇6微米。 -陰極Γ表面具有孔洞之人工植體的製法,其包括: -陽桎:理’用以使人工植體的鈦金屬表面含氫;及 該多孔結構實質上為氧化形成多孔結構, 至少部分孔-銥賴孔洞結構,且該孔洞結構 7而大小實質上為10奈求至微米。 °申请專利範圍第6項所述 工植體的製法,1> 又表面具有孔洞之人 為!〇奈米至孔洞結構至少部分孔洞大小實質上 8、如申請專利範圍第7項所述之表面具有孔洞之人 23 200922529 工植體的製法,其中該孔洞結構至八 為1 〇奈米至1 〇〇奈米。 D刀孔洞大小實質上 9、"請專利範圍第δ項所 工植體的製法,其中陰極處理時採用以面”有孔洞之人 作為鍍液作用於25之溫度下,、 〇·卜3 wt%氫氟酸 ASD ’陽極處理時採用〜7 μ 的也流雄、度為〇.卜10 。。之溫度下,通入的電流 鈉作為鍍液作用於25 私机在度為0.1〜20 ASD。 〇、如申請專利範圍第8項 人工植體的製法,其中陰極處理時採用以面具有孔洞之 為鍍液作用於2 5 夕、® Λ U · 1〜3 Μ硫酸作 皿度下,通入的帝、* — ASD’陽極處理時採用〇1〜5M 〜、度為。·Η〇 之溫度下,通入的電流” 為鍍液作用於25 t: 山度為〇. 1〜20ASD。 1 1、如申請專利範圍第8項所述之表 人工植體的製法’其中陰極處理時採用 "、?洞之 為鑛液作用於25 t之溫度下,通 硫酸作 ASD,陽極處理時採用〇 w 、度4 〇.卜10 t:之溫卢下、s 風虱化鈉作為鍍液作用於25 度下’通入的電流密度為〇.卜2。ASD。 12如申請專利範圍第8項 人工植體的製法,± ^之表面具有孔洞之 酸作為鍍液作用於25 t之加 3 風氟 〇 1〜l〇ASD,,里叉下,通入的電流密度為 〇卜&用o·1^虱氧化納混合氟化鈉 .。作為鍍液作用於25 。(:之、卢IT 、s 為0.1〜20ASD。 之/皿度下,通入的電流密度 24 1 3、如申請專利範圍第8項所述之表面具有孔洞之 200922529 人工植體的製法,其中陰極 作為鐘液作用…之溫度;=0.1〜讀鹽-。·卜誦’陽極處理時採用〇 二的電流密度為 0.卜5%作*鐘;夜作用於 W鈉混合氟化納 為G.剛SD。 、25 C之溫度下,通入的電流密度 1 4、如申請專利範圍第丄 之人工植體的製法,其中人 、以之表面具有孔洞 放帝加工德s 植粗於經過噴砂或電子束或 放电加工後,再做陰極處理時採 次 為鍍液作用於25艺之溫度 、·〜3 wt%氫氟酸作 0.H0ASD’陽極處理時採用。·卜二::電流密度為 用於25 t之溫度下,通 ^虱化鈉作為鍍液作 15、“:! 電流密度為〇·"_。 °申μ專:^ m第i Q :人工植體的製法,其中人工植體於經過:= = : 放電加卫後,再做陰極處理時採 、“子束或 液作用於25 t之溫度下, ·]〜硫酸作為鍍 陽極處理時…·…氣Γ:作二密度為 瓜辩下<s 鈉作為鍍液作用於2 5。(: $ ,皿度下,通入的電流密度為〇.卜20ASD。 16、如申請專利範圍第"項所 之人工植體的製法,其中人工植體於經過噴;::洞 放電加工後’再做陰極處理時採用以 '或電子束或 液作用於25 t之溫度下,通入的電流 硫酸作為錢 陽極處理時採用Q.HM氫氧化鋼作為二作1…ASD, 之溫度下,通入的電流密度為〇.卜聰。用於25 C 17'如申請專利範圍第10項所述之表面具有孔洞 25 200922529 之人工植體的製法,苴中 # + + τ & /、 植體於經過噴砂或電+束或 放電加工後’再做陰極兔子采戈 柞盔蚀、你从m ^用以〇.卜3. 0 Wt%氫氟酸 作為鍍液作用於25。〇之加择 ^ *L ASD,陽極處理時採用Q l〜7 巧U·1 &成 M虱氣化鈉混合氟化鈉〇 . 1〜5% 作為鍍液作用於25 t之、、田痒π Acn '现度下’通入的電流密度為〇. 1~20 khv 0 18、如申請專利範圍第10項所述之表面具有孔洞 之人工植體的製法,苴中 ^ ' 植體於經過喷砂或電子束或 放电加工後,再做陰極處 丄 ^ 守抓用以0.卜3. 0 Wt%鹽酸作 為鍵液作用於 — n ^inAQn 9 c之溫度下,通入的電流密度為 0· 1 1 0ASD,%極處理時 n , 休用0. 1〜7Μ碳酸鈉混合氟化鈉 0·卜5%作為鍍液作用於 c之溫度下,通入的電流密度 為 0,1 〜20ASD。 十一、圖式: 如次頁 26200922529 X. Patent application scope: 1. An artificial implant having a hole on the surface, the surface of the implant is at least two:: a structure having a crater structure, wherein the porous structure is substantially a porous structure of titanium oxide film, and The pore structure has at least a portion of the pore size substantially from 10 nanometers to 1 micrometer. 2. A human implant having a hole on the surface as described in claim 1 wherein the pore structure is at least partially enlarged to a size of 1 micrometer. On the babe, the thickness of the titanium film on the surface of the second section of the patent range is as follows: / The thickness of the intermediate emulsified titanium film is from 01 μm to μm. - Zhishen: The person with a hole on the surface of the third paragraph of the patent scope, wherein the hole structure has at least part of the hole nanometer to 100 nm. The person has a thickness of 10 工 5 5 凊 凊 凊 凊 凊 凊 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = - a method for producing an artificial implant having a hole in a surface of a cathode, comprising: - anyang: a 'to make hydrogen on a surface of a titanium metal of an artificial implant; and the porous structure being substantially oxidized to form a porous structure, at least partially - Depends on the pore structure, and the pore structure 7 is substantially 10 nanometers in size. °The method of manufacturing plant implants mentioned in item 6 of the patent application scope, 1> 〇 nanometer to pore structure at least partially having a pore size of substantially 8, as described in claim 7 of the patent application, having a hole in the surface of the human body 23 200922529, wherein the pore structure is eight to 1 nanometer to 1 〇〇 Nano. The size of the D-knife hole is substantially 9, and the patent method of the δ item of the patent scope is used. In the cathode treatment, the person with the surface of the hole is used as the plating solution to the temperature of 25, 〇·卜3 Wt% hydrofluoric acid ASD 'anode treatment with ~7 μ also flow male, degree is 〇. Bu 10. At the temperature, the input current sodium acts as a plating solution on the 25 private machine in the degree of 0.1~20 ASD. For example, the method for preparing artificial implants in the scope of patent application is as follows: in the cathodic treatment, the plating solution with pores on the surface is used for the treatment of 2 5 、, Λ U · 1~3 Μ sulphuric acid. The access to the Emperor, * - ASD' anode treatment uses 〇 1~5M ~, the degree is . · Η〇 at the temperature, the current is applied as the plating solution on 25 t: the mountain is 〇. 1~20ASD . 1 1. If the method of artificial implants is as described in item 8 of the patent application scope, where the cathode treatment is used, ",? The hole acts as a mineral solution at a temperature of 25 t, with sulfuric acid as ASD, and anodization with 〇w, degree 4 〇. Bu 10 t: Wen Lu, s air sulphide as a bath for 25 degrees The current density of the underpass is 〇. ASD. 12 If the application method of the artificial implant in the 8th patent scope is applied, the surface of the ± ^ surface has the pore acid as the plating solution applied to the 25 t plus 3 wind fluorine 〇 1~l〇ASD, under the fork, the current is passed The density is 〇b & o·1^虱 虱 虱 混合 mixed sodium fluoride. Acted as a plating solution at 25. (:,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The temperature of the cathode as the clock solution...=0.1~reading the salt-.··············································· Just SD. At a temperature of 25 C, the current density of the inlet is 14. 4, as in the patent application of the third method of artificial implants, in which the surface of the person has a hole in the processing of the German s plant is thicker than sandblasted. Or after electron beam or electric discharge machining, when the cathode treatment is performed, the plating solution is applied to the temperature of 25 art, and ~3 wt% hydrofluoric acid is used as the 0.H0ASD' anode treatment. · Bu 2:: Current density For use at a temperature of 25 t, sodium is used as a plating solution for 15, "!! Current density is 〇·"_. °申μ:: m m i Q: the method of artificial implants, After the artificial implant is passed: = = : After the discharge is applied, the cathode is processed, and the "beam or liquid acts on the 2 At a temperature of 5 t, ·]~ sulfuric acid is used as a plating anode...·... gas enthalpy: as a two-density for the melon, <s sodium acts as a plating solution for 2 5 (.: , under the dish, access The current density is 〇. Bu 20ASD. 16. The method of artificial implants according to the scope of the patent application, wherein the artificial implants are sprayed;:: after the hole discharge processing, 'the cathode treatment is used to ' Or the electron beam or liquid acts at a temperature of 25 t, and the current of the sulfuric acid is used as the anode of the money. Q.HM hydroxide steel is used as the second 1...ASD, and the current density is 〇. Cong. For the preparation of 25 C 17' artificial implants with holes 25 200922529 as described in claim 10, 苴中# + + τ & /, implants are sandblasted or electric + bundles or After the electric discharge machining, 'do the cathode rabbit Zang Ge 柞 蚀, you use from m ^ 〇. Bu 3. 0 Wt% hydrofluoric acid as a plating solution on the 25. 〇 加 ^ ^ * L ASD, when anodizing Use Q l~7 Q U·1 & M 虱 gasification sodium mixed sodium fluoride 〇. 1~5% as a plating solution applied to 25 t , Tian itch π Acn 'current degree' current density is 〇. 1~20 khv 0 18, as described in the patent application scope 10, the method of artificial implants with holes on the surface, 苴中 ^ ' After being subjected to sand blasting or electron beam or electric discharge machining, the cathode is then used to hold the cathode for use. 0. 0. Wt% hydrochloric acid is used as a key solution at the temperature of - n ^ inAQn 9 c, and is introduced. Current density is 0·1 1 0ASD, n pole treatment n, rest 0. 1~7Μ sodium carbonate mixed sodium fluoride 0·b 5% as the plating solution acts at the temperature of c, the current density is 0 , 1 ~ 20ASD. XI. Schema: as the next page 26
TW96145703A 2007-11-30 2007-11-30 Artificial implant with voids on surface thereof and method for producing the same TW200922529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96145703A TW200922529A (en) 2007-11-30 2007-11-30 Artificial implant with voids on surface thereof and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96145703A TW200922529A (en) 2007-11-30 2007-11-30 Artificial implant with voids on surface thereof and method for producing the same

Publications (1)

Publication Number Publication Date
TW200922529A true TW200922529A (en) 2009-06-01

Family

ID=44728227

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96145703A TW200922529A (en) 2007-11-30 2007-11-30 Artificial implant with voids on surface thereof and method for producing the same

Country Status (1)

Country Link
TW (1) TW200922529A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI425960B (en) * 2009-12-29 2014-02-11 Metal Ind Res & Dev Ct Metal surface treatment method and implant
TWI466747B (en) * 2010-11-18 2015-01-01 Univ Nat Taiwan Production method of dyed white titanium contained metal
TWI602548B (en) * 2011-01-03 2017-10-21 美佳境植牙股份有限公司 Dental implant fixture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI425960B (en) * 2009-12-29 2014-02-11 Metal Ind Res & Dev Ct Metal surface treatment method and implant
TWI466747B (en) * 2010-11-18 2015-01-01 Univ Nat Taiwan Production method of dyed white titanium contained metal
TWI602548B (en) * 2011-01-03 2017-10-21 美佳境植牙股份有限公司 Dental implant fixture

Similar Documents

Publication Publication Date Title
US11786342B2 (en) Surface area of a ceramic body and ceramic body
CN101820829B (en) Method of fabricating implant with improved surface properties and implant fabricated by the same method
Choi et al. Biological responses of anodized titanium implants under different current voltages
Yeo et al. Biomechanical and histomorphometric study of dental implants with different surface characteristics
TWI480026B (en) Bio-implant having screw body selectively formed with nanoporous in spiral groove and method of making the same
US9642680B2 (en) Dental implant
CN110438546A (en) A kind of electrolyte preparing hierarchical structure porous coating in titanium-alloy surface micro-arc oxidation
US20120183923A1 (en) Dental implant and surface treatment method of dental implant
CN106676605A (en) Preparation method of porous biological activity ceramic film on surface of porous pure titanium or titanium alloy with lattice structure and application thereof
Duncan et al. Anodisation increases integration of unloaded titanium implants in sheep mandible
RU2469744C1 (en) Method of creating nanostructured bioinert porous surface on titanium implants
CN110338921B (en) Dental implant and preparation method thereof
TW200922529A (en) Artificial implant with voids on surface thereof and method for producing the same
TWI462757B (en) Method of surface treatment for titanium implant
CN103290455A (en) Titanium micro/nanometer double-structured dioxide thin film with high biological activity and preparation method thereof
US20210307880A1 (en) Abutment
Nguyen et al. The effect of two-step surface modification for Ti-Ta-Mo-Zr alloys on bone regeneration: An evaluation using calvarial defect on rat model
CN109825797B (en) Zirconium alloy treatment method and application
CN106245093B (en) The preparation method and surface hydrophilicity of planting body nano-tube array of the planting material surface through secondary anode and reaming
Lee et al. Nanotubular Structure Formation on Ti-6Al-4V and Ti-Ta Alloy Surfaces by Electrochemical Methods
KR20110051441A (en) Method for forming nanotube on the surface of dental implant quickly and uniformly
KR101042405B1 (en) HA coating methods after two-step surface modification of dental implant for bioactivity
TW201216926A (en) capable of increasing affinity of the surface film to biological cells to enhance the compatibility of medical implants to biological cells
Gosteva et al. Formation of the Developed Surface of Dental Implants
JPH0747117A (en) Implant and its manufacture