KR101042405B1 - HA coating methods after two-step surface modification of dental implant for bioactivity - Google Patents

HA coating methods after two-step surface modification of dental implant for bioactivity Download PDF

Info

Publication number
KR101042405B1
KR101042405B1 KR1020090041856A KR20090041856A KR101042405B1 KR 101042405 B1 KR101042405 B1 KR 101042405B1 KR 1020090041856 A KR1020090041856 A KR 1020090041856A KR 20090041856 A KR20090041856 A KR 20090041856A KR 101042405 B1 KR101042405 B1 KR 101042405B1
Authority
KR
South Korea
Prior art keywords
implant
coating
surface modification
nanotubes
dental
Prior art date
Application number
KR1020090041856A
Other languages
Korean (ko)
Other versions
KR20100122783A (en
Inventor
최한철
Original Assignee
최한철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최한철 filed Critical 최한철
Priority to KR1020090041856A priority Critical patent/KR101042405B1/en
Publication of KR20100122783A publication Critical patent/KR20100122783A/en
Application granted granted Critical
Publication of KR101042405B1 publication Critical patent/KR101042405B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • A61C8/0013Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0006Production methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Dentistry (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Ceramic Engineering (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Prosthetics (AREA)

Abstract

본 발명은 임플란트 표면에 마이크로포아를 형성하는 단계; 상기 마이크로포아가 형성된 임플란트 표면에 나노튜브를 형성하는 단계; 치아회분말을 이용하여 나노튜브 표면에 코팅할 타겟을 제조하는 단계; 상기 제조된 치아회분말 또는 인공제조된 HA를 이용하여 EB-PVD방법으로 임플란트 표면을 코팅하는 단계;로 이루어지는 치과용 임플란트의 표면개질 후 생체활성화를 위한 하이드록시아파타이트 코팅법을 제공하기 위한 것으로, 이처럼 본 발명은 임플란트 표면에 마이크로포아와 나노튜브를 2스텝으로 형성하고 발거된 치아를 이용하거나 인공제조한 HA를 이용하여 EB-PVD법으로 코팅함으로써 치과임플란트용 표면개질을 통하여 생체적합성을 증가시켜 시술기간을 단축하고 사용기간을 최대한 연장할 수 있도록 하는 매우 유용한 발명인 것이다.The present invention comprises the steps of forming a micropore on the surface of the implant; Forming nanotubes on the surface of the implant in which the micropores are formed; Preparing a target to be coated on the surface of the nanotube using tooth powder; To provide a hydroxyapatite coating method for bioactivation after surface modification of the dental implant comprising the step of coating the implant surface by the EB-PVD method using the prepared tooth powder or artificially manufactured HA, As such, the present invention increases the biocompatibility through the surface modification for dental implants by forming micropores and nanotubes in two steps on the implant surface and coating them with EB-PVD method using extracted teeth or artificially manufactured HA. It is a very useful invention that can shorten the procedure period and extend the period of use as much as possible.

임플란트, 표면개질, 양극산화, 생체활성, 하이드록시아파타이트, 코팅법 Implants, Surface Modification, Anodization, Bioactivity, Hydroxyapatite, Coating

Description

치과용 임플란트의 표면개질 후 생체활성화를 위한 하이드록시아파타이트 코팅법{HA coating methods after two-step surface modification of dental implant for bioactivity}HA coating methods after two-step surface modification of dental implant for bioactivity

본 발명은 치과용 임플란트의 표면개질 후 생체활성화를 위한 하이드록시아파타이트 코팅법에 관한 것으로, 더욱 상세하게는 발거된 치아를 이용하여 스퍼터링용 타겟을 제조하여 임플란트 표면에 2스텝으로 마이크로포아와 나노튜브를 형성하고, 치아회분말이나 인공 HA를 코팅함으로써 생체적합성과 골 융합을 한층 증가시켜 치과시술시간을 단축하고 영구히 구강 내에 매식(埋植)할 수 있는 치과용 임플란트 표면 개발에 관한 것이다.The present invention relates to a hydroxyapatite coating method for bioactivation after surface modification of a dental implant, and more specifically, to prepare a sputtering target using the extracted tooth micropore and nanotube in two steps on the implant surface The present invention relates to the development of a dental implant surface capable of shortening the dental procedure by permanently increasing the biocompatibility and bone fusion by coating tooth powder or artificial HA and shortening the dental procedure.

최근 경제적인 수준이 향상되어 치아보철용으로 임플란트 시술을 원하는 환자가 크게 증가하고 있으며, 이에 따라 치과 임플란트의 수요가 크게 증가하고 있다.Recently, the economic level has been improved, the number of patients who want to implant implants for dental prosthetics is increasing significantly, and the demand for dental implants is greatly increased accordingly.

그러나 아직까지도 치과용 임플란트의 표면개질의 문제점 때문에 고가의 임 플란트의 표면에 하이드록시아파타이트(HA; hydroxyapatite) 코팅을 이용하여 임상적으로 생체적합성을 개선해 오고 있으며, 지금도 국외나 국내에서 연구를 계속해 오고 있지만 임상적으로 사용된 임플란트 표면에서 HA의 박리현상으로 그 수명이 크게 감소되는 문제점이 제기되고 있다.However, due to the problem of surface modification of dental implants, hydroxyapatite (HA) coating has been used on the surface of expensive implants to improve clinical biocompatibility. However, the problem that the life of the HA is greatly reduced due to the peeling phenomenon of HA in the clinically used implant surface.

또한 기존의 thermal spray법이나 Solgel법, 양극산화법 등을 통하여 연구되고 있으나, 이들의 문제점은 임상적으로 사용시 박리 되는 문제점을 안고 있었다.In addition, although the conventional thermal spray method, Solgel method, anodization method, etc. have been studied, these problems had a problem of peeling when used clinically.

현재까지 사용되고 있는 주요 표면처리기술로는 PVD(Physical vapor deposition), CVD(chemical vapor deposition), IBED(ion beam enhanced deposition) 및 Ion Implantation법 등으로 각종 치과용소재의 내마모성, 내식성 및 내산화성 향상과 생체적합성 개선에 널리 쓰이고 있다.Major surface treatment technologies used to date include physical vapor deposition (PVD), chemical vapor deposition (CVD), ion beam enhanced deposition (IBED), and ion implantation methods to improve wear, corrosion and oxidation resistance of various dental materials. It is widely used to improve biocompatibility.

특히 상기 thermal spray 방법은 현재 상업적으로 바이오 세라믹을 임플란트에 코팅할 때 많이 이용되는 방법이다. 그러나 마이크로 크랙(microcrack), 코팅층과 임플란트 표면의 낮은 결합력, 높은 온도에서 노출에 의한 상변화, 불균일한 코팅 밀도 그리고 불규칙적인 미세구조 제어 등의 단점을 가지고 있으며 이러한 문제들 때문에 이식실패의 결과를 나타나고 있다.In particular, the thermal spray method is currently widely used when coating bio-ceramic implants commercially. However, there are disadvantages such as microcrack, low bonding strength of coating layer and implant surface, phase change by exposure at high temperature, uneven coating density and irregular microstructure control, which result in graft failure. have.

최근 시판하고 있는 생체용 임플란트의 표면 개질은 먼저 표면에 알루미나분말이나 HA분말을 이용하여 macro거칠기를 부여하고 양극산화법에 의한 micro거칠기를 부여하여 골과의 반응을 쉽게 하도록 처리하고 있으며, 임플란트 시술의 가장 대두되는 문제는 골과의 결합시간을 단축하고 그 계면에서 밀착하는 강도를 필요로 한다.Recently, surface modification of commercially available implants is treated with alumina powder or HA powder on the surface to give macro roughness and micro roughness by anodization to facilitate the reaction with bone. The most prominent problem is the need for shortening the bonding time with the bone and the strength of adhesion at the interface.

이를 위하여 종래에는 HA를 thermal spray법으로 표면에 분사하여 코팅처리를 하고 있으나 계면에서의 박리현상 때문에 임플란트의 실패원인이 되고 있다.To this end, in the prior art, HA is sprayed on the surface by thermal spraying to perform coating treatment, but it is a cause of implant failure due to peeling phenomenon at the interface.

또 최근에는 양극산화법에 의한 표면처리에 대한 연구가 진행되고 있으며, 특히 나노튜브형성표면에 전기화학적인 방법으로 HA를 코팅하고 있는 단계까지 연구가 진행되었다. 이러한 전기화학적 전착법을 이용한 HA 코팅방법이 많은 연구자들에 의하여 행하여지고 있으며, 실행온도가 낮기 때문에 원하지 않는 재료의 상변화를 피할 수 있다. 그러나 복잡한 모양과 두께 조절이 용이하며 다른 공정에 비하여 제조단가가 낮긴 하지만, 이들 연구는 전기화학적인 방법에 의해 인공 HA를 코팅하는 방법이어서 인체에 해로운 잔류물이 나노튜브에 남아있게 되는 등의 단점을 갖는다.In recent years, studies on surface treatment by anodization have been conducted. In particular, research has been carried out to the step of coating HA on the surface of nanotubes by electrochemical method. HA coating method using this electrochemical electrodeposition method is carried out by many researchers, and because of the low running temperature it is possible to avoid unwanted phase change of the material. However, although the complex shape and thickness can be easily adjusted and the manufacturing cost is lower than other processes, these studies are an electrochemical method of coating artificial HA, which leaves harmful residues in the nanotubes. Has

따라서 본 발명에서는 이를 개선하기 위하여 표면에 세포의 종류에 따라 마이크로크기의 마이크로포아와 나노크기의 나노튜브를 양극산화법을 이용하여 표면처리한 후, 생체활성화 물질인 HA를 EB-PVD법으로 코팅하여 표면에서 박리되는 현상을 최소화할 수 있는 코팅법을 제공하는 데 그 목적이 있다.Therefore, in order to improve this, according to the type of cells on the surface of the micro-sized micropore and nano-sized nanotubes by the surface treatment using anodizing method, and then coated with the bioactive material HA by EB-PVD method It is an object of the present invention to provide a coating method that can minimize the phenomenon of peeling off the surface.

이처럼 본 발명은 임플란트 표면에 마이크로포아와 나노튜브를 2스텝으로 형성하고 발거된 치아를 이용하거나 인공제조한 HA를 이용하여 EB-PVD법으로 코팅함으로써 치과임플란트용 표면개질을 통하여 생체적합성을 증가시켜 시술기간을 단축하고 사용기간을 최대한 연장할 수 있는 매우 유용한 효과를 갖는다.As such, the present invention increases the biocompatibility through the surface modification for dental implants by forming micropores and nanotubes in two steps on the implant surface and coating them with EB-PVD method using extracted teeth or artificially manufactured HA. It has a very useful effect of shortening the procedure period and extending the use period as much as possible.

이하 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 치과용 임플란트의 표면개질 후 생체활성화를 위한 하이드록시아파타이트 코팅법은 임플란트 표면에 마이크로포아를 형성하는 단계; 상기 마이크로포아가 형성된 임플란트 표면에 나노튜브를 형성하는 단계; 치아회분말을 이용하여 나노튜브 표면에 코팅할 타겟을 제조하는 단계; 상기 제조된 치아회분말 또는 인공제조된 HA를 이용하여 EB-PVD방법으로 임플란트 표면을 코팅하는 단계;로 이루어진다.The hydroxyapatite coating method for bioactivation after surface modification of the dental implant according to the present invention comprises the steps of: forming micropores on the surface of the implant; Forming nanotubes on the surface of the implant in which the micropores are formed; Preparing a target to be coated on the surface of the nanotube using tooth powder; Coating the surface of the implant by the EB-PVD method using the prepared tooth powder or artificially manufactured HA.

이하 본 발명의 실시예를 통해 더욱 상세히 설명하면 다음과 같다.Hereinafter, described in more detail through an embodiment of the present invention.

[실시예] EXAMPLE

(1) 합금제조(1) Alloy production

진공아-크멜팅로를 이용하여 4종류의 합금을 제조하되, 본 발명에서는 Ti(balance)에 대하여 Ta, Zr, Nb의 중량비를 달리하여 구성한다.Four kinds of alloys are manufactured by using a vacuum arc-melting furnace, but in the present invention, the weight ratio of Ta, Zr, and Nb is different with respect to Ti (balance).

(a) 67wt%Ti-30wt%Ta-3wt%Zr(a) 67wt% Ti-30wt% Ta-3wt% Zr

(b) 65wt%Ti-30wt%Ta-15wt%Zr(b) 65wt% Ti-30wt% Ta-15wt% Zr

(c) 67wt%Ti-30wt%Nb-3wt%Zr(c) 67wt% Ti-30wt% Nb-3wt% Zr

(d) 65wt%Ti-30wt%Nb-15wt%Zr(d) 65wt% Ti-30wt% Nb-15wt% Zr

(2) 2스텝 양극산화(two-step anodization)(2) two-step anodization

① 1단계: 마이크로포아 형성① Step 1: Micropore Formation

전해액: 1M H3PO4 Electrolyte: 1M H 3 PO 4

직류전압, 전류: 180V, 30mA(정전류)DC voltage, current: 180 V, 30 mA (constant current)

시간: 20min, 150minTime: 20min, 150min

전극: 양극(시편), 음극(백금)Electrode: Anode (Sample), Cathode (Platinum)

② 2단계: 나노튜브 형성② Step 2: Nanotube Formation

전해액: 1M H3PO4 + 0.8% NaFElectrolyte: 1M H 3 PO 4 + 0.8% NaF

직류전압: 5~10V 10mA(정전류) 20V까지 상승 ⇒ 20V(정전압 유지)DC voltage: 5 to 10 V 10 mA (constant current) Rise to 20 V ⇒ 20 V (hold constant voltage)

시간: 120minTime: 120min

전극: 작업전극(시편), 보조전극(백금), 기준전극(포화칼로멜)Electrode: working electrode (sample), auxiliary electrode (platinum), reference electrode (saturated calomel)

(3) HA 코팅용 치아회분말 타겟 제조(3) HA powder tooth powder target production

소성: 1350℃/3hrFiring: 1350 ℃ / 3hr

물성: 기공율 24.5%(196.6 1500℃)Properties: Porosity 24.5% (196.6 1500 ℃)

비중: 2.35(2.45℃)Specific gravity: 2.35 (2.45 ℃)

소성수축율: -5%Plastic shrinkage: -5%

원주: 손으로 가공 (2hr) 50mmCircumference: hand machined (2hr) 50mm

가공은 diamond pasteProcessing is diamond paste

세척: 초음파 30minWashing: ultrasonic 30min

건조 110℃ 에서 26hrDry 26hrs at 110 ℃

(4) EB-PVD방법에 의해 HA를 임플란트 표면 코팅하기 위한 조건(4) Conditions for Implant Surface Coating of HA by EB-PVD Method

Figure 112009028786431-pat00001
Figure 112009028786431-pat00001

[도 1]은 개발합금의 표면사진으로, (a)67wt%Ti-30wt%Ta-3wt%Zr, (b)65wt%Ti-30wt%Ta-15wt%Zr, (c)67wt%Ti-30wt%Nb-3wt%Zr, (d)65wt%Ti-30wt%Nb-15wt%Zr 합금의 표면사진이며, Zr함량이 증가하면 need-like형의 침상 조직으로 바뀐다.1 is a surface photograph of the development alloy, (a) 67 wt% Ti-30 wt% Ta-3 wt% Zr, (b) 65 wt% Ti-30 wt% Ta-15 wt% Zr, (c) 67 wt% Ti-30 wt The surface photograph of% Nb-3wt% Zr, (d) 65wt% Ti-30wt% Nb-15wt% Zr alloy. When Zr content is increased, it changes to need-like needle structure.

[도 2]는 개발합금의 표면에 마이크로포아 형성사진으로, (a)67wt%Ti-30wt%Ta-3wt%Zr, (b)65wt%Ti-30wt%Ta-15wt%Zr, (c)67wt%Ti-30wt%Nb-3wt%Zr, (d)65wt%Ti-30wt%Nb-15wt%Zr 합금의 표면사진이며, 표면에 형성된 산화티탄피막에 고전압으로 인가됨으로 인한 표면에 마이크로 포아가 잘 형성되었다.2 is a microporous photo on the surface of the development alloy, (a) 67 wt% Ti-30 wt% Ta-3 wt% Zr, (b) 65 wt% Ti-30 wt% Ta-15 wt% Zr, (c) 67 wt% Surface photograph of% Ti-30wt% Nb-3wt% Zr, (d) 65wt% Ti-30wt% Nb-15wt% Zr alloy, and micropores are well formed on the surface due to high voltage applied to titanium oxide film formed on the surface It became.

[도 3]은 개발합금의 표면에 나노튜브 형성사진으로, (a)67wt%Ti-30wt%Ta-3wt%Zr, (b)65wt%Ti-30wt%Ta-15wt%Zr, (c)67wt%Ti-30wt%Nb-3wt%Zr, (d)65wt%Ti-30wt%Nb-15wt%Zr 합금의 표면사진이며, 사진에서 나노튜브의 형성이 직경 백 nm의 크기로 형성되었으며, (a)에서 Ti합금에서 나타나는 나노튜브가 α상과 β상에 상을 따라서 형성된다. 두께는 500nm정도로 형성된다. 3 is a photo of nanotubes formed on the surface of the development alloy, (a) 67 wt% Ti-30 wt% Ta-3 wt% Zr, (b) 65 wt% Ti-30 wt% Ta-15 wt% Zr, (c) 67 wt% Surface image of% Ti-30wt% Nb-3wt% Zr, (d) 65wt% Ti-30wt% Nb-15wt% Zr alloy, in which the formation of nanotubes was formed with a size of 100 nm in diameter, (a) Nanotubes appearing in Ti alloys are formed along the phases α and β. The thickness is formed to about 500nm.

[도 4]는 개발합금의 표면에 2스텝으로 형성된 마이크로포아 및 나노튜브 형성사진으로, 65wt%Ti-30wt%Ta-15wt%Zr 합금을 (a)는 500배, (b)는 1,000배, (c)는 30,000배 및 (d)50,000배로 관찰한 것으로, (a)의 저배율로 보는 마이크로포아가 잘 형성되었으며, 그 내부에는 (d)와 같이 나노튜브가 형성되어 아주 우수한 생체활성화에 필요한 표면을 제공할 수 있다.Figure 4 is a micropore and nanotube formation photograph formed in two steps on the surface of the development alloy, 65wt% Ti-30wt% Ta-15wt% Zr alloy (a) is 500 times, (b) is 1,000 times, (c) was observed at 30,000 times and (d) 50,000 times, and micropores were formed well at the low magnification of (a), and inside the nanotubes as shown in (d), the surface needed for excellent bioactivation was formed. Can be provided.

[도 5]는 치아회분말 타겟 제조사진으로, 나노튜브 표면에 코팅할 치아회분말을 이용하여 제조된 타겟이며, EB-PVD용 타겟으로 표면에 결함이 없고 아주 우 수한 타겟을 사용하였다.FIG. 5 is a tooth powder target manufacturing photograph, which is a target prepared by using a tooth powder to be coated on a nanotube surface, and used as a target for EB-PVD without a defect and having a very good target.

[도 6] 2스텝 표면의 치아회분말 코팅표면으로, (a)67wt%Ti-30wt%Ta-3wt%Zr, (b)65wt%Ti-30wt%Ta-15wt%Zr, (c)67wt%Ti-30wt%Nb-3wt%Zr, (d)65wt%Ti-30wt%Nb-15wt%Zr 합금의 표면사진이며, 치아회분말 타겟을 이용하여 EB-PVD방법으로 코팅한 결과 마이크로포아-나노튜브 표면에 HA(hydroxyapatite)가 잘 코팅되어 골과의 융합을 잘 할 수 있도록 되었다.6 is a tooth powder coating surface of a two-step surface, (a) 67 wt% Ti-30 wt% Ta-3 wt% Zr, (b) 65 wt% Ti-30 wt% Ta-15 wt% Zr, (c) 67 wt% Surface image of Ti-30wt% Nb-3wt% Zr, (d) 65wt% Ti-30wt% Nb-15wt% Zr alloy, micropoa-nanotube as a result of coating by EB-PVD method using tooth powder target HA (hydroxyapatite) is well coated on the surface to facilitate fusion with bone.

이처럼 본 발명은 비록 한정된 실시예에 의해 설명되었으나, 본 발명은 이것에 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능하다 할 것이다.As described above, the present invention has been described by means of a limited embodiment, but the present invention is not limited thereto and is intended by those skilled in the art to which the present invention pertains to the technical spirit of the present invention and claims to be described below. Various modifications and variations are possible within the scope of equivalents.

도 1 - 개발합금의 표면사진Figure 1-Surface photograph of development alloy

도 2 - 개발합금의 표면에 마이크로포아 형성사진Figure 2-Photo micropore formation on the surface of the development alloy

도 3 - 개발합금의 표면에 나노튜브 형성사진Figure 3-Photo nanotube formation on the surface of the development alloy

도 4 - 개발합금의 표면에 2스텝으로 형성된 마이크로포아 및 나노튜브 형성사진Fig. 4-Micropore and nanotube formation photograph formed in two steps on the surface of the development alloy

도 5 - 치아회분말 타겟 제조사진Figure 5-Tooth powder target production photo

도 6 - 2스텝 표면의 치아회분말 코팅표면Figure 6-Tooth powder coating surface of 2 step surface

Claims (2)

임플란트 표면에 나노튜브를 형성하고, 상기 나노튜브 표면에 치아회분말 또는 인공제조된 HA를 이용하여 코팅하는 치과용 임플란트의 표면개질방법에 있어서,In the surface modification method of the dental implant to form a nanotube on the surface of the implant, the coating on the nanotube surface using a tooth powder or artificially manufactured HA, 상기 임플란트 표면에 나노튜브를 형성하기 전에 마이크로포아를 형성하고, 상기 마이크로포아를 형성된 임플란트 표면에 나노튜브를 형성하고 치아회분말 또는 인공제조된 HA를 EB-PVD방법으로 임플란트 표면을 코팅하는 단계;로 이루어짐을 특징으로 하는 치과용 임플란트의 표면개질 후 생체활성화를 위한 하이드록시아파타이트 코팅법. Forming a micropore before forming the nanotubes on the implant surface, forming the nanotubes on the implant surface on which the micropores are formed, and coating the implant surface with the tooth powder or artificially manufactured HA by EB-PVD; Hydroxyapatite coating method for bioactivation after surface modification of the dental implant, characterized in that consisting of. 제1항에 있어서,The method of claim 1, 상기 임플란트는 진공아-크멜팅로를 이용하여 제조되되, 67wt%Ti-30wt%Ta-3wt%Zr, 65wt%Ti-30wt%Ta-15wt%Zr, 67wt%Ti-30wt%Nb-3wt%Zr, 65wt%Ti-30wt%Nb-15wt%Zr 중 어느 하나의 합금으로 이루어진 것임을 특징으로 하는 치과용 임플란트의 표면개질 후 생체활성화를 위한 하이드록시아파타이트 코팅법.The implant is prepared using a vacuum arc-melting furnace, 67wt% Ti-30wt% Ta-3wt% Zr, 65wt% Ti-30wt% Ta-15wt% Zr, 67wt% Ti-30wt% Nb-3wt% Zr , Hydroxyapatite coating method for bioactivation after surface modification of the dental implant, characterized in that consisting of any one of 65wt% Ti-30wt% Nb-15wt% Zr alloy.
KR1020090041856A 2009-05-13 2009-05-13 HA coating methods after two-step surface modification of dental implant for bioactivity KR101042405B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090041856A KR101042405B1 (en) 2009-05-13 2009-05-13 HA coating methods after two-step surface modification of dental implant for bioactivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090041856A KR101042405B1 (en) 2009-05-13 2009-05-13 HA coating methods after two-step surface modification of dental implant for bioactivity

Publications (2)

Publication Number Publication Date
KR20100122783A KR20100122783A (en) 2010-11-23
KR101042405B1 true KR101042405B1 (en) 2011-06-17

Family

ID=43407621

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090041856A KR101042405B1 (en) 2009-05-13 2009-05-13 HA coating methods after two-step surface modification of dental implant for bioactivity

Country Status (1)

Country Link
KR (1) KR101042405B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015167044A1 (en) * 2014-04-30 2015-11-05 이정태 Surface-modified hybrid surface implant and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101283780B1 (en) * 2011-11-16 2013-07-15 전북대학교산학협력단 Titanium implant and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253424A (en) 2002-03-01 2003-09-10 Shigeki Mototsu Hydroxyapatite film coating material and manufacturing method thereof
KR20070029912A (en) * 2005-09-12 2007-03-15 학교법인조선대학교 Menufacturing method of sputtering target using tooth ash powder and surface reform method of dental implant using the same
KR100865345B1 (en) * 2007-06-25 2008-10-24 주식회사덴트퀸스 Surface characteristics of ha coatings on dental implants
US20090035722A1 (en) 2007-08-01 2009-02-05 Ganesan Balasundaram Hydroxyapatite coated nanostructured titanium surfaces

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253424A (en) 2002-03-01 2003-09-10 Shigeki Mototsu Hydroxyapatite film coating material and manufacturing method thereof
KR20070029912A (en) * 2005-09-12 2007-03-15 학교법인조선대학교 Menufacturing method of sputtering target using tooth ash powder and surface reform method of dental implant using the same
KR100865345B1 (en) * 2007-06-25 2008-10-24 주식회사덴트퀸스 Surface characteristics of ha coatings on dental implants
US20090035722A1 (en) 2007-08-01 2009-02-05 Ganesan Balasundaram Hydroxyapatite coated nanostructured titanium surfaces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015167044A1 (en) * 2014-04-30 2015-11-05 이정태 Surface-modified hybrid surface implant and method for manufacturing same

Also Published As

Publication number Publication date
KR20100122783A (en) 2010-11-23

Similar Documents

Publication Publication Date Title
Khudhair et al. Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations
Zhang et al. Formation mechanism, corrosion behaviour and biological property of hydroxyapatite/TiO2 coatings fabricated by plasma electrolytic oxidation
CN1974876B (en) Bioactive film on titanium metal surface and its sand blasting-micro arc oxidizing compounding process
Alves et al. Tribocorrosion behaviour of anodic titanium oxide films produced by plasma electrolytic oxidation for dental implants
CN102743789B (en) Artificial tooth root with micro-nano hierarchical topologic surface structure and preparation method of artificial tooth root
CN101575726B (en) Method for preparing bioactive gradient film of fluor-hydroxyapatite
Escada et al. Influence of anodization parameters in the TiO2 nanotubes formation on Ti-7.5 Mo alloy surface for biomedical application
CN104562145B (en) A kind of method that combined oxidation prepares bioceramic film
US20110171600A1 (en) Bio-Implant Having a Screw Body with Nanoporous Spiral Groove and the Method of Making the Same
KR20200066867A (en) Coating method of bioactive elements of nano-mesh type titanium-based alloy using a plasma electrolytic oxidation method
EP2476390A1 (en) Dental implant and surface treatment method of dental implant
EP1364079A1 (en) A process for electrochemical deposition of tantalum and an article having a surface modification
CN106676605A (en) Preparation method of porous biological activity ceramic film on surface of porous pure titanium or titanium alloy with lattice structure and application thereof
CN105420680A (en) Preparation method of pure titanium surface Ag/Sr co-doped TiO2 porous film
Chopra et al. Random, aligned and grassy: Bioactivity and biofilm analysis of Zirconia nanostructures as dental implant modification
KR101042405B1 (en) HA coating methods after two-step surface modification of dental implant for bioactivity
KR101015462B1 (en) Titanium dioxide ceramics for implant and fabricating method thereof
KR101311979B1 (en) Method for preparing bio materials using coating of hydroxyapatite/zirconia composites and bio materials prepared therefrom
TWI462757B (en) Method of surface treatment for titanium implant
CN103290455A (en) Titanium micro/nanometer double-structured dioxide thin film with high biological activity and preparation method thereof
MAZĂRE et al. Heat treatment of TiO2 nanotubes, a way to significantly change their behaviour
CN209797796U (en) Zirconium dioxide nanotube film coating plated on surface of zirconium oxide ceramic and zirconium oxide ceramic dental crown and bridge restoration
Starikov et al. The application of niobium and tantalum oxides for implant surface passivation
CN109485459B (en) Zirconium dioxide nanotube film coating plated on surface of zirconium oxide ceramic, and preparation method and application thereof
Strnad et al. Influence of surface preparation on morphology of self-organized nanotubular oxide layers developed on Ti6Al4V alloy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140528

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150528

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180521

Year of fee payment: 8