TW200922251A - Systems and methods for generalized slot-to-interlace mapping - Google Patents

Systems and methods for generalized slot-to-interlace mapping Download PDF

Info

Publication number
TW200922251A
TW200922251A TW097129964A TW97129964A TW200922251A TW 200922251 A TW200922251 A TW 200922251A TW 097129964 A TW097129964 A TW 097129964A TW 97129964 A TW97129964 A TW 97129964A TW 200922251 A TW200922251 A TW 200922251A
Authority
TW
Taiwan
Prior art keywords
time slot
interlace
vectors
pilot
interleaving
Prior art date
Application number
TW097129964A
Other languages
Chinese (zh)
Other versions
TWI395447B (en
Inventor
Krishna Mukkavilli
Raghuraman Krishnamoorthi
Rajiv Vijayan
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/834,671 external-priority patent/US8477809B2/en
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200922251A publication Critical patent/TW200922251A/en
Application granted granted Critical
Publication of TWI395447B publication Critical patent/TWI395447B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • H04L5/0083Timing of allocation at predetermined intervals symbol-by-symbol
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A transmitter or receiver device includes a processing system configured to have one or more pilot interlace vectors and one or more distance vectors. The processing system is further configured to generate a first slot interlace for a first slot based on the one or more pilot interlace vectors, and is further configured to generate a second slot interlace for a second slot based on the first slot interlace and the one or more distance vectors. Additional slot interlaces for all other slots may also be generated based on the first slot interlace and the one or more distance vectors.

Description

200922251 九、發明說明: 【發明所屬之技術領域】 本技術大體係關於電信,且更具體言之,關於用於一般 化之時槽至交錯映射的系統及方法。 本專利申請案主張2007年7月25曰所申請之名為”用於一 $又化之時槽至父錯映射的系統及方法(Systems and200922251 IX. INSTRUCTIONS: TECHNICAL FIELD OF THE INVENTION The present technology system relates to telecommunications, and more particularly to systems and methods for generalized slot-to-interlace mapping. This patent application claims a system and method for applying the time slot-to-parent mapping for the application of July 25, 2007 (Systems and

Methods for Generalized Slot-to-Interlace Mapping)"的臨時 申請案第60/95 1,95 1號及2007年7月25日所申請之名為',在 無線多載波通信系統中的多個資料流之多工及傳輸 (Multiplexing and Transmission of Multiple Data Streams in a Wireless Multi-Carrier Communication System)11 的臨時申 請案第60,95 1,950號之優先權,該等案已讓與給其受讓 人’且在此以引用之方式明確地併入本文中。 本專利申請案為申請中的2007年5月21曰所申請之名為 "在無線多載波通信系統中的多個資料流之多工及傳輸 (Multiplexing and Transmission of Multiple Data Streams in a Wireless Multi-Carrier Communication System)”的專利申 δ月案第1 1/75 1,63 1號之部份接續申請案,該專利申請案第 1 1/75 1,63 1號為2004年9月1日所申請之名為"在無線多載波 通信系統中的多個資料流之多工及傳輸(Muhiplexing and Transmission of Multiple Data Streams in a Wireless Multi-Carrier Communication System)”的專利申請案第 10/932,586號(發布為美國專利案第7,221,68〇號)之接續申 請案,該專利申請案第10/932,586號主張2003年9月2日所 133688.doc 200922251 申請之名為,,用於在地面無線電鏈路上將多個多媒體流多 工及傳輸至行動終端機之方法(Method for Multiplexing and Transmitting Multiple Multimedia Streams to MobileMethods for Generalized Slot-to-Interlace Mapping)" Provisional Application No. 60/95 1, 95 1 and July 25, 2007, entitled ", Multiple Data in Wireless Multi-Carrier Communication Systems Priority of Temporary Application No. 60, 95, 1950 of Multiplexing and Transmission of Multiple Data Streams in a Wireless Multi-Carrier Communication System 11, which has been given to them for transfer The person's is hereby expressly incorporated herein by reference. This patent application is the multiplex and transmission of multiple data streams in a wireless multi-carrier communication system as claimed in the application of May 21, 2007. (Multiplexing and Transmission of Multiple Data Streams in a Wireless Multi -Carrier Communication System)" Patent Application No. 1 1/75 1,63 1 part of the application, the patent application No. 1 1/75 1,63 1 is September 1, 2004 Patent Application No. 10/932,586, filed in the name of "Muhiplexing and Transmission of Multiple Data Streams in a Wireless Multi-Carrier Communication System" The continuation application (issued as US Patent No. 7,221,68 )), the patent application No. 10/932,586 claims the name of the application of 133688.doc 200922251 on September 2, 2003, for use on the ground. Method for multiplexing and transmitting multiple multimedia streams to mobile terminals on a radio link (Method for Multiplexing and Transmitting Multiple Multimedia Streams to Mobile)

Terminals over Terrestrial Radio Links)” 的臨時申請案第 60/499,741號及2004年4月5日所申請之名為"在無線多載波 通信系統中的多個資料流之多工及傳輸(Multiplexing andTerminals over Terrestrial Radio Links)" Temporary Application No. 60/499,741 and April 5, 2004, entitled "Multiplexing and Multiple Data Streams in Wireless Multi-Carrier Communication Systems" (Multiplexing and

Transmission of Multiple Data Streams in a Wireless Multi-Carrier Communication System)&quot;的臨時申請案第 60/559,740號之優先權,該等案已讓與給其受讓人,且在 此以引用之方式明確地併入本文中。 【先前技術】 僅前向鏈路(FL0)為已由無線提供者之業界主導團體 (indUStry-led group)開發的數位無線技術。在用於行動多 媒體锿境之狀況下設計FL〇技術,且FL〇技術展示出適合 於在蜂巢式手機上使用的效能特徵。其使用在編碼與交錯 μ 中的進步來達成對即時内容串流及其他資料服務兩者之高 品質接收。FLO技術可提供穩固的行動效能及高容量,而 不與功率消耗折衷。該技術亦藉由顯著減少需要部署之傳 輸盗虞置之數目來降低傳遞多媒體内容之網路成本。此 卜基於FLO技術之多媒體多播補充無線操作者之蜂巢 網路資料及語音服務,從而將内容傳遞至在❹ 之相同蜂巢式手機。 使用 已·F L Ο無,㈣統來向行動使用者廣播除了非 務以外的即時音訊及視訊信號。使用長的且高功率傳輸器 133688.doc 200922251 ^進行各觀〇傳輸以確保—給定地㈣域中之 h此外’通常在多數市場中部署3韻傳輸器裝置,; 確保FL〇信號到達一給定市場中之群體的-顯著部分。在 ㈣資料封包之擷取過程期間,進行若干判定及計算以判 疋诸如各別無線接收器農置之頻率偏移之態樣。❹ 多媒體資料擷取之FL0廣播之性質,此資料及相關聯的附 加項貧訊之有效率處理為最重要的。舉例而言,當判定頻 率偏移或其他參數時’需要複雜處理及判定,其中使用相 位及相關聯的角度之判定來有助於資料之FLQ傳輸及接 收。 諸如FLO之無線通信系統經設計以在行動環境中工作, 其中預期就具有顯著能量之頻道抽頭之數 目、路徑增益及路徑延遲而言的頻道特徵在一時間週期上 很顯著地變化。在一正交分頻多工(〇FDM)系統中,接收 益裝置中之時序同步區塊藉由適當地選擇〇fdm符號邊界 以使在快速傅立葉轉變(FFT)窗中捕獲之能量最大化來回 應頻道分布之改變。當此等時序校正發生時,在計算待用 於解調變給定OFDM符號之頻道估計時頻道估計演算法將 日寸序校正考慮在内為重要的。在一些實施中,頻道估計亦 用以判定對需要應用於將來符號之符號邊界的時序調整, 因此導致已引入之時序校正與將經判定用於將來符號之時 序权正之間的微妙相互影響。此外,通常頻道估計區塊處 理來自多個OFDM符號之導頻觀測以便產生具有更好的雜 sfl平均數且亦解決更長頻道延遲擴展之頻道估計。當來自 133688.doc 200922251 多個OFDM符號之導頻觀測被一起處理以產生頻道估叶 時,將潛在OFDM符號相對於符號時序對準為重要的。 【發明内容】 下文呈現本技術之各種組態之一簡化概要以便提供對該 等組態之一些態樣的基本理解。該概要並非廣泛性綜述。 其並非意欲識別關鍵/重要元件或描繪本文中所揭示之组 態的範疇。其唯一目的在於以簡化形式呈現一些概念作為 稍後呈現之更詳細的描述之前言。 在本發明之一態樣中,一種傳輸器或接收器裝置包括一 處理系統’該處理系統經組態以具有一或多個導頻交錯向 量及一或多個距離向量。該處理系統經進一步組態以基於 該一或多個導頻交錯向量提供一第一時槽交錯,且經進一 步組態以基於該第一時槽交錯及該一或多個距離向量提供 一第二時槽交錯。 在本發明之另一態樣中’ 一種傳輸器或接收器裝置包 括:用於包括一或多個導頻交錯向量之構件;用於包括一 或多個距離向量之構件;用於基於該一或多個導頻交錯向 量提供一第一時槽交錯之構件;及用於基於該第—時槽交 錯及該一或多個距離向量提供一第二時槽交錯之構件。 在本發明之再一態樣中,描述一種用於在一傳輸器咬接 收器裝置處提供時槽交錯或提供通信之方法。該方法包 括:接收一或多個導頻交錯向量;接收一或多個距離向 量;基於該一或多個導頻交錯向量提供一第一時槽交錯; 及基於該第一時槽交錯及該一或多個距離向量提供一第二 133688.doc -9- 200922251 時槽交錯。 在本發明之又一態样φ , — # 〜像中,種可讀媒體包括可由—傳輪 器或接收器裝置執行之指令。該等指令包括用於以下操作 之程式碼:接收—或多個導頻交錯向量;接收-或多個距 離向量;基於該—或多個導頻交錯向量提供-第-時槽交 錯,及基於。亥第-時槽交錯及該一或多個距離向量提供— 第二時槽交錯。 在本發明之又一態榫Φ, 心僳中種傳輸器或接收器裝置包 括:一導頻交錯向量單元,其經組態以包括一或多個導頻 交錯向量;及-距離向量單元,其經組態以包括一或多個 距::量。該傳輸器或接收器裝置進—步包括一時槽交錯 十算單兀其經組態以基於該一或多個導頻交錯向量提供 -第-時槽交肖’且經進一步組態以基於該第一時槽交錯 及該一或多個距離向量提供一第二時槽交錯。 、在本發明之又—態樣中,可基於該第-時槽交錯及該-或夕個距離向里產生用於所有其他時槽之額外時槽交錯。 應理解’對於熟習此項技術者而言,自以下實施方式, 其他組態將變得易於顯而易見’其中該實施方式經藉由說 明僅展不及描述各種組態。如將認識到,本文中之教示可 延伸至其他及不同組態,且其若干細節能夠在各種其他方 面進行修改,其皆不脫離本發明之範疇。因此,應將圖式 及實施方式在性質上看作說明性而非限制性的。 【實施方式】 下文結合隨附圖式所闡明之實施方式意欲作為各種組態 133688.doc -10. 200922251 =描述且並不意欲僅表示可實踐本文中所描述之概念的組 態。該實施方式包括為了提供對本技術之徹底理解之目的 之具體細節。然而’對於熟習此項技術者而言,將顯而易 見’可在無此等具體細節之情況下實踐本技術。在一些個 例中,知方塊圖形式展示熟知結構及組件以便避免使本技 術之概念難懂。 圖1為說明用於僅前向鏈路網路的一無線網絡系統ι〇〇之 實例之概念方塊圖。系統⑽包括可在無線網路my -機接收器裝置120通信之一或多個傳輸器裝置ιι〇。 接收盗裝置12 0可/工 a τ為任一合適之通信裝置,諸如,手 機無線電活、有線電話、膝上型電腦、桌上型電腦、個 人數位助理(PDA)、資料收發器、數據機、傳呼機、相 :二戲:制台、MPEG音訊層3_)播放器、媒體閑道 :二…曰汛通l裝置、視訊通信裝置、多媒體通信裝 體電:=置中之任一者之組件(例如,印刷電路板、積 媒體褒置m且人二 適之音訊、視訊或多 八、商……组合。傳輸器裝置110可為可傳輸的任一 石適之通仏裝置’諸如’基地台或廣播台。 此段中描述的裝置令之任一者可 在 收信號)或傳輸②裝置(若其可接 器裝置中之任—二=傳輸信號)。因此,上述接收 上述傳輸^番 裝置(若其可傳輸信號),及 _。、置中之任一者可為接收 信號)。此外,合一杜罢I 土 衣罝(右其可接收 被稱作使用者裳田置。 使用或待使用時,其可 I33688.doc 200922251 接收器裝置12〇之部分可用以解竭符號子集i3〇及諸如多 «資料之其他資料。符號子集⑽可在使用用於多媒體 貝枓轉移之僅前向鏈路(FLO)協定之正交分頻多工(〇fdm) 網路中傳輸。頻道估計可基於插入頻域中及各別〇腦符 號中之均勻分隔之導頻載頻調。 圖2為根據本文中關明夕_ _ . Τ阐明之或多個態樣的說明可用於無 線通信環境中的一接收器裝置2〇〇之一實例之概念方塊 圖。接收器裝置200可包括—接收器2〇2,該接收器2〇2接 收一來自(例如)接收夭蝻r去園_、&gt; J丧收天線(未圖不)之信號,並對所接收之 信號執行典型動作(例如’遽波、放大、降頻變換等),且 數位化所調節之信號以獲得樣本。解調變器咖可解調變 所接收到的導頻符號並將該等符號提供至處理系統裏以 用於頻道估計。可提供FL〇頻道組件叫以處理fl〇信號。 在各過程中,此(例如)可包括數位流處理及/或定位計算。 處理系統206可(例如)為專用於分析由接收器搬接收之資 訊及/或產生用於由傳輸器216進行傳輸之資訊的處理器, 控制接收器裝置之-或多個組件之處理器,或分析由 接收器202接收之資訊、產生詩由傳輸器⑽進行傳輸之 資訊且控制接收器裝置細之—或多個組件的處理器。 可使用軟體、硬體或兩者之組合來實施處理系統挪。 無論被稱作軟體、動體、中間軟體、微竭、硬體描述語言 或是其他描述語言,軟體應廣泛地被解釋為意謂指令、資 料或其任何組合。以實例說明,處理系統2〇6可以一或多 個處理器來實施。處理器可為通用微處理器、微_、 133688.doc -12- 200922251 數位信號處理器(DSP)、特殊應用積體電路(asic) 程式化閘陣mmu)、可程式化邏輯裝置(Transmission of Multiple Data Streams in a Wireless Multi-Carrier Communication System) &quot; priority of the Provisional Application No. 60/559,740, the disclosure of which is assigned to its assignee, and expressly Incorporated herein. [Prior Art] Only the forward link (FL0) is a digital wireless technology that has been developed by the wireless provider's industry-leading group (indUStry-led group). The FL(R) technology was designed for use in a mobile multimedia environment, and the FL(R) technology demonstrated performance characteristics suitable for use on cellular handsets. It uses advances in coding and interleaving μ to achieve high quality reception of both instant content streaming and other data services. FLO technology delivers robust performance and high capacity without compromising power consumption. The technology also reduces the network cost of delivering multimedia content by significantly reducing the number of transmission thieves that need to be deployed. This multimedia multimedia based on FLO technology complements the wireless operator's cellular data and voice services to deliver content to the same cellular handsets in the world. The use of F L Ο no, (4) to broadcast mobile audio and video signals other than affair to mobile users. Use a long and high power transmitter 133688.doc 200922251 ^ to perform each transmission to ensure that - in the given (four) domain h - 'usually deploy 3 rhyme transmitter devices in most markets; ensure that FL 〇 signal reaches one A significant part of the group in a given market. During the process of the (4) data packet capture process, a number of decisions and calculations are made to determine the frequency offsets such as the individual wireless receiver farms.性质 The nature of the FL0 broadcast captured by the multimedia material, and the efficient handling of this information and associated add-on information is of the utmost importance. For example, when determining frequency offsets or other parameters, complex processing and decision-making are required, where the phase and associated angle decisions are used to facilitate FLQ transmission and reception of the data. Wireless communication systems such as FLO are designed to operate in a mobile environment where channel characteristics expected to have significant energy channel taps, path gains, and path delays vary significantly over a period of time. In an orthogonal frequency division multiplexing (〇FDM) system, the timing synchronization block in the receiving device maximizes the energy captured in the fast Fourier transform (FFT) window by appropriately selecting the 〇fdm symbol boundary. Respond to changes in channel distribution. When such timing corrections occur, it is important that the channel estimation algorithm takes into account the day-to-order correction when calculating the channel estimates to be used to demodulate a given OFDM symbol. In some implementations, the channel estimate is also used to determine timing adjustments to the symbol boundaries that need to be applied to future symbols, thus resulting in a subtle interaction between the introduced timing corrections and the timing weights that will be determined for future symbols. In addition, the channel estimation block typically processes pilot observations from multiple OFDM symbols to produce a channel estimate with a better sfl average and also resolves longer channel delay spread. When pilot observations from multiple OFDM symbols from 133688.doc 200922251 are processed together to produce a channel estimate, it is important to align potential OFDM symbols with respect to symbol timing. SUMMARY OF THE INVENTION A simplified summary of one of the various configurations of the present technology is presented below to provide a basic understanding of some aspects of the configuration. This summary is not an extensive overview. It is not intended to identify key/critical elements or to delineate the scope of the embodiments disclosed herein. Its sole purpose is to present some concepts in a simplified <RTIgt; In one aspect of the invention, a transmitter or receiver device includes a processing system&apos; that is configured to have one or more pilot interleaving vectors and one or more distance vectors. The processing system is further configured to provide a first time slot interlace based on the one or more pilot interlace vectors and further configured to provide a first based on the first time slot interlace and the one or more distance vectors The two-time slot is staggered. In another aspect of the invention, a transmitter or receiver device includes: means for including one or more pilot interlace vectors; means for including one or more distance vectors; for Or a plurality of pilot interlace vectors providing a first time slot interleaved component; and means for providing a second time slot interlace based on the first time slot interlace and the one or more distance vectors. In yet another aspect of the invention, a method for providing time slot interleaving or providing communication at a transmitter bite device is described. The method includes receiving one or more pilot interlace vectors, receiving one or more distance vectors, providing a first time slot interlace based on the one or more pilot interlace vectors, and interleaving based on the first time slot One or more distance vectors provide a second 133688.doc -9-200922251 time slot interleaving. In still another aspect of the invention, the readable media includes instructions executable by the -transmitter or receiver device. The instructions include code for receiving - or a plurality of pilot interlace vectors; receiving - or a plurality of distance vectors; providing - a - time slot interleaving based on the - or a plurality of pilot interlace vectors, and based on . The hop-time slot interleaving and the one or more distance vectors are provided - the second time slot interleaving. In still another aspect of the present invention, the heartbeat transmitter or receiver device includes: a pilot interleaved vector unit configured to include one or more pilot interlace vectors; and a distance vector unit, It is configured to include one or more distances:: amount. The transmitter or receiver device further includes a time slot interleaving unit configured to provide a -first time slot based on the one or more pilot interlace vectors and further configured to be based on the The first time slot interleaving and the one or more distance vectors provide a second time slot interleaving. In a further aspect of the invention, additional time slot interleaving for all other time slots may be generated inward based on the first-time slot interleaving and the - or evening distance inward. It will be understood that other configurations will become readily apparent to those skilled in the art from the following embodiments, wherein the embodiments are merely illustrative of the various configurations. It will be appreciated that the teachings herein may be extended to other and different configurations, and various details may be modified in various other aspects without departing from the scope of the invention. Therefore, the drawings and embodiments are to be considered as illustrative and not limiting. [Embodiment] The following embodiments, which are set forth in conjunction with the accompanying drawings, are intended as various configurations. 133688.doc -10. 200922251 =Description and is not intended to represent only the embodiments in which the concepts described herein may be practiced. This embodiment includes specific details for the purpose of providing a thorough understanding of the technology. However, it will be apparent to those skilled in the art that the present technology may be practiced without the specific details. In some instances, well-known structures and components are shown in order to avoid obscuring the concepts of the technology. 1 is a conceptual block diagram illustrating an example of a wireless network system for a forward link network only. The system (10) includes one or more transmitter devices ιι that are communicable in the wireless network my-machine receiver device 120. The receiving device 12 can be any suitable communication device, such as a mobile phone radio, a wired telephone, a laptop, a desktop computer, a personal digital assistant (PDA), a data transceiver, a data machine. , pager, phase: two plays: platform, MPEG audio layer 3_) player, media idle: two... 曰汛通 l device, video communication device, multimedia communication body power: = one of the set Components (for example, a printed circuit board, a memory media device, and a suitable audio, video or multi-eight, business combination. The transmitter device 110 can be any stone-transparent device that can be transmitted, such as a base. Station or broadcast station. Any of the devices described in this paragraph may be used to receive signals or transmit 2 devices (if any of its adapter devices - 2 = transmission signals). Therefore, the above-mentioned receiving device (if it can transmit a signal), and _ are received. Any one of the settings can be a receiving signal). In addition, the unit is a sneaker I (the right can be received as the user's singer. When used or to be used, it can be used to dissipate the symbol subset of I33688.doc 200922251 receiver device 12〇 I3〇 and other materials such as multiple data. The subset of symbols (10) can be transmitted in a Orthogonal Frequency Division Multiplexing (〇fdm) network using only Forward Link (FLO) protocols for multimedia Bellow Transfer. The channel estimate can be based on a uniformly spaced pilot carrier tone inserted into the frequency domain and in each of the camphor symbols. Figure 2 is an illustration of a plurality of aspects that can be used for wireless according to the description of the ___. A conceptual block diagram of an example of a receiver device 2 in a communication environment. The receiver device 200 can include a receiver 2〇2 that receives a reception from, for example, a 夭蝻r _, &gt; J annihilates the signal of the antenna (not shown) and performs typical actions (such as 'chopping, amplifying, down-converting, etc.) on the received signal, and digitizing the adjusted signal to obtain samples. The demodulator can demodulate the received pilot symbols and will The number is provided to the processing system for channel estimation. The FL channel component can be provided to process the FL signal. In various processes, this can, for example, include digital bit processing and/or positioning calculations. Processing system 206 can For example, a processor dedicated to analyzing information received by the receiver and/or generating information for transmission by the transmitter 216, a processor controlling the component or components of the receiver device, or analyzing by the receiver 202 Received information, generates a message that the poem is transmitted by the transmitter (10), and controls the processor device to be fine-- or a plurality of components of the processor. The processing system can be implemented using software, hardware, or a combination of both. Known as software, moving body, intermediate software, exhaustive, hardware description language or other description language, software should be interpreted broadly to mean instructions, materials or any combination thereof. By way of example, the processing system can be One or more processors are implemented. The processor can be a general-purpose microprocessor, micro_, 133688.doc -12-200922251 digital signal processor (DSP), special application integrated circuit (asic) Of gate array mmu), programmable logic devices (

器、狀態機、間控邏輯、離散硬體組件或可執行資訊= 异或其他操縱的任何其他合適實體。 D 2收器裝置朗另外地包括—記憶體2Q8,其操作_ 至處理糸統206且其可儲存係關於資料處理之資訊。 可讀媒體可包括整合至處理器内之儲存器件(諸如,可 為ASK:之情況)及/或在處理器外部之儲存器件(諸如,記 憶體208)。藉由說明且非限制,可讀媒體可包括以下中之 或多者·揮發性記憶體、非揮發性記憶體、隨機存取記 ,體(RAM)、快閃記憶體、唯讀記憶體(r_、可程式唯 讀記憶體(PROM)、可抹除PR〇M (EpRC&gt;M)、暫存器、硬 碟、抽取式碟、CD-ROM、DVD或任一其他合適=存裝 置此外,可頃媒體可包括傳輸線或編碼資料信號之载 波。可碩媒體可為編碼或儲存有電腦程式或指令之電腦可 讀媒體。電腦程式或指令可為可由傳輸器或接收器裝置或 由傳輸器或接收器裝置之處理系統執行。 接收器裝置200可進一步包括一用於處理FL〇資料之後 口瓜視器212、一付號調變器214及一傳輸經調變之信號之 傳輸器21 6。 圖3為說明包括一傳輸器裝置3〇2及一或多個接收器裝置 3〇4的系統3〇〇之一實例之概念方塊圖。傳輸器裴置3〇2可 包括:一接收器310,其經由一或多個接收天線3〇6自一或 夕個接收器裝置304接收信號;及一傳輸器322,其經由一 133688.doc 200922251 或夕個傳輸天線308傳輸至一或多個接 器310可操作性地與解 接收 聯。經解調變之符&quot;由…:訊的解調變器312相關 李八/ : 述處理系統2〇6之處理 &amp;理系統314可麵接至料係關於資料處理 之貝讯的記憶體3 1 6。 處理系統314可進一步㈣至有助於處理與一或多個各 別接收器裝置304相關聯的FL〇資訊之咖頻道組件⑽。 Γ FL〇頻道組件318可將資訊附加至係關於用於與接收器裝 置3〇4通信之給定傳輸流的經更新之資料流之信號,以提 供新的最佳頻道已經識別及確認之指示。調變器32〇亦可 經提供以對由傳輸器322進行傳輸的信號進行多工。以上 參看圖2對於處理系統及可讀媒體提供之描述類似地適用 於圖3中之組件。 圖4說明一例示性FLO實體層超訊框4〇〇。並中,超訊框 400可包括分時多工(TDM)導頻(例如,扣乂導頻mtdm 導頻2)、廣域識別頻道(WIC)、區域識別頻道(lic)、附加 項資訊符號(⑽)、四個資料訊框(例如,訊框工至訊框4)、 定位導頻頻道(ppc)及信號傳輸參數頻道(spc)。麗導頻 可允許⑽之快速操取。⑽可描述用於每一媒體服務之資 料在超訊框中的位置。超訊框結構不限於圖4中所說明之 結構,且超訊框可由比圖4中所說明之元素少的元素或多 的元素組成。 _M為多載波調變之形式。可將可利用之頻寬分為n 個頻率組,其被稱作副載波,舉例而言,丨中每一副載波 133688.doc -14· 200922251 由一正交調幅(QAM)符號調變。在fl〇中,傳輸及接收可 基於使用4096(4K)個副載波,且可(例如)自讲队或16_ QAM符號系統選擇QAM調變符號。 每一超訊框可包括多個0FDM符號。藉由說明,超訊框 可在每MHz可利用之頻寬包括2〇〇個〇FDM符號(例如,對 於6 MHz之頻寬包括1200個〇FDM符號)。在每一符號中, 可存在多個副載波(例如,4〇〇〇個副載波)。可將此等副載 波共同地分組為交錯。, state machine, control logic, discrete hardware components, or executable information = any other suitable entity that XOR or other manipulations. The D2 receiver device additionally includes a memory 2Q8, which operates to the processing system 206 and which can store information about data processing. The readable medium can include storage devices integrated into the processor (such as may be ASK:) and/or storage devices external to the processor (such as memory 208). By way of illustration and not limitation, the readable medium may include one or more of the following: volatile memory, non-volatile memory, random access memory, memory (RAM), flash memory, read-only memory ( R_, programmable read only memory (PROM), erasable PR〇M (EpRC>M), scratchpad, hard drive, removable disc, CD-ROM, DVD or any other suitable storage device The media may include a transmission line or a carrier wave encoding the data signal. The multimedia medium may be a computer readable medium encoded or stored with a computer program or instructions. The computer program or instructions may be a transmitter or receiver device or a transmitter or The processing device of the receiver device is executed. The receiver device 200 can further include a mouthpiece 212 for processing the FL〇 data, a payoff modulator 214, and a transmitter 21 for transmitting the modulated signal. 3 is a conceptual block diagram illustrating an example of a system 3 including a transmitter device 3〇2 and one or more receiver devices 3〇4. The transmitter device 3〇2 may include: a receiver 310 , via one or more receiving antennas 3〇6 from one or the evening Receiver device 304 receives the signal; and a transmitter 322 operatively coupled to the one or more connectors 310 via a 133688.doc 200922251 or evening transmit antenna 308. The demodulated variable &quot; by:: Demodulation transformer 312 related to Li Ba / : Processing system 2 〇 6 processing &amp; system 314 can be connected to the data processing of the data processing of the memory 3 1 6 System 314 can further (d) to a coffee channel component (10) that facilitates processing FL(R) information associated with one or more respective receiver devices 304. Γ FL〇 channel component 318 can attach information to the system for use and reception. The device 3 〇 4 communicates the signal of the updated data stream for a given transport stream to provide an indication that the new best channel has been identified and acknowledged. The modulator 32 〇 can also be provided for transmission by the transmitter 322 The transmitted signal is multiplexed. The description provided above for the processing system and the readable medium with reference to Figure 2 applies analogously to the components of Figure 3. Figure 4 illustrates an exemplary FLO physical layer superframe 4 〇〇. The hyperframe 400 can include time division multiplexing (TDM) Frequency (for example, deduction pilot mtdm pilot 2), wide area identification channel (WIC), area identification channel (lic), additional item information symbol ((10)), four data frames (for example, framer to the message) Block 4), locating the pilot channel (ppc) and the signal transmission parameter channel (spc). The MN pilot can allow fast operation of (10). (10) The location of the data for each media service in the hyperframe can be described. The hyperframe structure is not limited to the structure illustrated in Figure 4, and the hyperframe can be composed of fewer or more elements than those illustrated in Figure 4. _M is a multi-carrier modulation form that can be utilized The bandwidth is divided into n frequency groups, which are called subcarriers. For example, each subcarrier 133688.doc -14· 200922251 is modulated by a quadrature amplitude modulation (QAM) symbol. In fl, transmission and reception may be based on the use of 4096 (4K) subcarriers, and QAM modulation symbols may be selected, for example, from a self-talking or 16_QAM symbology. Each hyperframe can include multiple OFDM symbols. By way of illustration, the hyperframe can include 2 〇 FDM symbols in the available bandwidth per MHz (e.g., including 1200 〇 FDM symbols for a bandwidth of 6 MHz). In each symbol, there may be multiple subcarriers (eg, 4 subcarriers). These subcarriers can be collectively grouped into interlaces.

如圖5中所說明,例示性交錯結構可包括(例如個交 錯。在此實例中,交錯索引範圍自〇至7(亦即,1〇、n、 12 ' 13、14、15、16、17及18)。舉例而言,每一交錯可由 在仏號頻寬上均勻分隔之5〇〇個副載波組成。在每一交錯 内的姊近釗載波之間,存在7個副載波,其每一者屬於不 同又錯。在每—QFDM符號中’ _交錯可經指派至導頻交 錯,且可用於頻道估計。此處,可藉由已知(導頻)調變符 號來調變500個副載波。剩餘7個交錯或侧個副載波可用 :藉由:料符號調變。雖然圖5說明-例示性交錯結構/功 月匕’但父錯結構/功能不限於此組態,且其可具有其他類 i之組態(例如’具有任何數目的交錯)。 又錯可在頻率上均勻地分布,使得其可在可利用頻 見内達成全頻率分集。可將此等交錯指派給根據持續時間 用之實際交錯數目而變化的邏輯頻道。此提供由任 V 貝料源達成之時間分集中的靈活性。可給較低資料 ;頻C私派較少交錯以改良時間分集,而較高資料盘 133688.doc 200922251 頻道可利用較多交錯以最小化無線電之工作時間並降低功 率消耗。 圖6為時槽至父錯映射之一例示性表。垂直軸指示時槽 索引。水平軸指示符號索引。表中之值指示交錯索引。根 據本發明之一態樣,一時槽可涉及一群符號,一交錯可涉 及一群副載波,且可基於時槽至交錯映射方案,將每一時 槽映射至每-符號週期中之—交錯。可被稱作傳輸時槽之 夺槽可對應於一付號週期中之一交錯或一群調變符號。在 本發明之另一態樣中,可將一時槽映射至一或多個交錯, 並可將父錯映射至一或多個時槽。訊框之時間單位可包 括在MAC(刀配)層處之mac時間單位及在實體(ρΗγ)層處 之OFDM符號週期。符號週期可涉及實體層頻道(pLc)分配 之環境中的MAC時間單位,或副載波分配之環境中的 OFDM符號週期。符號週期可涉及符號索引之時間單位。 雖然如先前所描述,副載波之數目(亦即,FFT大小)可 為4K ’但本技術不限於此數目之副載波或fft大小。本技 術旎夠對各種FFT大小之OFDM系統中的多個資料流進行 多工及傳輸。對於具有4K FFT大小之OFDM系統,可將形 成一時槽之500個調變符號之一群組映射至一交錯。 在本發明之一態樣中,可在不同FFT大小上固定—時 槽。此外,交錯之大小可為作用副載波之數目的1/8,且 可基於FFT大小將時槽映射至部分或多個(包括一個)交 錯。指派至一時槽之交錯可駐留於多個OFDM符號週期 中。舉例而言,對於2K FFT大小,一時槽(亦即,5〇〇調變 133688.doc -16- 200922251 符號)映射至2個連續2K OFDM符號上之2個交錯。同樣 地,對於IK FFT大小,一時槽映射至4個連續ικ (^〇河符 號上之4個交m卜,作為—實例,由於可使用之副載 波可不包括(例如)保護副載波,所以對於1K、2K、伙及 8Κ FFT大小之可使用之副載波的數目可分別為1〇〇〇、 2〇〇〇、4〇〇〇及8_&gt;。亦即,舉例而言,mFFT大小含有 1 024個副載波,其中副載波中之24個可被用作保護副載 波。舉例而言,副載波之數目可與FFT大小成比例地增 加。 其遵循,對於8K FFT大小,—時槽映射至_半的8K OFDM符號上之一半的交錯。注意,與fft大小無關,一 MAC時間單位可包含(例如)8個時槽。下表丨展示1K、2K、 4Κ及8Κ之FFT大小與其各別的每Mac時間單位之〇FDM符 號之數目、每交錯之副載波之數目及每時槽之交錯之數目 之間的例示性關係。 FFT大小 每MAC時間單 位之OFDM符 號之數目 每交錯之副載 波之數目 每時槽之交錯 之數目As illustrated in Figure 5, an exemplary interleaving structure can include (e.g., interlace. In this example, the interleaved index ranges from 〇 to 7 (i.e., 1 〇, n, 12 ' 13, 14, 15, 16, 17 And 18). For example, each interlace may consist of 5 subcarriers evenly spaced over the nickname bandwidth. There are 7 subcarriers between the 钊 near 钊 carriers in each interlace, each of which One is different and wrong. In each QFDM symbol, '_interlace can be assigned to pilot interlace and can be used for channel estimation. Here, 500 can be modulated by known (pilot) modulation symbols. Subcarriers. The remaining 7 interlaced or side subcarriers are available: by means of: symbol modulation. Although Figure 5 illustrates - an exemplary interleaved structure / power month 'but the parental structure / function is not limited to this configuration, and its There may be other configurations of class i (eg 'with any number of interlaces'). Errors may be evenly distributed in frequency such that they can achieve full frequency diversity within the available frequencies. These interlaces can be assigned to The logical channel whose duration varies with the actual number of interlaces. This is provided by Ren V. Source-aggregated time-diversity flexibility. Lower data; frequency C privately less interleaved to improve time diversity, while higher data disk 133688.doc 200922251 channels can utilize more interleaving to minimize radio working time And reducing power consumption. Figure 6 is an exemplary table of time slot to parent error maps. The vertical axis indicates the time slot index. The horizontal axis indicates the symbol index. The values in the table indicate the interleaved index. According to one aspect of the present invention, The slot may involve a group of symbols, an interlace may involve a group of subcarriers, and each slot may be mapped to a per-symbol period based on a slot-to-interlace mapping scheme. Corresponding to one of a set of periods or a group of modulated symbols. In another aspect of the invention, a time slot can be mapped to one or more interlaces, and the parent error can be mapped to one or more The time unit of the slot may include the mac time unit at the MAC (knife) layer and the OFDM symbol period at the entity (ρ Η γ) layer. The symbol period may relate to the MAC in the environment of the physical layer channel (pLc) allocation. Time unit, or OFDM symbol period in the context of subcarrier allocation. The symbol period may relate to the time unit of the symbol index. Although as previously described, the number of subcarriers (ie, FFT size) may be 4K 'but the technique does not Limited to this number of subcarriers or fft size. The present technology is capable of multiplexing and transmitting multiple data streams in various FFT-sized OFDM systems. For an OFDM system with a 4K FFT size, 500 time slots can be formed. One group of modulation symbols is mapped to an interlace. In one aspect of the invention, the time slot can be fixed on different FFT sizes. Furthermore, the size of the interlace can be 1/8 of the number of active subcarriers, and The time slot can be mapped to one or more (including one) interlaces based on the FFT size. The interlaces assigned to the one-time slot may reside in multiple OFDM symbol periods. For example, for a 2K FFT size, a one-time slot (i.e., a 5 〇〇 modulation 133688.doc -16 - 200922251 symbol) maps to two interlaces on two consecutive 2K OFDM symbols. Similarly, for the IK FFT size, the one-time slot is mapped to four consecutive ικ (the four m 上 on the ^ 〇 river symbol, as an example, since the subcarriers that can be used may not include, for example, protection subcarriers, The number of subcarriers that can be used for 1K, 2K, gang, and 8 FFT sizes can be 1 〇〇〇, 2 〇〇〇, 4 〇〇〇, and 8 _> respectively. That is, for example, the mFFT size contains 1 024. Subcarriers, of which 24 of the subcarriers can be used as guard subcarriers. For example, the number of subcarriers can be increased in proportion to the FFT size. It follows that for 8K FFT size, the time slot maps to _ One-half of the half-bit interleaving on 8K OFDM symbols. Note that regardless of the fft size, a MAC time unit can contain, for example, 8 time slots. The following table shows the FFT sizes of 1K, 2K, 4Κ, and 8Κ and their respective An exemplary relationship between the number of FDM symbols per Mac time unit, the number of interlaced subcarriers, and the number of interlaces per time slot. FFT size number of OFDM symbols per MAC time unit per interleaved subcarrier Number of interlaces per number of slots Head

表1 OFDM符號索引與MAC時間索引之間的例示性關係展示 於下表2中。 133688.doc 200922251 FFT大小 對於MAC時間索引m之OFDM符號索引 (m = 4'5......) 1024( 1Κ) 4m - 12、4m - 11、4m - 10、4m - 9 2048(2K) 2m _ 4、2m 3 4096C4K) m 8192(8Κ) im+3V2 表2 根據本發明之一態樣’依M AC時間單位與OFDM符號之 間的關係及時槽與交錯之間的關係而定,本技術能夠在 MAC時間單位及時槽上進行MAC層多工,而與OFDM系統 之FFT大小無關。對於各種FFT大小,實體層可wMAC時 間單位及時槽分別映射至OFE&gt;M符號及交錯。 雖然以上實例僅提及IK、2K、4K及8K FFT大小,但本 技術不限於此等特定FFT大小,且在不脫離本技術之範疇 的情況下,可實施其他FFT大小。 一系統可包括每符號多個時槽(例如,如圖6中所示,每 符號8個時槽)。在可將一時槽(例如,時槽〇)指派至導頻符 號時可使其他時槽(例如,時槽i至7)可用於分配至資料 符號。導頻符號由傳輸器及接收器裝置先驗地已知。藉由 說明,導頻符號可由傳輸器或接收器裝置用於訊框同步、 頻率願取、時序擷取 . 尺两迫怙叶0在此實例中,時槽〇 可被稱作導頻時槽,且眭播、s 1 i時槽1至7可被稱作資料時槽。或 者’可將多個時槽(例如夺 守糟1及3)指派至導頻符號,且 可將剩餘時槽分配至資料炫 主貢枓符娩。在此替代實例中,時 及3可被稱作導頻時梓,日&amp; &amp; | 0 剩餘時槽可被稱作資料時槽。 133688.doc -18- 200922251 雖然圖6說明一例示性時槽結構/功能,但 限於此組態。時槽結構,功能可具有其他類二構= 如,時槽結構可具有任何數目個時槽,且可以許多不同 式及對於各種類型之資訊來分配時槽)。 。方 她中’時槽中之每一者經指派或映射至一交錯。舉 列而&amp;,時槽1經指派至連續的〇FDM符號索引4、5、6Table 1 The exemplary relationship between the OFDM symbol index and the MAC time index is shown in Table 2 below. 133688.doc 200922251 FFT size OFDM symbol index for MAC time index m (m = 4'5...) 1024( 1Κ) 4m - 12, 4m - 11, 4m - 10, 4m - 9 2048 (2K 2m _ 4, 2m 3 4096C4K) m 8192(8Κ) im+3V2 Table 2 According to one aspect of the present invention, the relationship between the M AC time unit and the OFDM symbol depends on the relationship between the slot and the interleave, The technology can perform MAC layer multiplexing on the MAC time unit and on the slot, regardless of the FFT size of the OFDM system. For various FFT sizes, the physical layer can be mapped to the OFE&gt;M symbol and interleaved separately in wMAC time units and slots. While the above examples refer only to IK, 2K, 4K, and 8K FFT sizes, the techniques are not limited to such specific FFT sizes, and other FFT sizes can be implemented without departing from the scope of the present technology. A system can include multiple time slots per symbol (e.g., as shown in Figure 6, 8 time slots per symbol). Other time slots (e.g., time slots i through 7) may be used to assign to the data symbols when a time slot (e.g., time slot) can be assigned to the pilot symbols. The pilot symbols are known a priori by the transmitter and receiver devices. By way of illustration, the pilot symbols can be used by the transmitter or receiver device for frame synchronization, frequency acquisition, and timing acquisition. In this example, the time slot can be referred to as a pilot time slot. And the s1 i slots 1 to 7 can be referred to as data slots. Alternatively, multiple time slots (e.g., stalks 1 and 3) can be assigned to the pilot symbols, and the remaining time slots can be assigned to the data. In this alternative example, time and 3 may be referred to as pilot time 梓, and the remaining time slots of &amp;&amp; | 0 may be referred to as data time slots. 133688.doc -18- 200922251 Although Figure 6 illustrates an exemplary time slot structure/function, it is limited to this configuration. The time slot structure, the function can have other class two structures. For example, the time slot structure can have any number of time slots, and the time slots can be allocated in many different forms and for various types of information. . Each of the 'time slots' is assigned or mapped to an interlace. Queue &amp; time slot 1 is assigned to consecutive 〇FDM symbol indices 4, 5, 6

6、7、8、G等上之3、1、。、7 ' 5、4等。根據本發明之— 也樣’時槽交錯可涉及時槽經映射或待映射至的交錯 頻交錯可涉及與導頻時槽相關聯之時槽交錯。在本二明之 另一態樣中,時槽交錯可涉及交錯經映射或待映射: 槽。導頻交錯可涉及與導頻交錯相關聯之時槽交錯。在本 發明之又一態樣中,時槽交錯可涉及時槽至交錯映射功能 或交錯至時槽映射功能。時槽至交錯映射功能及交錯 槽映射功能可相同或相等,除了時槽至交錯映射功能可利 用時槽(或時槽索引)作為輸入且提供交錯(或交錯索幻作 為輸出及交錯至時槽映射功能可利用交錯(或交錯索引)作 為輸入且提供時槽(或時槽索引)作為輸出之外。諸如時 槽、交錯、導頻時槽、導頻交錯、符號及類似術語之術扭 有時分別用以涉及時槽索引、交錯索引、導頻時槽索引、 導頻交錯索引及符號索引。 ’諸如’直播的視訊及音訊 道)。可將服務看作一或多 音訊、文字或與服務相關 或多個邏輯頻道(被稱作多 FLO系統能夠多播各種服務 流(例如,新聞、音樂或體育頻 個相關資料分量(諸如,視訊、 聯之信號傳輸)之集合。可在— 133688.doc -19- 200922251 播邏輯頻道(MLC))上載運每一 FLO服務。舉例而言,可在 多個MLC(例如,兩個不同MLC)上發送—給定服務之視訊 及音訊分量。可將資料符號之一或多個時槽用於MLC。舉 例而言,可將時槽1-3用於一給定服務之視訊分量,及將 時槽4-7用於一給定服務之音訊分量。 以下詳細描述用於一般化之時槽至交錯映射的例示性系 統及方法(對於FLO)。此等系統及方法可支援FL〇傳輸器 及接收器裝置中的整個系列之時槽至交錯映射。一般化之 時槽至交錯映射可提供可在接收器裝置處計算之不同的長 度頻道估计以及較好的都葡勒(D〇ppler)彈性。一般化之時 槽至交錯映射有時被稱作靈活時槽至交錯映射。有時可藉 由在時槽1交錯㈣中使用《對應料頻I差型式而涉‘ 特定時槽至交錯映射。 對於4K模式之FLO空中介面規範(TIA_ i 〇99)連同其相關 聯之實施可支援被稱作(2,6)型式之參差型式。在此情況 下’導頻交錯在-超訊框中之連續的〇FDM符號上的交月錯2 與6之間交替。(2,6)參差型式提供自兩個截然不同的交錯2 及6之導頻觀測。此允許在4K模式操作下的高達1〇24之曰長 度的頻道估計之計算。雖㈣24長度頻道估計可^夠在諸 如美國的地區中部署’但在其他FL〇部署模式(例如,汉 模式或醫頻帶部署)下,可“要支援更長頻道估 兩個導頻交錯長)。 諸如使用(〇,3,6)及(0,2,4,6)導頻參差型式之時槽至交錯 映射型式的時槽至交錯映射型式亦可用以允許頻道二 133688.doc -20. 200922251 之簠活性。此等型式可根據一例示性實施分別提供最大 4096及2048長度頻道估計。亦可能以較高頻道估計誤差來 估計更長頻道延遲擴展(例如,大於4096及大於2〇48)。 根據本發明之一態樣,可將靈活的時槽至交錯映射用於 ois及資料符號。TDM導頻(諸如,TDM導頻丨及了^^導頻 2)、WK:、LIC、PPC及SPC符號可具有與在對於超訊框中 之其餘部分之使用中的時槽至交錯映射無關的固定交錯。 在常規操作條件下,FL〇接收器裝置可判定在解碼符 號(其出現於超訊框之末端)後待使用之時槽至交錯映射。 以下詳細描述使用(0,3,6)、(〇,2,4,6)及(2,6)導頻參差型 式的一般化之時槽至交錯映射的例示性實施。時槽至交錯 映射以及相關聯之實施係基於導頻交錯及不同資料時槽: 距離向量之概念。距離向量之長度可為交錯之數目減去導 頻交錯之數目。在此等實例中,使用8個交錯及8個時槽。 然而,本技術不限於此等數目可利用任何數目個交錯 及任何數目個時槽。 (0,3,6)參差型式 導頻交錯向量⑹可由參差型式判定。對於每—時槽至 交錯映射,可界定一或多個距離向量⑼。距離向量;用 以判疋母—身料時槽之交錯索引。在判定了導頻交錯後, I使用剩餘交錯配置資料時槽,使得可自-或多個距離向 里之㈣獲得針對-給^時槽的所得交錯之相對距離。以 下描述此之一例示性實施。6, 3, 1, etc. on 6, 7, 8, G, etc. , 7 ' 5, 4, etc. Interleaved interleaving, which may be involved in time slot mapping or to be mapped, may involve time slot interleaving associated with pilot time slots, in accordance with the present invention. In another aspect of the present invention, time slot interleaving may involve interleaving mapped or to be mapped: slots. Pilot interleaving may involve time slot interleaving associated with pilot interleaving. In yet another aspect of the invention, the time slot interleaving may involve a time slot to interlace mapping function or an interleaved to time slot mapping function. The time slot to interleave mapping function and the interleaved slot mapping function can be the same or equal, except that the time slot to interleave mapping function can utilize the time slot (or time slot index) as input and provide interleaving (or interleaved sci-fi as output and interleaved to time slot). The mapping function can utilize interleaving (or interleaved index) as input and provide time slots (or time slot indices) as output. For example, time slots, interleaving, pilot time slots, pilot interleaving, symbols, and similar terms have The time is used to refer to the time slot index, the interleaved index, the pilot time slot index, the pilot interleaved index, and the symbol index. 'such as 'live video and audio channels'). Think of a service as one or more audio, text, or service-related or multiple logical channels (called a multi-FLO system that can multicast various service streams (for example, news, music, or sports-related data components (such as video) , a combination of signal transmissions. Each FLO service can be carried on - 133688.doc -19- 200922251 Broadcasting Channel (MLC). For example, it can be in multiple MLCs (for example, two different MLCs) Send - the video and audio components of a given service. One or more time slots of the data symbol can be used for the MLC. For example, time slots 1-3 can be used for the video component of a given service, and Time slots 4-7 are used for the audio component of a given service. The following describes in detail an exemplary system and method for generalized slot-to-interlace mapping (for FLO). These systems and methods can support FL〇 transmitters. And the entire series of slot-to-interlace mappings in the receiver device. The generalized slot-to-interlace mapping provides different length channel estimates that can be computed at the receiver device and better Düsseller. Elasticity Slot-to-interlace mapping is sometimes referred to as flexible time-slot-to-interlace mapping. Sometimes it is possible to use the "corresponding frequency-frequency I difference pattern" in the time slot 1 interleaving (four) for a specific time slot-to-interlace mapping. For 4K mode The FLO null intermediary specification (TIA_i 〇99), along with its associated implementation, supports a staggered pattern called the (2,6) pattern. In this case, the pilot interleaved in the super-frame of continuous FDM The sign on the symbol alternates between 2 and 6. The (2,6) staggered pattern provides pilot observations from two distinct interlaces 2 and 6. This allows up to 1〇24 in 4K mode operation. Calculation of the length of the channel estimate. Although (4) 24-length channel estimates can be deployed in areas such as the United States, but in other FL〇 deployment modes (eg, Han mode or medical band deployment), "to support longer channel estimates" Two pilot interleaving lengths. Time slot to interlace pattern such as time-to-interlace pattern using (〇, 3, 6) and (0, 2, 4, 6) pilot staggered patterns can also be used to allow channels 133 133688.doc -20. 200922251 簠 activity. These types can be based on an example The scheme provides maximum 4096 and 2048 length channel estimates respectively. It is also possible to estimate longer channel delay spreads (eg, greater than 4096 and greater than 2〇48) with higher channel estimation errors. According to one aspect of the present invention, flexible Time slot-to-interlace mapping is used for ois and data symbols. TDM pilots (such as TDM pilots and ^2 pilot 2), WK:, LIC, PPC, and SPC symbols can have and are in the frame for the superframe. The rest of the time slot-to-interlace-independent fixed interleaving. Under normal operating conditions, the FL〇 receiver device can determine the slot-to-interlace to be used after decoding the symbol (which appears at the end of the hyperframe) Mapping. An exemplary implementation of a generalized slot-to-interlace mapping using (0, 3, 6), (〇, 2, 4, 6) and (2, 6) pilot staggered patterns is described in detail below. The time slot to interlace mapping and associated implementation are based on pilot interleaving and different data time slots: the concept of distance vectors. The length of the distance vector can be the number of interlaces minus the number of pilot interlaces. In these examples, 8 interleavings and 8 time slots are used. However, the present technology is not limited to such a number that any number of interlaces and any number of time slots can be utilized. (0, 3, 6) Staggered Pattern The pilot interleave vector (6) can be determined by the staggered pattern. For each-time slot to interlace mapping, one or more distance vectors (9) can be defined. Distance vector; used to determine the interlaced index of the slot when the body is in the body. After determining the pilot interleaving, I uses the remaining interleaved configuration time slot so that the relative distance of the resulting interlace for the -to-time slot can be obtained from (or) a distance from (a). One exemplary implementation of this is described below.

藉由說明,對於(〇,3,6)參差型式,㈣〇3从HU 133688.doc -21 - 200922251 且假設/^又以^…對於⑹而參差型^導頻跳躍 為3,且/«經判定如下:⑴自參㈣式開始於q,⑻將導頻 跳躍3加1初始值以獲得3作為下—個值,㈣加3以獲得 6,(iv)加3以獲得9,其經轉譯至!,(”加3以獲得12,其 經轉譯至4’(W)加3以獲得15,其經轉釋至7, (_加3以 獲付18,其經轉譯至2,及(viii)加3以獲得21,其經轉譯至 5。可使用(例如)交錯之總數及模運算來執行上述轉譯。 假設《表示超訊框中之0FDM符號索引,其_”自〇至 1199 ’主思,符唬索引〇對應於TDM1。假設s表示時槽索 引,使得4圍自0至h假設時槽交錯小川對應於在 〇職符號索引种的時槽碰映射至之交錯。注意、,小,”] 中心可採取自0至7之值。日夺槽〇(亦即,㈣)對應於由經選 擇之參差型式給出的交錯之導頻時槽。因此,時槽交錯 7[〇,《]可被稱作導頻交錯。 、’、σ疋OFDM符號索引則藉由使用w索引至八可判定 導頻交錯(/[〇川)。舉例而言,/[〇,中物m〇d8)]。 對於:貝料時槽’首先基於〇1?而符號索引”計算用於距 離向ID之旋轉因子&amp;。舉例而言,= mod7 〇 接 著執行向s Z)之右循環移位(右移仏位)。假設右循環 移位後的向量為。接著,〇FDM符號索引”中的資 料時槽之時槽至交錯映射可由小,”]=(取+ή)_8, 其中=1,2,…,7給出。 出j斤侍映射確保在7個連續〇FDM符號之區塊中,每—時槽 見於距導頻交錯之所有可能距離處。此外,在%個連續 133688.doc -22- 200922251 OFDM符旎之區塊中,每一時槽佔據7倍精 ,的母一可利用 交錯。每一時槽經歷17個OFDM符號之窗φ从 Τ的所有可利用 之交錯至少一次。亦保證,在將一特定交 〜乂锗扎派至同一時 槽前’存在至少三個中間OFDM符號。 (2,6)參差型式 可使用導頻交錯及距離向量來實現基於(2,6)參差型式之 例示性一般化之時槽至交錯映射。在此實&quot; 】肀,使用一個 導頻交錯向量(7〇)及兩個不同距離向量(By way of explanation, for the (〇, 3, 6) staggered pattern, (iv) 〇 3 from HU 133688.doc -21 - 200922251 and assuming /^ again with ^... for (6) and the staggered ^ pilot jump is 3, and /« It is judged as follows: (1) starting from step (4) and starting with q, (8) adding pilot value 3 to 1 initial value to obtain 3 as the next value, (4) adding 3 to get 6, (iv) plus 3 to get 9 Translate to! , ("add 3 to get 12, which is translated to 4' (W) plus 3 to get 15, which is released to 7, (_ plus 3 to get 18, which is translated to 2, and (viii) Add 3 to get 21, which is translated to 5. The above translation can be performed using, for example, the total number of interlaces and modulo operations. Suppose "express the 0FDM symbol index in the superframe, its _" from 〇 to 1199' The symbol index 〇 corresponds to TDM1. It is assumed that s represents the time slot index, so that the interval from 0 to h is assumed to be the time slot interlace corresponding to the time slot mapping in the misplaced symbol index to be staggered. Note, small, The center can take values from 0 to 7. The day slot (ie, (iv)) corresponds to the interleaved pilot time slot given by the selected staggered pattern. Therefore, the time slot is staggered 7 [〇, It can be called pilot interleaving. The ', σ疋 OFDM symbol index can be determined by using the w index to eight to determine the pilot interleaving (/[〇川). For example, /[〇,中物m〇d8 )]: For: the bedding time slot 'first based on 〇1? and the symbol index' calculates the rotation factor &amp; for the distance ID. For example, = mod7 执行 then proceeds to s Z ) Right cyclic shift (right shift clamp). Assume that the vector after the right loop shift is . Then, the time slot-to-interlace mapping of the information time slot in the 〇FDM symbol index can be small,"] = (take + ή) _8, where = 1, 2, ..., 7 are given. The mapping is ensured that in every block of 7 consecutive 〇FDM symbols, each time slot is found at all possible distances from the pilot interlace. In addition, in the block of contiguous 133688.doc -22-200922251 OFDM symbols, each time slot occupies 7 times fine, and the parent can use interleaving. Each time slot experiences a window of 17 OFDM symbols φ from all available interleavings at least once. It is also guaranteed that there are at least three intermediate OFDM symbols in front of the slot when a particular handover is sent to the same slot. (2,6) Staggered Patterns The pilot-to-interlace mapping based on the (2,6) staggered pattern can be implemented using pilot interleaving and distance vectors. In this case, use a pilot interleave vector (7〇) and two different distance vectors (

』置…0及仏)來實現整 個時槽至交錯型式。 藉由說明’對於(2,6)參差型式,/d=[2,6,2,6,2 6,2,6],且 假叫=[6,2,4,7,3,1,5]及 D严[2,6,4,3,7,5,1]。使用上述記數 法,時槽交錯/一](其為對應於〇FDM符號索引”中之時槽 y的交錯)可經判定如下·· 曰 1·給定OFDM符號余弓丨„,則藉由使用n索引至可判定 導頻交錯(/[0,《])。舉例而言, 2.若《為偶數,則將D設定為 定為I),。 ’[〇,《]=/[(« m〇d8)]。 。若Λ為奇數,則將£)設 3.對於資料時槽’首先基於〇醜符號索引”計算用於距 離向量D之旋轉因子化。舉例而言’ Α = πηκΠ。接 者^行距離向量D之右循環移位(右移心位)。假設右 循%移位後的向量為气。接著,〇FDM符號索引”中 的資料時槽之時槽至交錯映射可由小,„]=(/[M]+Z)fi w)m〇d8, 其中=1,2,...,7給出。 注意,在兩個距離向量之情況下,存在基於〇FDM符號 133688.doc 23- 200922251 索引《選擇適當距離向量之額外步驟。為了使結構一般 :’可將八個截然不同的距離向量用於任一導頻交錯向 量。此外,亦可使關-結構產生兩個交錯導頻參差型 式’其中可適當地在軟體中選擇導頻交錯及距離向量。 (0,2,4,6)參差型式 可使用導頻交錯及距離向量來實現基於((),2,4,够差型 式之例示性-般化之時槽至交錯映射。在此實例中,使用 -導頻交錯向量(/〇)及一距離向量⑼來實^見整個時槽至交 錯型式。 藉由說明’對於脱㈣參差型式^喉以⑽从十且 假設〇=[1,6,4,2,7,5,3]。使用上述記數法,時槽交錯小叫 可經判定如下: 1.給定OFDM符號索引《,則藉由使用„索引至々可判定 導頻交錯(/[0,«])。舉例而言,/[〇,w=/[(w m〇d8)]。 2·對於資料時槽,首先基於OFDM符號索引”計算用於距 離向量Z)之旋轉因子/?„。舉例而言,及,〜m〇d7。接 著執行距離向量Z)之右循環移位(右移^位)。假設右 循環移位後的向量為Ζ)β,接著,OFDM符號索引π中 的寅料時槽之時槽至交錯映射可由[_y])m〇d8, 其中=1,2,...,7給出。 對於此例示性實施’將每一時槽(除了導頻時槽外)指派 至每1 0個連續OFDM符號中之每一交錯至少一次。對於一 時槽’僅在三個OFDM符號後,重複一交錯。給定長度7之 距離向量’則在7個連續OFDM符號之區塊中,每一時槽佔 133688.doc •24- 200922251』...0 and 仏) to achieve the entire time slot to the staggered pattern. By stating 'for (2,6) staggered patterns, /d=[2,6,2,6,2 6,2,6], and false =[6,2,4,7,3,1, 5] and D Yan [2,6,4,3,7,5,1]. Using the above notation, the time slot interleaving/one] (which is the interlace corresponding to the time slot y in the 〇FDM symbol index) can be determined as follows: 曰1· Given the OFDM symbol Yu Gong 丨, then borrow The n-index can be used to determine the pilot interleave (/[0, "]). For example, 2. If "is even, set D to I". ‘[〇,“]=/[(« m〇d8)]. . If Λ is odd, set £) to 3. For the data time slot 'first based on the ugly symbol index', calculate the rotation factor for the distance vector D. For example, ' Α = πηκΠ. The right cyclic shift (right shift heart position). Assume that the right-shifted vector is gas. Then, the time slot-to-interlace mapping of the data slot in the 〇FDM symbol index can be small, „]=(/ [M]+Z)fi w)m〇d8, where =1,2,...,7 are given. Note that in the case of two distance vectors, there is an index based on 〇FDM symbol 133688.doc 23- 200922251 "Additional steps to select the appropriate distance vector. In order to make the structure general: 'Eight different distance vectors can be used for any pilot interleave vector. In addition, the off-structure can also produce two interleaved pilot staggered patterns' The pilot interleave and distance vector can be appropriately selected in the software. (0, 2, 4, 6) The staggered pattern can be implemented based on ((), 2, 4, and the difference type using pilot interleaving and distance vector. Slot-to-interlace mapping in the case of sex-generalization. In this example, the pilot-interleaved vector (/〇) and a range are used. (9) Let's see the whole time slot to the staggered pattern. By using the above description for the 'de-(four) staggered pattern throat (10) from ten and the assumption 〇 = [1, 6, 4, 2, 7, 5, 3]. The number method, the time slot interleave squeak can be determined as follows: 1. Given the OFDM symbol index, the pilot interleave (/[0, «]) can be determined by using „index to 。. For example, /[ 〇, w=/[(wm〇d8)] 2. For the data time slot, first calculate the rotation factor /?„ for the distance vector Z based on the OFDM symbol index. For example, and, ~m〇d7. The right circular shift (right shift) of the distance vector Z) is then performed. Assuming that the vector after the right cyclic shift is Ζ)β, then the time slot-to-interlace mapping of the time slot of the OFDM symbol index π can be [_y])m〇d8, where=1, 2,..., 7 is given. For each of the exemplary implementations, each time slot (except for the pilot time slot) is assigned to each of every 10 consecutive OFDM symbols at least once. For the one-time slot', after only three OFDM symbols, an interlace is repeated. The distance vector of a given length 7 is in the block of 7 consecutive OFDM symbols, each time slot occupies 133688.doc •24- 200922251

據距導頻交錯之所有可能距離。此外,在28個連續OFDM 符號之區塊中,每一時槽佔據交錯〇、2、4及6三次及交錯 1、3、5及7四次。 返回參看圖6,詳細解釋此概念。對於上述(0,2,4,6)參差 型式,時槽1至7中之每一者經指派至每1 0個連續OFDM符 號中的交錯0、1、2、3、4、5、6及7中之每一者至少一 次。舉例而言’對於OFDM符號索引4,將時槽1指派至交 錯3 ’對於OFDM符號索引5,將時槽丨指派至交錯1,對於 OFDM符號索引6 ,將時槽丨指派至交錯〇,對於〇FDm符號 索引7,將時槽1指派至交錯7,對於OFDM符號索引8,將 時槽1指派至交錯5,對於OFDM符號索引9,將時槽丨指派 至交錯4,對於OFDM符號索引丨〇,將時槽!指派至交錯2, 對於〇FDM符號索引1 1,將時槽1指派至交錯},對於 OFDM符號索引12,將時槽丨指派至交錯7,及對於〇fdm 符號索引1 3,將時槽1指派至交錯6。 仍參看圖6,對於一時槽,僅在3個符號後,重複一交錯 索引。舉例而言,對於時槽〇,僅在3個連續的〇FDM符號 索引後,重複交錯0。此對於交錯2、交錯4及交錯6相同。 此外,圖6說明每一時槽佔據7個連續〇FDM符號中之距導 頻父錯之所有可能的距離。舉例而言,時槽〇用於導頻交 錯,且對於OFDM符號索引4、5、6、7、8、9及10,分別 丄才曰派至交錯〇、2、4、6、〇、2及4。對於OFDM符號索引 5 6、7、8、9及1 0,時槽3分別經指派至交錯6、5、 3、2' 1、7及6。因此,時槽3與時槽〇之間的距離為時槽3 133688.doc -25- 200922251 與時槽〇之交錯索引之間之差的絕對值。在此實例中,對 於OFDM符號索引4、5、6、7、8、9及1〇,距離分別為6、 3」狀為-!之轉譯)、4(其為.4之轉譯)、卜⑷。舉例而 吕,藉由執行模運算,可獲得絕對值。 根據本發明之—態樣,可利用—或多個導頻交錯向量 ^ 1〇 /;、乙等),且可利用—或多個距離向量(例 〇 Α等)。時槽之數目及交錯之數目不限於8, 且其中之每一者可為任何數目。因此,可存知數目的時 槽及樣目的交錯。變數尸及《可相同。導頻交錯向量中之 每一者之長度可為一例示性實施可描述如下: f 1.給定OFDM符號索引„,可基於(例如)”,自該一或多 個導頻交錯向量選擇-導頻交錯向^。藉由使動索 引至選定之/,可判定一導頻交錯。舉例而言, /[0,《]=/[(« mod ml)],其中Wl為任一整數。可存在一 個以上導頻交錯亦為可能的。舉例而言,可將導頻交 錯表達如下:/bc,《]=/[(„ mod wl)],其中X可表示導頻 時槽之索引。導頻時槽之索引不需要相_。舉例而 言,導頻時槽可佔據時槽丨、時槽3及時槽7,在該情 況下,X = 1、3、7。 2. 給定OFDM符號索引”,則可基於例如’基於” m〇d 所2,其中W2為任一整數)及/或視情況在以上步驟1中 選定之導頻交錯,自一或多個距離向量選擇一距離向 量Z)。 3. 對於資料時槽,首先基於0FDM符號索引”計算用於距 133688.doc •26- 200922251 離向量D之旋轉因子l。舉例而古,According to all possible distances staggered from the pilot. In addition, in the block of 28 consecutive OFDM symbols, each time slot occupies the interlace, 2, 4, and 6 times and interlaces 1, 3, 5, and 7 four times. Referring back to Figure 6, this concept is explained in detail. For the above (0, 2, 4, 6) staggered pattern, each of time slots 1 through 7 is assigned to interlace 0, 1, 2, 3, 4, 5, 6 in every 10 consecutive OFDM symbols. And each of 7 at least once. For example, for OFDM symbol index 4, time slot 1 is assigned to interlace 3 'for OFDM symbol index 5, time slot 丨 is assigned to interlace 1, and for OFDM symbol index 6, time slot 丨 is assigned to interlace 〇, for 〇 FDm symbol index 7, assign time slot 1 to interlace 7, assign time slot 1 to interlace 5 for OFDM symbol index 8, and assign time slot 至 to interlace 4 for OFDM symbol index 9, for OFDM symbol index 丨Hey, time slot! Assigned to Interlace 2, for 〇FDM symbol index 1:1, time slot 1 is assigned to interlace}, for OFDM symbol index 12, time slot 丨 is assigned to interlace 7, and for 〇fdm symbol index 1 3, time slot 1 Assigned to Interlace 6. Still referring to Fig. 6, for a one-time slot, an interleaved index is repeated after only three symbols. For example, for time slot 交错, interlace 0 is repeated only after 3 consecutive 〇FDM symbol indices. This is the same for interlace 2, interlace 4, and interlace 6. In addition, Figure 6 illustrates that each time slot occupies all possible distances from the pilot father error in seven consecutive 〇 FDM symbols. For example, time slot 〇 is used for pilot interleaving, and for OFDM symbol indexes 4, 5, 6, 7, 8, 9, and 10, respectively, to interlace 2、, 2, 4, 6, 〇, 2 And 4. For OFDM symbol indices 5 6, 7, 8, 9 and 10, time slots 3 are assigned to interlaces 6, 5, 3, 2' 1, 7, and 6, respectively. Therefore, the distance between the time slot 3 and the time slot 为 is the absolute value of the difference between the time slot 3 133688.doc -25- 200922251 and the interleaved index of the time slot 。. In this example, for the OFDM symbol indices 4, 5, 6, 7, 8, 9, and 1〇, the distance is 6, 3" for the translation of -!), 4 (which is the translation for .4), (4). For example, by performing a modulo operation, an absolute value can be obtained. In accordance with the present invention, one or more pilot interlace vectors ^ 1 〇 /;, B, etc. may be utilized, and - or a plurality of distance vectors (eg, Α, etc.) may be utilized. The number of time slots and the number of interlaces are not limited to 8, and each of them may be any number. Therefore, a number of time slots and sample interleaving can be stored. Variable body and "can be the same. The length of each of the pilot interlace vectors can be an exemplary implementation that can be described as follows: f 1. Given an OFDM symbol index, can be selected from the one or more pilot interlace vectors based on, for example, - The pilots are interleaved to ^. A pilot interleaving can be determined by directing the moving cable to the selected /. For example, /[0,"]=/[(« mod ml)], where Wl is any integer. It may also be possible to have more than one pilot interlace. For example, the pilot interleaving can be expressed as follows: /bc, "] = / [( „ mod wl)], where X can represent the index of the pilot time slot. The index of the pilot time slot does not require phase _. In this case, the pilot time slot can occupy the time slot, the time slot 3 and the time slot 7, in which case X = 1, 3, 7. 2. Given OFDM symbol index, then based on eg "based on" m 〇d 2, where W2 is any integer) and/or optionally the pilot interleaving selected in step 1 above, selecting a distance vector Z from one or more distance vectors. 3. For the data slot, first Based on the 0FDM symbol index, the rotation factor l for the vector D is calculated for distance 133688.doc •26- 200922251. For example, ancient,

0 汉 n — k n rnr\H m3,其中灸及w3中之每一者為_ 登數。接者執行距離 向量D之右循環移位(右移化位 认a旦* η 攸叹右循被移位後 的向置“„。接著,0FDM符號索引种之資料時槽 的時槽至交錯映射可* 。偏,其; m1,p給出,μ為任—整數。若存在多個導頻 父錯(諸如,/[X,♦則可將時槽至交錯映射表 小’《]=(小,《]+£^ [s])modw4,苴中可砉 _0 Han n — k n rnr\H m3, where each of moxibustion and w3 is _ number. The receiver performs the right cyclic shift of the distance vector D (the right shifting bit recognizes the adan * η sighs right after the shifted position "". Then, the 0FDM symbol index species time slot to the interleaving The mapping can be *. partial, which; m1, p gives, μ is any-integer. If there are multiple pilot parent errors (such as /[X,♦ then the time slot to the interlace mapping table is small '"] = (small, "] + £ ^ [s]) modw4, 苴中可砉 _

/、表不非導頻時槽(例 如’資料時槽)之索引。變數灸、“ d及以可 相同或不同。亦可能存在一個以上之旋轉因子。 根據本發明之一態樣’可使以下特性中之一或多者(或 全部)與一般化之時槽至交錯映射相關聯: 1. 一交錯與非相鄰副載波相關聯(例如,10與非相鄰副載 波索引48、56等相關聯,如圖5 _所示)。 2·時槽中之每一者佔|虞—組連續符號上之儘彳能多的不 同交錯。舉例而言,在圖6中,時槽2佔據連續符號索 引4 5 6、7及8上之交錯1、7、6、4及3。因此,每 4槽可佔據一組連續符號上之每一可利用之交錯, 且時槽至交錯指派可隨時間改變。 丨.每一時槽佔據距一組連續符號上之距導頻交錯之所有 可能距離。該組中之連續符號之數目可為交錯之數目 減去導頻交錯之數目。舉例而言,在圖6中,在符號 索引4、5、6、7、8、9及10上,時槽6(資料時槽)與時 槽〇(導頻時槽)之間的距離為7、4、1、5、2、6及3。 I33688.doc •27- 200922251 因 , 主 ’時槽6佔據距六個連續符號上之距導頻交錯之 所有可能距離(1至7)。 僅在預定數目個連續符號後將每一時槽指派至同一交 9 換言之’對於一給定時槽,僅在預定數目個連續 符號後重複一交錯索引。舉例而言,在圖6中,僅在 二個連續符號後再次將時槽〇指派至交錯〇。 硬體實施架構 圖7為說明用於一般化之時槽至交錯映射的例示性硬體 實鉍之概念方塊圖。一傳輸器或接收器裝置之處理系統 710可包括一導頻交錯向量單元71〇、一距離向量單元73 〇 及寸槽父錯计算單元7 4 0。在此例示性實施中,使用§個 時槽及8個交錯,但本技術不限於此等數目之時槽及交 錯。 舄要用於計算時槽至交錯映射之各種參數(諸如,導頻 交錯向量、距離向量及如移位致能(shift-enable)之其他控 制參數)可由軟體程式化以允許在使用之映射中之容易的 可程式性。軟體可能夠直接程式化含有此等參數中之一些 之硬體暫存斋(例如’導頻交錯向量單元71 〇及距離向量單 元73 0)。可在供電時(基於預設參數)或在處理spc符號後 程式化此等參數。此外’當軟體試圖程式化此等暫存器 時,硬體係喚醒的。由於硬體睡眠時間線可用於軟體中, 故軟體可易於處置與睡眠有關之問題。將直接控制提供至 軟體可確保在軟體中在適當時致能OIS解碼。可在將時槽 至交錯參數程式化於硬體中後致能OIS解碼。 133688.doc -28- 200922251 導頻交錯向量單元710可包括一導頻交錯向量心,其包 括(例如)由軟體程式化之8x1向量。向量之每一元素可為3 位元長(以表示自000至111的八個交錯中之一者)。對於諸 如(2,6)之參差型式’可週期性地重複型式,直至用盡了向 量中之所有八個元素。舉例而言,(2,6)參差型式可產生 (2,6,2,6,2,6,2,6)之一導頻乂錯向量/0。(〇,3,6)參差型式可 產生(〇,3,6,1,4,7,2,5)之一導頻交錯向量/0。(〇,2,4,6)參差型 式可產生(0,2,4,6,0,2,4,6)之一導頻交錯向量/〇。/, the table is not the index of the pilot time slot (for example, 'data time slot'). Variant moxibustion, "d and can be the same or different. There may be more than one twiddle factor. According to one aspect of the invention, one or more of the following characteristics (or all) can be combined with the generalized time slot to Interlaced mapping is associated: 1. An interlace is associated with a non-adjacent subcarrier (e.g., 10 is associated with a non-adjacent subcarrier index 48, 56, etc., as shown in Figure 5). One is a different interleave of the 虞-group continuous symbol. For example, in Figure 6, time slot 2 occupies the interlace 1, 7, 6 on the continuous symbol index 4 5 6 , 7 and 8. 4, 3. Thus, every 4 slots can occupy every available interlace on a set of consecutive symbols, and the time slot to interlace assignment can change over time. 每一. Each time slot occupies a distance from a set of consecutive symbols All possible distances of pilot interleaving. The number of consecutive symbols in the group can be the number of interlaces minus the number of pilot interlaces. For example, in Figure 6, at symbol indices 4, 5, 6, 7, 8 On the 9th and 10th, the distance between the time slot 6 (data slot) and the time slot 导 (pilot time slot) is 7, 4, 1, 5, 2 , 6 and 3. I33688.doc •27- 200922251 Because, the main 'time slot 6 occupies all possible distances (1 to 7) from the pilot interleaving from six consecutive symbols. Only after a predetermined number of consecutive symbols will Each time slot is assigned to the same intersection 9 In other words, for a given slot, an interleaved index is repeated only after a predetermined number of consecutive symbols. For example, in Figure 6, the time slot is again after only two consecutive symbols. Assigned to interleaved. Hardware Implementation Architecture Figure 7 is a conceptual block diagram illustrating an exemplary hardware implementation for generalized slot-to-interlace mapping. A transmitter or receiver device processing system 710 can include a The frequency interleaving vector unit 71 〇, a distance vector unit 73 〇 and the slot father error calculation unit 704. In this exemplary implementation, § time slots and 8 interlaces are used, but the technology is not limited to such numbers. Time slots and interleaving. 各种 Various parameters (such as pilot interleave vectors, distance vectors, and other control parameters such as shift-enable) to be used to calculate time slot-to-interlace can be programmed by software to allow In use Easy programmability in mapping. The software may be able to directly program hardware temporary storage containing some of these parameters (eg 'pilot interleave vector unit 71 〇 and distance vector unit 73 0). (Based on preset parameters) or stylize these parameters after processing the spc symbol. In addition, 'when the software tries to program these registers, the hard system wakes up. Because the hardware sleep timeline can be used in the software, the software Sleep-related issues can be easily handled. Direct control is provided to the software to ensure that OIS decoding is enabled in the software when appropriate. OIS decoding can be enabled after the time slot to interleave parameters are programmed into the hardware. Doc -28- 200922251 The pilot interlace vector unit 710 can include a pilot interlaced vector heart including, for example, an 8x1 vector that is stylized by software. Each element of the vector can be 3 bits long (to represent one of the eight interlaces from 000 to 111). For a staggered pattern such as (2, 6), the pattern can be repeated periodically until all eight elements in the vector are exhausted. For example, the (2,6) staggered pattern produces one (2,6,2,6,2,6,2,6) pilot error vector/0. The (〇, 3, 6) staggered pattern produces a pilot interleave vector /0 of (〇,3,6,1,4,7,2,5). The (〇, 2, 4, 6) staggered pattern produces one (0, 2, 4, 6, 0, 2, 4, 6) pilot interleave vector / 〇.

軟體亦可程式化距離向量單元73〇,其包括(例如)8χ7距 離向量表。可使用三個位元表示此表中之每一項。結果, 該表可包括8列,每一列具有長度21個位元。此表中之每 一列對應於一距離向量。如在導頻交錯向量之情況下,若 距離向量之數目小於8,則週期性地重複距離向量以填滿 整個表。因此,在(0,3,6)型式之情況下,一向量經重複8 次以填滿該表。在(2,6)參差型式之情況下(其中存在兩個 截然不同之距離向量)’每-距離向量在該表中之交替位 置中出現四次。軟體可在寫入至表時處置週期性重複。 移位致能旗標775(1位元)可由硬體用以基於OFDM符號 索引致能或去能距離向量之抵κ 里(# %旋轉。此移位致能旗摔 775亦可由軟體在初始化導頻交錯向量及距離向量時加二 初始化。 下執行硬體操作。 對應於超訊框中 生時槽至交錯映射 注 之 之 在所有軟體程式化完成後,可如 意’以下描述中之OFDM符號索引 OFDM符號索引。硬體首先使用待產 133688.doc -29- 200922251 OFDM符號索引《,選擇三個最低有效位元(1^8)(模8運算) 且使用三個LSB索引至導頻交錯向量以獲得導頻交錯Q為 了節省暫存器空間,可使用8X3 = 24個位元將導頻交錯向量 儲存於32位元暫存器中之封包中。格式可使得〇Fdm符號 索引〇之導頻交錯佔據最低有效3個位元。導頻交錯可由向 里中佔據位置(n mod 8) * 3、(n mod 8) * 3 + 1 及(n mod 8) * 3 + 2之三個位元給出。假設此由八〇,…表示。 ◦ FDM符號索引π亦可用以索引至距離向量以及在距離向 置上使用之旋轉因子。由軟體設定(視正使用之時槽至交 錯映射而定)之移位致能旗標775可判定非零旋轉是否待用 於距離向量上。若設定了移位致能旗標775,則首先使用 左移位單元795將0FDM符號索引《向左移位1(用2乘),且 接著使用模7單元790對結果執行模7運算。乘法器770用3 乘結果(以考慮由距離向量表中之每一項使用之3個位元)以 達到’其被用作右循環移位單元742之引數。 OFDM符號索引w亦可用以選擇距離向量矩陣中之適當的 距離向量列。舉例而言,〇FDM符號索引(例如,” m〇d 8) 之三個LSB可被用作列索引以選擇距離向量以產生乃。距 離向量Z)接著由向右循環移位(所移位元之數目等於由&amp;給 出之引數)以達到。在此特定實例中,由於向量乃佔據 3 2位7C暫存器中之僅24個位元,故循環移位操作需要對彼 作出考慮。或者,為了簡化硬體操作,軟體可藉由在前部 置放8個LSB來執行24個位元向量至32個位元之循環擴 展。此擴展向量可幫助硬體之循環移位操作。在此情況 133688.doc -30- 200922251 下 乂對應於經循環移位向量之2 4個L S B。 可如下獲得OFDM符號索引《中之資料時槽〗至7之時槽 父錯725。可使用加法器ye將先前獲得之導頻交錯,吶 加至乂之二個LSB。接著,可使用模8單元75〇對結果執行 模8運算。可將結果置放至資料交錯表單元760内,其可包 括1x7向量。向量中之每一元素可為3位元長。第一結果 可為對應於時槽1之時槽交錯。一般而言,對於時槽s,交 錯索引由運算3:3卜Wniod8給出。注意,在q 中,(x:y)對應於以上表達中之位元位置父、xd.....y。 可將對於所有七個資料時槽及導頻時槽所獲得之交錯索 引儲存於可接著使用時槽索引來索引的查找表(未圖示)。 當接收到OFDM符號時,圖7中所示之處理系統71〇亦可 用以將一交錯映射至一時槽。導頻交錯72〇可提供一給定 導頻父錯之導頻日夺肖,且時槽交錯725可提# 一給定交錯 之時槽。處理系統710可經預程式設計有一或多個導頻交 錯向$、一或多個距離向量及(視情況)-或多個旋轉因 子。或者’處理系統710可經由其他合適構件(例如,助 網路、其他類型之網路、其他類型之通信)接收此等甲之 一些或全部。對於一給定符號索引及交錯,處理系統710 可使用時槽交錯計算單元提供對應的時槽n H 給定符號索引及導頻交錯,處理系統710可使用時槽交錯 計算單元提供對應頻時槽。日㈣交錯言十算單元之實方: 可類似於或不同於時槽交錯計算單元740之實施。 ^ 硬體中之模7實施 I33688.doc 31 200922251 以下詳細解釋可用於時槽至交錯映射實施中之—例示性 模7運算。舉例而言,可執行mod 7運算,其中”為起卞 框中之OFDM符號索引。根據一例示性組態,僅使用加法 器來執行模7運算。以下描述基本概念。The software can also be programmed with a distance vector unit 73, which includes, for example, an 8χ7 distance vector table. Three bits can be used to represent each item in this table. As a result, the table can include 8 columns, each column having a length of 21 bits. Each column in this table corresponds to a distance vector. As in the case of pilot interleaved vectors, if the number of distance vectors is less than 8, the distance vector is periodically repeated to fill the entire table. Therefore, in the case of the (0, 3, 6) pattern, a vector is repeated 8 times to fill the table. In the case of a (2,6) staggered pattern (where there are two distinct distance vectors), the 'per-distance vector appears four times in alternating positions in the table. The software can handle periodic iterations when writing to the table. The shift enable flag 775 (1 bit) can be used by the hardware to generate an offset or de-energy distance vector based on the OFDM symbol index (#% rotation. This shift enable flag 775 can also be initialized by the software. The pilot interleave vector and the distance vector are initialized by two. The hardware operation is performed. Corresponding to the time slot to the interlace mapping in the super frame, after all the software is programmed, the OFDM symbol in the following description can be used. Index OFDM symbol index. The hardware first uses the pending 133688.doc -29-200922251 OFDM symbol index, selects the three least significant bits (1^8) (modulo 8 operation) and uses three LSB indices to the pilot interleave vector. To obtain pilot interleave Q, in order to save the scratchpad space, the pilot interleave vector can be stored in the 32-bit scratchpad vector using 8X3 = 24 bits. The format can make the 〇Fdm symbol index 导 pilot Interleaving occupies the least significant 3 bits. The pilot interlace can occupy three bits of position (n mod 8) * 3, (n mod 8) * 3 + 1 and (n mod 8) * 3 + 2 from the inward Given. Suppose this is represented by gossip, .... ◦ FDM symbol index π The index can be indexed to the distance vector and the rotation factor used on the distance orientation. The shift enable flag 775 set by the software (depending on the time slot to the interlace mapping being used) can determine whether the non-zero rotation is to be used. On the distance vector. If the shift enable flag 775 is set, the left shift unit 795 is first used to shift the 0FDM symbol index to the left by 1 (by 2), and then the modulo 7 unit 790 is used to perform the simulation on the result. 7. The multiplier 770 multiplies the result by 3 (to consider the 3 bits used by each of the distance vector tables) to reach 'the argument used as the right cyclic shift unit 742. OFDM symbol index w It can also be used to select an appropriate distance vector column in the distance vector matrix. For example, three LSBs of a 〇FDM symbol index (eg, "m〇d 8) can be used as a column index to select a distance vector to produce. The distance vector Z) is then cyclically shifted to the right (the number of shifted elements is equal to the argument given by &amp;). In this particular example, since the vector occupies the 32-bit 7C register Only 24 bits, so the cyclic shift operation needs to be Or, in order to simplify the hardware operation, the software can perform cyclic expansion of 24 bit vectors to 32 bits by placing 8 LSBs at the front. This extended vector can help cyclic shift of hardware. In this case, 133688.doc -30- 200922251 corresponds to 24 LSBs of the cyclic shift vector. The OFDM symbol index "data slot" to 7 slot error 725 can be obtained as follows. The previously obtained pilots are interleaved using adder ye and added to the two LSBs of 乂. Next, the modulo 8 operation can be performed on the result using the modulo 8 unit 75 。. The results can be placed into a data interleaving table unit 760, which can include a 1x7 vector. Each element in the vector can be 3 bits long. The first result may be that the time slots corresponding to the time slot 1 are staggered. In general, for time slot s, the interleaved index is given by the operation 3:3 Bu Wniod8. Note that in q, (x:y) corresponds to the bit position parent, xd.....y in the above expression. The interleaved indices obtained for all seven data time slots and pilot time slots can be stored in a lookup table (not shown) that can be indexed using the time slot index. When an OFDM symbol is received, the processing system 71 shown in Figure 7 can also be used to map an interlace to a time slot. The pilot interleave 72 〇 can provide a pilot of a given pilot father error, and the time slot interlace 725 can provide a given interleaving time slot. Processing system 710 can be pre-programmed with one or more pilot interleaving vectors, one or more distance vectors, and (as appropriate) - or multiple rotation factors. Alternatively, processing system 710 may receive some or all of such elements via other suitable components (e.g., a help network, other types of networks, other types of communications). For a given symbol index and interleaving, processing system 710 can provide a corresponding time slot n H given symbol index and pilot interleave using a time slot interleaving calculation unit, and processing system 710 can provide a corresponding frequency slot using a time slot interleaving computing unit. . Day (4) The real side of the interleaved unit: It may be similar to or different from the implementation of the time slot interleaving unit 740. ^ The modulo 7 implementation in hardware I33688.doc 31 200922251 The following detailed explanation can be used in the implementation of the time slot to interleave mapping - exemplary modulo 7 operation. For example, a mod 7 operation can be performed in which "the OFDM symbol is indexed in the frame. According to an exemplary configuration, only the adder is used to perform the modulo 7 operation. The basic concept is described below.

已知8 ξ 1 (m〇d7)。因此,8之任一幂亦全等於丨模7。換+ 之,對於任一整數W,S^Kmod7)。基於為8之冪的任何數 之此全等及展開的概念,可使用合適的整數將3所位元正整 數*表達為灸=8«-1〜1+8^2化_2+&quot; + 8、+;?。。可使用模7將此等式 寫為“UU.. +乃+尸。(mod7)。在灸之二進位表示中,每 —A表示在位置(m:3;)處之三個連續位 (3«_ + 2:3〇之形式下的連續三個位元相加,直 至3個位元。 元。因此,可將 至最終結果減少 根據本發明之叫⑲性態樣,可如下將此技術應用” 訊框中之OFDM符號索引“注意,當〇FDm符號索引”為 所有頻寬上的FLO系統中之&quot;個位元數時,⑴ 〜~ ^5)、(6-8)及(9-11) 目亢,分 著將其各自相加以產生5位元數 2. 接著,再次將所得5位元數分組為位元(〇_2)及㈣, 且將其各自相加以產生4位元數。 3. 在此階段,保證此所得數處於十進位)之間 t階段可使用一查找表’或者可執行-最後的加法。 右執行了加法,則接下來執行以下步驟4。 4·將位元4加至3個LSB。保證結果處於0旬之間。 133688.doc -32- 200922251 5·若數為7,則將其映射回至〇(由於7為〇模 於7 ’則照現樣使用該結果。 此實施使用6個加法器。亦可使用8之車交高幕(例如,岣 且將運算減少至2個加法。查找表可心將其 終結果模7。 根據本發明之另一例示性態樣, 運算。 j牧Μ下方式執行模7 1 ·假定使用(例如)2之補碼二進位表干| 味 &lt; 1衣不來表達OFDM 符號索引n’且2„从位元長之數,則選擇―群之 大小㈣位元),其中w為大於或等於2,且㈣、於 h ’ m為整數,且&amp;為整數。 基於該群之大小(_位元),判定^長之數之 群的數目(〜),其中該等群 , 町丫&lt;母—者為m位元 長’ ~為整數’且將該等群表 卞吁衣不為群丨至群 可四捨五入(&amp;/叫。 將b位元長之數分組為 . . ^ 群~,自h位元長之 數之最低有效位元開始 ^ ^ ^ , 群與b位元長之數 之成低有效位元相關聯。 將群1至群A各自相加以 ,.^,7 座生心位几長之數,其中 h小於心,且h為整數。 判定Μ立元長之數之第 夕立土 _Λ W歎目(〜),其中第Ζ·群中 之母一者為所位元長,/為 數Z大於卜且將第/ 群表不為第z群1至第纟群义。 ^ 7 , ! ,了四捨五入(t./W)。 將(.位兀長之數分組為第 弟群1至苐Z群义.,其中第/群 2. 3. 4. 5. 6. 133688.doc *33- 200922251 1與·元長之數之最低有效位元相關聯。 將第i·群1至篦MΛ , 數:“ 相加以產生“位元長之 8. 9. 10. Ά+/小於、,且‘為整數。 增加/。 重複步驟5至8,直至。等於或小於. 若^等於或小於⑺,且防為3,貝,1步驟9可提供最終 所欲之結果。苦所女仏^ ;(例如’ 6),則在此階段可 使用一查找表。或者,在防為(例如)3之情況下,可 重複類似於步驟5至8之步驟。 11 若所得數為7,則將其映射回至〇(由於7為0模7)。 右結果小於7,貝,J照現樣使用該結果。 現在返回至圖2,在例示性過程中,接收器裝置之接 收器逝可接收-信號。解調變器2(Η可對接收之信號執行 解调變,且將〇FDM符號提供至處理系統挪 施可將㈣轉號分為交錯,且使用—❹個導頻交錯及 -或夕個時槽交錯’將該等交錯映射至時槽。處理系統 206可進一步自該等時槽產生 ^ ” 換至資料流。 …變符號轉 /看圖3,在例㈣過程中,傳輸器裝置如可接收資料 &amp;且將育料流轉換至符號。傳輸器裝置地之處、 可將符號指派至時槽,且使用—或多及=4 個時槽交錯將時槽映射至交錯。調變器3二= 產生綏㈣之仏蛻,且傳輸器322可傳輸該經調變之俨 號。 133688.doc 200922251 圖8為說明傳輸器或接收器裝置中之處理系統的功能性 之一實例之概念方塊圖。傳輸器或接收器裝置302或200之 處理系統314或206(見圖2及圖3)包括一用於包括一或多個 導頻交錯向量之模組810及一用於包括一或多個距離向量 之模組820。處理系統314或206亦包括一用於基於該一或 多個導頻交錯向量提供一第一時槽交錯之模組830及一用 於基於該第一時槽交錯及該一或多個距離向量提供一第二 時槽交錯之模組8 4 0。 圖9為說明在傳輸器或接收器裝置處提供時槽交錯或提 供通信之一例示性操作之流程圖。在步驟91 〇中,傳輸器 或接收器裝置302或200之處理系統314或206(見圖2及圖3) 可接收一或多個導頻交錯向量。在步驟92〇,處理系統3 14 或206可接收一或多個距離向量。在步驟93〇中,其可基於 該一或多個導頻交錯向量提供一第一時槽交錯。此外,在 步驟940中,處理系統314或2〇6可基於該第一時槽交錯及 該一或多個距離向量提供一第二時槽交錯。一可讀媒體可 經編碼或儲存有可由傳輸器或接收器裝置或由此裝置之處 理系統執行之指令,其中該等指令包括用於上述步驟 910、920、930及940之程式碼。 如上所述,經由一些硬體暫存器之組態,硬體架構可用 以實施一系列時槽至交錯映射。該架構可藉由不同導頻參 差型式來支援時槽至交錯映射。頻道估計能力及都葡勒彈 性視諸如FLO的OFDM系統中之導頻參差型式而定。藉由 上述架構,一單一FL〇接收器裝置可支援可在不同網路中 133688.doc -35· 200922251 部署之時槽至交錯映射。該架構亦支援與FLO空中介面規 範之回溯相容性。 根據本發明之一態樣’可能需要自多個OFDM符號獲得 之導頻觀測對應於儘可能多的截然不同之副載波,以確保 滿足通彳§系統之延遲擴展要求的頻道估計。除了跨越寬的 副載波陣列之導頻符號之外,亦可能需要將資料符號散布 於OFDM系統中之導頻副載波以及全部可利用的副載波集 合之間,使得資料符號可得到頻道估計以及頻率分集之益 處。因此,時槽至交錯映射在〇FDM系統中起到重要作 用。 以上主現之硬體及軟體貫施為例示性實施。本技術不限 於此等實施,且可使用其他合適實施。本技術亦不限於 FLO系統,且其可用於各種各樣之通信系統中。雖然以上 描述了參差型式(2,6)、(0,3,6)及(〇,2,4,6),但此等僅為實 例且本技術不限於此等實例。關於OFDM符號及OFDM 符號索引之描述可適用於其他符號及符號索引。本文中使 用之術語&quot;符號&quot;可涉及OFDM符號、任一其他類型之符 號、資料或資訊。本文中使用之術語”向量”可涉及一陣 列 群.’且 集合或複數個項。本文中使用之術語&quot;映 射&quot;可涉及指派或分配,且反之亦然。 熟習此項技術者將瞭解,本文中描述之各種說明性組 件區塊模組、凡件、網路、裝置、處理系統、方法、 系統及演算法可實施於硬體、軟體或兩者之組合中。舉例 而言’組件可為(㈣限於為)在處理ϋ上執行之過程、物 I33688.doc -36 - 200922251 件、可執行碼、執行線緒、程 在一通俨裝窨!·乳, 乂 ^月包。藉由說明, 〇 上執仃之應用程式及該裝置 一或多個組件可駐留 了為一組件。 狂留於過耘及/或執行線緒 組件侷限於一電腦卜芬/々八+ 且可使一 电驷上及/或分布於兩個或兩個 之間。此外,此笤细彼 上的電腦 電腦可括媒體且I 電腦可讀媒體執行,該等 電可㈤媒體具有儲存於其上之各^ 可諸如根據一ώA 、枓、·、。構。該等組件 ^虎故由本端及/或遠端過程 f 信號具有-或多個資料封包(例 :,’該 在區域系統、分散气糸紅由该信號與 越諸如網際έ固炊作用及/或跨 ’心、同際、,.罔路之網路與其 料)。 7及怍用之組件之資 應理解’所揭示之過程中之牛聰从日 示性方法之-說明 乂層一人為例 土么》又冲偏好’應理解, 之步驟的具體次序或声 Μ荨過耘中 本-欠序呈g j 置°隨时法項按樣 體次序或層次。 、並不,“胃限於所呈現的具 前描述以使任何熟習此項技術者能夠實踐本文中 之田各種樣。對於熟習此項技術者而言,對此等態樣 適用於其他態樣。因此U 界定之一般原理可 .a _ At ’ 申喷專利範圍並不意欲限於本文 2之’』❼疋與符合語言申請專利範圍之廣泛範疇 ::致:其中以單數形式提及-元件並不意欲意謂”一個 ® (除非特別地如此規定),而意謂”一或多個”。除 非另外特別地規定, ’ 否則術语”一些”指代一或多個。下劃 133688.doc -37· 200922251 不限制本發 及/或斜體標題或子標題僅為了方便使用 明,且並不結合本發明之解釋來加以提及。 一般熟習此項技術者已知或稍後將知曉的貫穿本發明描 述之各種隸之元件的所有結構性及功能性等效物皆被以 引用的方式明確地併入本文中且意欲由申請專利範圍涵 盍。此外,本文中揭示之任何内容皆不意欲專用於公眾, 而不管此揭示内容是否明確地敍述於申請專利範圍中。除 非申請專利範圍元素係使用短語”用於…之構件,,而明確地 敍述,或在一方法項之狀況下該元素係使用短語&quot;用於… 之步驟”而敍述,否則該申請專利範圍元素將不在35 U.S.C. §112第6段之條款下加以解釋。此外’就術語”包括,t 或”具有”用於描述或申請專利範圍中而言,此術語意欲以 類似於術語&quot;包含&quot;之方式(如”包含”在申請專利範圍中用作 一過渡詞時被解釋)而為包括性的。 【圖式簡單說明】 圖1為說明用於僅前向鏈路網路(FL〇)的—無線網絡系統 之一實例之概念方塊圖。 圖2為說明可用於無線通信環境中的一接收器裝置之一 實例之概念方塊圖。 圖3為說明包括一傳輸器裝置及一或多個接收器裝置的 一系統之一實例之概念方塊圖。 圖4說明一例示性FL〇實體層超訊框。 圖5說明一例示性交錯結構。 圖6為時槽至交錯映射之一例示性表。 133688.doc •38- 200922251 圖7為說明用於—般化之瞎柚 ^ ^ , 寻槽至父錯映射的例示性硬體 實把之概念方塊圖。 圖8為說明傳輸器或接收器裝 夕一 I, DO扳置中之處理系統的功能性 貫例之概念方塊圖。 供通作、兒月在傳輸a或接收器裝置處提供時槽交錯或提 ’、5之一例示性操作之流程圖。 【主要元件符號說明】8 ξ 1 (m〇d7) is known. Therefore, any power of 8 is also equal to the model 7. Change + for any integer W, S^Kmod7). Based on the concept of equality and expansion of any number that is a power of 8, you can use a suitable integer to express 3 positive integers * as moxibustion = 8 «-1 ~ 1 + 8 ^ 2 _ 2+ &quot; + 8, +;?. . This equation can be written as "UU.. + is + corpse. (mod7) using modulo 7. In the binary representation of moxibustion, each -A represents three consecutive bits at position (m:3;) The three consecutive bits in the form of 3«_ + 2:3〇 are added up to 3 bits. Therefore, the final result can be reduced according to the invention, which can be as follows. "Technical Application" OFDM symbol index "Note: When 〇FDm symbol index" is the number of bits in the FLO system on all bandwidths, (1) ~~ ^5), (6-8) and (9-11) Seeing and dividing each of them to generate a 5-bit number 2. Next, grouping the obtained 5-bit numbers into bits (〇_2) and (4) again, and adding them to each other 4 bit number. 3. At this stage, ensure that the number of gains is between decimals. The t-stage can use a lookup table or an executable-final addition. The addition is performed right, and then the following step 4 is performed. 4. Add bit 4 to 3 LSBs. The result is guaranteed to be between 0 and 10. 133688.doc -32- 200922251 5·If the number is 7, map it back to 〇 (since 7 is the model at 7 ', the result is used as it is. This implementation uses 6 adders. You can also use 8 The car is turned on (for example, and the operation is reduced to 2 additions. The lookup table can be used to model its final result. 7. According to another exemplary aspect of the present invention, the operation is performed. 1 · Assume that (for example, 2's complement binary table is used | taste &lt; 1 clothing does not express OFDM symbol index n' and 2 „ from the number of bits long, select “group size (four) bits), Where w is greater than or equal to 2, and (4), h ' m is an integer, and & is an integer. Based on the size of the group (_bit), the number of groups of the number of lengths (~) is determined, where The group, the town, the 母, the mother, the m-bit, the longest, and the number of the group, the number of the group, and the number of the group, can be rounded off (&/call. Grouped into . . . ^ group~, starting from the least significant bit of the number of h bits, ^ ^ ^, the group is associated with the lower effective bits of the number of b bits. Group 1 to Group A Self-added, .^, 7 seated heart digits, where h is less than the heart, and h is an integer. Judging the number of the longest number of the eternal Yuan _ _ Λ W sigh (~), which Ζ · The mother of the group is the length of the position, / is the number Z is greater than the b and the first / group table is not the z group 1 to the third group. ^ 7, , , rounded (t. / W). Group the number of digits into the first group to the group .Z group, where the group / group 2. 3. 4. 5. 6. 133688.doc *33- 200922251 1 and the length of the number The least significant bit is associated. The i-th group 1 to 篦MΛ, the number: "Additional to produce "bit length 8. 9. 10. Ά + / less than, and ' is an integer. Increase /. Repeat steps 5 to 8, up to or equal to or less than. If ^ is equal to or less than (7), and the defense is 3, Bay, 1 step 9 can provide the final desired result. The bitter girl ^; (for example, '6), then here A lookup table can be used for the stage. Alternatively, in the case of defense (for example) 3, the steps similar to steps 5 to 8 can be repeated. 11 If the resulting number is 7, map it back to 〇 (since 7 is 0) Mode 7). The result of the right is less than 7, and the result is used as it is now. Returning to Figure 2, in an exemplary process, the receiver of the receiver device can receive a signal. Demodulation transformer 2 (Η can perform demodulation on the received signal and provide the 〇FDM symbol to the processing system Shi can divide the (4) turn number into interlaces and map the interlaces to time slots using - a pilot interleave and / or a time slot interleave. Processing system 206 can further generate ^" changes from the time slots. To the data stream. ... change the symbol to / see Figure 3, in the process of example (4), the transmitter device can receive the data &amp; and convert the feed stream to the symbol. Where the transmitter is located, the symbol can be assigned to the time slot and the time slot is mapped to interleaved using -or more than = 4 time slot interleaving. Modulator 3 2 = 绥 (4) is generated, and transmitter 322 can transmit the modulated 俨. 133688.doc 200922251 Figure 8 is a conceptual block diagram illustrating an example of the functionality of a processing system in a transmitter or receiver device. The processing system 314 or 206 (see Figures 2 and 3) of the transmitter or receiver device 302 or 200 includes a module 810 for including one or more pilot interlace vectors and a for including one or more distances Vector module 820. The processing system 314 or 206 also includes a module 830 for providing a first time slot interlace based on the one or more pilot interlace vectors and a method for interleaving based on the first time slot and the one or more distance vectors A module 8404 is provided for the second time slot interleaving. Figure 9 is a flow diagram illustrating one exemplary operation of providing time slot interleaving or providing communication at a transmitter or receiver device. In step 91, the processing system 314 or 206 (see Figures 2 and 3) of the transmitter or receiver device 302 or 200 can receive one or more pilot interlace vectors. At step 92, processing system 3 14 or 206 can receive one or more distance vectors. In step 93, it may provide a first time slot interlace based on the one or more pilot interlace vectors. Additionally, in step 940, processing system 314 or 260 may provide a second time slot interlace based on the first time slot interlace and the one or more distance vectors. A readable medium can be encoded or stored with instructions executable by the transmitter or receiver device or by the device device system, wherein the instructions include the code for steps 910, 920, 930 and 940 described above. As mentioned above, the hardware architecture can be implemented to implement a series of time slot-to-interlace mappings via the configuration of some hardware registers. The architecture supports time slot to interlace mapping with different pilot staggered patterns. The channel estimation capability and the Dougler elasticity depend on the pilot staggered pattern in an OFDM system such as FLO. With the above architecture, a single FL〇 receiver device can support slot-to-interlace mapping that can be deployed in different networks. The architecture also supports backward compatibility with FLO's empty intermediaries. According to one aspect of the invention, pilot observations obtained from multiple OFDM symbols may be required to correspond to as many distinct subcarriers as possible to ensure that channel estimates for the delay spread requirements of the system are met. In addition to the pilot symbols across a wide subcarrier array, it may be desirable to spread the data symbols between the pilot subcarriers in the OFDM system and the set of all available subcarriers so that the data symbols have channel estimates and frequencies. The benefits of diversity. Therefore, time slot to interlace mapping plays an important role in the 〇FDM system. The above-mentioned main hardware and software implementations are exemplary implementations. The technology is not limited to such implementations, and other suitable implementations can be used. The technology is also not limited to FLO systems and can be used in a wide variety of communication systems. Although the staggered patterns (2, 6), (0, 3, 6) and (〇, 2, 4, 6) are described above, these are merely examples and the present technology is not limited to these examples. The description of OFDM symbols and OFDM symbol indices can be applied to other symbols and symbol indices. The term &quot;symbol&quot; as used herein may relate to OFDM symbols, any other type of symbol, material or information. The term "vector" as used herein may refer to a series of columns. 'and a collection or a plurality of terms. The term &quot;map&quot; as used herein may refer to assignment or assignment, and vice versa. Those skilled in the art will appreciate that the various illustrative component block modules, components, networks, devices, processing systems, methods, systems, and algorithms described herein can be implemented in hardware, software, or a combination of both. in. For example, the component can be ((4) limited to the process of execution on the processing device, I33688.doc -36 - 200922251 pieces, executable code, execution thread, process in a 俨! · Milk, 乂 ^ month package. By way of illustration, one or more components of the application and one or more components of the device can reside as a component. The madness is left over and/or the thread is executed. The component is limited to a computer Buchen/々8+ and can be on and/or distributed between two or two. In addition, the computer computer on the other hand can be executed by a medium and I computer readable medium, and the (5) media can have various memories stored thereon, such as according to a ώA, 枓, . Structure. These components have a - or multiple data packets from the local and/or remote process f signals (eg, 'the system in the area, dispersing the gas blush by the signal and the more such as the Internet tamping effect and / Or across the 'heart, the same,, the network of the road and its materials. 7 and the components of the components should be understood as 'the process of the revealed process of Niu Cong from the day-to-day method - to explain the one-person case of the layer of the earth" and the preference for the 'should understand, the specific order of the steps or the voice荨 耘 本 - - - - 欠 欠 欠 欠 - - - 随时 随时 随时 随时 随时 随时 随时 随时 随时 随时No, "the stomach is limited to the prior description presented so that anyone skilled in the art can practice the various fields in this article. For those skilled in the art, this aspect applies to other aspects. Therefore, the general principle of U definition can be .a _ At ' The scope of patent application is not intended to be limited to the scope of this article 2 ❼疋 ❼疋 符合 符合 符合 符合 符合 : : : : : : : : : : : : : : : : : : : It is intended to mean "a ® (unless specifically so specified) and means "one or more". Unless otherwise specified, the term 'other term' refers to one or more. The following paragraphs 133688.doc -37· 200922251 are not intended to limit the scope of the present invention and/or the italic headings or sub-headings for convenience of use and are not mentioned in connection with the explanation of the present invention. All of the structural and functional equivalents of the various elements of the present invention, which are known to those skilled in the art, which are known to those skilled in the art, are hereby incorporated by reference. The scope is covered. In addition, nothing disclosed herein is intended to be dedicated to the public, regardless of whether the disclosure is explicitly recited in the scope of the claims. Unless the patentable scope element is used in the phrase "a component for", and is explicitly recited, or in the context of a method item, the element is recited using the phrase "steps for", the application The patent scope element will not be explained under the terms of paragraph 6 of 35 USC §112. In addition, 'as the term' includes, t or "has" used to describe or claim a patent, the term is intended to be used in a manner similar to the term &quot;include&quot; The transition word is explained) and is inclusive. [Simplified Schematic] FIG. 1 is a conceptual block diagram illustrating an example of a wireless network system for a forward link network (FL〇) only. Figure is a conceptual block diagram illustrating an example of a system including a transmitter device and one or more receiver devices. 4 illustrates an exemplary FL〇 physical layer hyperframe. Figure 5 illustrates an exemplary interleaved structure. Figure 6 is an exemplary table of time slot to interlace mapping. 133688.doc •38- 200922251 Figure 7 illustrates the use of— The conceptual block diagram of the exemplary hardware of the generalized grapefruit ^ ^, locating to the parental misplacement map. Figure 8 is a diagram illustrating the functionality of the processing system in the transmitter or receiver. Conceptual block diagram of the example. Provides a transmission or at the receiver device interleaved or lifting slot ', 5 a flowchart of an exemplary operation of. The main element REFERENCE NUMERALS

1〇0 無線網絡系統 H〇 傳輸器裝置 112 無線網路 12〇 接收器裴置 13〇 符號子集 2〇〇 接收器裝置 2〇2 接收器 2〇4 解調變器 2〇6 處理糸統 2〇8 記憶體 21〇 FLO頻道組件 212 後台li視器 214 符號調變器 216 傳輸器 3〇〇 系統 3〇2 傳輸器裳置 3〇4 接收器裳i 133688.doc •39· 200922251 133688.doc 306 接收天線 308 傳輸天線 310 接收器 312 解調變器 314 處理系統 316 記憶體 318 FLO頻道組件 320 調變器 322 傳輸器 400 FLO實體層超訊框 710 處理系統、導頻交錯向量單元 720 導頻交錯 725 時槽交錯 730 距離向量單元 740 時槽交錯計算單元 742 右循環移位單元 745 加法器 750 模8單元 760 貢料父錯表早元 770 乘法器 775 移位致能旗標 790 模7單元 795 左移位單元 810 用於包括一或多個導頻交錯向量之模組 -40- 200922251 820 用 於 包括一或 多個距離向量之模組 830 用 於 基於該一 或多個導頻 交錯向量提 供 -- 第一時槽 交錯之模組 840 用 於 基於該第 一時槽交錯 及該一或多 個 距 離向量提供一第二時槽 交錯之模組1〇0 Wireless network system H〇 transmitter device 112 Wireless network 12〇 Receiver device 13〇 Symbol subset 2〇〇 Receiver device 2〇2 Receiver 2〇4 Demodulation transformer 2〇6 Processing system 2〇8 Memory 21〇FLO Channel Component 212 Background Li Viewer 214 Symbol Modulator 216 Transmitter 3〇〇System 3〇2 Transmitter Swing 3〇4 Receiver Skirt i 133688.doc •39· 200922251 133688. Doc 306 Receive Antenna 308 Transmit Antenna 310 Receiver 312 Demodulation Transformer 314 Processing System 316 Memory 318 FLO Channel Component 320 Modulator 322 Transmitter 400 FLO Physical Layer Hyperframe 710 Processing System, Pilot Interleaved Vector Unit 720 Frequency interleaving 725 time slot interleaving 730 distance vector unit 740 time slot interleaving calculation unit 742 right cyclic shift unit 745 adder 750 modulo 8 unit 760 tribute parent error table early element 770 multiplier 775 shift enable flag 790 modulo 7 Unit 795 Left shift unit 810 is used for a module comprising one or more pilot interlace vectors - 40, 200922251 820 for a module 830 comprising one or more distance vectors for In the one or more pilot interlace vectors provide - interleaving module 840 of the first slot for the first moment, based on the cross groove and the one or more distance vector to provide a second slot interlace when the module

133688.doc -41 -133688.doc -41 -

Claims (1)

200922251 十、申請專利範圍: 1. 2. 一種傳輪器或接收器裝置,其包含: 一處理系統,其經組態以包括一或多個導頻交錯向量 &gt;或夕個距離向量,該處理系統經進一步組態以基於 該一或多個導頻交錯向量提供—第一時槽交錯,該處理 系統經進一步組態以基於該第一時槽交錯及該一或多個 距離向量提供一第二時槽交錯。 、月长項1之傳輸器或接收器裝置,其中該處理系統經 、V組態以基於該-或多自導頻交錯向量&amp;一符號索 引 &amp;供該第一時槽交錯。 3. 月长項1之傳輸器或接收器裝置,其中該一或多個距 …j里L括複數個距離向量,且該處理系統經進一步組 、土於符號索引,自該複數個距離向量選擇一距離 向量。 4. 5. 如&quot;月求項3之傳輪||或接收器裝置,其中該處理系統經 、^ ‘、且悲以基於該第一時槽交錯及該選定距離向量, 提供該第二時槽交錯。 如請求項3之傳輸器或接收器裝置,其中該—或多個導 :交錯向量包括複數個導頻交錯向量,該處理系統經進 :步組態以基於一符號索引,自該複數個導頻交錯向量 導頻又錯向量,且該處理系統經進一步組態以基 a符號索引及該選定導頻交錯,自該複數個距離向量 選擇該距離向量。 6· 如請求項1之傳輸器或接 收器裝置,其中該第一時槽交 133688.doc 200922251 錯包括-或多個導頻交錯,且該第二時槽交錯包括一或 多個用於資料之時槽交錯。 如叫求項1之傳輪器或接收器裝置,其中該處理系統經 、步、’且恶以旋轉該一或多個距離向量,以提供該第二 時槽交錯。 8. 、、、員1之傳輸器或接收器裝置,其中該處理系統經 進一步組態以基於-或多個參差型式,提供該一或多個 導頻交錯向量。 9·如:求項1之傳輪11或接收器裝置,其中該處理系統經 父、且匕、以基於-符號索引’自該-或多個導頻交錯 向量選擇一導頻交錯向量。 1〇·如請求項1之傳輸器或接收器裝置,其中該第-時槽交 B ;第時槽,該第二時槽交錯用於一第二時槽, ::處理系統經進一步組態以基於該第一時槽交錯及該 ^ diUl離向$ ’提供用於所有其他時槽之額外時槽 父錯。 11. 其中該處理系統經 之一頻道估計的長 士。月求項1之傳輸器或接收器裝置, 進一步組“衫—傳輸或接收頻道 度。 ,其中該第二時槽交 個交錯,或將一交錯 符號對應於一或多個 位對應於一或多個符 12.如請求項1之傳輸器或接收器農置 錯經組態以將一時槽映射至—或多 映射至一或多個時槽,且其中— MAC時間單位’或一MAC時間單 號。 133688.doc 200922251 13. —種傳輸器或接收器裝置,其包含: 用於包括一或多個導頻交錯向量之構件; 用於包括一或多個距離向量之構件; 用於基於該-或多個導頻交錯向量提供—第一時槽交 錯之構件;及 用於基於該第-時槽交錯及該一或多個距離向量提供 一第二時槽交錯之構件。 請求項13之傳輸器或接收器裝置,其中該用於提供該 第一時槽交錯之構件經組態以基於該一或多㈤導頻交錯 向量及一符號索引,提供該第一時槽交錯。 15.如請求項13之傳輸器或接收器裝置,其中該一或多個距 離向量包括複數個距離向量,且該傳輸器或接收器裝置 進乂 03用於基於一付號索引自該複數個距離向量選 擇一距離向量之構件。 16·如請求項15之傳輸器或接收器裝置,其中該用於提供該 第二時槽交錯之構件經組態以基於該第一時槽交錯及該 選定距離向量’提供該第二時槽交錯。 17.如請求項丨5之傳輸器或接收器裝置,其中該一或多個導 頻交錯向量包括複數個導頻交錯向量,且其中該傳輸器 或接收器裝置進一步包含: 。 用於基於一符號索引自該複數個導頻交錯向量選擇一 導頻交錯向量之構件;及 用於基於該符號索引及該選定導頻交錯自該複數個距 離向量選擇該距離向量之構件。 133688.doc 200922251 1 8.如請求項13之傳輸器或接收器裝置,其中該第—時样六 錯包括一或多個導頻交錯,且該第二時槽交錯包括一或 多個用於資料之時槽交錯。 &lt; 19. 如請求項13之傳輸器或接收器裝置,進—步包含用於旋 轉s亥一或多個距離向量以提供該第二時槽交錯之構件;。 20. 如請求項13之傳輸器或接收器裝置,進—步包含用於基 於-或多個參差型式提供該一或多個導頻交錯向 : 件。 再 21. 如請求項13之傳輸器或接收器裝置,進—步包含用於美 於一符號索引自該一或多個導頻交錯向量選擇_頁二 錯向量之構件。 f九 22. 如請求項13之傳輸器或接收器裝置,其中㈣—時 錯用於一第一時槽,及該第二時槽交錯用於—第二時 槽二且其中該傳輸器或接收器裝置進一步包含用於基: 忒弟-時槽交錯及該一或多個距離向量提供用於所 他時槽之額外時槽交錯之構件。 ” 23·如請求項13之傳輸器或接收器襄置,進_步包含用 定一傳輸或接收頻道之—頻道估計之長度的構件。、 24_如請求項13之傳輸器或接收器裝置,其中該第 錯經組態以將—時槽映射至一或多個交錯、“ 映射至一或多個時槽,且1中一#,料_ 4將—父錯 _時間單位:λ 多個 號。早位,或一臟時間單位對應於-或多個符 A一種在—傳輸器或接收Μ置處提供時槽交錯或提供通 133688.doc 200922251 信之方法,其包含: 接收一或多個導頻交錯向量; 接收一或多個距離向量; 基於該一或多個導頻交錯向量’提供一第一時槽交 錯;及 基於該第一時槽交錯及該一或多個距離向量,提供一 第二時槽交錯。 26. 如請求項25之方法,其中該提供該第一時槽交錯之步驟 包含基於該一或多個導頻交錯向量及一符號索引,提供 該第一時槽交錯。 27. 如請求項25之方法,其中該一或多個距離向量包括複數 個距離向量,且該方法進一步包含基於一符號索引,自 該複數個距離向量選擇一距離向量。 2 8.如請求項27之方法,其中該用於提供該第二時槽交錯之 步驟包含基於該第一時槽交錯及該選定距離向量,提供 該第二時槽交錯。 29.如請求項27之方法,其中該一或多個導頻交錯向量包括 複數個導頻交錯向量,其中該方法進一步包含: 基於一符號索引,自該複數個導頻交錯向量選擇一導 頻交錯向量;及 基於該符號索引及該選定導頻交錯,自該複數個距離 向量選擇該距離向量。 3 0.如請求項25之方法,其中該第一時槽交錯包括一或多個 導頻交錯’且該第二時槽交錯包括一或多個用於資料之 133688.doc 200922251 時槽交錯。 31.如請求項25之方法,進—步包含旋轉該一或多個距離向 量’以提供該第二時槽交錯。 32_如請求項25之方法,進—步包含基於一或多個參差型 式,提供該一或多個導頻交錯向量。 33.如請求項25之方法,進—步包含基於一符號索引,自該 一或多個導頻交錯向量選擇一導頻交錯向量。 34’如清求項25之方法’其中該第一時槽交錯用於一第一時 槽’及該第二時槽交錯用於一第二時槽,且其中該方法 步包含基於該第—時槽交錯及該一或多個距離向 里,提供用於所有其他時槽之額外時槽交錯。 3 5 如請求項2 5之方法,推 進—步包含判定一傳輸或接收頻道 之一頻道估計的長度。 36.如晴求項25之方法,甘+ &amp; ~ ,、中該第二時槽交錯將一時槽映射 至一或多個交錯,或趑 _ ^ . 次將—父錯映射至一或多個時槽,且 八中-符號對應於—或多個 間單位對應於—或多個或一 MAC時 37·如請求項25之方法’宜+ 包含: 〜$提供遠第二時槽交錯之步驟 乘一符號索引表 示為一 M立元長之數,其中W 將 整數; 判定該h位元長之 ^ ,— 數之第1群的數目,甘 群中之母一者為則立 其中該等第 A Μ ^ 長’所大於或等於2, 為—整數,~為—敕 、2,切小於k丨,, 正數,且將該等第i群表 吁衣不為第1群 133688.doc 200922251 第1群~ ; 將該h位元長之數分έ 双刀、·且為该第1群1至該第1 將該第1群1至哕坌拜~,及 野上至該第1群〜各自相加以 數’其中W於為—整數。 長之 -如請求項37之方法,其中該提供該第二 進一步包含: 9又鞯之步驟 判疋该灸,位元長之势夕势· 中之每一… 幻群的讀目,其中該等第,·群 第.群矣太 為—整數,Ζ·大於^且將該等 弟丨群表不為第z•群1至第z•群A ; 將該h位元長之數分組為該第^•群〗至該第z•群 將該第/群1至該第z•群„各自相 曰邳加以產生一 t + /位元長之 數’其中灸,.+ /小於心,且介! + ;為_整數; 增加ί ;及 重複該等判定第/群之《,·數目,分組該I位元長之數, 將該第/群1至該第濟各自相加,及增加丨的步驟,直至 灸(+ + /專於或小於W。 39.如請求項25之方法,進一步包含: 將資料流轉換至符號; 將該等符號指派至時槽内; 使用S亥苐一時槽交錯及δ亥第二時槽交錯,將該等時槽 映射至交錯,其中該第一時槽交錯包括一或多個導頻交 錯,及該第二時槽交錯包括一或多個用於資料之時槽交 錯; 執行調變; 133688.doc 200922251 產生一經調變之信號;及 傳輸該經調變之信號。 40. 如請求項25之方法,進一步包含: 獲得符號; 將該等符號分為交錯; 使用該第一時槽交錯及該第二時槽交錯,將該等交錯 映射至時槽,其中該第一時槽交錯包括_或多個導頻交 錯,及該第二時槽交錯包括一或多個用於資料之時槽交 錯; 自該等時槽產生調變符號;及 將該等調變符號轉換至資料流。 41. 一種包含可由一傳輸器或接收器裝置執行之指令之可讀 媒體’該等指令包含用於以下操作之程式碼: 接收一或多個導頻交錯向量; 接收一或多個距離向量; 基於該一或多個導頻交錯向量,提供一第一時槽交 錯;及 基於該第一時槽交錯及該一或多個距離向量,提供一 第二時槽交錯。 42. 如請求項41之可讀媒體,其中該用於提供該^時槽交 錯之%式碼包含用於基於忒—或多個導頻交錯向量及一 符號索引提供該第一時槽交錯之程式碼。 43. 如請求項41之可讀媒體,其L Α , θ ,, 』°貝秌m 丹肀該一或多個距離向量包括 複數個距離向量,且該等指a^ 啡u里几成守相7進—步包含用於基於一符 133688.doc 200922251 號索引自該複數個距離向量選擇一距離向量之程式碼。 44. 如凊求項43之可讀媒體,其中該用於提供該第二時槽交 錯之程式碼包含用於基於該第—時槽交錯及該選定距離 向畺長:供該第二時槽交錯之程式碼。 45. 如請求項43之可讀媒體,其中該—或多個導頻交錯向量 包括複數個導頻交錯向量,其中該等指令進一步包含用 於以下操作之程式碼: 基於一符號索引,自該複數個導頻交錯向量選擇一導 頻交錯向量;及 基於該符號索引及該選定導頻交錯,自該複數個距離 向量選擇該距離向量。 46. 如請求項41之可讀媒體,其中該第一時槽交錯包括一或 夕個導頻交錯,且§亥第二時槽交錯包括一或多個用於資 料之時槽交錯。 47. 如請求項41之可讀媒體,其中該等指令進一步包含用於 , 旋轉該一或多個距離向量以提供該第二時槽交錯之程式 碼。 48. 如請求項41之可讀媒體,其中該等指令進一步包含用於 基於一或多個參差型式提供該一或多個導頻交錯向量之 秋式碼。 49. 如請求項41之可讀媒體’其中該等指令進—步包含用於 基於一符號索引自該一或多個導頻交錯向量選擇一導頻 交錯向量之程式碼。 50. 如請求項41之可讀媒體,其中該第一時槽交錯用於一第 133688.doc 200922251 一時槽’及s玄第二時槽交錯用於-第二時槽,且其中該 等指令進-步包含用於基於該第一時槽交錯及該二或多 個距離向量提供用於所有其他時槽之額外時槽交錯之程 式碼。 51. 如請求項41之可讀媒體,其中該等指令進_步包含用於 判定-傳輸或接收頻道之—頻道估計之長度的程式碼。 52. 如响求項41之可碩媒體,其中該第二時槽交錯將―時枰 映射至-或多個交錯’或將一交錯映射至_或多個: 槽’且其中一符號對應於一或多個mac時 MAC時間單位對應於—或多個符號。 或一 53. 如請求項41之可讀媒體, 以下操作之程式碼: “ #包含用於 將-乘-符號索引表示為一h位元長之 一整數; 八Ύ k丨馬 =糾位元長之數之第i群的哺目,其中 群中之母一者為碰元長,w大於或等於 第 為一整數,〜為一整數,且將該等第 群’所 第1群砰录不為弟1群1至 ^長之數分組為該第叫至該第!..及 將该第_至該第各自相加 數,其中M、叫,从為一整數。 ‘長之 月求項53之可項媒體,其中該等指 以下操作之程式碼: ^包含用於 判疋§亥左,.位元長之數之笙.我认 &amp; 數之心群的哺目,其中該等第嶙 133688.doc 200922251 中之每一者為w位元+200922251 X. Patent Application Range: 1. 2. A wheel or receiver device comprising: a processing system configured to include one or more pilot interlace vectors &gt; or a distance vector, The processing system is further configured to provide a first time slot interlace based on the one or more pilot interlace vectors, the processing system being further configured to provide a first time slot interlace and the one or more distance vectors based on the first time slot interlace The second time slot is staggered. And a transmitter or receiver device of month 1 wherein the processing system is V-configured to interleave the first time slot based on the - or multi-self-pilot interlace vector &amp; a symbol index &amp; 3. A transmitter or receiver device of month 1 wherein the one or more distances ... j comprise a plurality of distance vectors, and the processing system is further grouped, the soil is indexed from the plurality of distance vectors Select a distance vector. 4. 5. If the &quot;monthly item 3 transmission wheel|| or receiver device, wherein the processing system passes the ^^, and sorrow based on the first time slot interlace and the selected distance vector, providing the second The time slots are staggered. The transmitter or receiver device of claim 3, wherein the one or more derivative: interlace vectors comprise a plurality of pilot interlace vectors, the processing system being configured to step based on a symbol index from the plurality of derivatives The frequency interleaved vector pilot is again error vector, and the processing system is further configured to select the distance vector from the plurality of distance vectors by base a symbol index and the selected pilot interlace. 6. The transmitter or receiver device of claim 1, wherein the first time slot intersection 133688.doc 200922251 error comprises - or a plurality of pilot interlaces, and the second time slot interlace comprises one or more data for The slots are staggered at the time. A carrier or receiver device as claimed in claim 1, wherein the processing system performs the second time slot interleaving via steps, &apos; and evil to rotate the one or more distance vectors. 8. The transmitter or receiver device of member 1, wherein the processing system is further configured to provide the one or more pilot interlace vectors based on - or a plurality of staggered patterns. 9. The source 11 or receiver device of claim 1, wherein the processing system selects a pilot interlace vector from the one or more pilot interlace vectors via a parent-based index. 1. The transmitter or receiver device of claim 1, wherein the first time slot intersects B; the time slot, the second time slot is interleaved for a second time slot, :: processing system is further configured An additional time slot parent error for all other time slots is provided based on the first time slot interleaving and the ^diUl departure to $'. 11. The long-term estimate of the processing system via one channel. The transmitter or receiver device of the monthly solution 1 further includes a "shirt-transmitting or receiving channel degree.", wherein the second time slot is interlaced, or an interlace symbol corresponds to one or more bits corresponding to one or Multiple symbols 12. The transmitter or receiver of request 1 is misconfigured to map a time slot to - or multiple maps to one or more time slots, and wherein - MAC time unit ' or a MAC time Single number 133688.doc 200922251 13. A transmitter or receiver apparatus comprising: means for including one or more pilot interlace vectors; means for including one or more distance vectors; The one or more pilot interlace vectors provide a first time slot interleaved component; and means for providing a second time slot interlace based on the first time slot interlace and the one or more distance vectors. The transmitter or receiver device, wherein the means for providing the first time slot interlace is configured to provide the first time slot interlace based on the one or more (five) pilot interlace vectors and a symbol index. Such as the transmitter of claim 13 or And the receiver device, wherein the one or more distance vectors comprise a plurality of distance vectors, and the transmitter or receiver device is configured to select a component of the distance vector from the plurality of distance vectors based on a payout index. The transmitter or receiver device of claim 15 wherein the means for providing the second time slot interleaving is configured to provide the second time slot interleaving based on the first time slot interlace and the selected distance vector 17. The transmitter or receiver device of claim 5, wherein the one or more pilot interlace vectors comprise a plurality of pilot interlace vectors, and wherein the transmitter or receiver device further comprises: a symbol index selecting a component of a pilot interlace vector from the plurality of pilot interlace vectors; and means for selecting the distance vector from the plurality of distance vectors based on the symbol index and the selected pilot interlace. 133688.doc 200922251 1 8. The transmitter or receiver device of claim 13, wherein the first time-six error comprises one or more pilot interlaces, and the second time slot interleaving comprises a A plurality of time slot interleaving for data. &lt; 19. The transmitter or receiver device of claim 13, the step comprising: rotating one or more distance vectors to provide the second time slot interleaving Component 20. The transmitter or receiver device of claim 13 further comprising means for providing the one or more pilot interleaving elements based on - or a plurality of staggered patterns. The transmitter or receiver device further comprises means for selecting a _page two error vector from the one or more pilot interlace vectors for a symbol index. f9 22. The transmitter of claim 13 or a receiver device, wherein (4) - time error is used for a first time slot, and the second time slot is staggered for - second time slot 2 and wherein the transmitter or receiver device is further included for base: The time slot interleaving and the one or more distance vectors provide means for additional time slot interleaving of the time slots. [23] The transmitter or receiver of claim 13 includes means for determining the length of the channel estimate for the transmission or reception channel. 24_ The transmitter or receiver device of claim 13 , wherein the first error is configured to map the time slot to one or more interlaces, "map to one or more time slots, and 1 to #1, material_4 will be - parent error_time unit: λ Number. The early bit, or a dirty time unit corresponds to - or a plurality of symbols A. A method of providing time slot interleaving or providing a pass at the transmitter or receiving device, 133 688.doc 200922251, the method comprising: receiving one or more pilots Interleaving vector; receiving one or more distance vectors; providing a first time slot interlace based on the one or more pilot interlace vectors; and providing a first based on the first time slot interlace and the one or more distance vectors The two-time slot is staggered. 26. The method of claim 25, wherein the step of providing the first time slot interleaving comprises providing the first time slot interlace based on the one or more pilot interlace vectors and a symbol index. 27. The method of claim 25, wherein the one or more distance vectors comprise a plurality of distance vectors, and the method further comprises selecting a distance vector from the plurality of distance vectors based on a symbol index. The method of claim 27, wherein the step of providing the second time slot interleaving comprises providing the second time slot interlace based on the first time slot interlace and the selected distance vector. 29. The method of claim 27, wherein the one or more pilot interlace vectors comprise a plurality of pilot interlace vectors, wherein the method further comprises: selecting a pilot from the plurality of pilot interlace vectors based on a symbol index An interlace vector; and selecting the distance vector from the plurality of distance vectors based on the symbol index and the selected pilot interlace. The method of claim 25, wherein the first time slot interleaving comprises one or more pilot interlaces&apos; and the second time slot interleaving comprises one or more time slot interleaving for data. 31. The method of claim 25, wherein the step of rotating comprises rotating the one or more distance vectors to provide the second time slot interleaving. 32. The method of claim 25, the step comprising providing the one or more pilot interlace vectors based on the one or more staggered patterns. 33. The method of claim 25, the step comprising selecting a pilot interlace vector from the one or more pilot interlace vectors based on a symbol index. 34' The method of claim 25, wherein the first time slot is interleaved for a first time slot and the second time slot is staggered for a second time slot, and wherein the method step includes based on the first The time slot interleaving and the one or more distances inward provide additional time slot interleaving for all other time slots. 3 5 The method of claim 2, wherein the step of determining comprises determining a length of a channel of one of the transmission or reception channels. 36. In the method of claim 25, the second time slot interleaving maps the one time slot to one or more interlaces, or 趑_^. the second-parent mapping to one or more Time slot, and the eight-symbol corresponds to - or a plurality of inter-units correspond to - or multiple or one MAC 37. The method of claim 25 is appropriate + contains: ~ $ provides far second time slot interleaving The step is multiplied by a symbol index and expressed as a number of M long elements, where W is an integer; the number of the first group of the number of ^, the number of the h-bits is determined, and the mother of the group is the one If the first A Μ ^ long ' is greater than or equal to 2, is - integer, ~ is - 敕, 2, cut less than k 丨,, positive, and the ith group is not the first group 133688.doc 200922251 The first group ~ ; The number of the h-bit length is divided into two knives, and the first group 1 to the first one, the first group 1 to the ~, and the wild to the first group ~ Each is added to the number 'where W is - integer. The method of claim 37, wherein the providing the second further comprises: 9 stepping up the moxibustion, each of the potentials of the bite... the reading of the fiction group, wherein the Equivalent, group, group, too-integer, Ζ·greater than ^, and the group of sisters are not the z-group 1 to z-group A; group the number of h-bits into The ^^ group to the zth group group the group/group 1 to the zth group to generate a t + /bit length number of which moxibustion, .+ / less than heart, And +; is _ integer; increase ί ; and repeat the number of the judgment group / group, the number of the I-bit length, add the first / group 1 to the Diji, and Steps to increase sputum until moxibustion (+ + / is dedicated to or less than W. 39. The method of claim 25, further comprising: converting the data stream to a symbol; assigning the symbols to the time slot; using S One-time slot interleaving and δ-Hay second time slot interleaving, the isochronous slots are mapped to interlace, wherein the first time slot interlace comprises one or more pilot interlaces, and the second time slot interlace comprises a Or a plurality of time slots for data interleaving; performing modulation; 133688.doc 200922251 generating a modulated signal; and transmitting the modulated signal. 40. The method of claim 25, further comprising: obtaining a symbol; Dividing the symbols into interlaces; mapping the interlaces to time slots using the first time slot interlace and the second time slot interlace, wherein the first time slot interlace comprises _ or a plurality of pilot interlaces, and The second time slot interleaving includes one or more time slot interleaving for data; generating modulation symbols from the time slots; and converting the modulated symbols to the data stream. 41. One containing may be transmitted or received by a transmitter Readable medium for instructions executed by the device means. The instructions include code for: receiving one or more pilot interlace vectors; receiving one or more distance vectors; based on the one or more pilot interlace vectors Providing a first time slot interleave; and providing a second time slot interlace based on the first time slot interlace and the one or more distance vectors. 42. The readable medium of claim 41, wherein the The time slot interlaced % code contains code for providing the first time slot interlace based on 忒- or a plurality of pilot interlace vectors and a symbol index. 43. The readable medium of claim 41, L Α , θ ,, 』°贝秌m 丹肀 The one or more distance vectors include a plurality of distance vectors, and the points are a suffixed phase of the ^ — 包含 包含 包含 包含 包含 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 The index 200922251 selects a distance vector code from the plurality of distance vectors. 44. The readable medium of claim 43, wherein the code for providing the second time slot interleave is included for the The time slot is interleaved and the selected distance is long: the code for the second time slot interleaving. 45. The readable medium of claim 43, wherein the one or more pilot interlace vectors comprise a plurality of pilot interlace vectors, wherein the instructions further comprise code for: based on a symbol index, from A plurality of pilot interlace vectors select a pilot interlace vector; and based on the symbol index and the selected pilot interlace, the distance vector is selected from the plurality of distance vectors. 46. The readable medium of claim 41, wherein the first time slot interlace comprises one or one of the first pilot interlaces, and wherein the second time slot interleaving comprises one or more time slot interleaving for information. 47. The readable medium of claim 41, wherein the instructions further comprise code for rotating the one or more distance vectors to provide the second time slot interleaving. 48. The readable medium of claim 41, wherein the instructions further comprise an autumn code for providing the one or more pilot interlace vectors based on one or more parametric patterns. 49. The readable medium of claim 41, wherein the instructions further comprise code for selecting a pilot interlace vector from the one or more pilot interlace vectors based on a symbol index. 50. The readable medium of claim 41, wherein the first time slot is interleaved for a 133688.doc 200922251 one-time slot' and s-second second time slot interleaving for a second time slot, and wherein the instructions The further step includes code for providing additional time slot interleaving for all other time slots based on the first time slot interlace and the two or more distance vectors. 51. The readable medium of claim 41, wherein the instructions include a code for determining the length of the channel estimate for the transmission or reception channel. 52. The sensible medium of claim 41, wherein the second time slot interlace maps “time” to “or multiple interlaces” or maps an interlace to _ or more: slots and one of the symbols corresponds to The MAC time unit corresponds to one or more symbols when one or more macs. Or a 53. The readable medium of claim 41, the following code: "#includes an integer for one-height-symbol index as an integer of one h-bit length; gossip k丨ma = aligning element The number of the i-th group of the long number, in which the mother of the group is the length of the encounter, w is greater than or equal to the first integer, ~ is an integer, and the first group of the first group is recorded The number of groups 1 to ^ long is not grouped for the first call to the first!.. and the number of the first to the first is added, where M, called, is an integer. Item 53 of the item media, wherein the code of the following operations: ^ contains the number of bits used to determine § hai left, the length of the bit. I recognize the number of the heart group, which should Etc. 嶙 688 688 688688.doc 200922251 each is w bit + 增加/ ;及 且將該等 /為一整數,;·大於1, ^至第/群〜; i群 I 之數分組為該第/群i至該第z群A ; =卓/群〜各自相加以產生一灸,+ /位元長之 且灸/ + /為一整數;Add / ; and the / is an integer, ; · greater than 1, ^ to the / group ~; i group I is grouped into the / group i to the z group A; = Zhuo / group ~ each Add a moxibustion, + / bit long and moxibustion / + / is an integer; 是|+ + /專於或小於/72 〇 ,分組該A:,.位元長之數, ,及增加z'的步驟,直至 55. —種傳輸器或接收器裝置,其包含: 一導頻交錯向量單元,其經組態以包括一或多個導頻 交錯向量; 一距離向量單元,其經組態以包括一或多個距離向 量;及 一時槽交錯計算單元,其經組態以基於該一或多個導 頻交錯向量提供一第一時槽交錯,且經進一步組態以基 於該第一時槽交錯及該一或多個距離向量提供一第二時 槽交錯。 133688.docYes |+ + /Special or less than /72 〇, group the A:,. The number of bits long, and the step of adding z' until 55. A transmitter or receiver device, comprising: a frequency interleaved vector unit configured to include one or more pilot interlace vectors; a distance vector unit configured to include one or more distance vectors; and a time slot interleaved computing unit configured to A first time slot interlace is provided based on the one or more pilot interlace vectors and further configured to provide a second time slot interlace based on the first time slot interlace and the one or more distance vectors. 133688.doc
TW097129964A 2007-08-06 2008-08-06 Systems and methods for generalized slot-to-interlace mapping TWI395447B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/834,671 US8477809B2 (en) 2003-09-02 2007-08-06 Systems and methods for generalized slot-to-interlace mapping

Publications (2)

Publication Number Publication Date
TW200922251A true TW200922251A (en) 2009-05-16
TWI395447B TWI395447B (en) 2013-05-01

Family

ID=42122763

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097129964A TWI395447B (en) 2007-08-06 2008-08-06 Systems and methods for generalized slot-to-interlace mapping

Country Status (6)

Country Link
JP (2) JP5415418B2 (en)
KR (1) KR101132491B1 (en)
CN (2) CN101822012A (en)
BR (1) BRPI0814591B1 (en)
CA (1) CA2696443A1 (en)
TW (1) TWI395447B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112021004023A2 (en) * 2018-09-18 2021-05-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. resource allocation method, and terminal device
US11438862B2 (en) * 2020-05-14 2022-09-06 Qualcomm Incorporated Methods and apparatus for using interlaced physical resource blocks for positioning measurements

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5005A (en) * 1847-03-06 Iien ry
US7221680B2 (en) * 2003-09-02 2007-05-22 Qualcomm Incorporated Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system
US8526412B2 (en) * 2003-10-24 2013-09-03 Qualcomm Incorporated Frequency division multiplexing of multiple data streams in a wireless multi-carrier communication system
US7457231B2 (en) * 2004-05-04 2008-11-25 Qualcomm Incorporated Staggered pilot transmission for channel estimation and time tracking
DE602005016794D1 (en) * 2004-05-18 2009-11-05 Qualcomm Inc TRANSLATOR FROM SLIM TO NEGOTIATION AND MISS
MX2007001166A (en) * 2004-07-29 2007-07-11 Qualcomm Inc System and method for interleaving.
US8009551B2 (en) * 2004-12-22 2011-08-30 Qualcomm Incorporated Initial pilot frequency selection
US7920658B2 (en) * 2005-03-10 2011-04-05 Qualcomm Incorporated Efficient method to compute one shot frequency estimate
CA2600767A1 (en) * 2005-03-10 2006-09-21 Qualcomm Incorporated Timing synchronization and channel estimation at a transition between local and wide area waveforms using a designated tdm pilot
US20060222018A1 (en) * 2005-03-30 2006-10-05 Lucent Technologies Inc. Method and apparatus for determining delays of links between switches
JP4870762B2 (en) * 2005-07-27 2012-02-08 クゥアルコム・インコーポレイテッド System and method for FORWARDLINKONLY physical layer

Also Published As

Publication number Publication date
CN101822012A (en) 2010-09-01
JP5415418B2 (en) 2014-02-12
CN107171777A (en) 2017-09-15
BRPI0814591B1 (en) 2020-05-19
BRPI0814591A2 (en) 2016-07-26
CA2696443A1 (en) 2009-01-29
JP5670500B2 (en) 2015-02-18
JP2013176070A (en) 2013-09-05
KR20100051092A (en) 2010-05-14
JP2010536196A (en) 2010-11-25
KR101132491B1 (en) 2012-03-30
TWI395447B (en) 2013-05-01

Similar Documents

Publication Publication Date Title
US10432444B2 (en) Short training field (STF) within wireless communications
US10637507B2 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
US8477809B2 (en) Systems and methods for generalized slot-to-interlace mapping
KR101485021B1 (en) Allocating and receiving tones for a frame
US11936590B2 (en) Punctured null data packet (NDP) within wireless communications
TW201640871A (en) System and method for transmitting data payload in WB SC, aggregate SC, duplicate SC, OFDM transmission frames
KR102096405B1 (en) Broadcast signal transmission device, broadcast signal reception device, broadcast signal transmission method, and broadcast signal reception method
US10630435B2 (en) Sub-carrier or tone plan and design within OFDM/OFDMA wireless communications
KR102179826B1 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
US10542388B2 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
TW200922251A (en) Systems and methods for generalized slot-to-interlace mapping
Prasad et al. OFDMA WiMAX physical layer
JP2022172250A (en) Reception method
EP2028785A2 (en) Systems and methods for generalized slot-to-interlace mapping
US10361826B2 (en) Efficient signaling of OFDM/A structure within wireless communications
JP2017225092A (en) Transmitter, receiver, frame configuration method, chip, and program