TW200921952A - Opto-electronic element and uncoupling lens for an opto-electronic element - Google Patents

Opto-electronic element and uncoupling lens for an opto-electronic element Download PDF

Info

Publication number
TW200921952A
TW200921952A TW97134665A TW97134665A TW200921952A TW 200921952 A TW200921952 A TW 200921952A TW 97134665 A TW97134665 A TW 97134665A TW 97134665 A TW97134665 A TW 97134665A TW 200921952 A TW200921952 A TW 200921952A
Authority
TW
Taiwan
Prior art keywords
photovoltaic element
element according
coupling lens
output coupling
radiation
Prior art date
Application number
TW97134665A
Other languages
Chinese (zh)
Inventor
Bernd Barchmann
Ralph Wirth
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Publication of TW200921952A publication Critical patent/TW200921952A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/644Heat extraction or cooling elements in intimate contact or integrated with parts of the device other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Photovoltaic Devices (AREA)

Abstract

This invention concerns an opto-electronic element with the following characteristics: at least a semiconductor body (1), which can emit electromagnetic radiation of a first wavelength coverage; a heat sink (2), on which the semiconductor body (1) and a mirror (3) are arranged; a wavelength converting layer (4), which is arranged laterally the semiconductor body (1) on the mirror (3) and has a wavelength conversion material (8), which can convert at least a part of the semiconductor body (1) emitted radiation of the first wavelength coverage into radiation of a second wavelength coverage, which is different to the first wavelength coverage. This invention concerns also an output lens for an opto-electronic element.

Description

200921952 九、發明說明: 【發明所屬之技術領域】 本發明係一種光電元件及光電元件之輸出耦合透鏡。 【先前技術】200921952 IX. Description of the Invention: [Technical Field of the Invention] The present invention is an output coupling lens of a photovoltaic element and a photovoltaic element. [Prior Art]

爲了產生混合色光(例如白光),具有—發射第一種波長 範圍之輻射的半導體本體的光電元件通常含有一種波長轉 換材料。波長轉換材料會將半導體本體發射之第一種波長 範圍的輻射一部分轉換成第二種波長範圍的輻射,且第二 種波長範圍不同於第一種波長範圍。例如專利 WO 02/0563 90 Al、WO 2006/034703 ' 以及 Journal 〇f Display Technology,Vol·' 3,No. 2(2007 年 6 月,155-159 頁)均有提 及這種光電元件。 例如可以將波長轉換材料加到半導體本體的灌注物內, 或是以塗層的形式直接塗覆在半導體本體上。 由於一般灌注材料的導熱性都很小,因此波長轉換材料 在第一種情況中的散熱很差,也就是說當光電元件運轉 時,波長轉換材料會承受很大的熱荷載。如果是將波長轉 換材料塗覆在半導體本體上’則波長轉換材料會承受很大 的輻射荷載,這同樣會導致波長轉換材料承受很大的熱荷 載。 此外,在半導體本體上有塗覆波長轉換材料的光電半導 體的另外一個缺點是輻射特性(強度及色度座標)較不均 勻。 200921952 【發明內容】 本發明的目的是提出一種含有波長轉換材料的光電元 件’此種光電元件能夠使波長轉換材料良好的散熱。本發 明的另外一個目的是提出一種光電元件的輸出稱合透鏡, 該輸出耦合透鏡能夠使光電元件具有均勻的輻射特性(色 度座標及/或強度)。 採用具有申請專利範圍第1項之特徵的光電元件及具有 申請專利範圍第42項之特徵的輸出耦合透鏡即可達到上 述目的。 附屬申請專利項目之內均爲本發明之光電元件及輸出耦 合透鏡的有利的實施方式及改良方式。 本專利揭不之內容均明確的記載在本說明書中。 本發明提出之光電元件具有: --至少一個半導體本體,該半導體本體能夠發射第一種 波長範圍之電磁輻射; --一個散熱體,半導體本體及一個反射鏡均設置在該散 熱體上; --一個波長轉換層,該波長轉換層係位於半導體本體旁 邊的反射鏡上且含有一種波長轉換材料,該波長轉換材料 能夠將半導體本體發射之第一種波長範圍的輻射的至少一 部分轉換成第二種波長範圍的輻射,且第二種波長範圍不 同於第一種波長範圍。 光電元件並不是一定只有一個半導體本體,而是可以具 200921952 有多個都同設置在散熱體上的半導體本體。以下關於單獨 一個半導體本體的描述亦適用具有多個半導體本體之光電 元件的若干或全部半導體本體。 如果光電元件具有多個半導體本體,則也可以將波長轉 換層設置在半導體本體之間。 根據一種有利的實施方式,半導體本體是以對稱方式排 列,而且最好是排列成點對稱的形狀。例如可以沿著一條 線或按照一個規律的格柵設置半導體本體。例如規律的格 柵可以是一個正方形或六邊形的格柵。 如果光電元件具有多個半導體本體,則這些半導體本體 並非一定必須發射相同波長範圍的輻射,而是可以發射不 同波長範圍的輻射。 如果這些半導體本體發射的是不同波長範圍的輻射,則 最好是只有一種波長範圍的輻射會被一種波長轉換材料轉 換成另外一種波長範圍的輻射,而其他波長範圍的輻射則 不會被轉換。但是也可以是至少有一部分的其他波長範圍 的輻射會被其他的波長轉換材料轉換成其他波長範圍的輻 射。 在半導體本體的輻射射出面上最好是沒有設置波長轉換 層。這樣做的好處是可以減輕波長轉換材料的輻射荷載。 例如散熱體可以是一片印刷電路板,例如金屬芯印刷電 路板。此外,散熱體至少含有下列材料中的一種材料(或是 由下列材料中的至少一種材料製成):銅、氮化鋁、氧化鋁、 200921952 矽、銀、鋁。散熱體的導熱性優於灌注材料。 反射鏡的任務是將被波長轉換層轉換成的第二種波長範 圍的輻射及/或半導體本體朝光電元件的背面發射的未被 轉換的第一種波長範圍的輻射偏轉到光電元件發射輻射的 正面。 在此,也可以將反射鏡設置在半導體本體下方,也就是 設置在半導體本體及散熱體之間。所謂”設置在散熱體 上”並不代表一定與散熱體有直接接觸。 根據一種實施方式,反射鏡與散熱體有直接接觸,也就 是說,反射鏡與散熱體之間有一個共同的交界面。 根據另外一種實施方式,波長轉換層與散熱體有直接接 觸,也就是說,波長轉換層與散熱體之間有一個共同的交 界面。這種方式可以確保波長轉換層與散熱體之間具有良 好的散熱作用。 一種特別有利的方式是將波長轉換層塗覆在反射鏡的內 部區域,這樣反射鏡的外部區域就不會有波長轉換層。反 射鏡的外部區域最好是至少將內部區域部分環繞住’例如 環狀環繞。但所謂環狀並不是而外部區域一定是圓形的。 根據一種實施方式,內部區域是圓形的’而外部區域則 是以圓環狀的方式環繞內部區域。 一種特別有利的方式是將半導體本體設置在內部區域的 正中央,也就是說將半導體本體之輻射射出面的面積重心 及內部區域的面積重心設置在光電元件的一個垂直於反射 200921952 鏡的光學軸上。如果內部區域構成一個圓形,周時半導體 本體的輻射射出面構成一個矩形,則圓形的中心(也就是內 部區域的面積重心)及矩形的中心(也就是半導體本體的車畐 射射出面的面積重心)是上下疊在一起並位於光學軸上。如 果光電元件具有多個半導體本體,則這些半導體本體最好 是排列成一個點對稱的形狀,其中點對稱形狀的對稱點係 位於內部區域的面積重心上。 根據一種有利的實施方式’反射鏡對第一種及/或第二種 波長範圍之電磁輻射的反射率至少是0 · 9 8,因此能夠很好 的將電磁輻射偏轉到光電元件的正面,這對於是高光電元 件的效率有很大的幫助。 ‘ 根據另外一種有利的實施方式,反射鏡的最大粗糙度最 達到4 0 n m。 根據另外一種有利的實施方式,反射鏡至少在沒有波長 轉換層之外部區域的內部對第一種及/或第一種波長範圍 的輻射具有鏡面反射的作用。將一個鏡面反射鏡設置在外 部區域上,且該外部區域最好是將帶有波長轉換層的內部 區域環繞住,可以提高光電元件的效率,因爲在這種情況 下’輸射可以很有效率的被偏轉到光電元件發射輻射的正 面。 反射鏡取好包括一個金屬層及一個布拉格反射鏡。根據 -種實施方式’反射鏡是由—個金屬層及—個布拉格反射 鉍所構成。包括一個金屬層及一個布拉格反射鏡的反射鏡 -10- 200921952 通常具有很高的反射率(至少是0.98)。 金屬層及布拉格反射鏡的配置方式最好是使布拉格反射 鏡構成反射鏡的表面。表面由布拉格反射鏡構成的反射鏡 的粗糙度通常較小,其最大粗糙度不超過4 Onm。此外,這 種反射鏡對可見光輻射通常具有鏡面反射作用。 例如金屬層含有鋁或最好是鋁所構成。金屬層的厚度最 好不要小於1 OOnm。此外,金屬層也可以構成散熱體。在 這種情況下,金屬層的厚度最好達到若干毫米。 布拉格反射鏡最好是由交替排列的兩個氧化矽層及兩個 氧化鈦層所構成,也就是說布接格反鏡鏡具有交替排列的 兩個氧化矽層及兩個氧化鈦層。氧化矽層含有氧化矽或是 由氧化矽所構成。個氧化鈦層含有氧化鈦或是由氧化鈦所 構成。 根據另外一種實施方式,波長轉換材料含有至少一種由 下列成分構成的材料:摻雜稀土金屬的石榴石、摻雜稀土 金屬的鹼土金屬硫化物、摻雜稀土金屬的硫酸鹽、摻雜稀 土金屬的鋁酸鹽、摻雜稀土金屬的原矽酸鹽、摻雜稀土金 屬的氯矽酸鹽、摻雜稀土金屬的鹼土金屬氮化矽、摻雜稀 土金屬的氮氧化物、摻雜稀土金屬的氮氧化鋁。 根據一種實施方式,波長轉換材料被埋在一種黏合劑 中。例如黏合劑可以含有以下任何一種(或是由以下任何一 種材料製成):矽膠、玻璃、或是一種陶瓷材料(例如氮化 鋁及氧化鋁)。 -11 - 200921952 另外一種可行的變化方式是將波長轉換材料塗覆在反射 鏡上形成一個波長轉換層,例如以電泳法塗覆。 根據一種實施方式,在半導體本體及波長轉換層上方有 設置一個散射體,且該散射體最好是一種散射灌注體。散 射體的作用是將未被轉換的輻射散射回波長轉換層,以提 高轉換率,以及將被轉換及未被轉換的輻射混合在一起。 根據一種實施方式,散射體含有散射微粒。例如這些散 射微粒含有下列材料中的至少一種材料:氧化鋁、氧化鈦。 根據一種實施方式,散射微粒被埋在一種基質材料中, 該基質材料含有下列材料中的至少一種材料(或是由下列 材料中的至少一種'材料所構成):矽膠、環氧化物。 最好是將散射體製作成一個半球或半球殼。這種實施方 式是將半球或半球殼設置在半導體本體的正中心的上方, 也就是說,半導體本體之輻射射出面的面積重心及半球或 半球殼的中心均位於光電元件的光學軸上。如果光電元件 具有多個半導體本體,則這種實施方式最好是將這些半導 體本體排列成點對稱的形狀’其中對稱點位於半球的中 心。此外,半球或半球殼的一面最好是連接波長轉換層。 因此波長轉換層最好是整個位於散射體下方。 根據一種實施方式’如果將散射體製作成一個半球殼’ 則半導體本體及散射體之間的空間有塡充一種透明塡充 體,例如一種透明灌注料。透明塡充體最好是不含散射微 粒。半導體本體及散射體之間的空間最好是被透明塡充體 -12- 200921952 完全塡滿,也就是說在半導體本體及散射體之間不存在任 何含有空氣的間隙。 根據另外一種實施方式’光電元件具有一個輸出親合透 鏡,其作用是將光電元件發射的輻射向外輸出耦合。在這 種實施方式中,光電元件發射輻射的正面通常是由輸出耦 合透鏡的外表面所構成。此外’輸出耦合透鏡的外表面還 可以帶有一個抗反射層。 輸出耦合透鏡可以是一個獨立的元件,例如是一個經銑 削、車削、或是澆注而成的元件,並且經由一個組裝步驟 被固定在光電元件上。 矣外一種方式是在光電元件上製作出輸出耦合透鏡,例 如將輸出耦合透鏡製作成在光電元件上的散射體或半導體 本體的灌注物。 輸出耦合透鏡最好是不含散射微粒。 最好是將輸出耦合透鏡設置在散射體上方。輸出耦合透 鏡最好是與散射體直接接觸,也就是說,輸出耦合透鏡與 散射體之間有一個共同的交界面。 另外一種實施方式是將輸出耦合透鏡製作成一個半球 殼’並將該半球殼設置在半導體本體的正中心的上方’也 就是說,半導體本體之輻射射出面的面積重心及半球殼的 中心均位於光電元件的光學軸上。如果光電元件具有多個 半導體本體,則這種實施方式最好是將這些半導體本體排 列成點對稱的形狀,其中對稱形狀的對稱點及半球的中心 -13- 200921952 均位於光學軸上。 根據另外一種實施方式,輸出耦合透鏡滿足逼近定理。 輸出親合透鏡具有一個被半徑爲R…μ的內半球面環繞住 的內表面。此外’輸出耦合透鏡還具有一個將半徑爲Raussci) 的外半球面環繞住的外表面。如果R,„„"及滿足以下 的不等式’則輸出耦合透鏡即可滿足逼近定理(Weierstrass condition):In order to produce mixed color light (e.g., white light), a photovoltaic element having a semiconductor body that emits radiation of a first wavelength range typically contains a wavelength converting material. The wavelength converting material converts a portion of the radiation of the first wavelength range emitted by the semiconductor body into radiation of the second wavelength range, and the second wavelength range is different from the first wavelength range. Such a photovoltaic element is mentioned, for example, in WO 02/0563 90 Al, WO 2006/034703 ' and Journal 〇f Display Technology, Vol. 3, No. 2 (June 2007, pages 155-159). For example, the wavelength converting material can be applied to the infusion of the semiconductor body or directly coated on the semiconductor body in the form of a coating. Since the thermal conductivity of the general infusion material is small, the wavelength conversion material has poor heat dissipation in the first case, that is, the wavelength conversion material is subjected to a large thermal load when the photovoltaic element operates. If the wavelength conversion material is coated on the semiconductor body, the wavelength converting material will be subjected to a large radiation load, which also causes the wavelength converting material to withstand a large thermal load. In addition, another disadvantage of having a photo-transistor coated with a wavelength converting material on the semiconductor body is that the radiation characteristics (intensity and chromaticity coordinates) are less uniform. SUMMARY OF THE INVENTION An object of the present invention is to provide a photovoltaic element comprising a wavelength converting material. Such a photovoltaic element can provide good heat dissipation of the wavelength converting material. Another object of the present invention is to provide an output collimating lens for a photovoltaic element that is capable of imparting uniform radiation characteristics (chromaticity coordinates and/or intensity) to the photovoltaic element. The above object can be attained by using a photovoltaic element having the features of claim 1 and an output coupling lens having the features of claim 42. Advantageous embodiments and improvements of the photovoltaic element and output coupling lens of the present invention are within the scope of the appended claims. The contents of this patent are not explicitly described in this specification. The photovoltaic element of the present invention has: - at least one semiconductor body capable of emitting electromagnetic radiation of a first wavelength range; - a heat sink, a semiconductor body and a mirror are disposed on the heat sink; a wavelength conversion layer on the mirror beside the semiconductor body and comprising a wavelength converting material capable of converting at least a portion of the radiation of the first wavelength range emitted by the semiconductor body into a second Radiation in a range of wavelengths, and the second range of wavelengths is different from the first range of wavelengths. The photovoltaic element does not have to have only one semiconductor body, but may have a plurality of semiconductor bodies that are all disposed on the heat sink. The following description of a single semiconductor body also applies to some or all of the semiconductor bodies having a plurality of photovoltaic elements. If the photovoltaic element has a plurality of semiconductor bodies, the wavelength conversion layer can also be arranged between the semiconductor bodies. According to an advantageous embodiment, the semiconductor bodies are arranged in a symmetrical manner and are preferably arranged in a point-symmetrical shape. For example, the semiconductor body can be arranged along a line or in a regular grid. For example, a regular grid can be a square or hexagonal grid. If the photovoltaic element has a plurality of semiconductor bodies, these semiconductor bodies do not necessarily have to emit radiation of the same wavelength range, but can emit radiation of different wavelength ranges. If these semiconductor bodies emit radiation of different wavelength ranges, it is preferred that only one wavelength range of radiation is converted by one wavelength converting material into radiation of another wavelength range, while radiation of other wavelength ranges is not converted. However, it is also possible that at least a portion of the radiation of other wavelength ranges is converted by other wavelength converting materials into radiation of other wavelength ranges. Preferably, no wavelength conversion layer is provided on the radiation exit surface of the semiconductor body. This has the advantage of reducing the radiation load of the wavelength converting material. For example, the heat sink can be a piece of printed circuit board, such as a metal core printed circuit board. Further, the heat sink contains at least one of the following materials (or is made of at least one of the following materials): copper, aluminum nitride, aluminum oxide, 200921952 bismuth, silver, aluminum. The thermal conductivity of the heat sink is superior to that of the potting material. The task of the mirror is to deflect the radiation of the second wavelength range converted by the wavelength conversion layer and/or the unconverted radiation of the first wavelength range emitted by the semiconductor body towards the back side of the photovoltaic element to the radiation emitted by the photovoltaic element. positive. In this case, the mirror can also be arranged below the semiconductor body, that is to say between the semiconductor body and the heat sink. The so-called "disposed on the heat sink" does not necessarily mean direct contact with the heat sink. According to one embodiment, the mirror is in direct contact with the heat sink, that is, there is a common interface between the mirror and the heat sink. According to another embodiment, the wavelength conversion layer is in direct contact with the heat sink, that is, there is a common interface between the wavelength conversion layer and the heat sink. This method ensures good heat dissipation between the wavelength conversion layer and the heat sink. A particularly advantageous way is to apply the wavelength converting layer to the inner region of the mirror such that the outer region of the mirror does not have a wavelength converting layer. Preferably, the outer region of the mirror is at least partially surrounded by an inner region, e.g., an annular surround. But the so-called ring is not the outer area must be round. According to one embodiment, the inner region is circular' and the outer region surrounds the inner region in an annular manner. A particularly advantageous way is to arrange the semiconductor body in the center of the inner region, that is to say to set the center of gravity of the area of the radiation exit surface of the semiconductor body and the center of gravity of the inner region in an optical axis of the mirror element perpendicular to the reflection 200921952 on. If the inner region forms a circle, the radiation exit surface of the semiconductor body forms a rectangle, and the center of the circle (that is, the center of gravity of the inner region) and the center of the rectangle (that is, the radiant exit surface of the semiconductor body) The center of gravity of the area is stacked on top of each other and on the optical axis. If the photovoltaic element has a plurality of semiconductor bodies, the semiconductor bodies are preferably arranged in a point-symmetric shape in which the point of symmetry of the point-symmetric shape is located at the center of gravity of the area of the inner region. According to an advantageous embodiment, the reflectivity of the mirror to the electromagnetic radiation of the first and/or second wavelength range is at least 0·98, so that the electromagnetic radiation can be deflected well to the front side of the photovoltaic element. It is very helpful for the efficiency of high photoelectric components. According to a further advantageous embodiment, the maximum roughness of the mirror is up to 40 n m. According to a further advantageous embodiment, the mirror has a specular reflection effect on the radiation of the first and/or first wavelength range, at least in the interior of the outer region without the wavelength conversion layer. A mirror is placed on the outer region, and the outer region preferably surrounds the inner region with the wavelength conversion layer, which improves the efficiency of the photovoltaic element, because in this case, the transmission can be very efficient. It is deflected to the front side of the photovoltaic element that emits radiation. The mirror is preferably comprised of a metal layer and a Bragg mirror. According to one embodiment, the mirror is composed of a metal layer and a Bragg reflector. A mirror consisting of a metal layer and a Bragg mirror -10- 200921952 usually has a very high reflectivity (at least 0.98). Preferably, the metal layer and the Bragg mirror are arranged such that the Bragg mirror forms the surface of the mirror. The mirrors consisting of Bragg mirrors on the surface are usually of a small roughness with a maximum roughness of no more than 4 Onm. In addition, such mirrors typically have specular reflection effects on visible radiation. For example, the metal layer is composed of aluminum or preferably aluminum. The thickness of the metal layer is preferably not less than 100 nm. In addition, the metal layer can also constitute a heat sink. In this case, the thickness of the metal layer is preferably several millimeters. Preferably, the Bragg mirror is composed of two yttria layers and two layers of titanium oxide which are alternately arranged, that is, the mirror mirror has two yttria layers and two layers of titanium oxide which are alternately arranged. The ruthenium oxide layer contains ruthenium oxide or consists of ruthenium oxide. Each of the titanium oxide layers contains titanium oxide or is composed of titanium oxide. According to another embodiment, the wavelength converting material comprises at least one material consisting of rare earth metal doped garnet, rare earth metal doped alkaline earth metal sulfide, rare earth metal doped sulfate, rare earth doped metal Aluminate, rare earth metal-doped orthosilicate, rare earth metal-doped chloroantimonate, rare earth metal-doped alkaline earth metal tantalum nitride, rare earth metal-doped oxynitride, rare earth metal-doped nitrogen Alumina. According to one embodiment, the wavelength converting material is embedded in a binder. For example, the binder may contain any of the following (or be made of any of the following materials): silicone, glass, or a ceramic material (e.g., aluminum nitride and aluminum oxide). -11 - 200921952 Another possible variation is to apply a wavelength converting material to the mirror to form a wavelength converting layer, for example by electrophoresis. According to one embodiment, a scatterer is disposed over the semiconductor body and the wavelength conversion layer, and the scatterer is preferably a scattering body. The role of the scatterer is to scatter unconverted radiation back into the wavelength conversion layer to increase the slew rate and to mix the converted and unconverted radiation together. According to an embodiment, the scatterer contains scattering particles. For example, these scattering particles contain at least one of the following materials: alumina, titanium oxide. According to one embodiment, the scattering particles are embedded in a matrix material comprising at least one of the following materials (or consisting of at least one of the following materials): silicone, epoxide. It is best to make the scatterer a hemisphere or hemisphere shell. In this embodiment, the hemisphere or hemispherical shell is placed above the center of the semiconductor body, that is, the center of gravity of the radiation exit surface of the semiconductor body and the center of the hemisphere or hemispherical shell are located on the optical axis of the photovoltaic element. If the photovoltaic element has a plurality of semiconductor bodies, this embodiment preferably arranges the semiconductor bodies in a point-symmetric shape where the point of symmetry is at the center of the hemisphere. Further, one side of the hemisphere or hemispherical shell is preferably connected to the wavelength conversion layer. Therefore, the wavelength conversion layer is preferably entirely under the scatterer. According to one embodiment, if the scatterer is made into a hemispherical shell, the space between the semiconductor body and the scatterer is filled with a transparent filler, such as a transparent potting material. Preferably, the transparent ruthenium is free of scattering particles. Preferably, the space between the semiconductor body and the scatterer is completely filled by the transparent iridium -12-200921952, that is, there is no gap containing air between the semiconductor body and the scatterer. According to another embodiment, the optoelectronic component has an output affinity lens that functions to couple the radiation emitted by the optoelectronic component outwardly. In this embodiment, the front side of the photovoltaic element that emits radiation is typically formed by the outer surface of the output coupling lens. In addition, the outer surface of the output coupling lens may also have an anti-reflection layer. The output coupling lens can be a separate component, such as a milled, turned, or cast component, and is attached to the optoelectronic component via an assembly step. Alternatively, an output coupling lens can be fabricated on a photovoltaic element, such as an output coupling lens as a scatterer on a photovoltaic element or a fill of a semiconductor body. Preferably, the output coupling lens is free of scattering particles. Preferably, the output coupling lens is placed above the scatterer. Preferably, the output coupling lens is in direct contact with the scatterer, that is, there is a common interface between the output coupling lens and the scatterer. Another embodiment is to form the output coupling lens into a hemispherical shell 'and set the hemispherical shell above the positive center of the semiconductor body'. That is, the center of gravity of the radiation exit surface of the semiconductor body and the center of the hemispherical shell are located. On the optical axis of the optoelectronic component. If the photovoltaic element has a plurality of semiconductor bodies, this embodiment preferably arranges the semiconductor bodies in a point-symmetric shape in which the symmetrical points of the symmetrical shape and the center of the hemisphere -13-200921952 are located on the optical axis. According to another embodiment, the output coupling lens satisfies an approximation theorem. The output affinity lens has an inner surface surrounded by an inner hemisphere having a radius of R...μ. In addition, the 'output coupling lens has an outer surface surrounded by an outer hemisphere having a radius of Raussci. If R, „„" and satisfy the following inequalities, then the output coupling lens can satisfy the Weierstrass condition:

Raussen ^ Rinnen * riLinse / Πΐυίι 其中111^“代表輸出耦合透鏡的折射率,niuf,代表輸出耦 合透鏡周圍環境的折射率(通常是空氣的折射率)。 此處要指出的是,內半球面及外半球面都是虛擬的面, 因此並非一定必須在光電元件內構成具體的特徵。 如果由半徑爲Rin〃„的內半球面及半徑爲Raus〃„的外半球 面構成外氏半球殻整個位於輸出耦合透鏡,則輸出耦合透 鏡滿足過近定理。 內半球面最好是至少與輸出耦合透鏡的內表面的一個點 接觸。此外,輸出耦合透鏡的內表面也可以構成內半球面。 外半球面最好是至少與輸出耦合透鏡的外表面的一個點接 觸。此外,輸出耦合透鏡的外表面也可以構成外半球面。 如果內半球面是由輸出耦合透鏡的內表面所構成,以及外 半球面是由輸出耦合透鏡的外表面所構成,則輸出耦合透 鏡是一個半球殼。半導體本體的構造方式最好是使其輻射 射出面的面積重心及兩個半球面的中心均位於光電元件之 -14- 200921952 垂直於反射鏡的光學軸上。 如果光電元件具有一個散射體及一個滿足逼近定理的輸 出耦合透鏡,換句說就是輸出耦合透鏡的外表面形狀及與 發射輻射之半導體本體的距離會使從散射灌注物構成的發 光中心看過去不會有任何光束在全反射下照射在外表面 上。 半導體本體通常具有一個作用區,爲了產生輻射,該作 用區通常具有一個pn型接面、一個雙雜結構、一個單量子 井結構或多重量子井結構。例如專利說明書WO 0 1 /3 9 2 8 2、 WO 98/3 1 05 5、US 5 8 3 1 277、EP 1017 113、以及 US 5684309 均有提及多重量子井結構。 如果半導體本體發射的第一種波長範圍的輻射僅包括可 見光輻射,則通常會將光電元件設計成波長轉換材料只會 轉換這些輻射中的一部分輻射,而半導體本體發射的第〜 種波長範圍的其他輻射在穿過波長轉換層時則不會被轉 : 換。在這種情況下,光電元件發射的是包含第一種波長範 圍之輻射及第二種波開範圍之輻射的混合光。爲了黑 達到均勻的輻射特性’可以將散射體設置在半導體本體及 波長轉換層的上方,以便使未被轉換的第一種波長範圍的 輻射及被轉換成第二種波長範圍的輻射混合在一起。 例如,如果半導體本體發射的是藍光光譜範圍的可見 光,則這些第一種波長範圍的藍色可見光會有—部分被波 長轉換材料轉換成黃光’這樣光電元件就會發射一種色度 -15- 200921952 座標位於c IE標準色度圖之白色範圍的混合光。 根據另外一種實施方式’半導體本體發射的第一種波長 範圍的輻射包括紫外線輻射,而且這些紫外線輻射至少有 一部分被波長轉換層轉換成可見光輻射。如果半導體本體 發射的是紫外線光譜範圍的輻射,則最好是將光電元件設 計成盡可能使最大部分的第一種波長範圍的紫外線輻射會 被轉換成可見光。 如果半導體本體發射的是紫外線輻射,則最好是將輸出 耦合透鏡設計成可以吸收或反射半導體本體發射的紫外線 輻射。例如可以將輸出耦合透鏡設計成含有玻璃或是由玻 璃製成。 , 根據另外一種實施方式,在半導體本體上方有一個反射 層,其作用是反射第一種波長範圍的輻射。這個反射層最 好是與發射紫外線光譜範圍之輻射的半導體本體組合在一 起。在這種情況下,這個反射層最好是反射第一種波長範 圍的紫外線輻射’並讓第二種波長範圍的可見光輻射穿 過。另外一種情況是將反射層設置在發射可見光輻射的半 導體層上方’例如希望將第一種波長範圍的輻射幾乎全部 轉換成第二種波長範圍的輻射的情況。 例如可以用介電反射鏡作爲反射層。 最好是將反射層設置在輸出耦合透鏡的內表面上。 光電元件之半導體本體發射的第一種波長範圍的輻射如 果有·包括紫外線輻射,則其輸出耦合透鏡具有以下的特徵: -16 - 200921952 --具有一個拱形的內表面,其作用是在半導體本體上方 形成一個空腔; --內表面具有一個內部分區域及一個外部分區域,其中 內部分區域在輸出耦合透鏡的輻射方向有一外凸的彎曲或 尖端,且內表面的斜率在該處會改變,外部分區域在輸出 親合透鏡的輻射方向有一內凹的彎曲,該內凹的彎曲至少 將內部分區域部分環繞住。 輸出耦合透鏡的內表面最好是對輸出耦合透鏡的一個光 學軸旋轉對稱。這個光學軸最好是通過內部分區域。如果 輸出耦合透鏡是屬於光電元件的一部分,則輸出耦合透鏡 的光學軸通常就是光電元件的光學軸’。 輸出耦合透鏡最好是具有球形的外表面。 【實施方式】 以下配合圖式及實施例對本發明的其他特徵及有利的實 施方式做進一步的說明。 在以上的實施例及圖式中,相同或相同作用的元件均以 相同的元件符號標示。以上圖式中的元件及彼此的比例關 係基本上並非按比例尺繪製,而且有時會爲了便於說明或 理解而將某些元件(例如層厚度)繪製得特別大。 根據第1A圖至第1C圖的實施例,光電元件具有一個發 射第一種波長範圍之電磁輻射的半導體本體(1)。半導體本 體(1)是設置在一個散熱體(2)上。在散熱體(2)上有設置一個 反射鏡(3),反射鏡(3)位於散熱體(2)的側面及下方。反射鏡 -17- 200921952 (3)與散熱體(2)直接接觸’也就是說’反射鏡(3)與散熱體(2) 具有共同的交界面。 例如散熱體(2)可以是一片印刷電路板。此外’散熱體(2) 也可以含有下列材料中的一種材料(或是由下列材料中的 一種材料製成):銅、氮化鋁、氧化鋁、矽、銀、鋁。 在半導體本體(1)的旁邊有一個設置在反射鏡(3)上的波 長轉換層(4),而半導體本體(1)的輻射射出面(5)並未帶有波 長轉換層(4)。此外,波長轉換層(4)塗覆在反射鏡(3 )的內部 區域(6)上的方式會使反射鏡(3)的外部區域(7)不會帶有波 長轉換層(4)。波長轉換層(4)含有一種波長轉換材料(8),其 作用是將半導體本體(1 )發射之第一種波長範圍的輻射的 至少一部分轉換成第二種波長範圍的輻射,且第二種波長 範圍不同於第一種波長範圍。 在這個實施例中’半導體本體(1)能夠發射包括藍色可見 光的第一種波長範圍的輻射,這些藍色可見光會被波長轉 換材料(8)轉換成包括黃色可見光的第二種波長範圍的輻 射。例如可以用YAG:Ce作爲波長轉換材料(8)。 此外’波長轉換材料(8 )也可以含有至少一種由下列成分 構成的材料:摻雜稀土金屬的石榴石、摻雜稀土金屬的鹼 土金屬硫化物、摻雜稀土金屬的硫酸鹽、摻雜稀土金屬的 銘酸鹽、摻雜稀土金屬的原矽酸鹽、摻雜稀土金屬的氯矽 酸鹽、摻雜稀土金屬的鹼土金屬氮化矽、摻雜稀土金屬的 氮氧化物、摻雜稀土金屬的氮氧化鋁。 -18 - 200921952 在本實施例中,波長轉換層的波長轉換材料(8)是埋在一 種黏合劑(9),例如矽膠。另外一種可行的方式是利用電泳 法將波長轉換材料(8)塗覆在反射鏡(3)上。 在本實施例中,反射鏡(3)是由一個層序列所構成。反射 鏡(3)的層序列包括一個含有鋁或是由鋁構成的金屬層(1〇) 及一個布拉格反射鏡(1 1)。金屬層(10)面對散熱體(2),布拉 格反射鏡(1 1)則構成反射鏡(3 )的表面。反射鏡(3 )對可見光 輻射的反射率至少是0.9 8。此外,反射鏡(3 )的表面是非常 光滑的,也就是說,反射鏡(3)的最大粗糙度不超過40nm。 反射鏡(3)至少在沒有波長轉換層(4)之外部區域(7)的內部 對第一種及/或第一種波長範圍的輻射具有鏡面反射的作 用。 如第1 B及第1 C圖所示,反射鏡(3 )的內部區域(6)是一個 半徑爲R!’的圓形,同時反射鏡(3)的外部區域(7)像圓環一 樣將圓形的內部區域(6)環繞住。圓環形的外部區域(7)的內 半徑爲R/ ,外半徑爲R2’ 。 在本實施例中,半導體本體(1)位於反射鏡(3)之內部區域 (6)的正中央,也就是說,半導體本體(1)之矩形輻射射出面 的面積重心 Μ及圓形的內部區域(6)的面積重心均位於光 電元件的一個垂直於反射鏡的光學軸上。 在半導體本體(1)上方有一個散射體(12)。在本實施例 中,散射體(12)是一個散射灌注物。散射體(12)是一個半徑 爲R,的半球。散射體(12)位於半導體本體(1)的正中心的上 -19- 200921952 方,也就是說,半導體本體(1)之矩形輻射射出面的面積重 心Μ及構成散射體(1 2)之半球的中心均位於光電元件的光 學軸上。此外,散射體(12)的半徑R,與圓形內部區域(6)的 半徑R!’是一樣的。因此散射體(12)的一面連接波長轉換 層(4)。整個波長轉換層(4)均位於散射體(12)的下方。 散射體(12)含有能夠將光散射的散射微粒(13),例如含有 氧化鋁或氧化鈦(或是由氧化鋁或氧化鈦構成)的散射微 粒。散射微粒(13)的直徑最好是在大於等於20nm至小於等 於2 0 /z m之間。 根據第1 A圖的實施例,光電構件還具有一個設置在散射 體(12)上方的輸出耦合透鏡(14)。輸出耦合透鏡(14)與散射 體(12)有直接接觸,也就是說,輸出耦合透鏡(14)與散射體 (12)具有一個共同的交界面。特別是在輸出耦合透鏡(14) 及散射體(12)之間不存在任何氣隙。 輸出耦合透鏡(14)是一個內半徑爲Ri’外半徑爲Rz的半 球殻,其中輸出耦合透鏡(14)的內半徑爲Ri與的散射體(12) 半徑1^是一樣的。此外,輸出耦合透鏡(14)的—面與反射 鏡(3)的沒有波長轉換層(4)之外部區域(7)連接。輸出耦合透 鏡(1 4 )的外半徑R 2與圓形外部區的外半徑R 2 ’是一樣的。 輸出耦合透鏡(14)位於半導體本體U)的正中心的上方’ 也就是說,輸出耦合透鏡(1 4 )構成之半球殻的中心及半導 體本體(1)之輻射射出面的面積重心M均位於光電元件的 光學軸上。 -20- 200921952 光電元件的光學軸(15)通過半導體本體(i)之輻射射出面 的面積重心M。由於散射體(12)及輸出轉合透鏡(14)均位於 半導體本體(1)的正中心的上方,因此散射體(12)及輸出耦 合透鏡(14)均對光學軸(15)旋轉對稱。同樣的,波長轉換層 (4)及反射鏡(3 )或反射鏡(3 )的內部區域(6)及外部區域(7)也 是對光學軸(15)旋轉對稱。 輸出耦合透鏡(1 4)的作用是改善電磁輻射從光電元件的 輸出稱合。 輸出耦合透鏡(1 4)滿足以下說明的逼近定理。輸出耦合 透鏡(14)具有一個被半徑爲R…„的內半球面Η,ηηυ環繞住 的內表面(1 6)。此外’輸出耦合透鏡(1 4)還具有一個被半徑 爲R a…e η的外半球面Η„環繞住的外表面(1 7 )。輸出耦合 透鏡(1 4)滿足逼近定理,也就是說ru及Raus滿足以下 的不等式:Raussen ^ Rinnen * riLinse / Πΐυίι where 111^" represents the refractive index of the output coupling lens, niuf, which represents the refractive index of the environment surrounding the output coupling lens (usually the refractive index of air). It is noted here that the inner hemisphere and The outer hemispheres are all virtual surfaces, so it is not necessary to form specific features in the photovoltaic element. If the inner hemisphere with a radius of Rin〃 and the outer hemisphere with a radius of Raus〃 constitute the entire hemisphere shell When the coupling lens is output, the output coupling lens satisfies the over-theorem. The inner hemisphere is preferably at least in contact with a point on the inner surface of the output coupling lens. Further, the inner surface of the output coupling lens may also constitute an inner hemisphere. Preferably, at least one point of contact with the outer surface of the output coupling lens is contacted. Further, the outer surface of the output coupling lens may also constitute an outer hemisphere. If the inner hemisphere is formed by the inner surface of the output coupling lens, and the outer hemisphere Is composed of the outer surface of the output coupling lens, and the output coupling lens is a hemispherical shell. Preferably, the center of gravity of the area of the radiation exit surface and the center of the two hemispherical surfaces are located on the optical axis of the mirror from -14 to 200921952. If the photovoltaic element has a scatterer and an approximation theorem The output coupling lens, in other words, the shape of the outer surface of the output coupling lens and the distance from the radiation-emitting semiconductor body, allows the illuminating center formed by the scattering infusion to be viewed without any light beam illuminating the outer surface under total reflection. The semiconductor body typically has an active region which, in order to generate radiation, typically has a pn junction, a double heterostructure, a single quantum well structure or a multiple quantum well structure. For example, patent specification WO 0 1 /3 9 2 8 2. WO 98/3 1 05 5, US 5 8 3 1 277, EP 1017 113, and US 5684309 all mention multiple quantum well structures. If the first wavelength range of radiation emitted by the semiconductor body includes only visible radiation , usually the photovoltaic element is designed as a wavelength conversion material that only converts some of the radiation, and the semiconductor The other radiation of the first wavelength range emitted by the body will not be converted when passing through the wavelength conversion layer. In this case, the photovoltaic element emits radiation containing the first wavelength range and the second wave. The mixed light of the range of radiation. For the black to achieve uniform radiation characteristics 'the scatterer can be placed above the semiconductor body and the wavelength conversion layer, so that the first wavelength range of radiation that is not converted is converted into a second The radiation of the wavelength range is mixed together. For example, if the semiconductor body emits visible light in the blue spectral range, the blue visible light in the first wavelength range will be partially converted into yellow light by the wavelength converting material. A mixed light of chromaticity -15-200921952 coordinates in the white range of the c IE standard chromaticity diagram is emitted. According to another embodiment, the radiation of the first wavelength range emitted by the semiconductor body comprises ultraviolet radiation, and at least a portion of the ultraviolet radiation is converted into visible radiation by the wavelength conversion layer. If the semiconductor body emits radiation in the ultraviolet spectral range, it is preferred to design the photovoltaic element so that the largest portion of the first wavelength range of ultraviolet radiation is converted to visible light. If the semiconductor body emits ultraviolet radiation, it is preferred to design the output coupling lens to absorb or reflect the ultraviolet radiation emitted by the semiconductor body. For example, the output coupling lens can be designed to contain glass or be made of glass. According to another embodiment, there is a reflective layer above the semiconductor body that acts to reflect radiation of the first wavelength range. This reflective layer is preferably combined with a semiconductor body that emits radiation in the ultraviolet spectral range. In this case, the reflective layer preferably reflects the ultraviolet radiation of the first wavelength range and allows visible radiation of the second wavelength range to pass. Another case is where the reflective layer is placed over the semiconductor layer that emits visible radiation. For example, it is desirable to convert almost all of the radiation in the first wavelength range into radiation in the second wavelength range. For example, a dielectric mirror can be used as the reflective layer. Preferably, the reflective layer is disposed on the inner surface of the output coupling lens. The radiation of the first wavelength range emitted by the semiconductor body of the photovoltaic element, if present, includes ultraviolet radiation, the output coupling lens of which has the following characteristics: -16 - 200921952 - having an arched inner surface, the role of which is in the semiconductor Forming a cavity above the body; the inner surface has an inner partial region and an outer partial region, wherein the inner partial region has a convex curved or pointed end in the radiation direction of the output coupling lens, and the slope of the inner surface is there Alternatively, the outer partial region has a concave curvature in the direction of radiation of the output affinity lens, the concave curvature at least partially surrounding the inner partial region. Preferably, the inner surface of the output coupling lens is rotationally symmetric about an optical axis of the output coupling lens. This optical axis preferably passes through the inner partial region. If the output coupling lens is part of a photovoltaic element, the optical axis of the output coupling lens is typically the optical axis ' of the photovoltaic element. The output coupling lens preferably has a spherical outer surface. [Embodiment] Other features and advantageous embodiments of the present invention will be further described below in conjunction with the drawings and embodiments. In the above embodiments and drawings, elements that have the same or the same function are denoted by the same reference numerals. Elements in the above figures and their relationship to each other are not drawn to scale, and sometimes certain elements (e.g., layer thickness) are drawn particularly large for ease of illustration or understanding. According to the embodiment of Figures 1A to 1C, the photovoltaic element has a semiconductor body (1) that emits electromagnetic radiation of a first wavelength range. The semiconductor body (1) is disposed on a heat sink (2). A reflector (3) is disposed on the heat sink (2), and the mirror (3) is located on the side and below the heat sink (2). Mirror -17- 200921952 (3) Direct contact with the heat sink (2) 'that is, the mirror (3) and the heat sink (2) have a common interface. For example, the heat sink (2) may be a piece of printed circuit board. Further, the heat sink (2) may also contain one of the following materials (or one of the following materials): copper, aluminum nitride, aluminum oxide, ruthenium, silver, aluminum. Beside the semiconductor body (1) there is a wavelength conversion layer (4) disposed on the mirror (3), and the radiation exit surface (5) of the semiconductor body (1) does not have a wavelength conversion layer (4). Further, the wavelength conversion layer (4) is coated on the inner region (6) of the mirror (3) in such a manner that the outer region (7) of the mirror (3) does not have the wavelength conversion layer (4). The wavelength conversion layer (4) comprises a wavelength converting material (8) for converting at least a portion of the radiation of the first wavelength range emitted by the semiconductor body (1) into radiation of the second wavelength range, and the second The wavelength range is different from the first wavelength range. In this embodiment, the 'semiconductor body (1) is capable of emitting radiation of a first wavelength range including blue visible light, which is converted by the wavelength converting material (8) into a second wavelength range including yellow visible light. radiation. For example, YAG:Ce can be used as the wavelength converting material (8). Furthermore, the wavelength conversion material (8) may also contain at least one material consisting of a rare earth metal-doped garnet, a rare earth metal-doped alkaline earth metal sulfide, a rare earth metal-doped sulfate, and a rare earth-doped metal. Acid salt, rare earth metal-doped orthosilicate, rare earth metal-doped chloroantimonate, rare earth metal-doped alkaline earth metal tantalum nitride, rare earth metal-doped oxynitride, rare earth-doped metal Aluminum oxynitride. -18 - 200921952 In the present embodiment, the wavelength converting material (8) of the wavelength conversion layer is embedded in a binder (9) such as silicone. Another possible way is to apply the wavelength converting material (8) to the mirror (3) by electrophoresis. In the present embodiment, the mirror (3) is composed of a sequence of layers. The layer sequence of the mirror (3) comprises a metal layer (1) containing aluminum or aluminum and a Bragg mirror (1 1). The metal layer (10) faces the heat sink (2), and the Bragg mirror (1 1) forms the surface of the mirror (3). The reflectivity of the mirror (3) to visible light radiation is at least 0.98. Furthermore, the surface of the mirror (3) is very smooth, that is to say, the maximum roughness of the mirror (3) does not exceed 40 nm. The mirror (3) has a specular reflection effect on the radiation of the first and/or first wavelength range at least in the absence of the outer region (7) of the wavelength conversion layer (4). As shown in Figures 1 B and 1 C, the inner region (6) of the mirror (3) is a circle of radius R!', while the outer region (7) of the mirror (3) is like a ring. Surround the circular inner area (6). The inner radius of the annular outer region (7) is R/ and the outer radius is R2'. In the present embodiment, the semiconductor body (1) is located at the center of the inner region (6) of the mirror (3), that is, the center of gravity of the rectangular radiation exit surface of the semiconductor body (1) and the interior of the circle. The area center of gravity of the region (6) is located on an optical axis of the optoelectronic component that is perpendicular to the mirror. There is a scatterer (12) above the semiconductor body (1). In this embodiment, the scatterer (12) is a scattering infusion. The scatterer (12) is a hemisphere with a radius of R. The scatterer (12) is located on the upper -19-200921952 side of the positive center of the semiconductor body (1), that is, the area center of gravity of the rectangular radiation exit surface of the semiconductor body (1) and the hemisphere constituting the scatterer (12) The center is located on the optical axis of the optoelectronic component. Further, the radius R of the scatterer (12) is the same as the radius R!' of the circular inner region (6). Therefore, one side of the scatterer (12) is connected to the wavelength conversion layer (4). The entire wavelength conversion layer (4) is located below the scatterer (12). The scatterer (12) contains scattering particles (13) capable of scattering light, for example, scattering particles containing alumina or titania (or consisting of alumina or titania). The diameter of the scattering particles (13) is preferably between 20 nm or more and less than 20 / z m. According to the embodiment of Figure 1A, the optoelectronic component also has an output coupling lens (14) disposed above the scatterer (12). The output coupling lens (14) is in direct contact with the scatterer (12), that is, the output coupling lens (14) has a common interface with the scatterer (12). In particular, there is no air gap between the output coupling lens (14) and the scatterer (12). The output coupling lens (14) is a hemispherical shell having an inner radius of Ri' outer radius Rz, wherein the inner radius of the output coupling lens (14) is the same as the radius of the scatterer (12). Further, the face of the output coupling lens (14) is connected to the outer region (7) of the mirror (3) which is not provided with the wavelength conversion layer (4). The outer radius R 2 of the output coupling lens (14) is the same as the outer radius R 2 ' of the circular outer zone. The output coupling lens (14) is located above the positive center of the semiconductor body U). That is, the center of the hemispherical shell formed by the output coupling lens (14) and the center of gravity M of the radiation exit surface of the semiconductor body (1) are located. On the optical axis of the optoelectronic component. -20- 200921952 The optical axis (15) of the photovoltaic element passes through the area center of gravity M of the radiation exit surface of the semiconductor body (i). Since both the scatterer (12) and the output turning lens (14) are located above the center of the semiconductor body (1), both the scatterer (12) and the output coupling lens (14) are rotationally symmetric with respect to the optical axis (15). Similarly, the inner region (6) and the outer region (7) of the wavelength conversion layer (4) and the mirror (3) or the mirror (3) are also rotationally symmetric with respect to the optical axis (15). The function of the output coupling lens (14) is to improve the electromagnetic radiation from the output of the optoelectronic component. The output coupling lens (14) satisfies the approximation theorem described below. The output coupling lens (14) has an inner surface (16) surrounded by an inner hemispherical surface 半径 radius R, ηηυ. In addition, the output coupling lens (14) also has a radius of R a...e The outer hemisphere of η is surrounded by the outer surface (1 7 ). The output coupling lens (1 4) satisfies the approximation theorem, that is, ru and Raus satisfy the following inequalities:

Raussen ^ Rinnen * IlLinse / fllufi 其中iuinu代表輸出耦合透鏡的折射率,niuf|代表空氣折 射率。 在本實施例中’內半球面Η…是由輸出耦合透鏡(14)的 內表面(16)所構成’因此R,…= Rl。外半球面η……是由 輸出親合透鏡(14)的外表面(17)所構成,因此RaussE„ = r2。 光電元件發射輻射的正面(21)是由輸出耦合透鏡的外表面 (17)所構成。 可以將輸出耦合透鏡(丨4)設置在光電元件上,例如經由 -21 - 200921952 澆注。另外一個可能的方式是輸出耦合透鏡(14)是一個另 外製作的獨立的元件,然後再將輸出耦合透鏡(14)固定在 光電元件上。 第1C圖的光電元件的俯視圖還顯示兩個接電位置(18), 其作用是使光電元件與外界形成電觸點接通。 第2A圖顯示一種可以作爲第1A圖至第1C圖之實施例 的光電元件的反射鏡(3)的構造。反射鏡(3)具有一個金屬層 (10)及一個布拉格反射鏡(11),其中金屬層(10)含有鋁或是 由鋁所構成。布拉格反射鏡(1 1)是由交替排列的兩個氧化 鈦層(19)及兩個氧化矽層(20)所構成,也就是說是一個氧化 鈦層(19)接一個氧化矽層(20),然後又由一個氧化鈦層(19) 接一個氧化矽層(20)。氧化矽層(20)的厚度爲 83nm,氧化 鈦層(19)的厚度爲49nm。此處係假設反射鏡(3)上有一種折 射率爲1 .46的灌注材料(例如矽膠)。 第2 B圖顯示如第2 A圖之反射鏡(3 )的反射率模擬値與波 長的關係(曲線1)。此外,第2B圖還顯示帶有一個氧化矽 層(20)及一個氧化鈦層(19)之鋁層(10)的反射率模擬値與波 長的關係(曲線2),以及一個純鋁層(1 0)的反射率模擬値與 波長的關係(曲線3)。 從第2B圖顯示的反射率模擬値可以看出,第2A之層序 列在可見光譜範圍的反射率基本上大於0.98。 第3A圖是模擬色度座標的Cx値及光電元件發射之輻射 強度與輻射角度 Θ 的關係,其中輻射換層(4)是設置在半 -22- 200921952 導體本體(1)的輻射射出面(5)上。此處係假設半導體本體(1) 發射之第一種波長範圍的輻射的波長爲460nm,而被波長 轉換材料(8)從第一種波長範圍轉換爲第二種波長範圍的 輻射的波長爲5 90nm。 從模擬結果可以看出’波長轉換層(4)係設置在半導體本 體(1)之輻射射出面(5)上的光電元件的色度座標並不均 勻。這種光電元件發射的輻射在光電元件發射輻射的正面 (2 1)內部的顏色偏藍’而在發射輻射的正面(2丨)外部的顏色 則偏黃。 如第3A所示,這種光電元件的輻射強度也不均勻,也就 是說在光電元件發射輻射的正面(21)內部的輻射強度大於 在外部的輻射強度。 第3B圖是模擬色度座標的Cx値及輻射強度與輻射角度 0的關係’但前提是如申請專利範圍第1項的光電元件, 波長轉換層(4)係設置在半導體本體(1)旁邊的散熱體(2) 上,且半導體本體(1)的輻射射出面(5)沒有波長轉換層(4)。 從第3 B圖的模擬結果可以看出,C X値及輻射強度與輻射 角度0的關係基本上是均勻的。因此可以得知,如果光電 元件的波長轉換層(4)係設置在半導體本體(1)旁邊的散熱 體(2)上而不是設置在半導體本體(1)的輻射射出面(5)上,則 該光電兀件的輻射特性是具有相當均句的幅射強度及相當 均勻的色度座標。 第3C圖模擬的也是波長轉換層(4)係設置在半導體本體 -23- 200921952 (1)旁邊的散熱體(2)上的光電元件之色度座標的cx値及輻 射強度與輻射角度0的關係。如已在第3 B圖顯示的,第 3C圖中的Cx値與輻射角度0的關係也是相當均勻的(cx 値基本上固定不變),也就是說光電元件給人的色感基本上 與輻射角度0無關。 和第1A圖至第1C之實施例的光電元件不同的是,第4A 圖之實施例的光電元件具有多個半導體本體(1)。爲了避免 重複’以下將僅說明第4A圖之實施例的光電元件與第1A 圖至第1C之實施例之光電元件的不同部分,而未重複提及 的構件及/或特徵就是與第1A圖至第1C之實施例之光電元 件相同之構件及/或特徵。 第4A圖之實施例的光電元件的半導體本體(1)是按照一 個規律的形狀排列,例如本實施例是排列成一個正方形格 柵(22) °每一個半導體本體(1)的輻射射出面的面積重心μ 均位於正方形格柵(22)的一個格栅點上。另外一種可能的 方式是將半導體本體(丨)排列成一個六邊形格柵。這些半導 體本體(1)係設置在散射體(1 2)的正中心的下方,也就是 說’正方形格柵(2 2)的重心S及散射體(12)構成之半球體的 中心均位於光電元件的光學軸上。輸出耦合透鏡(1 4)係設 置在半導體本體(1)的正中心的上方,也就是說,正方形格 柵(22)的重心S及構成輸出耦合透鏡(14)之半球體的中心均 位於光電元件的光學軸上。 和第1Α圖至第ic之實施例的光電元件不同的是,第4Β -24- 200921952 圖之實施例的光電元件具有一個透明的塡充體(23)。爲了 避免重複’以下將僅說明第4B圖之實施例的光電元件與第 1A圖至第1C之實施例之光電元件的不同部分,而未重複 提及的構件及/或特徵就是與第1A圖至第ic之實施例之光 電元件相同之構件及/或特徵。 第4B圖之實施例的光電元件的散射體(12)是一個半球 殼’其外表面與波長轉換層(4)連接。散射體(12)及半導體 本體(1)之間的空間有塡充一種不含散射微粒的透明塡充 體(23)。例如透明塡充體(23)可以是—種透明灌注物,例如 含有砂膠及/或環氧化物(或是由矽膠及/或環氧化物構成) 的透明灌注物。透明塡充體(23)最好是將半導體本體(1)及 散射體(12)之間的空間完全塡滿,也就是說在散射體(12) 及透明塡充體(2 3 )之間不存在任何含有空氣的間隙。 和第1A圖至第1C圖及第4A圖及第4B圖之實施例的光 電元件不同的是,第5A圖之實施例的光電元件具有一個發 射紫外線輻射的半導體本體(1),也就是說,第一種波長範 圍包括紫外線輻射。在半導體本體(1)的旁邊有一個含有波 長轉換材料(8)的波長轉換層(4)。波長轉換材料(8)能夠將第 一種波長範圍的輻射轉換成第二種波長範圍的輻射,且第 二種波長範圍不同於第一種波長範圍。在本實施例中,波 長轉換材料(8)能夠將第一種波長範圍的紫外線輻射轉換 成可見光輻射,也就是說,第二種波長範圍的轄射包括可 見光輻射。波長轉換材料(8)最好是盡可能將最大部分的半 -25- 200921952 導體本體(1)發射的紫外線幅射轉換成可見光幅射。 在本實施例中,半導體本體(1)係設置在散熱體(2)上。此 外’在政熱體(2)上波長轉換層(4)的下方有一個反射鏡(3)。 和第2 A圖及第2 B的反射鏡(3 ) —樣,本實施但的反射鏡(3 ) 也具有一個金屬曾(10)及一個布拉格反射鏡(H),其中布拉 格反射鏡(1 1)是由交替排列的兩個氧化鈦層(丨9)及兩個氧 化矽層(20)所構成。和第2A圖及第2B的反射鏡(3)不一樣 的是’此處氧化欽層(19)的厚度約爲〇.40nm,氧化较層(20) 的厚度約爲0.66nm。如第5B圖的反射光譜所示,這種層 序列可以反射短波輻射。第5A圖顯示的是一次波長爲 3 9 Onm的反射光譜或透射光譜。 在本實施例中’反射鏡(3)位於半導體本體(1)及散熱體(2) 之間。此外,波長轉換層(4)是在半導體本體(1)的旁邊位於 整個反射鏡(3)的上方。因此波長轉換層(4)的一面與反射鏡 (3)連接。和第1 A圖至第1C圖之實施例的光電元件不同的 I 是,第5A圖的反射鏡(3)並沒有未被波長轉換層(4)覆蓋的 外部區域(7)。 此外,和第1A圖至第1C圖或第4A圖及第4B之實施例 的光電元件的另外一個不同的地方是,第5A圖之實施例的 光電元件沒有散熱體(12)。 在半導體本體(1)的上方有一個輸出耦合透鏡(14)。輸出 耦合透鏡(14)的構造方式及位置使整個波長轉換層(4)均位 於輸出耦合透鏡(14)之下。輸出耦合透鏡(14)的一極最好是 -26- 200921952 與波長轉換層(4)連接。在本實施例中,輸出耦合透鏡(1 4) 是一個很薄的深拉玻璃殼,其中輸出稱合透鏡(14)及半導 體本體(1 )之間的空間是被空氣塡滿。構成輸出耦合透鏡(1 4) 之深拉玻璃殻的厚度在大於等於50 # m至小於等於1mm之 間。此外,另外一種可能的方式是以前面提及的透明塡充 體(23)塡充到輸出耦合透鏡(14)及半導體本體(1)之間的空 間。在這種情況下,透明塡充體(23)最好是將輸出耦合透 鏡(14)及半導體本體(1)之間的空間完全塡滿。 在本實施例中,輸出耦合透鏡(1 4)的玻璃會吸收紫外線 輻射。這樣做的好處是,從光電元件的發射輻射的正面 (21)…也就是輸出耦合透鏡(14)的外表面(17)--發出的輻射 不會有任何紫外線輻射(或是只有很小部分的紫外線輻 射)。紫外線輻射不但對光電元件的可感覺亮度沒有貢獻, 甚至可能對眼睛造成傷害。 在第5A圖中構成輸出耦合透鏡(14)之深拉玻璃殼的內表 面(16)上有一個反射層序列(24),其作用反射半導體本體(1) 的紫外線輻射,以及讓第二波長範圍的可見光輻射穿過。 在本實施例中,反射層序列(2 4)是一個介電反射鏡。例如 一個第5C圖的反射層序列(24)構成的介電反射鏡。反射層 序列(2 4)是由8個氮化矽層及8個二氧化矽層以交換排列的 方式所構成。反射層序列(24)的二氧化矽層的厚度約爲 62nm’氮化矽層的厚度約爲47nm。從這個層序列的反射光 譜(第5D圖)可以看出,這個層序列能夠反射紫外線輻射。 -27- 200921952 和第5A圖之實施例的光電元件一樣,第6A圖至第6D 圖之實施例的光電元件也具有一個發射紫外線輻射且是設 置在散熱體(12)上的半導體本體(1)。此外,在散熱體(12) 上有一個位於半導體本體(1)的旁邊及下方的反射鏡(3)。半 導體本體(1)的旁邊還有一個含有波長轉換材料(8)的波長 轉換層(4),波長轉換材料(8)能夠將第一種波長範圍的紫外 線輻射轉換成包括可見光輻射的第二種波長範圍的輻射。 應將光電元件設計成盡可能使最大部分的第一種波長範圍 的紫外線輻射被轉換成第二種波長範圍的可見光輻射。 波長轉換層(4)係設置在反射鏡(3 )的圓形內部區域(6) 上,但是將內部區域(6)環繞住的圓環形外部區域(7)並沒有 波長轉換層(4)。反射鏡(3)至少在沒有波長轉換層(4)的外部 區域(7)內對可見光輻射具有鏡面反射的作用。 第6A圖至第6D圖之實施例的光電元件沒有散射體(1 2)。 第6A圖之實施例的光電元件具有一個由玻璃構成的輸 出耦合透鏡(14)。輸出耦合透鏡(14)的內表面(16)彎成拱 形’使其在半導體本體(1)上方形成一個空腔(25)。在半導 體本體(1)及波長轉換層(4)上方的空腔(25)使輸出耦合透鏡 (14)的內表面(16)的一面與波長轉換層(4)連接。整個波長轉 換層(4)都位於空腔(25)的下方,也就是位於構成半導體本 體(1)上方之輸出耦合透鏡(14)的內表面(16)的空腔(25)的 下方。 從第6B圖可以看出,輸出耦合透鏡的內表面(16)具有一 -28- 200921952 個帶有尖端(27)的內部分區域(26),內表面(16)的斜率在尖 端(27)處會改變。尖端(27)位於半導體本體(1)之輻射射出面 的面積重心Μ的上方,並位於輸出耦合透鏡(14)的垂直於 反射鏡(3)的光學軸(15)上。另外一種可能的方式是’輸出 耦合透鏡(14)的內部分區域(26)可以形成一個取代尖端(27) 的彎曲,這個彎曲在輸出耦合透鏡(14)的輻射方向(28)上是 外凸的。內表面(16)的內部分區域(26)被一個外部分區域 (29)環繞住,該外部分區域(29)在輸出耦合透鏡(14)的輻射 方向(28)上有一個內凹的彎曲。輸出耦合透鏡(14)的內表面 (16)對輸出耦合透鏡(14)的光學軸(15)旋轉對稱。 輸出耦合透鏡(14)具有一個外表面(17)',在本實施例中, 外表面(17)是一個半徑爲R2的半球面。輸出耦合透鏡(14) 的外表面(17)的一面與反射鏡(3)連接,也就是說,整個反 射鏡(3)都位於輸出耦合透鏡(14)的下方。此外,輸出耦合 透鏡(14)的外部區域(7)與反射鏡(3)連接,也就是說,反射 鏡(3)與反射鏡(3)的整個交界面均位於外部區域。 如第6C圖所示’由於內部分區域(26)具有一個尖端(27) 或外凸的彎曲’因此半導體本體(1)的輻射會被輸出耦合透 鏡(1 4)的內表面(1 6)反射到設置在半導體本體(丨)的邊的波 長轉換層(4)。爲了提高輸出耦合透鏡(14)的內表面(16)對第 一波長範圍的紫外線輻射的反射,內表面(1 6)具有一個反 射層(2 4 ),其作用是反射紫外線光譜範圍的輻射,以及讓 可觀光譜範圍的輻射穿過。例如反射層(24)是一個可以是 -29- 200921952 一個介電反射鏡。 根據以下配合第6C圖所作的說明,輸出耦合透鏡(1 4)滿 足逼近定理。半導體本體(1)的內表面(16)被半徑爲 的內半球面Hinn^環繞住,而輸出耦合透鏡(14)的外表面(17) 則是將半徑爲的外半球面Haus〃n環繞住。在本實施 例中,外半球面Η…是由輸出耦合透鏡(14)的外表面(π) 所構成’因此二R2。內半球面H,nnen至少在外部分區 域(29)的一部分有與內表面(16)接觸。輸出耦合透鏡(14)滿 足逼近定理’也就是說1„„^及滿足以下的不等式:Raussen ^ Rinnen * IlLinse / fllufi where iuinu represents the refractive index of the output coupling lens and niuf| represents the air refractive index. In the present embodiment, the 'inner hemispherical surface Η... is constituted by the inner surface (16) of the output coupling lens (14) 'so R, ... = Rl. The outer hemispherical surface η... is composed of the outer surface (17) of the output affinity lens (14), thus RaussE„ = r2. The front surface (21) of the photovoltaic element emitting radiation is the outer surface of the output coupling lens (17) The output coupling lens (丨4) can be placed on the optoelectronic component, for example via -21 - 200921952. Another possible way is that the output coupling lens (14) is an otherwise fabricated separate component and then The output coupling lens (14) is fixed to the optoelectronic component. The top view of the optoelectronic component of Figure 1C also shows two electrical locations (18) that act to electrically connect the optoelectronic component to the outside world. Figure 2A shows A configuration of a mirror (3) which can be used as a photovoltaic element of the embodiment of Figures 1A to 1C. The mirror (3) has a metal layer (10) and a Bragg mirror (11), wherein the metal layer ( 10) Containing aluminum or consisting of aluminum. The Bragg mirror (11) is composed of two titanium oxide layers (19) and two yttria layers (20) arranged alternately, that is, a titanium oxide. Layer (19) followed by a cerium oxide The layer (20) is then further connected to a yttria layer (20) by a titanium oxide layer (19). The thickness of the yttria layer (20) is 83 nm, and the thickness of the titanium oxide layer (19) is 49 nm. The mirror (3) has a filling material with a refractive index of 1.46 (for example, silicone). Figure 2B shows the reflectivity of the mirror (3) as shown in Fig. 2A. In addition, Figure 2B also shows the reflectance of the aluminum layer (10) with a layer of tantalum oxide (20) and a layer of titanium oxide (19) simulating the relationship between 値 and wavelength (curve 2), and a pure aluminum The reflectivity of layer (10) simulates the relationship between 値 and wavelength (curve 3). From the reflectance simulation shown in Fig. 2B, it can be seen that the reflectance of the layer 2A sequence in the visible spectral range is substantially greater than 0.98. Fig. 3A is a graph showing the relationship between the Cx値 of the analog chromaticity coordinates and the radiation intensity emitted by the photovoltaic element and the radiation angle Θ, wherein the radiation exchange layer (4) is disposed on the radiation exit surface of the conductor body (1) of the half-22-200921952 ( 5) Above, here is assumed the radiation of the first wavelength range of the semiconductor body (1) The wavelength of the radiation converted from the first wavelength range to the second wavelength range by the wavelength conversion material (8) is 590 nm. The simulation result shows that the wavelength conversion layer (4) is disposed on the semiconductor body. The chromaticity coordinates of the photovoltaic elements on the radiation exit surface (5) of (1) are not uniform. The radiation emitted by such a photovoltaic element is blue in the interior of the front surface (2 1) from which the photovoltaic element emits radiation, while emitting radiation. The color of the front side (2丨) is yellowish. As shown in Fig. 3A, the radiant intensity of the photoelectric element is not uniform, that is, the radiant intensity inside the front surface (21) where the photoelectric element emits radiation is greater than that on the outside. Radiation intensity. Figure 3B is a plot of Cx値 and radiant intensity of the simulated chromaticity coordinates versus the radiation angle of 0, but provided that the wavelength conversion layer (4) is placed next to the semiconductor body (1) as in the photovoltaic element of claim 1 On the heat sink (2), the radiation exit surface (5) of the semiconductor body (1) has no wavelength conversion layer (4). It can be seen from the simulation results in Fig. 3B that the relationship between C X 値 and the radiation intensity and the radiation angle 0 is substantially uniform. Therefore, it can be known that if the wavelength conversion layer (4) of the photovoltaic element is disposed on the heat sink (2) beside the semiconductor body (1) instead of being disposed on the radiation exit surface (5) of the semiconductor body (1), The radiation characteristics of the photovoltaic element are a radiation intensity with a fairly uniform sentence and a fairly uniform chromaticity coordinate. The 3C figure also simulates the wavelength conversion layer (4) of the chromaticity coordinates of the photovoltaic elements disposed on the heat sink (2) next to the semiconductor body -23- 200921952 (1) and the radiation intensity and the radiation angle of 0. relationship. As already shown in Fig. 3B, the relationship between Cx値 and the radiation angle of 0 in Fig. 3C is also quite uniform (cx 値 is substantially fixed), that is to say, the color element of the photovoltaic element is substantially The radiation angle 0 is irrelevant. Unlike the photovoltaic element of the embodiment of Figs. 1A to 1C, the photovoltaic element of the embodiment of Fig. 4A has a plurality of semiconductor bodies (1). In order to avoid repetition, only the different parts of the photovoltaic element of the embodiment of FIG. 4A and the photoelectric element of the embodiment of FIGS. 1A to 1C will be described below, and the components and/or features not mentioned repeatedly are the same as FIG. 1A. The same components and/or features as the photovoltaic elements of the embodiment of the 1C. The semiconductor body (1) of the photovoltaic element of the embodiment of Fig. 4A is arranged in a regular shape, for example, this embodiment is arranged in a square grid (22) ° the radiation exit surface of each semiconductor body (1) The area center of gravity μ is located on one of the grid points of the square grid (22). Another possibility is to arrange the semiconductor bodies (丨) into a hexagonal grid. These semiconductor bodies (1) are disposed below the center of the scatterer (12), that is, the center of the hemisphere of the square grid (2 2) and the center of the hemisphere formed by the scatterer (12) are located in the photoelectric On the optical axis of the component. The output coupling lens (14) is disposed above the positive center of the semiconductor body (1), that is, the center of gravity S of the square grid (22) and the center of the hemisphere constituting the output coupling lens (14) are located at the photoelectric On the optical axis of the component. Unlike the photovoltaic element of the embodiment of the first to fourth embodiments, the photovoltaic element of the embodiment of the fourth embodiment of the invention has a transparent insulator (23). In order to avoid repetition, only the different parts of the photovoltaic element of the embodiment of FIG. 4B and the photoelectric element of the embodiment of FIGS. 1A to 1C will be described below, and the components and/or features not mentioned repeatedly are the same as FIG. 1A. The components and/or features of the photovoltaic elements of the embodiment of the ic are the same. The scatterer (12) of the photovoltaic element of the embodiment of Fig. 4B is a hemispherical shell whose outer surface is connected to the wavelength conversion layer (4). The space between the scatterer (12) and the semiconductor body (1) is filled with a transparent hydrate (23) containing no scattering particles. For example, the transparent sputum (23) may be a transparent infusion, such as a transparent infusion containing a gum and/or an epoxide (or consisting of silicone and/or epoxide). Preferably, the transparent iridium (23) completely fills the space between the semiconductor body (1) and the scatterer (12), that is, between the scatterer (12) and the transparent slab (2 3 ) There are no gaps containing air. Unlike the photovoltaic elements of the embodiments of FIGS. 1A to 1C and FIGS. 4A and 4B, the photovoltaic element of the embodiment of FIG. 5A has a semiconductor body (1) that emits ultraviolet radiation, that is, The first wavelength range includes ultraviolet radiation. Next to the semiconductor body (1) is a wavelength conversion layer (4) containing a wavelength converting material (8). The wavelength converting material (8) is capable of converting radiation of the first wavelength range into radiation of the second wavelength range, and the second wavelength range is different from the first wavelength range. In the present embodiment, the wavelength converting material (8) is capable of converting ultraviolet radiation of the first wavelength range into visible light radiation, that is, the modulating radiation of the second wavelength range includes visible light radiation. Preferably, the wavelength converting material (8) converts the ultraviolet radiation emitted by the largest portion of the half-25-200921952 conductor body (1) into visible light radiation. In the present embodiment, the semiconductor body (1) is disposed on the heat sink (2). Further, there is a mirror (3) below the wavelength conversion layer (4) on the political body (2). Like the mirrors (3) of the 2A and 2B, the mirror (3) of the present embodiment also has a metal (10) and a Bragg mirror (H), wherein the Bragg mirror (1) 1) is composed of two titanium oxide layers (丨9) and two tantalum oxide layers (20) which are alternately arranged. Unlike the mirrors (3) of Figs. 2A and 2B, the thickness of the oxidized layer (19) is about 〇.40 nm, and the thickness of the oxidized layer (20) is about 0.66 nm. Such a layer sequence can reflect short-wave radiation as shown by the reflectance spectrum of Figure 5B. Figure 5A shows a reflection or transmission spectrum with a primary wavelength of 3 9 Onm. In the present embodiment, the mirror (3) is located between the semiconductor body (1) and the heat sink (2). Furthermore, the wavelength converting layer (4) is located above the entire mirror (3) beside the semiconductor body (1). Therefore, one side of the wavelength conversion layer (4) is connected to the mirror (3). The difference from the photovoltaic element of the embodiment of Figs. 1A to 1C is that the mirror (3) of Fig. 5A has no outer region (7) which is not covered by the wavelength conversion layer (4). Further, another difference from the photovoltaic element of the embodiment of Figs. 1A to 1C or 4A and 4B is that the photovoltaic element of the embodiment of Fig. 5A has no heat sink (12). There is an output coupling lens (14) above the semiconductor body (1). The output coupling lens (14) is constructed and positioned such that the entire wavelength conversion layer (4) is positioned below the output coupling lens (14). A pole of the output coupling lens (14) is preferably connected to the wavelength conversion layer (4) from -26 to 200921952. In the present embodiment, the output coupling lens (14) is a very thin deep-drawn glass envelope in which the space between the output lens (14) and the semiconductor body (1) is filled with air. The thickness of the deep-drawn glass envelope constituting the output coupling lens (14) is between 50 #m and less than or equal to 1 mm. In addition, another possible way is to fill the space between the output coupling lens (14) and the semiconductor body (1) with the aforementioned transparent filler (23). In this case, the transparent splicer (23) preferably completely fills the space between the output coupling lens (14) and the semiconductor body (1). In this embodiment, the glass outputting the coupling lens (14) absorbs ultraviolet radiation. The advantage of this is that the radiation emitted from the front side of the optoelectronic component (21) ... that is, the outer surface (17) of the output coupling lens (14) - does not emit any ultraviolet radiation (or only a small portion) UV radiation). Ultraviolet radiation does not contribute to the sensible brightness of the optoelectronic component, and may even cause damage to the eye. The inner surface (16) of the deep-drawn glass envelope constituting the output coupling lens (14) in Fig. 5A has a reflection layer sequence (24) which acts to reflect the ultraviolet radiation of the semiconductor body (1) and to make the second wavelength A range of visible radiation passes through. In this embodiment, the reflective layer sequence (24) is a dielectric mirror. For example, a dielectric mirror of the reflective layer sequence (24) of Figure 5C is constructed. The reflection layer sequence (24) is composed of eight tantalum nitride layers and eight ruthenium dioxide layers arranged in an alternating manner. The thickness of the ceria layer of the reflective layer sequence (24) is about 62 nm. The thickness of the tantalum nitride layer is about 47 nm. It can be seen from the reflected spectrum of this layer sequence (Fig. 5D) that this layer sequence is capable of reflecting ultraviolet radiation. -27- 200921952 Like the photovoltaic elements of the embodiment of Fig. 5A, the photovoltaic element of the embodiment of Figs. 6A to 6D also has a semiconductor body (1) which emits ultraviolet radiation and is disposed on the heat sink (12). ). In addition, there is a mirror (3) on the heat sink (12) located beside and below the semiconductor body (1). Next to the semiconductor body (1) is a wavelength conversion layer (4) containing a wavelength converting material (8) capable of converting ultraviolet radiation of the first wavelength range into a second type comprising visible radiation. Radiation in the wavelength range. The optoelectronic component should be designed such that the largest portion of the first range of wavelengths of ultraviolet radiation is converted to visible light radiation of the second wavelength range. The wavelength conversion layer (4) is disposed on the circular inner region (6) of the mirror (3), but the annular outer region (7) surrounding the inner region (6) does not have a wavelength conversion layer (4) . The mirror (3) has a specular reflection effect on the visible radiation at least in the outer region (7) without the wavelength conversion layer (4). The photovoltaic element of the embodiment of Figs. 6A to 6D has no scatterer (12). The photovoltaic element of the embodiment of Fig. 6A has an output coupling lens (14) made of glass. The inner surface (16) of the output coupling lens (14) is curved to form a cavity (25) above the semiconductor body (1). A cavity (25) above the semiconductor body (1) and the wavelength converting layer (4) connects one side of the inner surface (16) of the output coupling lens (14) to the wavelength converting layer (4). The entire wavelength conversion layer (4) is located below the cavity (25), i.e., below the cavity (25) that forms the inner surface (16) of the output coupling lens (14) above the semiconductor body (1). As can be seen from Figure 6B, the inner surface (16) of the output coupling lens has a -28-200921952 inner partial region (26) with a tip (27) with a slope at the tip (27) The place will change. The tip end (27) is located above the center of gravity Μ of the radiation exit surface of the semiconductor body (1) and is located on the optical axis (15) of the output coupling lens (14) perpendicular to the mirror (3). Another possible way is that the inner partial region (26) of the output coupling lens (14) can form a bend instead of the tip (27) which is convex in the radiation direction (28) of the output coupling lens (14). of. The inner partial region (26) of the inner surface (16) is surrounded by an outer partial region (29) which has a concave curvature in the radiation direction (28) of the output coupling lens (14). . The inner surface (16) of the output coupling lens (14) is rotationally symmetric with respect to the optical axis (15) of the output coupling lens (14). The output coupling lens (14) has an outer surface (17)'. In the present embodiment, the outer surface (17) is a hemispherical surface having a radius R2. One side of the outer surface (17) of the output coupling lens (14) is connected to the mirror (3), that is, the entire mirror (3) is located below the output coupling lens (14). Furthermore, the outer region (7) of the output coupling lens (14) is connected to the mirror (3), that is, the entire interface of the mirror (3) and the mirror (3) is located in the outer region. As shown in Fig. 6C, 'since the inner partial region (26) has a tip (27) or a convex curvature', the radiation of the semiconductor body (1) is output to the inner surface of the coupling lens (14) (16) Reflected to a wavelength conversion layer (4) disposed on the side of the semiconductor body (丨). In order to increase the reflection of the inner surface (16) of the output coupling lens (14) against the ultraviolet radiation of the first wavelength range, the inner surface (16) has a reflective layer (24) that acts to reflect radiation in the ultraviolet spectral range, And letting the radiation of a considerable spectral range pass through. For example, the reflective layer (24) is a dielectric mirror that can be -29-200921952. The output coupling lens (14) satisfies the approximation theorem according to the following description in conjunction with Figure 6C. The inner surface (16) of the semiconductor body (1) is surrounded by an inner hemispherical surface Honn^ having a radius, and the outer surface (17) of the output coupling lens (14) surrounds the outer hemispherical surface HausHan having a radius . In the present embodiment, the outer hemispherical surface Η is composed of the outer surface (π) of the output coupling lens (14), and thus the second R2. The inner hemisphere H, nnn has contact with the inner surface (16) at least in a portion of the outer partition domain (29). The output coupling lens (14) satisfies the approximation theorem 'that is, 1 „^^ and satisfies the following inequalities:

Raussen ^ Rinnen * flLinsc / rilufi 其中IU ‘ 1 w代表輸出賴!合透鏡的折射率,n , u f ,代表空氣折 射率。 如第6D圖所示,波長轉換層(4)具有一個作爲電觸點接 通之用的開口( 3 0 ),例如半導體本體(1)的輻射射出面(5)上 的接合點的一條接合線可以通過開口(30)到達反射鏡(3)。 第6D圖並未繪出接合線及接合點。 此外’光電元件還具有兩個接電位置(18)作爲與外界電 觸點接通之用。 第7A圖至第7D圖顯示單獨分開製作之輸出耦合透鏡(η) 的一個實施例,例如可以應用於第6 A圖至第6 C圖之實施 例的光電元件。第7A圖至第7D圖的輸出耦合透鏡(14)是 應用於具有一個發射紫外線輻射之半導體本體(1)的光電 元件。此外,該光電元件最好還具有一個設置在半導體本 -30- 200921952 體(1)旁邊的波長轉換層(4)。 輸出耦合透鏡(14)具有一個構成空腔(25)的拱形內表面 (16)。空腔(25)係位於光電元件之半導體本體(1)的上方。 輸出耦合透鏡(14)的內表面(16)具有一個帶有尖端(27)內 部分區域(26),內表面(16)的斜率在尖端(27)處會改變。在 本實施例中,尖端(27)位於輸出耦合透鏡(14)的光學軸(15) 上。另外一種可能的方式是,輸出耦合透鏡(14)的內部分 區域(26)可以形成一個取代尖端(27)的彎曲,這個彎曲在輸 出耦合透鏡(14)的輻射方向(28)上是外凸的。內表面(16)的 內部分區域(26)被一個外部分區域(29)環繞住,該外部分區 域(29)在輸出耦合透鏡(14)的輻射方向(28)上有一個內凹的 彎曲。輸出耦合透鏡(14)的內表面(16)對輸出耦合透鏡(14) 的光學軸(15)旋轉對稱。 在本實施例中,輸出耦合透鏡(14)具有一個外表面(17), 該外表面(17)構成一個半徑爲R2的半球面。 根據以下的說明,輸出耦合透鏡(14)滿足逼近定理。半 導體本體(1)的內表面(1 6)被半徑爲R i n "的內半球面H i n… 環繞住,而輸出耦合透鏡(14)的外表面(17)則是將半徑爲 Rauss的外半球面環繞住。在本實施例中’外半球面 是由輸出耦合透鏡U4)的外表面(17)所構成,因此 Raussc„ = R2。內半球面Hi 至少在外部分區域(29)的一部 分有與內表面(16)接觸。輸出轉合透鏡(14)滿足逼近定理, 也就是說Rinnen及Raussen滿足以下的不等式: -31 - 200921952 R$ Ri …* ni_i„se / n丨“i 其中rui-w代表輸出耦合透鏡(14)的折射率,niuf,代表空 氣折射率。 輸出親合透鏡(14)的內表面(16)帶有一個反射層(24),其 作用是反射紫外線光譜範圍的輻射,並讓可見光光譜範圍 的輻射穿過。 第7D圖顯示輸出耦合透鏡(14)的—個實施例的尺寸。在 本實施例中’輸出耦合透鏡(1 4)的半徑R2爲3.9mm。空腔 (25)的圓形底面的直徑爲5.17mm,空腔(25)的最大高度爲 0.85mm。空腔(25)的最小高度出現在尖端(27)處,因此最小 高度爲0.65mm。 輸出耦合透鏡(1 4)最好是以能夠吸收紫外線的材料製 成,例如玻璃。例如可以用銑削、車削、或是澆注等方法 製作輸出耦合透鏡(14)。 本發明的範圍並非僅限於以上所舉的實施例。每一 f重牵斤 的特徵及兩種或兩種以上的特徵的所有組合方式(尤其胃 申請專利範圍中提及的特徵的所有組合方式)均屬於本;胃 明的範圍,即使這些特徵或特徵的組合方式未在本說0月_ 之說明部分或實施例中被明確指出。 【簡單圖式說明】 第1A圖:第一個實施例之光電元件的斷面示意圖。 第1B圖:如第1A圖之實施例的光電元件的立體透視圖。 第1C圖:如第1A圖及第1B圖之實施例的光電元件的 -32- 200921952 俯視圖。 第2A圖:反射鏡的一個實施例的構造。 第2B圖:模擬3個實施例之反射鏡的反射率與波長的關 係圖。 第3A圖及第3B圖:色度座標的Cx値及輻射強度與輻 射角度的關係模擬圖。 第3C圖:色度座標的Cx値與輻射角度的關係模擬圖。 第4A圖:第二個實施例之光電元件的俯視圖。 第4B圖:第三個實施例之光電元件的斷面示意圖。 第5 A圖:第四個實施例的光電元件的立體透視圖。 第5 B圖:在第5 A圖之實施例中作爲反射鏡之層序列的 透射光譜及反射光譜。 第5 C圖:反射層序列的一個實施例的構造。 第5D圖:如第5C圖之反射層序列的透射光譜及反射光 譜與波長的關係圖。 第6A圖:第五個實施例的光電元件的立體透視圖。 第6B圖及第6C圖:如第6A圖之實施例的光電元件的 斷面示意圖。 第6D圖:如第6A圖至第6C圖之實施例的光電元件的 俯視圖。 第7A圖:第一個實施例之輸出耦合透鏡的立體透視圖。 第7B:如第7A圖之實施例的輸出耦合透鏡的斷面示意 圖。 -33- 200921952 第7C圖:如第7A圖及第7B圖之實施例的輸出耦合透 鏡的俯視圖。 第7D圖:按比例繪製輸出耦合透鏡的一個實施例的尺寸 圖。 【主要元件符號說明】 1 半 導 體 本 體 2 散 埶 體 3 反 射 鏡 4 波 長 轉 換 層 5 半 導 體 本 體 的 Is 射 射 出面 6 反 射 鏡 的 內 部 Ira 域 7 反 射 鏡 的 外 部 1¾ 域 8 波 長 轉 換 材 料 9 黏 合 劑 10 金 屬 層 11 布 拉 格 反 射 鏡 12 散 射 體 13 散 射 微 企丄 14 輸 出 輔 合 透 鏡 15 光 學 軸 16 輸 出 親 合 透 鏡 的 內 表 面 17 輸 出 耦 合 透 鏡 的 外 表 面 18 接 電 位 置 19 氧 化 鈦 層 20 氧 化 矽 層 -34- 200921952 2 1 光 電 元 件 發 射 22 正 方 形 格 柵 23 透 明 塡 充 體 24 反 射 層 25 輸 出 耦 合 透 m 26 輸 出 稱 合 透 鏡 27 尖 端 28 輸 出 親 合 透 鏡 29 輸 出 親 合 透 鏡 30 波 長 轉 換 層 的 Μ 半 導 體 本 體 的 Ri 輸 出 親 合 透 鏡 Ri' 反 射 m 的 內 部 r2 輸 出 親 合 透 鏡 r2, 反 射 鏡 的 外 部 s 重 心 R a u s s e n 外 半 球 面 的 半 R i η n e n 內 半 球 面 的 半 H a u s s e n 外 半 球 面 H i η n e n 內 半 球 面 輻射的正面 的空腔 之內表面的內部分區域 的輻射方向 之內表面的外部分區域 開口 中心 的內半徑 區域的半徑 的外半徑 區域的半徑 徑 徑 -35-Raussen ^ Rinnen * flLinsc / rilufi where IU ‘ 1 w represents the refractive index of the output lens, n , u f , representing the air refractive index. As shown in Fig. 6D, the wavelength conversion layer (4) has an opening (30) for electrical contact, such as a junction of junctions on the radiation exit surface (5) of the semiconductor body (1). The wire can reach the mirror (3) through the opening (30). Figure 6D does not depict the bond wires and joints. In addition, the optoelectronic component also has two electrical locations (18) for electrical contact with the outside. Figs. 7A to 7D show an embodiment of the output coupling lens (?) separately produced separately, for example, a photovoltaic element which can be applied to the embodiments of Figs. 6A to 6C. The output coupling lens (14) of Figs. 7A to 7D is applied to a photovoltaic element having a semiconductor body (1) that emits ultraviolet radiation. Further, the photovoltaic element preferably further has a wavelength conversion layer (4) disposed beside the semiconductor body -30-200921952 body (1). The output coupling lens (14) has an arcuate inner surface (16) that forms a cavity (25). The cavity (25) is located above the semiconductor body (1) of the photovoltaic element. The inner surface (16) of the output coupling lens (14) has a partial region (26) with a tip end (27) whose slope changes at the tip end (27). In this embodiment, the tip end (27) is located on the optical axis (15) of the output coupling lens (14). Another possibility is that the inner partial region (26) of the output coupling lens (14) can form a bend instead of the tip (27) which is convex in the radiation direction (28) of the output coupling lens (14). of. The inner partial region (26) of the inner surface (16) is surrounded by an outer partial region (29) which has a concave curvature in the radiation direction (28) of the output coupling lens (14). . The inner surface (16) of the output coupling lens (14) is rotationally symmetric with respect to the optical axis (15) of the output coupling lens (14). In the present embodiment, the output coupling lens (14) has an outer surface (17) that forms a hemispherical surface of radius R2. According to the following description, the output coupling lens (14) satisfies the approximation theorem. The inner surface (16) of the semiconductor body (1) is surrounded by an inner hemisphere Hin... having a radius R in " and the outer surface (17) of the output coupling lens (14) is outside the radius Rauss Surrounded by a hemisphere. In the present embodiment, the 'outer hemisphere is formed by the outer surface (17) of the output coupling lens U4, so Raussc„ = R2. The inner hemisphere Hi has at least a portion of the outer portion (29) with the inner surface (16). Contact. The output turning lens (14) satisfies the approximation theorem, that is, Rinnen and Raussen satisfy the following inequalities: -31 - 200921952 R$ Ri ...* ni_i„se / n丨“i where rui-w represents the output coupling lens (14) The refractive index, niuf, represents the refractive index of the air. The inner surface (16) of the output affinity lens (14) is provided with a reflective layer (24) that reflects the ultraviolet spectral range of radiation and allows visible light spectrum The range of radiation passes through. Figure 7D shows the dimensions of an embodiment of the output coupling lens (14). In this embodiment the 'output coupling lens (14) has a radius R2 of 3.9 mm. The cavity (25) The circular bottom surface has a diameter of 5.17 mm and the cavity (25) has a maximum height of 0.85 mm. The minimum height of the cavity (25) appears at the tip end (27), so the minimum height is 0.65 mm. Output coupling lens (1 4 ) It is best made of a material that absorbs ultraviolet light. For example, glass. For example, the output coupling lens (14) can be fabricated by milling, turning, or casting. The scope of the present invention is not limited to the above embodiments. The characteristics of each f heavy weight and two or two All combinations of the above features (especially all combinations of features mentioned in the scope of patent application) belong to the present; the scope of the stomach, even if the combination of these features or features is not described in this month Part or the embodiment is clearly indicated. [Simple Schematic Description] Fig. 1A is a schematic sectional view of the photovoltaic element of the first embodiment. Fig. 1B is a perspective view of the photovoltaic element of the embodiment of Fig. 1A Fig. 1C is a plan view of -32-200921952 of the photovoltaic element of the embodiment of Figs. 1A and 1B. Fig. 2A: construction of one embodiment of the mirror. Fig. 2B: simulation of reflection of three embodiments The relationship between the reflectance of the mirror and the wavelength. Fig. 3A and Fig. 3B: Cx値 of the chromaticity coordinates and the relationship between the radiation intensity and the radiation angle. Fig. 3C: The relationship between the Cx値 of the chromaticity coordinates and the radiation angle simulation Fig. 4A is a plan view of the photovoltaic element of the second embodiment. Fig. 4B is a schematic sectional view of the photovoltaic element of the third embodiment. Fig. 5A is a perspective view of the photovoltaic element of the fourth embodiment. Fig. 5B is a transmission spectrum and a reflection spectrum of a layer sequence as a mirror in the embodiment of Fig. 5A. Fig. 5C: construction of an embodiment of a reflection layer sequence. Fig. 5D: Fig. 6A is a perspective view showing the relationship between the transmission spectrum and the reflection spectrum of the reflection layer sequence of Fig. 5A. Fig. 6A is a perspective view of the photovoltaic element of the fifth embodiment. Fig. 6B and Fig. 6C are schematic sectional views of the photovoltaic element as in the embodiment of Fig. 6A. Fig. 6D is a plan view of the photovoltaic element of the embodiment of Figs. 6A to 6C. Figure 7A is a perspective perspective view of the output coupling lens of the first embodiment. 7B is a schematic cross-sectional view of the output coupling lens of the embodiment of Fig. 7A. -33- 200921952 Figure 7C: Top view of the output coupling lens of the embodiment of Figures 7A and 7B. Figure 7D: A dimensional view of one embodiment of an output coupling lens drawn in proportion. [Main component symbol description] 1 Semiconductor body 2 Bulk body 3 Mirror 4 Wavelength conversion layer 5 Iss of the semiconductor body Ejection surface 6 Internal Ira of the mirror Area 7 External mirror of the mirror Area 8 Wavelength conversion material 9 Adhesive 10 Metal layer 11 Bragg mirror 12 Scatter body 13 Scattering micro-chip 14 Output auxiliary lens 15 Optical axis 16 Output inner surface of the affinity lens 17 Output coupling lens outer surface 18 Power contact position 19 Titanium oxide layer 20 Cerium oxide layer - 34- 200921952 2 1 Photovoltaic Element Emission 22 Square Grille 23 Transparent Filler 24 Reflective Layer 25 Output Coupling M 26 Output Bonding Lens 27 Tip 28 Output Affinity Lens 29 Output Affinity Lens 30 Wavelength Conversion Layer 半导体 Semiconductor Body Ri output affinity lens Ri' reflection r internal r2 output affinity lens R2, the outer s of the mirror, the center of gravity R aussen, the semi-R i η nen of the outer hemisphere, the half of the inner hemisphere, the outer hemisphere H i η nen , the inner part of the inner surface of the inner surface of the hemispherical radiation The radius of the outer radius region of the radius of the inner radius region of the inner portion of the inner surface of the inner surface of the radiation direction is -35-

Claims (1)

200921952 十、申請專利範圍: 1. —種光電元件,具有: --至少一個半導體本體(1),該半導體本體(1)能夠發射第 —種波長範圍之電磁輻射; …一個散熱體(2),半導體本體(1)及一個反射鏡(3)均設 置在該散熱體(2)上; —個波長轉換層(4) ’該波長轉換層係位於半導體本體 (1)旁邊的反射鏡(3)上且含有一種波長轉換材料(8),該波 長轉換材料(8)能夠將半導體本體(1)發射之第—種波長 範圍的輻射的至少一部分轉換成第二種波長範圍的輕 射,且第二種波長範圍不同於第一種波長範圍。 2. 如前述申請專利範圍的光電元件,其特徵爲. 柯·具有多個 能夠發射電磁輻射的半導體本體(1 )。 3. 如前述申請專利範圍中任一項的光電元件,_胃徵胃 體(1)的輻射射出面(5)上沒有設置波長轉換 層(4)。 4 ·如前述申請專利範圍中任一項的光電元件,#胃^胃. 反射鏡(3)位於半導體本體(1)下方。 5_如前述申請專利範圍中任一項的光電元件,胃. 射鏡(3)與散熱體(2)直接接觸。 6.如前述申請專利範圍中任一項的光電元件,_ _ ^胃, 波長轉換層(4)與反射鏡(3)直接接觸。 7 .如前述申請專利範圍中任一項的光電元件,# _ @胃. -36- 200921952 波長轉換層(4)係塗覆在反射鏡的內部區域(6)上,因此反 射鏡(3)的外部區域(7)沒有波長轉換層(4)。 8. 如前述申請專利範圍的光電元件,其特徵爲:半導體本 體(1)位於內部區域(6)的正中央。 9. 如前述申請專利範圍中任一項的光電元件,其特徵爲: 反射鏡(3)對第一種及/或第二種波長範圍之電磁輻射的 反射率至少是0.9 8。 1 0.如前述申請專利範圍中任一項的光電元件,其特徵爲: 反射鏡(3)的最大粗糙度達到40ηπι。 11.如申請專利範圍第7項至第1〇項中任一項的光電元 件’其特徵爲:反射鏡(3)至少在沒有波長轉換層(4)之外 部區域(7 )的內部對第一種及/或第.—種波長範圍的輻射 具有鏡面反射的作用。 1 2 ·如前述申請專利範圍中任一項的光電元件,其特徵爲: 反射鏡(3)包括一個金屬層(1〇)及一個布拉格反射鏡 (11)。 1 3 ·如前述申請專利範圍的光電元件,其特徵爲:布拉格反 射鏡(1 1)最好是由交替排列的兩個氧化矽層(2〇)及兩個 氧化鈦層(1 9)所構成。 1 4 .如申請專利範圍第丨2項或第1 3項的光電元件,其特徵 爲·金屬層(10)含有銘。 1 5.如則述申sra專利範圍中任一項的光電元件,其特徵爲: 波長轉換材料(8)含有至少一種由下列成分構成的材 -37- 200921952 料:摻雜稀土金屬的石榴石、摻雜稀土金屬的鹼土金屬 硫化物、摻雜稀土金屬的硫酸鹽、摻雜稀土金屬的鋁酸 鹽、摻雜稀土金屬的原矽酸鹽、摻雜稀土金屬的氯矽酸 鹽、摻雜稀土金屬的鹼土金屬氮化矽、摻雜稀土金屬的 氮氧化物、摻雜稀土金屬的氮氧化鋁。 1 6.如前述申請專利範圍中任一項的光電元件,其特徵爲: 波長轉換材料(8)被埋在一種黏合劑(9)中。 1 7 .如前述申請專利範圍的光電元件,其特徵爲:黏合劑(9) 含有矽膠、玻璃、或是一種陶瓷材料。 1 8 ·如前述申請專利範圍中任一項的光電元件,其特徵爲: 在半導體本體(1)及波長轉換層(4)上方設置一個散射體 (12)。 19.如前述申請專利範圍的光電元件,其特徵爲:散射體(12) 含有散射微粒(13)。 2 0.如前述申請專利範圍的光電元件,其特徵爲:散射微粒 (1 3)至少含有下列材料中的至少一種材料:氧化鋁、氧 化鈦。 2 1 ·如申請專利範圍第1 9項或第20項的光電元件,其特徵 爲:散射微粒(1 3 )被埋在一種基質材料中,該基質材料 含有下列材料中的至少一種材料:矽膠、環氧化物。 22. 如申請專利範圍第1 8至第2 1項中任一項的光電元件, 其特徵爲:將散射體(12)製作成一個半球或半球殼。 23. 如前述申請專利範圍的光電元件,其特徵爲:散射體(12) -38- 200921952 位於半導體本體(1)的正中心的上方,且其一面連接波長 轉換層(4)。 2 4 ·如申請專利範圍第2 2項或第2 3項的光電元件,其特徵 爲:將散射體(12)製作成一個半球殻,並以一種透明塡 充體(23)塡充半導體本體(1)及散射體(12)之間的空間。 25 .如前述申請專利範圍中任一項的光電元件,其特徵爲: 具有一個輸出耦合透鏡(14),其作用是將光電元件發射 的輻射向外輸出耦合。 26. 如前述申請專利範圍的光電元件,其特徵爲:輸出耦合 透鏡(14)位於散射體(12)的上方。 27. 如申請專利範圍第25項或第26項的光電元件,其特徵 爲:輸出耦合透鏡(14)被製作成一個半球殼,並被設置 在半導體本體(1)的正中心的上方。 28. 如申請專利範圍第25項至第27項中任一項的光電元 件,其特徵爲:輸出耦合透鏡(14)滿足逼近定理。 29 ·如前述申請專利範圍中任一項的光電元件,其特徵爲: 半導體本體(1)發射的第一種波長範圍的輻射包括紫外 線輻射,而且這些紫外線輻射至少有一部分被波長轉換 層(4)轉換成可見光輻射。 30.如前述申請專利範圍中任一項並涉及第25項至第28項 中任一項的光電元件,其特徵爲:輸出耦合透鏡(14)可 以吸收半導體本體(1)發射的紫外線輻射。 3 1 .如前述申請專利範圍的光電元件,其特徵爲: -39- 200921952 輸出耦合透鏡(14)含有玻璃。 32.如前述申請專利範圍中任一項的光電元件,其特徵爲: 在半導體本體(1)上方有一個反射層(24),其作用是反射 第一種波長範圍的輻射,並讓第二種波長範圍的輻射穿 過。 3 3.如前述申請專利範圍並涉及第29項至第31項中任一項 的光電元件’其特徵爲:反射層反射第一種波長範圍的 紫外線輻射,並讓第二種波長範圍的可見光輻射穿過。 3 4 .如申請專利範圍第3 2項或第3 3項的光電元件,其特徵 爲:反射層(24)是一個介電反射鏡。 3 5 .如申請專利範圍第3 2項至第3 4項中任一項並涉及第2 5 項至第3 1項中任一項的光電元件,其特徵爲··將反射層 (24) 設置在輸出耦合透鏡(14)的內表面(16)上。 3 6 .如申請專利範圍第2 5項至第3 5項中任一項的光電元 件’其特徵爲:輸出耦合透鏡(14)具有一個拱形的內表 面(16)’其作用是在半導體本體(1)上方形成一個空腔 (25) ’內表面(16)具有一個內部分區域(26)及一個外部分 ®域(29) ’其中內部分區域(2 6)在輸出耦合透鏡(14)的輻 射方向(28)有一外凸的彎曲或尖端(27),且內表面(16)的 斜·率在該處會改變,外部分區域(29)在輸出耦合透鏡(14) 的li射方向(28)有一內凹的彎曲,該內凹的彎曲至少將 內部分區域(26)部分環繞住。 37.如前述申請專利範圍的光電元件,其特徵爲:輸出耦合 -40- 200921952 透鏡(14)的內表面(16)輸出耦合透鏡(14)的一個光學軸 (15)旋轉對稱。 3 8 .如申請專利範圍第3 6項或第3 7項的光電元件,其特徵 爲:輸出耦合透鏡(14)的光學軸(15)通過輸出耦合透鏡 (14)之內表面(16)的內部分區域(26)。 3 9 .如申請專利範圍第3 6項至第3 8項中任一項的光電元 件,其特徵爲:輸出耦合透鏡(14)的外表面(17)爲球形。 40.如前述申請專利範圍中任一項的光電元件,其特徵爲: 散熱體(2)是一片印刷電路板。 4 1 ·如前述申請專利範圍中任一項的光電元件,其特徵爲: 散熱體(2)至少含有下列材料中的一種材料:銅、氮化 鋁、氧化鋁、矽、銀、鋁。 4 2 . —種單獨製作的輸出耦合透鏡(1 4 ),被固定在具有至少 一個發射第一種波長範圍之電磁轄射的半導體本體(1) 的光電元件上,具有: --一個拱形的內表面(6),其作用是在半導體本體(1)上方 形成一個空腔(25); 一 內表面(16)具有一個內部分區域(26)及一個外部分區域 (29),其中內部分區域(26)在輸出耦合透鏡(14)的輻射方 向(28)有一外凸的彎曲或尖端(27),且內表面(16)的斜率 在該處會改變,外部分區域(29)在輸出耦合透鏡(14)的輻 射方向(28)有一內凹的彎曲,該內凹的彎曲至少將內部 分區域(26)部分環繞住。 -41 - 200921952 · 4 3 ·如目u述申nra專利範圍的輸出親合透鏡(1 4 ),宜特徵爲: 內表面(16)對輸出耦合透鏡(14)的光學軸(15)旋轉對 稱’且光學軸(15)通過內部分區域(26)。 44. 如申請專利範圍第42項或第43項的輸出耦合透鏡 (14) ’其特徵爲:外表面(17)的形狀爲球形。 45. 如申請專利範圍第42項至第44項中任—項的輸出耦合 透鏡(14)’其特徵爲:被固定在具有至少一個發射第一 種波長範圍之電磁輻射的半導體本體(1)的光電元件 上,其中第一種波長範圍包括紫外線輻射。 46. 如前述申請專利範圍的輸出耦合透鏡(14),其特徵爲: 能夠吸收紫外線光譜範圍之輻射。 47. 如前述申請專利範圍的輸出耦合透鏡(14),其特徵爲: 含有玻璃。 4 8 ·如申請專利範圍第4 2項至第4 7項中任一項的輸出耦合 透鏡(14),其特徵爲:內表面(16)帶有一個反射層(24)。 4 9 .如前述申請專利範圍的輸出耦合透鏡(1 4 ),其特徵爲: 輸出耦合透鏡會反射紫外線輻射。 50.如申請專利範圍第48項或第49項的輸出耦合透鏡 (14),其特徵爲:反射層(24)是一個介電反射鏡。 5 1 .如申請專利範圍第42項至第50項中任一項的輸出耦合 透鏡(1 4 ),其特徵爲’滿足逼近定理。 42 -200921952 X. Patent application scope: 1. A photovoltaic element having: - at least one semiconductor body (1) capable of emitting electromagnetic radiation of a first wavelength range; ... a heat sink (2) a semiconductor body (1) and a mirror (3) are disposed on the heat sink (2); a wavelength conversion layer (4) 'the wavelength conversion layer is a mirror located beside the semiconductor body (1) (3 And comprising a wavelength converting material (8) capable of converting at least a portion of the radiation of the first wavelength range emitted by the semiconductor body (1) into a light beam of the second wavelength range, and The second wavelength range is different from the first wavelength range. 2. A photovoltaic element according to the scope of the aforementioned patent application, characterized in that it has a plurality of semiconductor bodies (1) capable of emitting electromagnetic radiation. 3. The photovoltaic element according to any one of the preceding claims, wherein the wavelength conversion layer (4) is not provided on the radiation exit surface (5) of the gastric tract (1). 4. A photovoltaic element according to any one of the preceding claims, #胃^胃. The mirror (3) is located below the semiconductor body (1). 5_ The photovoltaic element according to any one of the preceding claims, wherein the stomach mirror (3) is in direct contact with the heat sink (2). 6. The photovoltaic element according to any one of the preceding claims, wherein the wavelength conversion layer (4) is in direct contact with the mirror (3). 7. A photovoltaic element according to any one of the preceding claims, # _ @胃. -36- 200921952 The wavelength conversion layer (4) is coated on the inner region (6) of the mirror, thus the mirror (3) The outer region (7) has no wavelength conversion layer (4). 8. A photovoltaic element according to the scope of the aforementioned patent application, characterized in that the semiconductor body (1) is located in the center of the inner region (6). 9. A photovoltaic element according to any of the preceding claims, characterized in that the reflectivity of the mirror (3) for electromagnetic radiation of the first and/or second wavelength range is at least 0.98. A photovoltaic element according to any one of the preceding claims, characterized in that the maximum roughness of the mirror (3) is 40 ηπι. 11. The photovoltaic element according to any one of claims 7 to 1 characterized in that the mirror (3) is at least in the interior of the outer region (7) without the wavelength conversion layer (4) One and/or the first wavelength range of radiation has specular reflection. A photovoltaic element according to any one of the preceding claims, characterized in that the mirror (3) comprises a metal layer (1 〇) and a Bragg mirror (11). A photovoltaic element according to the aforementioned patent application, characterized in that the Bragg mirror (11) is preferably composed of two yttria layers (2 〇) and two titanium oxide layers (1 9) arranged alternately. Composition. 1 4. A photovoltaic element according to item 2 or item 13 of the patent application, characterized in that the metal layer (10) contains a mark. 1. A photovoltaic element according to any one of the claims sra, characterized in that: the wavelength converting material (8) contains at least one material consisting of the following components - 37 - 200921952 material: rare earth metal doped garnet Alkaline earth metal sulfide doped with rare earth metal, sulfate doped with rare earth metal, aluminate doped with rare earth metal, orthosilicate doped with rare earth metal, chlorate doped with rare earth metal, doped Rare earth metal alkaline earth metal tantalum nitride, rare earth metal doped oxynitride, rare earth metal doped oxynitride. A photovoltaic element according to any one of the preceding claims, characterized in that the wavelength converting material (8) is embedded in a binder (9). A photovoltaic element according to the above patent application, characterized in that the adhesive (9) contains silicone, glass or a ceramic material. A photovoltaic element according to any one of the preceding claims, characterized in that a scatterer (12) is arranged above the semiconductor body (1) and the wavelength conversion layer (4). 19. A photovoltaic element according to the scope of the aforementioned patent application, characterized in that the scatterer (12) contains scattering particles (13). A photovoltaic element according to the above patent application, characterized in that the scattering fine particles (13) contain at least one of the following materials: alumina, titanium oxide. 2 1 . The photovoltaic element according to claim 19 or 20, wherein the scattering particles (13) are embedded in a matrix material, the matrix material comprising at least one of the following materials: silicone , epoxide. The photovoltaic element according to any one of claims 18 to 21, characterized in that the scatterer (12) is made into a hemisphere or a hemispherical shell. 23. A photovoltaic element according to the aforementioned patent application, characterized in that the scatterer (12) - 38 - 200921952 is situated above the exact center of the semiconductor body (1) and on one side is connected to the wavelength conversion layer (4). 2 4 . The photovoltaic element according to claim 2 or 2, wherein the scatterer (12) is formed into a hemispherical shell and the semiconductor body is filled with a transparent slab (23). (1) and the space between the scatterers (12). A photovoltaic element according to any of the preceding claims, characterized in that it has an output coupling lens (14) which functions to externally couple the radiation emitted by the photovoltaic element. 26. A photovoltaic element according to the preceding claims, characterized in that the output coupling lens (14) is situated above the scatterer (12). 27. A photovoltaic element according to claim 25 or claim 26, wherein the output coupling lens (14) is formed as a hemispherical shell and is disposed above the positive center of the semiconductor body (1). 28. A photovoltaic element according to any one of claims 25 to 27, characterized in that the output coupling lens (14) satisfies the approximation theorem. The photovoltaic element according to any one of the preceding claims, characterized in that: the radiation of the first wavelength range emitted by the semiconductor body (1) comprises ultraviolet radiation, and at least a part of the ultraviolet radiation is wavelength-converted layer (4) ) converted into visible radiation. A photovoltaic element according to any one of the preceding claims, wherein the output coupling lens (14) absorbs ultraviolet radiation emitted by the semiconductor body (1). 3 1. A photovoltaic element according to the aforementioned patent application, characterized in that: -39- 200921952 The output coupling lens (14) contains glass. 32. A photovoltaic element according to any of the preceding claims, characterized in that: a reflective layer (24) is provided above the semiconductor body (1) for reflecting radiation of the first wavelength range and allowing the second Radiation of a range of wavelengths passes through. 3. A photovoltaic element according to any one of the preceding claims, characterized in that the reflective layer reflects ultraviolet radiation of a first wavelength range and allows visible light of a second wavelength range Radiation passes through. 3 4. A photovoltaic element according to claim 3 or 3, wherein the reflective layer (24) is a dielectric mirror. The light-emitting element according to any one of items 2 to 4, wherein the reflective layer (24) is characterized by any one of the items (2) to (4) It is disposed on the inner surface (16) of the output coupling lens (14). A photovoltaic element according to any one of claims 25 to 3, characterized in that the output coupling lens (14) has an arched inner surface (16) whose function is in the semiconductor A cavity (25) is formed above the body (1). The inner surface (16) has an inner partial region (26) and an outer portion® field (29). The inner partial region (26) is at the output coupling lens (14). The radiation direction (28) has a convex curvature or tip (27), and the slope rate of the inner surface (16) changes there, and the outer partial region (29) is shot at the output coupling lens (14). The direction (28) has a concave curvature that at least partially surrounds the inner partial region (26). 37. A photovoltaic element according to the preceding claims, characterized in that the output coupling -40-200921952 lens (14) has an optical axis (15) of the output surface of the coupling lens (14) rotationally symmetric. 3 8. A photovoltaic element according to claim 36 or item 37, characterized in that the optical axis (15) of the output coupling lens (14) passes through the inner surface (16) of the output coupling lens (14) Inner partial area (26). The photovoltaic element according to any one of claims 3-6 to 38, characterized in that the outer surface (17) of the output coupling lens (14) is spherical. 40. A photovoltaic element according to any of the preceding claims, characterized in that the heat sink (2) is a piece of printed circuit board. The photovoltaic element according to any one of the preceding claims, characterized in that the heat sink (2) contains at least one of the following materials: copper, aluminum nitride, aluminum oxide, ruthenium, silver, aluminum. 4 2 . A separately produced output coupling lens (14) fixed to a photovoltaic element having at least one electromagnetically-regulated semiconductor body (1) emitting a first wavelength range, having: - an arch The inner surface (6) functions to form a cavity (25) above the semiconductor body (1); an inner surface (16) has an inner partial region (26) and an outer partial region (29), wherein The partial region (26) has a convex curvature or tip (27) in the radiation direction (28) of the output coupling lens (14), and the slope of the inner surface (16) changes there, and the outer partial region (29) is The radiation direction (28) of the output coupling lens (14) has a concave curvature that at least partially surrounds the inner partial region (26). -41 - 200921952 · 4 3 · The output affinity lens (1 4 ) of the patent range of the application of Nra is characterized by: the inner surface (16) is rotationally symmetric with respect to the optical axis (15) of the output coupling lens (14) 'And the optical axis (15) passes through the inner partial region (26). 44. The output coupling lens (14)' as claimed in claim 42 or 43 is characterized in that the outer surface (17) is spherical in shape. 45. An output coupling lens (14) as claimed in any one of claims 42 to 44, characterized in that it is fixed to a semiconductor body having at least one electromagnetic radiation emitting a first wavelength range (1) On the photovoltaic element, the first wavelength range includes ultraviolet radiation. 46. An output coupling lens (14) according to the aforementioned patent application, characterized in that it is capable of absorbing radiation in the ultraviolet spectral range. 47. An output coupling lens (14) according to the aforementioned patent application, characterized in that it comprises glass. The output coupling lens (14) of any one of claims 4 to 4, wherein the inner surface (16) is provided with a reflective layer (24). 4 9. An output coupling lens (14) according to the aforementioned patent application, characterized in that the output coupling lens reflects ultraviolet radiation. 50. An output coupling lens (14) according to claim 48 or 49, wherein the reflective layer (24) is a dielectric mirror. The output coupling lens (14) of any one of claims 42 to 50, characterized in that 'the approximation theorem is satisfied. 42 -
TW97134665A 2007-09-28 2008-09-10 Opto-electronic element and uncoupling lens for an opto-electronic element TW200921952A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007046698 2007-09-28
DE102007059548A DE102007059548A1 (en) 2007-09-28 2007-12-11 Optoelectronic component and coupling-out lens for an optoelectronic component

Publications (1)

Publication Number Publication Date
TW200921952A true TW200921952A (en) 2009-05-16

Family

ID=40384477

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97134665A TW200921952A (en) 2007-09-28 2008-09-10 Opto-electronic element and uncoupling lens for an opto-electronic element

Country Status (3)

Country Link
DE (1) DE102007059548A1 (en)
TW (1) TW200921952A (en)
WO (1) WO2009039824A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283047A (en) * 2010-12-29 2013-09-04 3M创新有限公司 Phosphor reflector assembly for remote phosphor led device
CN103299422A (en) * 2010-12-29 2013-09-11 3M创新有限公司 Remote phosphor LED device with broadband output and controllable color
US9360176B2 (en) 2010-12-29 2016-06-07 3M Innovative Properties Company Remote phosphor LED constructions
CN106463591A (en) * 2014-06-02 2017-02-22 3M创新有限公司 LED with remote phosphor and shell reflector

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343831B2 (en) * 2009-04-16 2013-11-13 日亜化学工業株式会社 Light emitting device
DE102011003969B4 (en) * 2011-02-11 2023-03-09 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Process for producing an optoelectronic component
KR20140082793A (en) * 2011-10-14 2014-07-02 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Lens assembly for remote phosphor led device
DE102011116752A1 (en) * 2011-10-24 2013-04-25 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component and scattering agent
WO2013180890A1 (en) 2012-06-01 2013-12-05 3M Innovative Properties Company Hybrid light bulbs using combinations of remote phosphor leds and direct emitting leds
DE202013101400U1 (en) * 2013-04-02 2014-07-03 Zumtobel Lighting Gmbh Arrangement for converting the light emitted by an LED light source
DE102014100991A1 (en) * 2014-01-28 2015-07-30 Osram Opto Semiconductors Gmbh Light-emitting device and method for producing a light-emitting device

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581778Y2 (en) * 1993-12-21 1998-09-24 株式会社小糸製作所 Vehicle sign lights
US5684309A (en) 1996-07-11 1997-11-04 North Carolina State University Stacked quantum well aluminum indium gallium nitride light emitting diodes
EP1017113B1 (en) 1997-01-09 2012-08-22 Nichia Corporation Nitride semiconductor device
US5831277A (en) 1997-03-19 1998-11-03 Northwestern University III-nitride superlattice structures
JP2000347601A (en) * 1999-06-02 2000-12-15 Toshiba Electronic Engineering Corp Light emitting device
JP4235992B2 (en) * 1999-09-01 2009-03-11 スタンレー電気株式会社 Vehicle lighting
DE19955747A1 (en) 1999-11-19 2001-05-23 Osram Opto Semiconductors Gmbh Optical semiconductor device with multiple quantum well structure, e.g. LED, has alternate well layers and barrier layers forming super-lattices
AU3226101A (en) * 2000-02-09 2001-08-20 Nippon Leiz Corporation Light source
DE10038213A1 (en) * 2000-08-04 2002-03-07 Osram Opto Semiconductors Gmbh Radiation source and method of making a lens mold
DE10065381B4 (en) * 2000-12-27 2010-08-26 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor component with luminescence conversion element
DE10101554A1 (en) 2001-01-15 2002-08-01 Osram Opto Semiconductors Gmbh emitting diode
JP4009097B2 (en) * 2001-12-07 2007-11-14 日立電線株式会社 LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LEAD FRAME USED FOR MANUFACTURING LIGHT EMITTING DEVICE
US6791116B2 (en) * 2002-04-30 2004-09-14 Toyoda Gosei Co., Ltd. Light emitting diode
JP2004047748A (en) * 2002-07-12 2004-02-12 Stanley Electric Co Ltd Light-emitting diode
CN100468791C (en) * 2002-08-30 2009-03-11 吉尔科有限公司 Light emitting diode with improved effience
JP2004111623A (en) * 2002-09-18 2004-04-08 Toyoda Gosei Co Ltd Light emitting device
JP4040955B2 (en) * 2002-11-06 2008-01-30 株式会社小糸製作所 Vehicle headlamp and manufacturing method thereof
US20050067681A1 (en) * 2003-09-26 2005-03-31 Tessera, Inc. Package having integral lens and wafer-scale fabrication method therefor
US7497581B2 (en) * 2004-03-30 2009-03-03 Goldeneye, Inc. Light recycling illumination systems with wavelength conversion
DE102004047640A1 (en) 2004-09-30 2006-04-13 Osram Opto Semiconductors Gmbh Optoelectronic component and housing for an optoelectronic component
KR101080355B1 (en) * 2004-10-18 2011-11-04 삼성전자주식회사 Light emitting diode, lens for the same
WO2006109113A2 (en) * 2005-04-12 2006-10-19 Acol Technologies Sa Primary optic for a light emitting diode
JP4761848B2 (en) * 2005-06-22 2011-08-31 株式会社東芝 Semiconductor light emitting device
US7382091B2 (en) * 2005-07-27 2008-06-03 Lung-Chien Chen White light emitting diode using phosphor excitation
US7745985B2 (en) * 2005-11-04 2010-06-29 Panasonic Corporation Light-emitting module, and display unit and lighting unit using the same
JP4993434B2 (en) * 2005-11-18 2012-08-08 スタンレー電気株式会社 White LED lighting device
CN101578478B (en) * 2007-01-15 2011-06-22 香港应用科技研究院有限公司 Light emitting device and lens thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283047A (en) * 2010-12-29 2013-09-04 3M创新有限公司 Phosphor reflector assembly for remote phosphor led device
CN103299422A (en) * 2010-12-29 2013-09-11 3M创新有限公司 Remote phosphor LED device with broadband output and controllable color
US9159885B2 (en) 2010-12-29 2015-10-13 3M Innovative Properties Company Remote phosphor LED device with broadband output and controllable color
US9360176B2 (en) 2010-12-29 2016-06-07 3M Innovative Properties Company Remote phosphor LED constructions
CN103299422B (en) * 2010-12-29 2016-11-02 3M创新有限公司 There is the long-distance fluorescent powder LED matrix of Broadband emission and controllable color
CN103283047B (en) * 2010-12-29 2017-06-16 3M创新有限公司 For the reflections from phosphor particles device assembly of long-distance fluorescent powder LED matrix
CN106463591A (en) * 2014-06-02 2017-02-22 3M创新有限公司 LED with remote phosphor and shell reflector

Also Published As

Publication number Publication date
DE102007059548A1 (en) 2009-04-02
WO2009039824A3 (en) 2009-10-15
WO2009039824A2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
TW200921952A (en) Opto-electronic element and uncoupling lens for an opto-electronic element
TWI419361B (en) Optoelectronics component
JP5515992B2 (en) Light emitting device
JP4847954B2 (en) Reflecting member, light emitting device and lighting device using the same
JP6170495B2 (en) Light emitting module, lamp, lighting fixture and display device
US9680075B2 (en) Light-emitting device
US9685594B2 (en) LED module and method of preparing the LED module, lighting device
JP5797907B2 (en) Light emitting diode element
RU2581426C2 (en) Light-emitting module, lamp, lighting device and display device
US20090194776A1 (en) Light-Emitting Diode Arragement Comprising a Color-Converting Material
US8965148B2 (en) Optoelectronic component and method for producing an optoelectronic component
JP2006216953A (en) Light emitting diode device
JP2011014587A (en) Light emitting device
EP2269239A2 (en) A luminous device
JP2010199547A (en) Light emitting device and method of manufacturing same
JP6169383B2 (en) Light emitting module and light source device
JP2017117858A (en) Light-emitting device
JP6520736B2 (en) Lighting device
JP6361645B2 (en) Light emitting device
TW201314973A (en) Optoelectronic component and method for manufacturing an optoelectronic component
JP2013531381A (en) Radiation emission parts
JP2006351809A (en) Light emitting device
JP2008258438A (en) Semiconductor light emitting device
JP2019165237A (en) Light-emitting device
JP6024685B2 (en) Light emitting device