TW200921931A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
TW200921931A
TW200921931A TW96141610A TW96141610A TW200921931A TW 200921931 A TW200921931 A TW 200921931A TW 96141610 A TW96141610 A TW 96141610A TW 96141610 A TW96141610 A TW 96141610A TW 200921931 A TW200921931 A TW 200921931A
Authority
TW
Taiwan
Prior art keywords
layer
light
oxide
tin oxide
indium tin
Prior art date
Application number
TW96141610A
Other languages
Chinese (zh)
Other versions
TWI360892B (en
Inventor
Chih-Chiang Lu
Wu-Tsung Lo
Sheng-Feng Huag
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to TW96141610A priority Critical patent/TWI360892B/en
Publication of TW200921931A publication Critical patent/TW200921931A/en
Application granted granted Critical
Publication of TWI360892B publication Critical patent/TWI360892B/en

Links

Abstract

Disclosed is a light-emitting device, comprising a substrate, an isolation layer, an adhesive layer, an epitaxial structure, a first reflect layer, a second reflect layer, a first electrode, and a second electrode, wherein the first electrode and the second electrode are on the same surface of the epitaxial structure.

Description

200921931 八、本案若有化學式時,請揭示最能顯示發明 特徵的化學式: 無 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種發光元件,尤其關於一種可縮短p/n 電極距離,增加光取出效率之發光二極體結構。 【先前技術】 發光二極體包含以能夠放射出特定波長之光線的p-n 接面組成如同質結構(Homostructure)、單異質結構(Single Heterostructure;SH)、雙異質結構(Double Heterostructure ; DH)、或是多重量子井(Multiple Quantum Well ; MQW)等結 構所堆疊而成的磊晶結構。由於發光二極體具有低耗電 量、低散熱量、操作壽命長、财撞擊、體積小、反應速度 快、以及可發出穩定波長的色光等良好光電特性,因此常 應用於家電、儀表之指示燈、光電產品之應用光源、以及 光電通訊領域等。 目前發光二極體之p/n電極分別形成於不同平面上, 以達到電流擴散的效果。另外,為了提昇發光效率,可利 200921931 用表面粗化技術將發光效率提昇3 〇 %以上 【發明内容】 本lx明之目的在縮短p/n電極間之距離,減少為增 加歐姆接觸面積而延伸之金屬電極所造成之遮光區域,亦 增加電流擴散的效果。 本心明之另一目的係在將晶粒尺寸縮小,同時在遮光 金屬電極下方形成反射層,增加光一次反射而出光的機 f ’提升光取出效率。此外,因晶粒尺寸縮小,可增加每 單位蟲晶片晶粒產出量,降低生產成本。 包含一永久 一反射層、 根據本發明之實施例,一發光二極體至少 一蟲晶 結構、一第 基板、一絕緣層、一接合層、 -第二反射層、一第一電極及一第二電極。其中,該永久 基板可為-導熱性基板、導電性基板,或透光性基板。該 接合層位於永久基板之上。該絕緣層位於永久基板和接合 層之間’可進一步包含一單層或多層材料組合。該磊晶結 構包含-第-電性半導體層、—活性層及—第二電性半導 體層。第一電極係形成於第一電性半導體層之上,且有一 第-反射層位於二者之間;第二電極係形成於第二電性半 導體層之上,且有一第二反射層位於二者之間。一保護層 係覆蓋於磊晶結構上未被第一電極及第二電極覆蓋之區 域0 200921931 【實施方式】 “本發明揭露一種p/n金屬電極位於同一平面上,縮短p/n 電極間之距離’減少為增加歐姆接觸面積而導致金屬電極 所造成之遮光區域,也可幫助電流擴散。為了使本發明之敘述 更加詳盡與完備,可配合第1圖至第7圖之圖示,參照下列描述。 第1至4圖為習知發光元件之結構側視圖。請參照第1 圖,驾知發光元件,例如一發光二極體丨〇〇,包含一成長基 板1〇1,其材料可為坤化鎵(GaAs)、石夕、碳化石夕(SiC)、藍 寶石、磷化銦或磷化鎵。接著,於成長基板1〇1上形成磊 晶結構10。磊晶結構10係藉由一磊晶製程所形成,例如有 機金屬氣相沉積磊晶法(M〇CVD)、液相磊晶法(LpE)或分子 束磊晶法(MBE)等磊晶製程。此磊晶結構1〇至少包含一第 一電性半導體層1〇3,例如為一 ^型磷化鋁鎵銦 (AlxGai-x)〇.5ln〇.5P層;一活性層104,例如為麟化鋁鎵銦 (AlxGahJo 5ln〇 sp所形成的多重量子井結構;以及一第二 電性半導體層105 ’例如為一 p型填化銘鎵銦 (AlxGa丨-x)0 5In〇 jP層。另外,本實施例之活性層1〇4可由 例如同質結構、單異質結構、雙異質結構、或是多重量子 井結構所堆疊而成。 請參照第2圖《接著,於磊晶結構10上形成一第二電 性接觸層106及一反射層107。第二電性接觸層106的材料 可為氧化姻錫(Indium Tin Oxide)、氧化銦(Indium Oxide)、 氧化錫(Tin Oxide)、氧化編錫(Cadmium Tin Oxide)、氧化 200921931 鋅(Zinc Oxide)、氧化镁(Magnesium Oxide)或氮化鈦 (Titanium Nitride)。反射層1 07可為金屬材料,例如銘、金、 鉑、鋅、銀、鎳、鍺、銦、錫或其合金;也可由金屬和氧 化物組合而成,例如氧化銦錫/銀(ITO/Ag)、氧化銦錫/氧化 鋁/銀(IT0/A10x/Ag)、氧化銦錫/氧化鈦/氧化矽 (ITO/TiOx/SiOx)、氧化鈦/氧化矽/鋁(TiOx/SiOx/Al)、氧化銦 錫/氮化矽/鋁(ITO/SiNx/Al)、氧化銦錫/氮化矽/銀 (ITO/SiNx/Ag)、氧化銦錫/氮化矽/氧化鋁/鋁 (IT0/SiNx/Al203/Al)、或氧化銦錫/氮化矽/氧化鋁/銀 (IT0/SiNx/Al203/Ag)。 再參照第3圖,於一永久基板110上形成一絕緣層109 及一接合層108。其中永久基板110其材料可為矽(Si)、銅 (Cu)、鋁(A1)、鉬(Mo)、金(Au)、銀(Ag)等導電性材料。絕 緣層109由一單層或多層之絕緣材料所組成,其材料可為 氧化鋁(A10x)、氧化矽(SiOx)、氮化矽(SiNx)、類鑕薄膜、 碳化矽(SiC)或氮化鋁(A1N)等,其厚度約為1-30μιη。接 合層108的材料可以是如銀、金、鋁、銦等金屬材料,或 為自發性導電高分子,或高分子中摻雜如铭、金、銘、鋅、 銀、錄、緒、銦、錫、鈦、錯、銅、把或其合金所組成之 導電材質。 參照第4圖,接著,將如第2圖所示具有反射層107的磊晶結 構接合於如第3圖所示的接合層108之上,再藉由雷射剝離技術、 蝕刻製程或化學機械研磨製程等方式移除成長基板(圖未 200921931 不)。成長基板101移除後,裸露出磊晶結構1〇之第一電 性半導體4 1G3的表面,再於其上形成第_電性接觸層 102。第一電性接觸層1〇2的材料可為氧化銦錫(indhmTin Oxide)、氧化銦(Indium 〇xide)、氧化錫(Ήη 〇xide)、氧化 鎘錫(Cadmium Tin Oxide)、氧化鋅(zinc 〇xide)、氧化鎂 (Magnesium 〇xide)、氮化鈦(Titanium NitHde)、鍺金… 或鍺金鎳(Ge/Au/Ni)所形成之薄膜,並可選擇性地於該薄膜 上以蝕刻製程形成特定圖案。 如第4圖所示,將磊晶結構1〇自第一電性接觸層1〇2、 第一電性半導體層1〇3、活性層1〇4、第二電性半導體層1〇5 由上而下蝕刻至露出第二電性接觸層106上表面以开I成隔 絕道116及發光二極體側邊平臺a、b,並將蟲晶結構區域 分成第一區域A及第二區域B二部份。再將第一區域A之 第一電性接觸層1〇2上表面及/或下表面蝕刻成粗糙面。在 一較佳實施例中’帛一區域A之第一電性接觸層1〇2上表 面及/或下表面亦可不為粗糙面。 接著’利用熱蒸鍍(Thermal Evap〇rati〇n)、電子束蒸鍍 (E-beam)或離子濺鍍(Sputtering)等方法,於第一區域a之 第弘性接觸層上形成一第一電極112,並於第二區域 B之第一電性接觸層102上形成一第二電極113。第二電極 3也可覆蓋弟二區域B之蟲晶結構側邊。最後,再以一 保羞層U 4覆蓋於元件100部份第一電性接觸層102上表 面及第一區域A之磊晶結構側邊,即完成習知之發光二極 200921931 體 100 〇 以下僅就本發明實施例與習知發光二極體之差里處進 行說明,相似處在此則不再贅述。如帛5圖所示,將發光 二極體週邊區域從第—電性接觸層、苐-電性半導體層 ⑼、活性層1()4、第二電性半導體層阳由上而下姓靠 露出第二電性接觸層⑽上表面。再將第—電性接觸層⑽ 上表面及/或下表面㈣成粗糖面。第—電性接觸層⑽上 表面及/或下表面亦可不為粗糙面。 接著,利用熱蒸鍍(Thermal Evaporation)、電子束蒸鍍 (E-beam)或離子濺鍍(Spmtering)等方法,於 層⑽上形成-第-反射層⑽及—第二反射層H觸 以-保護層114覆蓋於元件細部份上表面及蟲晶結構側 邊區域。再分別於第一反射層112b及第二反射層】131?上 形成一第一電極112a及一第二電極113a。第二電極1]3a 沿著磊晶結構側邊區域和第二電性接觸層丨〇6電性連接, 即完成本實施例一之發光二極體2〇〇。 第7圖繪示根據本發明之第二實施例之覆晶式發光二 極體之結構側視圖。先參照第6圖,於磊晶結構1〇上形成 一第二電性接觸層1〇6,其材料可為氧化銦錫(Indiuin Tin Oxide)、氧化钢(Indium Oxide)、氧化錫(Tin Oxide)、氧化 錫錫(Cadmium Tin Oxide)、氧化鋅(Zinc Oxide)、氧化鎮 (Magnesium Oxide)或氮化鈦(Titanium Nitride)。再於一永久 ίο 200921931 基板上形成-絕緣層及—接合層(圖未示)。其#永久基板其 材料可為藍寳石(Sapphire)、碳化石夕(Sic)、破璃 '石英、氮 化紹(細)等透光性材料'絕緣層由—單層或多層之絕緣材 料所組成,其材料可為氧化紹(A队)、氧化石夕(Si〇x)、氮化 石增Nx)、類膜、碳切(Sic)或氮化㈣細)等,其 厚度約為1-30μηι。接合層的材料可以是如自發性導電高分 子’或高分子中摻雜如紹、金,、辞 '銀、鎳、鍺、:刀、 m銅 ' ㈣其合金所組成之導電材質。若透光 性水久基板為絕緣物質所組成時,絕緣層可省略。 如第七圖所不’完成之蟲晶結構與由透光性永久基板 110、絕緣層⑽及接合層⑽所組成之單元接合,並移除 成長基板後,裸露出蟲晶結構之第_電性半導體層103的 表面。接著’於第—電性半導體I 103上形成-第-電性 接觸層1G2。將發光二極體週邊區域從第—電性接觸層 1〇2、第一電性半導體層103、活性層104、第二電性半導 體層105由上而下蝕刻至露出第二電性接觸層1〇6上表 面,在此實施例中,亦可將第—電性接觸層⑽上表面及/ 或:表面蝕刻成粗糙面。再於第一電性接觸層1〇2上形成 -第-反射層112b及一第二反射層lm後,以一保護層 114覆蓋於第一電性接觸層1〇2未被第一反射層與第二反 射層覆蓋之區域。再分別於該第—反射層mb及該第二反 射層113b形成一第一電極ma及一第二電極n3a。且第 一電極113a /σ著磊晶結構側邊和第二電性接觸層i 〇6電性 連接,即完成本實施例之覆晶式發光二極體3〇〇。 200921931 其中第一反射層112b及第二反射層U3b材料可為金 屬材料’如銘、金、翻、鋅、銀、鎳、鍺、銦、錫、及其 合金。或金屬和氧化物組合而成,如氧化銦錫/銀(ITO/Ag)、 氧化銦錫/氧化鋁/銀(ITO/AlOx/Ag)、氧化銦錫/氧化鈦/氧化 矽(ITO/TiOx/SiOx)、氧化鈦 /氧化矽 /鋁(TiOx/SiOx/Al)、氧 化銦錫/氮化矽/鋁(ITO/SiNx/Al)、氧化銦錫/氮化矽/銀 (ITO/SiNx/Ag)、氧化銦錫/氮化;e夕/氧化銘/銘 (IT0/SiNx/A1203/Al)、或氧化銦錫/氮化石夕/氧化銘/銀 (IT0/SiNx/A1203/Ag)。 其中第一電極112、112a的材料可為:In、A卜Ti、 Au、W、InSn、TiN、WSi、Ptln2、Nd/Al、Ni/Si、Pd/Al、 Ta/Al、Ti/Ag、Ta/Ag、Ti/Al、Ti/Au、Ti/TiN、Zr/ZrN、 Au/Ge/Ni、Cr/Ni/Au、Cr/Au、Cr/Au/Ti、Ni/Cr/Au、Ti/Pd/Au、 Ti/Pt/Au、Ti/Al/Ni/Au、Au/Si/Ti/Au/Si、Au/Ni/Ti/Si/Ti 或 其合金材料。而第二電極113、113 a的材料可為:Ni/Au、 NiO/Au、Pd/Ag/Au/Ti/Au、Pt/Ru、Ti/Pt/Au、Cr/Au、 Cr/Au/Ti、Pd/Ni、Ni/Pd/Au、Pt/Ni/Au、Ru/Au、Nb/Au、 Co/Au、Pt/Ni/Au、Ni/Pt、Niln 、Pt3ln7 或其合金材料。保 護層114的材料係選自由含;ε夕的氧化物、氮化物及高介電 有機材料所組成之一群組。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作各種之更動與潤飾,因此本發明之保護 12 200921931 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 本發明的較佳實施例將於實施方式之說明文字中輔以 下列圖形做更詳細的說明: 第1圖至第4圖係繪示根據習知之發光二極體的製程 不意圖。 第5圖係繪示根據本發明之實施例一之發光二極 結構側視圖。 的 第6、7圖係!會示根據本發明之實施例二之 體的結構側視圖。 & 一極 【主要元件符號說明】 1 〇 ·蟲晶結構 1〇〇、200、3 00 :發光二極體 1 〇 1 ·成長基板 102 :第一電性接觸層 103 :第一電性半導體層 104 :活性層 105·第二電性半導體層 106 .第二電性接觸層 13 200921931 107 :反射層 108 :接合層 109 :絕緣層 110 :永久基板 112、 112a :第一電極 112b :第一反射層 113、 113a:第二電極 113b :第二反射層 114 :保護層 116 :隔絕道 A :磊晶結構第一區域 B :磊晶結構第二區域 a、b :發光二極體側邊平台 14200921931 VIII. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: No. 9. Description of the invention: The present invention relates to a light-emitting element, and more particularly to a method for shortening the distance of the p/n electrode A light-emitting diode structure that increases light extraction efficiency. [Prior Art] A light-emitting diode comprises a pn junction which is capable of emitting light of a specific wavelength, such as a homostructure, a single Heterostructure (SH), a double heterostructure (DH), or It is an epitaxial structure in which multiple quantum wells (Multiple Quantum Wells; MQW) are stacked. Since the light-emitting diode has good photoelectric characteristics such as low power consumption, low heat dissipation, long operating life, financial impact, small volume, fast reaction speed, and color light which can emit stable wavelength, it is often used for indications of household appliances and meters. Light source, application source of optoelectronic products, and field of optoelectronic communication. At present, the p/n electrodes of the light-emitting diodes are respectively formed on different planes to achieve the effect of current spreading. In addition, in order to improve the luminous efficiency, the 200921931 can use the surface roughening technology to increase the luminous efficiency by more than 3%. [Inventive content] The purpose of the present invention is to shorten the distance between the p/n electrodes and to reduce the ohmic contact area. The light-shielding area caused by the metal electrode also increases the effect of current spreading. Another object of the present invention is to reduce the grain size while forming a reflective layer under the light-shielding metal electrode, and to increase the light extraction efficiency by increasing the light reflected by the light once. In addition, due to the reduction in grain size, the grain yield per unit of insect wafers can be increased, and the production cost can be reduced. Including a permanent reflection layer, according to an embodiment of the present invention, at least one crystal structure of a light emitting diode, a first substrate, an insulating layer, a bonding layer, a second reflective layer, a first electrode and a first Two electrodes. The permanent substrate may be a thermally conductive substrate, a conductive substrate, or a light transmissive substrate. The bonding layer is over the permanent substrate. The insulating layer between the permanent substrate and the bonding layer' may further comprise a single layer or a combination of layers of materials. The epitaxial structure comprises a -first electrical semiconductor layer, an active layer and a second electrical semiconductor layer. The first electrode is formed on the first electrical semiconductor layer, and a first reflective layer is disposed therebetween; the second electrode is formed on the second electrical semiconductor layer, and the second reflective layer is located on the second Between the people. A protective layer covers the region of the epitaxial structure that is not covered by the first electrode and the second electrode. 0 200921931 [Embodiment] The present invention discloses that a p/n metal electrode is located on the same plane, shortening between the p/n electrodes. The distance 'reduced to increase the ohmic contact area to cause the light-shielding area caused by the metal electrode can also help the current to spread. In order to make the description of the present invention more detailed and complete, the following diagrams can be used with reference to the drawings of Figs. 1 to 7 1 to 4 are side views showing the structure of a conventional light-emitting element. Referring to FIG. 1, a light-emitting element, such as a light-emitting diode, includes a growth substrate 1〇1, and the material thereof may be GaAs, SiO, SiC, sapphire, indium phosphide or gallium phosphide. Next, an epitaxial structure 10 is formed on the growth substrate 1〇1. The epitaxial structure 10 is formed by one Formed by an epitaxial process, such as an epitaxial process such as an organic metal vapor deposition epitaxy (M〇CVD), a liquid phase epitaxy (LpE), or a molecular beam epitaxy (MBE). A first electrical semiconductor layer 1 〇 3 is included, for example Is a type of aluminum gallium indium phosphide (AlxGai-x) 〇.5ln〇.5P layer; an active layer 104, such as linalized aluminum gallium indium (AlxGahJo 5ln〇sp formed by multiple quantum well structure; and a The second electrical semiconductor layer 105' is, for example, a p-type filled indium gallium indium (AlxGa丨-x) 0 5In〇jP layer. In addition, the active layer 1〇4 of the present embodiment may be, for example, a homogenous structure, a single heterostructure, or a double A heterostructure or a multi-quantum well structure is stacked. Referring to FIG. 2, a second electrical contact layer 106 and a reflective layer 107 are formed on the epitaxial structure 10. The second electrical contact layer 106 is formed. The material may be Indium Tin Oxide, Indium Oxide, Tin Oxide, Cadmium Tin Oxide, Oxide 200921931 Zinc Oxide, Magnesium Oxide Or titanium nitride (Titanium Nitride). The reflective layer 107 can be a metal material, such as Ming, gold, platinum, zinc, silver, nickel, bismuth, indium, tin or alloys thereof; or a combination of metal and oxide, For example, indium tin oxide/silver (ITO/Ag), indium tin oxide/alumina/silver (IT0/A10x/Ag) , indium tin oxide / titanium oxide / cerium oxide (ITO / TiOx / SiOx), titanium oxide / cerium oxide / aluminum (TiOx / SiOx / Al), indium tin oxide / tantalum nitride / aluminum (ITO / SiNx / Al), Indium tin oxide / tantalum nitride / silver (ITO / SiNx / Ag), indium tin oxide / tantalum nitride / aluminum oxide / aluminum (IT0 / SiNx / Al203 / Al), or indium tin oxide / tantalum nitride / aluminum oxide / Silver (IT0/SiNx/Al203/Ag). Referring again to FIG. 3, an insulating layer 109 and a bonding layer 108 are formed on a permanent substrate 110. The permanent substrate 110 may be made of a conductive material such as bismuth (Si), copper (Cu), aluminum (Al), molybdenum (Mo), gold (Au), or silver (Ag). The insulating layer 109 is composed of a single layer or a plurality of layers of insulating materials, and the material thereof may be aluminum oxide (A10x), yttrium oxide (SiOx), tantalum nitride (SiNx), germanium-like thin film, tantalum carbide (SiC) or nitride. Aluminum (A1N) or the like has a thickness of about 1 to 30 μm. The material of the bonding layer 108 may be a metal material such as silver, gold, aluminum or indium, or a spontaneous conductive polymer, or doped with a polymer such as Ming, Jin, Ming, Zinc, Silver, Record, Xu, Indium, A conductive material consisting of tin, titanium, copper, copper, or alloys thereof. Referring to FIG. 4, next, the epitaxial structure having the reflective layer 107 as shown in FIG. 2 is bonded to the bonding layer 108 as shown in FIG. 3, and then subjected to a laser lift-off technique, an etching process, or a chemical mechanical process. The growth substrate is removed by a grinding process or the like (Fig. 200921931 does not). After the growth substrate 101 is removed, the surface of the first electrical semiconductor 4 1G3 of the epitaxial structure 1 is exposed, and the first electrical contact layer 102 is formed thereon. The material of the first electrical contact layer 1〇2 may be indium tin oxide (indhmTin Oxide), indium oxide (Indium 〇xide), tin oxide (Ήη 〇xide), cadmium tin oxide (Cadmium Tin Oxide), zinc oxide (zinc) 〇xide), magnesium oxide (Magnesium 〇xide), titanium nitride (Titanium NitHde), sheet metal... or a film formed of sheet metal nickel (Ge/Au/Ni), and optionally etched on the film The process forms a specific pattern. As shown in FIG. 4, the epitaxial structure 1 is formed from the first electrical contact layer 1〇2, the first electrical semiconductor layer 1〇3, the active layer 1〇4, and the second electrical semiconductor layer 1〇5. The upper surface is etched to expose the upper surface of the second electrical contact layer 106 to open the isolation track 116 and the light-emitting diode side platforms a, b, and divide the insect crystal structure into the first area A and the second area B. Two parts. Then, the upper surface and/or the lower surface of the first electrical contact layer 1〇2 of the first region A is etched into a rough surface. In a preferred embodiment, the surface and/or the lower surface of the first electrical contact layer 1〇2 of the region A may not be a rough surface. Then, by using thermal evaporation (Electrical Evap〇rati〇n), electron beam evaporation (E-beam) or ion sputtering (Sputtering), a first layer is formed on the first contact layer of the first region a. The electrode 112 and a second electrode 113 are formed on the first electrical contact layer 102 of the second region B. The second electrode 3 may also cover the side of the insect crystal structure of the second region B. Finally, a shrub layer U 4 is applied to cover the upper surface of the first electrical contact layer 102 of the device 100 and the side of the epitaxial structure of the first region A, that is, the conventional light-emitting diode 200921931 body 100 〇 is completed. The difference between the embodiment of the present invention and the conventional light-emitting diode is described, and the similarities are not described herein again. As shown in FIG. 5, the peripheral region of the light-emitting diode is from the top-electric contact layer, the germanium-electric semiconductor layer (9), the active layer 1 () 4, and the second electrical semiconductor layer. The upper surface of the second electrical contact layer (10) is exposed. Further, the upper surface and/or the lower surface (four) of the first electrical contact layer (10) are formed into a rough sugar surface. The upper surface and/or the lower surface of the first electrical contact layer (10) may not be a rough surface. Next, a method of forming a first-reflecting layer (10) and a second reflecting layer H on the layer (10) by means of thermal evaporation, electron beam evaporation (E-beam) or ion sputtering (Spmtering) The protective layer 114 covers the upper surface of the thin portion of the element and the side region of the crystal structure. A first electrode 112a and a second electrode 113a are formed on the first reflective layer 112b and the second reflective layer 131. The second electrode 1]3a is electrically connected to the second electrical contact layer 6 along the side of the epitaxial structure, that is, the light-emitting diode 2 of the first embodiment is completed. Fig. 7 is a side view showing the structure of a flip-chip type light emitting diode according to a second embodiment of the present invention. Referring to FIG. 6, a second electrical contact layer 1〇6 is formed on the epitaxial structure 1〇, and the material thereof may be Indium Oxide, Indium Oxide, Tin Oxide. ), tin oxide tin oxide (Zadmium Tin Oxide), zinc oxide (Zinc Oxide), oxidized town (Magnesium Oxide) or titanium nitride (Titanium Nitride). An insulating layer and a bonding layer (not shown) are formed on a permanent ίο 200921931 substrate. The material of the #permanent substrate may be sapphire, Sic, glazed quartz, nitriding, or the like. The insulating layer is made of a single layer or a plurality of layers of insulating material. The composition may be Oxidized (Part A), Oxidized Stone (Si〇x), Nitride (Nx), Membrane, Carbon (Sic) or Nitrided (Four), etc., and the thickness is about 1 30μηι. The material of the bonding layer may be a conductive material composed of an alloy such as a spontaneous conductive polymer or a polymer doped with a polymer such as sau, gold, or 'silver, nickel, niobium, knives, m-copper' (iv). If the light-transmitting water-repellent substrate is composed of an insulating material, the insulating layer can be omitted. As shown in the seventh figure, the completed crystal structure is bonded to a unit composed of the transparent permanent substrate 110, the insulating layer (10), and the bonding layer (10), and the grown substrate is removed, and the first crystal structure is exposed. The surface of the semiconductor layer 103. Next, a -first electrical contact layer 1G2 is formed on the first electrical semiconductor I 103. The peripheral region of the light emitting diode is etched from the first electrical contact layer 1 2, the first electrical semiconductor layer 103, the active layer 104, and the second electrical semiconductor layer 105 from top to bottom to expose the second electrical contact layer 1上6 upper surface, in this embodiment, the upper surface and/or surface of the first electrical contact layer (10) may also be etched into a rough surface. After the first reflective layer 112b and the second reflective layer lm are formed on the first electrical contact layer 1〇2, the first electrical contact layer 1〇2 is not covered by the first reflective layer. The area covered by the second reflective layer. A first electrode ma and a second electrode n3a are formed on the first reflective layer mb and the second reflective layer 113b, respectively. The first electrode 113a / σ is electrically connected to the second electrical contact layer i 〇 6 on the side of the epitaxial structure, that is, the flip-chip LED 3 本 of the embodiment is completed. 200921931 The material of the first reflective layer 112b and the second reflective layer U3b may be metal materials such as metal, silver, zinc, silver, nickel, antimony, indium, tin, and alloys thereof. Or a combination of metal and oxide, such as indium tin oxide/silver (ITO/Ag), indium tin oxide/alumina/silver (ITO/AlOx/Ag), indium tin oxide/titanium oxide/yttria (ITO/TiOx) /SiOx), titanium oxide/yttria/aluminum (TiOx/SiOx/Al), indium tin oxide/yttria/aluminum (ITO/SiNx/Al), indium tin oxide/tantalum nitride/silver (ITO/SiNx/ Ag), indium tin oxide / nitriding; e eve / oxidized Ming / Ming (IT0 / SiNx / A1203 / Al), or indium tin oxide / nitride nitride / oxidation / silver (IT0 / SiNx / A1203 / Ag). The material of the first electrodes 112, 112a may be: In, A, Ti, Au, W, InSn, TiN, WSi, Ptln2, Nd/Al, Ni/Si, Pd/Al, Ta/Al, Ti/Ag, Ta/Ag, Ti/Al, Ti/Au, Ti/TiN, Zr/ZrN, Au/Ge/Ni, Cr/Ni/Au, Cr/Au, Cr/Au/Ti, Ni/Cr/Au, Ti/ Pd/Au, Ti/Pt/Au, Ti/Al/Ni/Au, Au/Si/Ti/Au/Si, Au/Ni/Ti/Si/Ti or alloy materials thereof. The material of the second electrode 113, 113 a may be: Ni/Au, NiO/Au, Pd/Ag/Au/Ti/Au, Pt/Ru, Ti/Pt/Au, Cr/Au, Cr/Au/Ti , Pd/Ni, Ni/Pd/Au, Pt/Ni/Au, Ru/Au, Nb/Au, Co/Au, Pt/Ni/Au, Ni/Pt, Niln, Pt3ln7 or alloy materials thereof. The material of the protective layer 114 is selected from the group consisting of oxides, nitrides, and high dielectric organic materials. While the present invention has been described above by way of a preferred embodiment, it is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. Protection 12 200921931 The scope of the patent application is subject to the definition of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS Preferred embodiments of the present invention will be described in more detail with reference to the following figures in the description of the embodiments: FIGS. 1 to 4 are diagrams showing the process of a light-emitting diode according to the prior art. Not intended. Figure 5 is a side elevational view of a light emitting diode structure in accordance with an embodiment of the present invention. Figures 6 and 7 show a side view of the structure of the body according to the second embodiment of the present invention. & One pole [Description of main components] 1 虫 · Insect crystal structure 1〇〇, 200, 3 00 : Light-emitting diode 1 〇 1 · Growth substrate 102 : First electrical contact layer 103 : First electrical semiconductor Layer 104: active layer 105·second electrical semiconductor layer 106. Second electrical contact layer 13 200921931 107: reflective layer 108: bonding layer 109: insulating layer 110: permanent substrate 112, 112a: first electrode 112b: first Reflective layer 113, 113a: second electrode 113b: second reflective layer 114: protective layer 116: isolated track A: epitaxial structure first region B: epitaxial structure second region a, b: light emitting diode side platform 14

Claims (1)

200921931 十、申請專利範圍: 1.一種發光元件,至少包含·· 一永久基板; 一接合層,形成於該永久基上; 一磊晶結構,形成於該接合層上; 一第一電極,形成於該磊晶結構之上表面; 弟反射層,形成於該磊晶結構與該第一電極之間; 一第二電極,形成於該磊晶結構之上表面; 第反射’形成於該蟲晶結才冓與該第二電極之 間;以及 一保護層’形成於該磊晶結構之周圍。 2·如申請專利範圍帛1項所述之發光元件,其中更包含 一絕緣層,形成於該永久基板上。 3 3.如申請專利範圍第2項所述之發光元件,其中該永 久基板具導電性。 〆、口〆7 其中該永 中該磊晶 上,且與 4.如申請專利範圍第1項所述之發光元件, 久基板具透光性。 5·如申請專利範圍第1項所述之發光元件,其 結構更至少包含: 一第二電性半導體層,形成於該接合層 15 200921931 5亥第二電極電性連接; 二:性層,形成於該第二電性半導體層上;以及 電性半導體層,形成於該活性層上,且與 w弟 电極電性連接,其中續筮_ + 性心〜; 亥第—電性半導體層的電 ’、问於该第一電性半導體層的電性。 元件’其中該磊 6.如申凊專利範圍第5項所述之發光 結構更至少包含: 導體層觸層’位於該第-電極和該第-電性半 合層2Γ電性接觸層,位於該第二電性何體層和該接 7,如中請相第6項所述之 電性接觸層之上表面及/或下表面為_面。 第 —8.如巾請專利範圍第3項所述之發光元件,其中更包含 反射層,係位於該蟲晶結構與該接合層之間。 9如巾請專利_第丨項所述之發光元件,其中該接合 料係選自銀、金、叙、铜等金屬材料,或為自發性 广分子,或尚分子中摻雜如鋁、金、鉑、鋅、銀、鎳、 •、銦、錫、鈦,、銅、鈀或其合金所組成之導電材質。 10·如申請專利範圍第2項所述之發光元件,其中該絕 200921931 緣層至少包含一單層或多層材料;係選自氧化鋁(A1〇x)、氧 化石夕(SiOx)、氮化石夕(SiNx)、由化學氣相沉積法(CVD)成長 之類鑽(Diamond like)薄膜、碳化矽(siC)、及氮化鋁(A1N) 所構成之群組。 11. 如申請專利範圍第2項所述之發光元件,其中該絕 緣層之厚度為1-30μηι。 12. 如申請專利範圍第6項所述之發光元件,其中該第 一電性接觸層與該第二電性接觸層的材料係選自氧化銦錫 (Indium Tin Oxide)、氧化銦(Indium 〇xide)、氧化錫(Tin Oxide)、氧化鎘錫(Cadmium Tin 〇xide)、氧化鋅⑺如 Oxide)、氧化錢(Magnesium 〇xide)、氮化鈦卿⑽— NUdde)、鍺金(Ge/Au)、及錯金鎳(Ge/Au/Ni)所組成之一群 13 ·如申明專利範圍第】項所述之發光元件,其中該第 反射層與該第二反射層的材料可為金屬材料,係選自 鋁金、敍、鋅、銀、錄、錯、姻、錫、及其合㈣ 之一群組。 汝申明專利範圍第】項所述之發光元件,其中該第 反射層與該第二反射層的材料可為金屬和氧化物組合而 ίτο/Γ選自氧化銦錫/銀_/Ag)、氧化銦錫/氧化靖 陶AlCVAg)、氧化銦崎化鈦/氧切(iTO/Ti(vs叫、 200921931 氧化鈦/氧化矽/鋁(TiOx/SiOx/Al)、 氧化銦錫/氮化矽/鋁 (ITO/SiNx/Al)、氧化銦錫/氮化矽/銀(ITO/SiNx/Ag)、氧化銦 錫/氮化矽/氧化鋁/鋁(IT0/SiNx/Al203/Al)、及氧化銦錫/氮 化矽/氧化鋁/銀(IT0/SiNx/Al203/Ag)所組成之一群組。 1 5.如申請專利範圍第8項所述之發光元件,其中該反 射層可為金屬材料,係選自鋁、金、鉑、鋅、銀、鎳、鍺、 銦、錫、及其合金所組成之一群組。 16. 如申請專利範圍第8項所述之發光元件,其中該反 射層可為金屬和氧化物組合而成,係選自氧化銦錫/銀 (ITO/Ag)、氧化銦錫/氧化鋁/銀(IT0/A10x/Ag)、氧化銦錫/ 氧化鈦/氧化石夕(ITO/TiOx/SiOx)、氧化鈦/氧化;ς夕/在呂 (TiOx/SiOx/Al)、氧化銦錫/氮化矽/鋁(ITO/SiNx/Al)、氧化 銦錫/氮化矽/銀(ITO/SiNx/Ag)、氧化銦錫/氮化矽/氧化鋁/ 在呂(ITO/SiNx/Al2〇3/Al)、及氧化銦錫/氮化秒/氧化紹/銀 (IT0/SiNx/Al203/Ag)所組成之一群組。 17. 如申請專利範圍第1項所述之發光元件,其中該保 護層係選自含石夕的氧化物、氮化物、及高介電有機材料所 組成之一群組。 18200921931 X. Patent application scope: 1. A light-emitting element comprising at least one permanent substrate; a bonding layer formed on the permanent substrate; an epitaxial structure formed on the bonding layer; a first electrode formed a surface of the epitaxial structure; a reflective layer formed between the epitaxial structure and the first electrode; a second electrode formed on the upper surface of the epitaxial structure; and a first reflection formed on the crystal a junction between the junction and the second electrode; and a protective layer 'around the epitaxial structure. 2. The light-emitting element of claim 1, further comprising an insulating layer formed on the permanent substrate. 3. The light-emitting element of claim 2, wherein the permanent substrate is electrically conductive. In the case of the light-emitting element described in the first aspect of the patent application, the substrate is light-transmissive. 5. The light-emitting device according to claim 1, wherein the structure further comprises: a second electrical semiconductor layer formed on the bonding layer 15 200921931 5H second electrode electrical connection; Formed on the second electrical semiconductor layer; and an electrical semiconductor layer formed on the active layer and electrically connected to the w-electrode, wherein 筮 _ + singularity ~; Haidi-electrical semiconductor layer The electric power is asked about the electrical properties of the first electrical semiconductor layer. The illuminating structure according to claim 5, wherein the conductor layer is at least: the conductor layer is located at the first electrode and the first electrical layer 2 electrically contact layer The second electrical layer and the connection 7, wherein the upper surface and/or the lower surface of the electrical contact layer described in item 6 is a _ plane. The light-emitting element of claim 3, further comprising a reflective layer between the crystal structure and the bonding layer. The light-emitting element according to the invention, wherein the bonding material is selected from a metal material such as silver, gold, Syria, copper, or the like, or is a spontaneous broad molecule, or is doped with molecules such as aluminum and gold. Conductive material composed of platinum, zinc, silver, nickel, •, indium, tin, titanium, copper, palladium or alloys thereof. The light-emitting element according to claim 2, wherein the edge layer of the 200921931 comprises at least one single layer or a plurality of layers; and is selected from the group consisting of alumina (A1〇x), oxidized stone (SiOx), and nitride. Xi (XNx), a group of diamond-like films grown by chemical vapor deposition (CVD), tantalum carbide (siC), and aluminum nitride (A1N). 11. The light-emitting element of claim 2, wherein the insulating layer has a thickness of from 1 to 30 μm. 12. The light-emitting device of claim 6, wherein the material of the first electrical contact layer and the second electrical contact layer is selected from the group consisting of indium tin oxide (Indium Tin Oxide) and indium oxide (Indium 〇) Xide), Tin Oxide, Cadmium Tin 〇xide, Zinc Oxide (7) such as Oxide, Magnesium 〇xide, Titanium Nitride (10) - NUdde, Ge/Au And a light-emitting element according to the invention, wherein the material of the first reflective layer and the second reflective layer may be a metal material. It is selected from the group consisting of aluminum gold, Syrian, zinc, silver, recorded, wrong, married, tin, and (4). The light-emitting element according to the above aspect, wherein the material of the first reflective layer and the second reflective layer may be a combination of a metal and an oxide, and the light is selected from the group consisting of indium tin oxide/silver/Ag, and is oxidized. Indium tin/oxidized Jingtao AlCVAg), indium oxide sacrificial titanium/oxygen cut (iTO/Ti (vs called, 200921931 titanium oxide/yttria/aluminum (TiOx/SiOx/Al), indium tin oxide/tantalum nitride/aluminum (ITO/SiNx/Al), indium tin oxide/yttria/silver (ITO/SiNx/Ag), indium tin oxide/tantalum nitride/alumina/aluminum (IT0/SiNx/Al203/Al), and indium oxide A light-emitting element according to the invention of claim 8, wherein the reflective layer is a metal material. , the light-emitting element according to claim 8, wherein the reflection is selected from the group consisting of aluminum, gold, platinum, zinc, silver, nickel, ruthenium, indium, tin, and alloys thereof. The layer may be a combination of a metal and an oxide selected from the group consisting of indium tin oxide/silver (ITO/Ag), indium tin oxide/alumina/silver (IT0/A10x/Ag), indium tin oxide/titanium oxide/oxygen oxide. Evening (ITO/TiOx/SiOx), Titanium oxide / oxidation; ς / / in Lu (TiOx / SiOx / Al), indium tin oxide / tantalum nitride / aluminum (ITO / SiNx / Al), indium tin oxide / tantalum nitride / silver (ITO / SiNx / Ag ), indium tin oxide / tantalum nitride / aluminum oxide / in Lu (ITO / SiNx / Al2 〇 3 / Al), and indium tin oxide / nitriding seconds / oxidation / silver (IT0 / SiNx / Al203 / Ag) 17. The light-emitting element of claim 1, wherein the protective layer is selected from the group consisting of oxides, nitrides, and high dielectric organic materials. 18
TW96141610A 2007-11-01 2007-11-01 Light-emitting device TWI360892B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96141610A TWI360892B (en) 2007-11-01 2007-11-01 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96141610A TWI360892B (en) 2007-11-01 2007-11-01 Light-emitting device

Publications (2)

Publication Number Publication Date
TW200921931A true TW200921931A (en) 2009-05-16
TWI360892B TWI360892B (en) 2012-03-21

Family

ID=44728029

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96141610A TWI360892B (en) 2007-11-01 2007-11-01 Light-emitting device

Country Status (1)

Country Link
TW (1) TWI360892B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI479695B (en) * 2012-07-16 2015-04-01 Formosa Epitaxy Inc A light emitting diode chip and a light emitting element
US9166116B2 (en) 2012-05-29 2015-10-20 Formosa Epitaxy Incorporation Light emitting device
CN108198926A (en) * 2018-01-31 2018-06-22 南昌大学 A kind of film-type AlGaInP light-emitting diode chip for backlight unit and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9166116B2 (en) 2012-05-29 2015-10-20 Formosa Epitaxy Incorporation Light emitting device
US9741699B2 (en) 2012-05-29 2017-08-22 Epistar Corporation Light emitting device
US10247395B2 (en) 2012-05-29 2019-04-02 Epistar Corporation Light emitting device
US10670244B2 (en) 2012-05-29 2020-06-02 Epistar Corporation Light emitting device
US11255524B2 (en) 2012-05-29 2022-02-22 Epistar Corporation Light emitting device
US11808436B2 (en) 2012-05-29 2023-11-07 Epistar Corporation Light emitting apparatus
TWI479695B (en) * 2012-07-16 2015-04-01 Formosa Epitaxy Inc A light emitting diode chip and a light emitting element
CN108198926A (en) * 2018-01-31 2018-06-22 南昌大学 A kind of film-type AlGaInP light-emitting diode chip for backlight unit and preparation method thereof

Also Published As

Publication number Publication date
TWI360892B (en) 2012-03-21

Similar Documents

Publication Publication Date Title
US8497518B2 (en) Light emitting diode
US8076686B2 (en) Light emitting diode and manufacturing method thereof
JP4766966B2 (en) Light emitting element
KR101449030B1 (en) group 3 nitride-based semiconductor light emitting diodes and methods to fabricate them
EP1810351B1 (en) Gan compound semiconductor light emitting element
EP1941555B1 (en) SEMICONDUCTOR LIGHT-EMITTING DEVICE WITH ELECTRODE FOR N-POLAR InGaAlN SURFACE
US7385229B2 (en) Flip-chip light emitting diode with a thermally stable multiple layer reflective p-type contact
US20080191233A1 (en) Light-emitting diode and method for manufacturing the same
TWI266462B (en) Nitride-based compound semiconductor light emitting device, structural unit thereof, and fabricating method thereof
JP2004179365A (en) Semiconductor light emitting device and its manufacturing method
US20090026473A1 (en) InGaAlN LIGHT-EMITTING DEVICE AND MANUFACTURING METHOD THEREOF
CN110085716A (en) Light emitting semiconductor device
JP2013008817A (en) Semiconductor light emitting element and manufacturing method of the same
JP2007103689A (en) Semiconductor light emitting device
US20230024651A1 (en) Light-emitting diode
US20110272727A1 (en) Light-emitting diode and method for manufacturing the same
JP2007243074A (en) Group iii nitride light emitting diode
CN101488539B (en) Light emitting element
KR20090044311A (en) Light emitting diode and its manufacturing method
TWI625870B (en) Method of manufacuring semiconductor light emitting device
JP5306581B2 (en) Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
TW200921931A (en) Light-emitting device
KR101499954B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
KR100675202B1 (en) Vertically structured gan type light emitting diode device and method of manufacturing the same
TWI436499B (en) Light-emitting device and the manufacturing method thereof