TW200920903A - The wing plate energy dissipation and vibration reduction element, the energy dissipation and vibration reduction device of its application, the energy dissipation and vibration reduction method of its application, the energy dissipation and vibration re - Google Patents

The wing plate energy dissipation and vibration reduction element, the energy dissipation and vibration reduction device of its application, the energy dissipation and vibration reduction method of its application, the energy dissipation and vibration re Download PDF

Info

Publication number
TW200920903A
TW200920903A TW96143351A TW96143351A TW200920903A TW 200920903 A TW200920903 A TW 200920903A TW 96143351 A TW96143351 A TW 96143351A TW 96143351 A TW96143351 A TW 96143351A TW 200920903 A TW200920903 A TW 200920903A
Authority
TW
Taiwan
Prior art keywords
double
wing plate
energy dissipating
wing
item
Prior art date
Application number
TW96143351A
Other languages
Chinese (zh)
Inventor
Yu-Guang Lai
Original Assignee
Yu-Guang Lai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yu-Guang Lai filed Critical Yu-Guang Lai
Priority to TW96143351A priority Critical patent/TW200920903A/en
Publication of TW200920903A publication Critical patent/TW200920903A/en

Links

Landscapes

  • Vibration Dampers (AREA)

Abstract

A wing plate energy dissipation and vibration reduction element consists of two wing plates with various cross-section areas. It is installed on energy dissipation and vibration reduction devices. It can absorb the vibration energy by yielding deformation of wing plates to ensure the safety of the structure and reduce the amplitude of the shock.

Description

200920903 七、指定代表圖: (一)本案指定代表圖為:第(5)圖 (^)本代表圖之元件符號簡單說明. 20·雙翼板狀消能元件 ^ 201·翼板 2〇2.連結部 40-圓孔 50·直線 八、 本案若有化學式時,請縣最_科簡徵的化學式: 九、 發明說明: 【發明所屬之技術領域】 播種雙翼板狀消能元件;種-般建筚物 構=之防止振動或震動之裝置,該裝置係藉由2組 “ 所連結形成之板狀消能元件,裝置於消g 用翼板產生降伏變形達到消能減震之功效β 裝置上,利 【先前技術】 $第1圖所示為習用之金屬阻尼器(〇1),其200920903 VII. Designated representative map: (1) The representative representative figure of this case is: (5) Figure (^) The simple description of the symbol of the representative figure. 20·Double-wing plate-shaped energy dissipating component ^ 201·wing 2〇2 . Connection part 40 - round hole 50 · straight line VIII. If there is a chemical formula in this case, please ask the most basic chemical formula of the county: IX. Description of the invention: [Technical field of invention] Sowing two-wing plate-shaped energy dissipating element; - The device is constructed to prevent vibration or vibration. The device is made up of two sets of "plate-shaped energy dissipating elements formed by the connection, and the device is used to reduce the deformation of the wing plate to achieve energy dissipation and shock absorption. On the β device, [Prior Art] $Fig. 1 shows a conventional metal damper (〇1), which

ίϋϊί2圖所示之消能鋼板(〇2),金屬阻▲器&用)ϊίίί I部產生赌⑽時,使雜鋼板產线猶到 裝置另it if 證書號數M242534「免焊接通驗構防震 ,也聽由金纽尼_)之上部與下 生相對位移時,使消能鋼板(04)產生變形達到吸收能量之效 【發明内容】Ίϋϊί2 shown in the energy-saving steel plate (〇2), metal resistance ▲ device & ϊ ί ί ί ί ί I I I I 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Anti-vibration, also listen to the effect of the upper part and the lower part of the relative movement of the Jinnuini _), the deformation of the energy-dissipating steel plate (04) to absorb energy effect [Summary]

At上述之消能鋼板係利用結構桿件產生水平相對位移時使消 處鋼板上部與下部同時產生水平相對移動來產生撓曲變形,但此 種機構不適用於輛向位移之消能方式,以及水平力因金屬阻尼器 200920903 尚度形成之力臂長度,易產生較大之彎矩,因此思考創作此雙翼 板狀消能元件’可使用於轴向位移之消能方式,用於剪力型式之 消能方式也可降低消能減震裝置之高度,減小偏心水平力產生之 彎矩◊雙翼板狀消能元件利用2組具有變化斷面之翼板所連結形 成之結構,裝置於消能減震裝置上,使翼板產生降伏變形達到消 能減震之效果。 【實施方式】 如第5圖所示之雙翼板狀消能元件(2〇),為2組翼板(2〇1) 所連結形成之結構,可使用一體成型加工方式製造,翼板(2〇1) ) 為具有變化斷面之板狀結構,圖示之翼板(2〇1)形狀為由翼板兩 端以直線方式往中央方向内縮方式形成之結構。雙翼板狀消能元 件之中央位置及端部位置設有連結部(2〇2)作為與其他機構元件 連結使用。 第6圖所示則為第5圖之雙翼板狀消能元件(2〇)以並聯之方 式所形成之並聯雙翼板狀消能元件(21)。第7圖所示為第5圖之 雙翼板狀消能元件(20)以串聯之方式所形成之串聯雙翼板狀消 能兀件(22)。第8圖為第5圖之雙翼板狀消能元件(2〇)以串並聯 之方式所形成之串並聯雙翼板狀消能元件(23)。 第9圖、第1〇圖、第U圖及第12圖則為雙翼板狀消能元 ,件(20)之翼板形狀為由翼板兩端以曲線(51)方式往翼板中央方 向内縮形成之結構,及其並聯或串聯或串並聯之各種較佳型式。 第13圖、第14圖、第15圖及第16圖則為雙翼板狀消能元 件(20)之翼板形狀為内部開孔,開孔由翼板兩端以直線(5〇)方式 往翼板中央方向外擴所形成之各種較佳型式。 第17圖、第18圖、第19圖及第20圖則為雙翼板狀消能元 件(20)之翼板形狀為内部開孔,開孔由翼板兩端以曲線(η)方式 往翼板中央方向外擴所形成之各種較佳型式β 第21圖與第22圖為雙翼板狀消能元件(20)之翼板形狀為由 翼板一端以直線(50)方式往翼板另一端内縮所形成之各種較佳 200920903 ,式’雙翼板狀消㉟元件(20)之連結部可設有圓柱頭⑽)之結構 ,設有與表面平行,可供螺栓或鉚釘或插梢穿入之孔位(4〇) 連結部為鏡接方式之連結〇 第23圖與第24圖為雙翼板狀消能猶⑽之翼板形狀為由 翼板一端以曲線(51)方式往翼板另一端内縮所形成之各種較佳 型式。 第25圖與第26圖為雙翼板狀消能元件(2〇)之翼板形狀為内 部開孔,開孔由翼板-端以直線⑽)方式往翼板另—端外擴 成之各種較佳型式。 立第27圖與第28圖為雙翼板狀消能元件(20)之翼板形狀為内 、部開孔1孔由翼板-端以鱗⑽方式往翼板另—端外擴所形 成之各種較佳型式。 第29圖為雙翼板狀消能元件(2〇)設有外框(2〇3)之型式,外 框(203)與雙翼板狀消能元件之端部位置連結,外框(2〇3)與雙翼 板狀消能元件之中央位置則為分離β第3〇圖為設有外框之雙翼 板狀消能元件(20)之變形方式。第31圖、第32圖及第33圖為 第29圖之雙翼板狀消能元件(2〇)以並聯、串聯及串並聯之方式 所形成之結構。 第34圖、第35圖及第36圖為設有外框之雙翼板狀消能元 件(20)之其他各種較佳變化型式。 d 如第37圖與第38圖所示之十字形雙翼板狀消能元件(24)為 雙翼板狀消能元件以十字形排列方式所形成之各種較佳型式結 構形狀。 第39圖之並聯雙翼板狀消能元件(21)為雙翼板狀消能元件 以並聯方式所形成之結構,2組雙翼板狀消能元件之端部位置相 互連結,中央位置則為相互分離,其變形之方式如第4〇圖所示。 第41圖至第43圖為其他之各種較佳型式。 第44 ®之並聯雙翼板狀消能元件(21)為雙翼板狀消能元件 以並聯方式所形成之結構,2組雙翼板狀消能元件之端部位置相 互分離’中央位置則為相互連結,其變形之方式如第45圖所示。 200920903 第46圖至第48圖為其他之各種較佳型式。 ,上述由最基本之雙翼板狀消能元件所串聯或並聯或串並聯 所^成之板狀消能元件中,串聯或並聯或串並聯乃針對結構形狀 而言之-種說财式,而非有力學上驗4加之意義,是否 有勁度上之增減變化應視實際雙翼板狀消能元件連結部所在之 位置產生之行為分析,為避免誤解,在此說明。At the above-mentioned dissipative steel plate, when the horizontal relative displacement is generated by the structural member, the horizontal displacement of the upper and lower portions of the steel plate is simultaneously generated to generate the flexural deformation, but such a mechanism is not suitable for the energy dissipation mode of the displacement of the vehicle, and The horizontal force is due to the length of the arm formed by the metal damper 200920903, which is easy to generate a large bending moment. Therefore, thinking about creating the double-wing plate-shaped energy dissipating element can be used for the energy dissipation of the axial displacement for the shear force. The energy dissipation mode of the type can also reduce the height of the energy dissipation damper device and reduce the bending moment generated by the eccentric horizontal force. The double-wing plate energy absorbing element is formed by two sets of wings with varying sections. On the energy dissipation damper device, the wing plate is subjected to the deformation deformation to achieve the effect of energy dissipation. [Embodiment] The double-winged energy dissipating element (2〇) shown in Fig. 5 is a structure in which two sets of wings (2〇1) are connected, and can be manufactured by an integral molding method, and the flap ( 2〇1)) is a plate-like structure having a variable cross section, and the shape of the wing (2〇1) shown in the figure is a structure formed by retracting the ends of the wing in a straight line toward the center. A connecting portion (2〇2) is provided at a central position and an end position of the slab-shaped energy dissipating member for use in connection with other mechanism components. Fig. 6 is a parallel double-wing plate-shaped energy dissipating element (21) formed in parallel by the double-wing plate-shaped energy dissipating element (2〇) of Fig. 5. Fig. 7 is a view showing the series double-wing plate-shaped energy-dissipating member (22) formed in series by the bifurcated energy dissipating member (20) of Fig. 5. Fig. 8 is a series-parallel double-wing plate-shaped energy dissipating element (23) formed in series and parallel by a double-wing plate-shaped energy dissipating element (2) of Fig. 5. Figure 9, Figure 1, Figure U and Figure 12 are double-wing plate-shaped energy dissipating elements. The shape of the wing of the piece (20) is from the two ends of the wing in the form of a curve (51) to the center of the wing. A structure in which the direction is retracted, and various preferred forms of parallel or series or series-parallel connection. Fig. 13, Fig. 14, Fig. 15, and Fig. 16 show that the wing shape of the double-wing plate-shaped energy dissipating element (20) is an internal opening, and the opening is made by a straight line (5〇) at both ends of the wing plate. Various preferred forms formed by expanding outward in the center of the flap. Fig. 17, Fig. 18, Fig. 19 and Fig. 20 show the shape of the wing of the double-wing plate-shaped energy dissipating element (20) as an internal opening, and the opening is made by the curve (η) from both ends of the wing Various preferred forms formed by the expansion of the central direction of the wing plate. Figs. 21 and 22 show that the shape of the wing of the double-wing plate-shaped energy dissipating element (20) is from the end of the wing plate in a straight line (50) to the wing plate. The other end of the 200920903, the joint of the double-wing plate-shaped 35 element (20) can be provided with a cylindrical head (10) structure, which is parallel to the surface and can be bolted or rivet or inserted. The hole through which the tip penetrates (4〇) The connection is the connection of the mirror connection. The 23rd and 24th figures show the shape of the wing of the double-winged energy-dissipation (10). Various preferred forms formed by retracting the other end of the flap. Figure 25 and Figure 26 show that the wing shape of the double-wing plate-shaped energy dissipating element (2〇) is an internal opening, and the opening is expanded by the wing-end in a straight line (10) to the other end of the wing. Various preferred types. Figure 27 and Figure 28 show that the shape of the wing of the double-wing plate-shaped energy dissipating element (20) is the inner and the outer hole. The hole is formed by the wing-end to the outer end of the wing by the scale (10). Various preferred versions. Figure 29 is a two-wing plate-shaped energy dissipating component (2〇) with a frame (2〇3) type, the outer frame (203) and the end of the double-wing plate-shaped energy dissipating component are connected, and the outer frame (2) 〇3) The center position of the double-wing plate-shaped energy dissipating element is the separation β. The third figure shows the deformation mode of the double-wing plate-shaped energy dissipating element (20) provided with the outer frame. Fig. 31, Fig. 32, and Fig. 33 are structures in which the double-wing plate-shaped energy dissipating elements (2') of Fig. 29 are formed in parallel, series, and series-parallel. Figures 34, 35 and 36 show various other preferred variations of the double-wing plate-shaped energy dissipating element (20) provided with the outer frame. d The cross-shaped double-wing plate-shaped energy dissipating element (24) as shown in Figs. 37 and 38 is a variety of preferred structural shapes formed by the bifurcated energy dissipating elements in a crisscross arrangement. The parallel double-wing plate-shaped energy dissipating element (21) in Fig. 39 is a structure in which a double-wing plate-shaped energy dissipating element is formed in parallel, and the end positions of the two sets of double-wing plate-shaped energy dissipating elements are connected to each other, and the central position is In order to separate from each other, the manner of deformation is as shown in Fig. 4 . Figures 41 through 43 show various other preferred forms. The 44th parallel parallel-wing plate-shaped energy dissipating element (21) is a structure in which the two-wing plate-shaped energy dissipating elements are formed in parallel, and the end positions of the two sets of double-wing plate-shaped energy dissipating elements are separated from each other. In order to connect to each other, the manner of deformation is as shown in Fig. 45. 200920903 Figures 46 to 48 show various other preferred forms. In the above-mentioned plate-shaped energy dissipating component which is connected in series or in parallel or in series and parallel by the most basic double-wing plate-shaped energy dissipating components, series or parallel or series-parallel connection is for the structural shape, Rather than having the meaning of the mechanical test 4 plus, whether the increase or decrease in the stiffness should be based on the behavior analysis of the position of the joint of the actual double-wing plate-shaped energy dissipating component, in order to avoid misunderstanding, it is explained here.

為使雙翼板狀消能元件發揮更好之阻尼消能之功效,如第49 圖與第50圖所示,以黏彈性體(6〇)包覆雙翼板狀消能元件(2〇) 或於雙翼板狀消能元件(2〇)之間,使黏彈性體(6〇)同雙翼板 狀消能元件(20)產生變形,發揮阻尼消能之效果及彈性恢復變形 之能力,黏彈性體(6〇)可為橡膠或高阻尼橡膠或塑膠材質或高分 子材質或南阻尼材質。 上述之雙翼板狀消能元件皆為一體成型加工方式形成之結 構,第51圖所示之雙翼板狀消能元件則為翼板連結件與複數組 翼板以焊接方式或螺栓鎖固方式組裝而成。 第52圖所示為雙翼板狀消能元件(20)裝置於消能減震器(1〇) 之較f型式,具有較低之高度,可大幅降低水平力產生之彎矩, 藉由消能減震器之機構可產生如第53圖所示之變形方式。 第54圖為設有第39圖所示之並聯雙翼板狀消能元件(21)之 消能減震器(10)。第55圖為設有第44圖所示之並聯雙翼板狀消 能元件(21)之消能減震器(1〇)。 第56圖所示為消能減震器(10)與結構桿件(70)之較佳組裝 方式,上部之連結座連結於鋼結構之橫樑上,下部之連結座則連 結於腳座上。第57圖為消能減震器(1〇)裝置於結構物(8〇)之較 佳方式。 第58圖所示為十字形雙翼板狀消能元件(24)裝置於消能減 震器(10)之較佳型式。第59圖示為雙翼板狀消能元件(2〇)裝置 於消能減震器(10)之較佳型式。第58圖與第59圖所示之消能減 震器(10)皆為軸向作動之消能方式。第60圖所示為消能減震器 (10)與結構桿件(70)之較佳組裝方式,第61圖為消能減震器〇〇) 200920903 減5=:=間之錯動 可大幅降 【圓式簡單說明】 第2圖 第3圖 第4圖 第5圖 第6圖 第7圖 第8圖 第9圖 第10圖 第11圖 第12圖 第13圖 第14圖 第15圖 第16圖 第17圖 第18圖 第19圖 第20圖 第21圖 第22圖 第23圖 第24圖 第25圖 第26圖 第1圖·習用之金屬阻尼器i 習用之金屬消能板1 習用之金屬阻尼器2 習用之金屬消能板2 雙翼板狀消能元件之較佳型式1工鞋雜 J!板狀消能元件之較佳型式2工=雪 雙翼板狀消能元件之較佳型式3工盘滿n 雙翼板狀消能元件之較佳型式4工鞋满^In order to make the double-wing plate-shaped energy dissipating component exert better damping energy dissipation effect, as shown in Fig. 49 and Fig. 50, the double-wing plate-shaped energy dissipating component is covered with viscoelastic body (6〇) (2〇) Or between the double-wing plate-shaped energy dissipating element (2〇), the viscoelastic body (6〇) and the double-wing plate-shaped energy dissipating element (20) are deformed, and the effect of damping energy dissipation and elastic recovery deformation are exerted. Capacitance, viscoelastic body (6 inches) can be rubber or high damping rubber or plastic material or polymer material or south damping material. The above-mentioned double-wing plate-shaped energy dissipating elements are all formed by a one-piece forming method, and the double-wing plate-shaped energy dissipating elements shown in FIG. 51 are welded or bolt-locked by the wing plate connecting piece and the multiple array wing plate. The way it is assembled. Figure 52 shows the double-wing plate-shaped energy dissipating element (20) installed in the energy-saving damper (1〇) compared to the f-type, with a lower height, which can greatly reduce the bending moment generated by the horizontal force, by The mechanism of the energy absorbing damper can produce a deformation as shown in Fig. 53. Fig. 54 is an energy absorbing damper (10) provided with a parallel double-wing plate-shaped energy dissipating element (21) as shown in Fig. 39. Fig. 55 is an energy absorbing damper (1 〇) provided with the parallel double-wing plate-shaped energy dissipating member (21) shown in Fig. 44. Figure 56 shows a preferred assembly of the energy absorbing damper (10) and the structural member (70). The upper joint is attached to the beam of the steel structure and the lower joint is attached to the foot. Figure 57 is a better way to install the energy absorbing damper (1 〇) on the structure (8 〇). Figure 58 shows a preferred version of the cross-shaped double-wing plate-shaped energy dissipating element (24) mounted on the energy dissipating shock absorber (10). Figure 59 shows a preferred embodiment of a double-winged energy dissipating element (2) for use in an energy dissipating shock absorber (10). The energy dissipation dampers (10) shown in Fig. 58 and Fig. 59 are both energy dissipation modes for axial actuation. Figure 60 shows the better assembly of the energy absorbing damper (10) and the structural member (70). Figure 61 shows the energy damper 〇〇) 200920903 minus 5=:= Large drop [round simple description] Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10, Fig. 11, Fig. 12, Fig. 13, Fig. 14, Fig. Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 1 Conventional Metal Damper Conventional metal damper 2 Conventional metal energy dissipation board 2 The preferred type of the wing-shaped energy dissipating component is the type 1 shoe J. The shape of the plate-shaped energy dissipating component is the best type 2 work = snow double wing plate energy dissipating component The preferred type 3 work plate full of n-shaped plate-shaped energy-saving components of the preferred type 4 work shoes full ^

(J 雙翼板狀消能元件之較佳型式5工程視圖 雙翼板狀消能元件之較佳型式6工程視圖 雙翼板狀消能元件之較佳型式7工程視圖 雙翼板狀消能元件之較佳型式8工箱顏闇 雙翼板狀消能元件之較佳型式9工 雙翼板狀消能元件之較佳型式1Q工藉滿蘭 雙翼板狀消能元件之較佳型式u工 雙翼板狀消能元件之較佳型式12工程視圖 雙翼板狀消能元件之較佳型式13工程視圖 雙翼板狀消能元件之較佳型式14工程視圖 雙翼板狀消能元件之較佳型式15工程視圖 雙翼板狀消能元件之較佳型式16工程視圖 雙翼板狀消能元件之較佳型式17工程視圖 雙翼板狀消能元件之較佳型式18工程視圖 雙翼板狀消能元件之較佳型式19工程視圖 雙翼板狀消能元件之較佳型式20工程視圖 雙翼板狀消能元件之較佳型式21工程視圖 宽雙翼板狀消能元件之較佳型式22工程視圖 雙翼板狀消能元件之較佳型式23工程視圖 第28圖·雙翼板狀消能元件之較佳型式24工程視圖(J-shaped plate-shaped energy dissipating component of the preferred type 5 engineering view double-wing plate-shaped energy dissipating component of the preferred type 6 engineering view double-wing plate-shaped energy dissipating component of the preferred type 7 engineering view double-wing plate energy dissipation The preferred type of the component is 8 working chambers, the dark and the double-wing plate-shaped energy dissipating component, the preferred type, the working, the double-winged plate-shaped energy dissipating component, the preferred type, the 1Q work, the preferred form of the Manlan bifurcated plate-shaped energy dissipating component U-shaped double-wing plate-shaped energy dissipating component of the preferred type 12 engineering view double-wing plate-shaped energy dissipating component of the preferred type 13 engineering view double-wing plate-shaped energy dissipating component of the preferred type 14 engineering view double-wing plate energy dissipation Preferred form of the component 15 engineering view preferred form of the double-wing plate-shaped energy dissipating component 16 engineering view preferred form of the double-wing plate-shaped energy dissipating component 17 engineering view preferred shape of the double-wing plate-shaped energy dissipating component 18 engineering view The preferred type of the slab-shaped energy dissipating component is 19, the engineering view, the double-wing slab-shaped energy dissipating component, the preferred version 20, the engineering view, the double-wing slab-shaped energy dissipating component, the preferred type, the engineering view, the wide-winged slab-shaped energy dissipating component The preferred type 22 engineering view double-wing plate-shaped energy dissipating component is the preferred type 23 View of a preferred version of the wings 28 in FIG · extinguishing plate element can view the works 24

S 200920903 第29圖.雙翼板狀消能元件之較佳型式25工程視圖 第30圖.雙翼板狀消能元件之較佳型式26工程視圖 第31圖.雙翼板狀消能元件之較佳型式27工程視圖 第32圖.雙翼板狀消能元件之較佳型式28工程視圖 第33圖.雙翼板狀消能元件之較佳型式29工程視圖 第34圖.雙翼板狀消能元件之較佳型式30工程視圖 第35圖.雙翼板狀消能元件之較佳型式31工程視圖 第36圖.雙翼板狀消能元件之較佳型式32工程視圖 第37圖.雙翼板狀消能元件之較佳型式33工程視圖 第38圖.雙翼板狀消能元件之較佳型式34工程視圖 第39圖.雙翼板狀消能元件之較佳型式35工程視圖 第40圖.雙翼板狀消能元件之較佳型式36工程視圖 、第41圖.雙翼板狀消能元件之較佳型式37工程視圖 第42圖.雙翼板狀消能元件之較佳型式38工程視圖 第43圖.雙翼板狀消能元件之較佳型式39工程視圖 第44圖.雙翼板狀消能元件之較佳型式40工程視圖 第45圖.雙翼板狀消能元件之較佳型式41工程視圖 第46圖.雙翼板狀消能元件之較佳型式42工程視圖 第47圖.雙翼板狀消能元件之較佳型式43工程視圖 第48圖.雙翼板狀消能元件之較佳型式44工程視圖 第49圖.黏彈性體包覆雙翼板狀消能元件之較佳型式1工程視圖 第50圖.黏彈性體包覆雙翼板狀消能元件之較佳型式2工程視圖 第51圖.組合式雙翼板狀消能元件之較佳型式工程視圖 第52圖.雙翼板狀消能元件之較佳應用消能減震器1工程視圖 〃 第53圖.雙翼板狀消能元件之變形方式示意圖 第54圖.雙翼板狀消能元件之較佳應用消能減震器2工程視圖 第55圖.雙翼板狀消能元件之較佳應用消能減震器3工程視圖 第56圖.消能減震器之較佳應用實施例1工程視圖 第57圖.消能減震器安裝於結構物之較佳應用實施例1工程視圖 第58圖.雙翼板狀消能元件之較佳應用消能減震器4工程視圖 第59圖.雙翼板狀消能元件之較佳應用消能減震器5工程視圖 第60圖.消能減震器之較佳應用實施例2工程視圖 第61圖.消能減震器安裝於結構物之較佳應用實施例2工程視圖 9 200920903 【主要元件符號說明】 01. 習用之金屬阻尼器1 02. 習用之消能鋼板1 03. 04. 10. 20. 201. 202. 203. 21. 22. 、 23. 24. 25. 30. 40. 50. 51. 60. 70. 80. 習用之金屬阻尼器2 習用之消能鋼板2 消能減震器 雙翼板狀消能元件 翼板 連結部 外框 並聯雙翼板狀消能元件 串聯雙翼板狀消能元件 串並聯雙翼板狀消能元件 十字形雙翼板狀消能元件 翼板連結件 圓柱頭 圓孔 直線 曲線 黏彈性體 結構桿件 建築結構S 200920903 Fig. 29. Preferred version of the double-wing plate-shaped energy dissipating element 25 Engineering view Fig. 30. Preferred version of the double-wing plate-shaped energy dissipating element 26 Engineering view Fig. 31. Double-wing plate-shaped energy dissipating element Preferred Type 27 Engineering View Figure 32. Two-wing plate-shaped energy dissipating element preferred version 28 Engineering view Figure 33. Two-wing plate-shaped energy dissipating element preferred version 29 Engineering view Figure 34. Double-wing plate shape A preferred version of the energy dissipating element 30 engineering view Fig. 35. A preferred version of the double wing plate energy dissipating element 31 engineering view Fig. 36. A preferred version of the double wing plate energy dissipating element 32 engineering view Fig. 37. Figure 33 is a view of a preferred embodiment of a bifurcated energy dissipating element. Fig. 38. A preferred version of a bifurcated energy dissipating element. 34 Engineering view. Fig. 39. A preferred version of the bifurcated energy dissipating element. Fig. 40. Preferred version of the double-wing plate-shaped energy dissipating element 36 Engineering view, Fig. 41. Preferred version of the double-wing plate-shaped energy dissipating element 37 Engineering view Fig. 42. Comparison of the double-wing plate-shaped energy dissipating element Good type 38 engineering view Fig. 43. Preferred version of the double-wing plate-shaped energy dissipating element 39 Engineering view Fig. 44. Comparison of double-wing plate-shaped energy dissipating elements Type 40 engineering view Fig. 45. Preferred version of the double-wing plate-shaped energy dissipating element 41 Engineering view Fig. 46. Preferred version of the double-wing plate-shaped energy dissipating element 42 Engineering view Fig. 47. Double-wing plate energy dissipation Figure 43 is a view of a preferred embodiment of the component. Fig. 48. A preferred version of the double-winged energy dissipating element. Figure 44. Fig. 49. A preferred version of the viscoelastic coated bifurcated energy dissipating element. Figure 50. Viscoelastic coated double-wing plate-shaped energy dissipating element. Proper type 2 engineering view. Figure 51. Combination type of double-wing plate-shaped energy dissipating element. Figure 52. Double-wing plate The preferred application of the energy-saving damper 1 engineering view 〃 Fig. 53. Schematic diagram of the deformation mode of the double-wing plate-shaped energy-absorbing element. Figure 54. The preferred application of the double-wing plate-shaped energy-absorbing element 2 Engineering view Figure 55. Preferred application of double-wing plate-shaped energy dissipating element Energy-dissipation shock absorber 3 Engineering view Figure 56. Better application of energy-dissipating shock absorber Example 1 Engineering view Figure 57. Energy dissipation Best Application of Shock Absorber Mounted on Structure Example 1 Engineering View Figure 58. Better Application of Double Wing Plate Energy Dissipation Element Figure 4 Engineering view Figure 59. Preferred application of double-wing plate-shaped energy dissipating element Energy-dissipation shock absorber 5 Engineering view Figure 60. Better application of energy-dissipating shock absorber Example 2 Engineering view Figure 61. A preferred application of the shock absorber mounted on the structure. Embodiment 2 Engineering View 9 200920903 [Explanation of main component symbols] 01. Conventional metal damper 1 02. Conventional energy dissipation steel plate 1 03. 04. 10. 20. 201 202. 203. 21. 22., 23. 24. 25. 30. 40. 50. 51. 60. 70. 80. Conventional metal damper 2 Conventional energy dissipation steel plate 2 Energy dissipating shock absorber double wing Shape energy dissipating element wing joint part outer frame parallel double wing plate energy dissipating element series double wing plate energy dissipating element series and parallel double wing plate energy dissipating element cross double wing plate energy dissipating element wing plate joint cylindrical head Round hole linear curve viscoelastic structure member building structure

Claims (1)

200920903 十、申請專利範圍: 1. 一種雙翼板狀雜元件,其中雙翼板狀、;^ 置翼及板端為 2. 有連結部作為與其他機構元件連 一種雙翼板狀消能元件,其中如第丨項所述 3. ο 置相互連結,中央位置則為相互分離。 4. =種雙翼板狀消能祕,其中2紙如第丨項所述之 方ίΐΓΐ)結構,2組雙翼板狀消能元件之端部位 置相互分離’中央位置則為相互連結。 5. m翼’ Μ雙翼綠雜耕為如帛1項或第 6. 串並一聯方弋二述之雙翼板狀消能元件以串聯或並聯或 串並聯方式或十字形排財式所形成之結構β c 項或第4項或第5項所述 線方侦登A其中翼板之形狀為由兩端以直線方式或曲 内縮,或翼板内部開孔,開孔由兩端以直 S ΐίϋίί板中央方向外擴,使翼板中央具有較小之 斷面積,翼板兩端具有較大之斷面積。 7. 4申第 =第2項或第3項或第4項或第5項所述 翼板之形㈣域板—_直線方式 ί2式往翼板另—端外擴,使翼板-端具有較 小之斷面積’翼㈣―端具有較Α之斷面積。 11 200920903 8. 如申請專利範圍第1項或第2項或第3項或第4項或第5項所述 之雙翼板狀消能元件,其中雙翼板狀消能元件之連結部設有孔位 可供螺栓或鉚釘或插梢穿入,孔位可為圓孔或長條孔或方孔戋矩 形孔。 〆 9. 如申請專利範圍第1項或第2項或第3項或第4項或第5項所述 之雙翼板狀消能元件,其中雙翼板狀消能元件之連結部設有可供 機構’鉸接之機構可為圓柱頭之結構或設有與表面平行: 可供螺栓或鉚釘或插梢穿入之孔位。 1〇·如申請專利範圍第1項或第2項或第3項或第4項或第5項所述 、 之雙翼板狀消能元件,其中雙翼板狀消能元件之材質為金屬材 質。 11. 如申請專利範圍第10項所述之雙翼板狀消能元件,其中金屬材 質為降伏強度金屬材質。 12. 如申請專利範圍第10項所述之雙翼板狀消能元件,其中金屬材 質為低降伏強度鋼材。 13·如申請專利範圍第1項或第2項或第3項或第4項或第5項所述 之雙翼板狀消能元件’其中雙翼板狀消能元件之材質為高分子材 質或塑膠材質》 ""U.如申請專利範圍第1項或第2項或第3項或第4項或第5項所述 之雙翼板狀消能元件,其中另設有黏彈性體包覆雙翼板狀消能元 件或夾合於2組雙翼板狀消能元件之間。 15. 如申請專利範圍第14項所述之雙翼板狀消能元件,其中黏彈性 體為橡勝或高阻尼橡膠或塑膠材質或高分子材質或高阻尼材質。 16. 如申請專利範圍第1項或第2項或第3項或第4項或第5項所述 之雙翼板狀消能元件,其中雙翼板狀消能元件為一體成型加工方 式製造。 Π·如申請專利範圍第1項或第2項或第3項或第4項或第5項所述 12 200920903 之雙翼板狀消能元件,其中另巧右暨士、土 件為翼板連結件與複數組翼板以焊拯件,雙翼板狀消能元 而成。 式或螺拴鎖固方式組裝 18· —種消能減震裝置,其中消 4項或第5項^^ 能減震後置轨有===結構物裝設消能減震裝置,其中消 項或第項或第2項或第3項或第4 Ο 2〇·置結構,其暢構錄賴麟震裝置,·減震裝 項所塊之專繼圍第1項或第2項絲3項或第4項或第5 义之雙翼板狀消能元件。 13200920903 X. Patent application scope: 1. A double-wing plate-shaped hybrid component, in which two-wing plate shape, ^ wing and plate end are 2. There is a joint portion as a double-wing plate-shaped energy-consuming component connected with other mechanism components , wherein the three points are as described in the third item, and the central positions are separated from each other. 4. = Two-winged plate-shaped energy-eliminating secrets, in which 2 papers are as described in the second item, the end portions of the two sets of double-wing plate-shaped energy dissipating elements are separated from each other. The central position is interconnected. 5. m wing ' Μ Μ 绿 绿 为 为 为 为 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛 帛The formed structure β c term or the fourth or fifth item described above is the shape of the wing plate in which the shape of the wing plate is linearly or curvedly contracted from both ends, or the inside of the wing plate is opened, and the opening is made by two The end is expanded in the direction of the center of the straight S ΐ ϋ ϋ ί , so that the center of the wing has a small sectional area, and the ends of the wing have a large sectional area. 7. 4 Application No. 2 or Item 3 or Item 4 or Item 5 (4) Domain Plate - _ Straight Line ί2 type to the other end of the wing plate, so that the wing plate end With a smaller cross-sectional area 'wing (four) - end has a relatively narrow cross-sectional area. 11 200920903 8. The double-winged energy dissipating component as described in claim 1 or 2 or 3 or 4 or 5, wherein the joint of the double-winged energy dissipating component is provided There are holes for bolts or rivets or spigots. The holes can be round holes or long holes or square holes. 〆9. The double-wing plate-shaped energy dissipating component according to claim 1 or 2 or 3 or 4 or 5, wherein the connecting portion of the double-wing plate-shaped energy dissipating component is provided The mechanism that can be articulated by the mechanism can be a cylindrical head structure or be placed parallel to the surface: a hole through which bolts or rivets or spigots can be inserted. 1. A double-winged energy dissipating component as described in claim 1 or 2 or 3 or 4 or 5, wherein the material of the double-winged energy dissipating component is metal Material. 11. The double-wing plate-shaped energy dissipating component according to claim 10, wherein the metal material is a metal of a descending strength. 12. The double-wing plate-shaped energy dissipating element according to claim 10, wherein the metal material is a low-reduction strength steel material. 13. The double-winged energy dissipating component as described in claim 1 or 2 or 3 or 4 or 5, wherein the material of the double-winged energy dissipating component is a polymer material. Or "plastic material" ""U. as claimed in the scope of claim 1 or 2 or 3 or 4 or 5 or 5, the double-wing plate energy dissipating component, which additionally has viscoelasticity The body is covered with a double-wing plate-shaped energy dissipating element or sandwiched between two sets of double-wing plate-shaped energy dissipating elements. 15. The double-wing plate-shaped energy dissipating component according to claim 14, wherein the viscoelastic body is rubber or high damping rubber or plastic material or polymer material or high damping material. 16. A double-wing plate-shaped energy dissipating element as claimed in claim 1 or 2 or 3 or 4 or 5, wherein the double-wing plate-shaped energy dissipating element is manufactured by integral molding . Π·If you apply for the patented scope, item 1 or 2 or item 3 or item 4 or item 5, 200920903, the double-wing plate-shaped energy dissipating element, in which the right-handed and the soil parts are wing The connecting piece and the complex array wing plate are formed by welding the piece and the double-wing plate-shaped energy dissipating element. Type or screw locking method assembly 18·-type energy dissipation damper device, wherein the elimination of 4 items or the 5th item ^^ can be damped and the rear rail has === structure installed energy dissipation damper device, wherein Item or item 2 or item 3 or item 4 or item 4 〇 置 , , , , 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟 麟3 or 4 or 5th winged energy dissipating elements. 13
TW96143351A 2007-11-15 2007-11-15 The wing plate energy dissipation and vibration reduction element, the energy dissipation and vibration reduction device of its application, the energy dissipation and vibration reduction method of its application, the energy dissipation and vibration re TW200920903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96143351A TW200920903A (en) 2007-11-15 2007-11-15 The wing plate energy dissipation and vibration reduction element, the energy dissipation and vibration reduction device of its application, the energy dissipation and vibration reduction method of its application, the energy dissipation and vibration re

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96143351A TW200920903A (en) 2007-11-15 2007-11-15 The wing plate energy dissipation and vibration reduction element, the energy dissipation and vibration reduction device of its application, the energy dissipation and vibration reduction method of its application, the energy dissipation and vibration re

Publications (1)

Publication Number Publication Date
TW200920903A true TW200920903A (en) 2009-05-16

Family

ID=44727626

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96143351A TW200920903A (en) 2007-11-15 2007-11-15 The wing plate energy dissipation and vibration reduction element, the energy dissipation and vibration reduction device of its application, the energy dissipation and vibration reduction method of its application, the energy dissipation and vibration re

Country Status (1)

Country Link
TW (1) TW200920903A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104563318A (en) * 2014-12-18 2015-04-29 东南大学 In-plane axial tensile type energy dissipater
TWI675142B (en) * 2018-01-30 2019-10-21 國立高雄科技大學 Earthquake-proof, wind-proof and energy dissipation device based on shear deformation
CN111535466A (en) * 2020-05-14 2020-08-14 常州机电职业技术学院 Wind-resistant shock insulation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104563318A (en) * 2014-12-18 2015-04-29 东南大学 In-plane axial tensile type energy dissipater
CN104563318B (en) * 2014-12-18 2016-11-02 东南大学 Axial tension type sinker in a kind of face
TWI675142B (en) * 2018-01-30 2019-10-21 國立高雄科技大學 Earthquake-proof, wind-proof and energy dissipation device based on shear deformation
CN111535466A (en) * 2020-05-14 2020-08-14 常州机电职业技术学院 Wind-resistant shock insulation device
CN111535466B (en) * 2020-05-14 2022-03-08 常州机电职业技术学院 Wind-resistant shock insulation device

Similar Documents

Publication Publication Date Title
Chen Experimental and numerical study on bending collapse of aluminum foam-filled hat profiles
JP6828016B2 (en) Child seat protection device
EP2233334A4 (en) Vehicle door structure and method of producing the same
EP2025576B1 (en) Steering wheel position adjustment device
US6007123A (en) Energy absorbing bumper
TW200920903A (en) The wing plate energy dissipation and vibration reduction element, the energy dissipation and vibration reduction device of its application, the energy dissipation and vibration reduction method of its application, the energy dissipation and vibration re
SE534926C2 (en) Energy absorbing torch head for a towing device
EP2186687A4 (en) Energy absorber for a vehicle bumper assembly
JP2018504321A5 (en)
ATE555322T1 (en) IMPACT ABSORPTION STRUCTURE FOR VEHICLE
RU2010136299A (en) HEAD FOR EDUCATION OF THE VEHICLE FRONT SIDE, AT LEAST, WITH ONE ENERGY-ABSORBING ELEMENT
EP3097003B1 (en) Automotive body components and assemblies
JP4583775B2 (en) Shock absorber for automobile
JP2013007236A (en) Vibration control damper for wooden building
TW201034883A (en) Energy-dissipating element and shock absorber comprising an energy-dissipating element
RU71313U1 (en) FRONT OF THE BODY FOR THE VEHICLE
WO2008149043A3 (en) Energy absorption assembly comprising a non-return device
JP6128347B2 (en) Vehicle frame
JP2019513632A (en) Automotive structural component with reinforcing element
CN205836429U (en) For supporting the lining of torsion bar and there is its torsion beam assembly
US11021121B2 (en) Deformable element
CN207059967U (en) Front bumper assembly and there is its vehicle
CN202987260U (en) Changeable turbination crumpling structure of automobile steering tubular column
PL401424A1 (en) Multilevel rail bumper
CN205706557U (en) A kind of elastic endergonic collision prevention girders