TW200919921A - Synchronous self-driven power converter - Google Patents

Synchronous self-driven power converter Download PDF

Info

Publication number
TW200919921A
TW200919921A TW97123972A TW97123972A TW200919921A TW 200919921 A TW200919921 A TW 200919921A TW 97123972 A TW97123972 A TW 97123972A TW 97123972 A TW97123972 A TW 97123972A TW 200919921 A TW200919921 A TW 200919921A
Authority
TW
Taiwan
Prior art keywords
voltage
bipolar transistor
power converter
unit
current
Prior art date
Application number
TW97123972A
Other languages
Chinese (zh)
Inventor
Georg Sauerlaender
Jeroen Snelten
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW200919921A publication Critical patent/TW200919921A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The present invention relates to a synchronous self-driven power converter for converting a dc input voltage (Vin) to a dc output voltage (VO) and/or a dc output current (iO) for supplying a load (LO), comprising: a chopper unit (S) for chopping said dc input voltage (Vin) into an ac intermediate voltage (VD), a rectifier unit for rectifying said ac intermediate voltage and for outputting said rectified output voltage to said load, said rectifier unit comprising a bipolar transistor (T; T4) as the rectifying element, whose base is coupled to a control current supply terminal for providing a control current to the base of said bipolar transistor for converting said bipolar transistor into a conductive state, when said chopper unit is in its OFF state.

Description

200919921 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種同步自我驅動功率轉換器,其用於轉 換一直流輸入電壓至一直流輸出電壓或一直流輸出電流, 以供應一負載。200919921 IX. Description of the Invention: [Technical Field] The present invention relates to a synchronous self-driving power converter for converting a DC input voltage to a DC output voltage or a DC output current to supply a load.

本發明進一步係關於一種驅動器,其用於提供—直流驅 動電壓至一負載,尤其係至一 LED單元、一背光翠元、一 LED單元或-後組合燈單元;並且本發明係關於—種操作 一同步自我驅動功率轉換器之方法,其該轉換器用於轉換 一直流輸入電壓至一直流輸出電壓或一直流輪出電流,以 供應一負載。 【先前技術】 本發明大體上係關於極簡單並具成本效益之驅動器,用 於例如(O)LED模組。用於(0)LED模組之電子驅動器之成 本j貝格係許多應用(LCD背光、汽車、常規照明等等)中之 關鍵因素。一典型低成本驅動器拓撲為所謂的自振盪降壓 轉換器(SOPS) ’其描述於例如2001年8月27_28曰奥地利 Graz <EPE-2001S 9th European Conference on Power Electronics and Applications> M. Ossmann "Simple cheap converters f0r the Classr00m"。該轉換器儘管低成本仍很 少被使用之一原因為其7〇%_75%有限效率。 來同步整Λι1·成為提咼諸多具有低輸出電壓的轉換器 拓撲之效率的-種普遍方法。此處,—開關被用 於取代輸出級中之整流器二極體,其使橫跨該整流器之電 131652.doc 200919921 壓降自一般700 mV-1000 mV減小至1〇〇 mV或以上(及因 此’減小損失)。 仁疋MOSFET與其他競爭者相比難以被應用於低輸出 電壓sops,因其高閘極電壓需求達5 ν_ι〇 v。另一問題可 • 起因於M〇SFET本徵體二極體。 、 WQ G1/6G167 A2揭示-種手電筒,其包含—開關模式轉 換窃,用於轉換一能量儲備至—固定電壓以供應燈泡,使 r 肖燈泡在能量儲備之有效壽命内保持恆定亮度。一般地, 7關電晶體為M〇SFET。但是,若需要,亦可使用雙極電 晶體連同-外部反並聯二極體。該等同步開關由一控制器 予以驅動’其增加電路之相當複雜性及成本。 【發明内容】 本發明之—目的為提供—種同步自我驅動功率轉換器, 其用:轉換一直流輸入電壓至一直流輸出電壓或一直流輸 出電流,以供應—負載;及提供一種操作該同步自我驅動 V 功率轉換器之相應方法。The invention further relates to a driver for providing a DC drive voltage to a load, in particular to an LED unit, a backlight Cuiyuan, an LED unit or a rear combination lamp unit; and the invention relates to an operation A method of synchronizing a self-driving power converter, the converter for converting a DC input voltage to a DC output voltage or a continuous current output to supply a load. [Prior Art] The present invention is generally directed to a very simple and cost effective driver for use in, for example, (O) LED modules. The cost of the electronic driver for the (0) LED module is a key factor in many applications (LCD backlighting, automotive, conventional lighting, etc.). A typical low-cost driver topology is the so-called self-oscillating buck converter (SOPS), which is described, for example, in August 27-28, 2001, Austrian Graz <EPE-2001S 9th European Conference on Power Electronics and Applications> M. Ossmann " Simple cheap converters f0r the Classr00m". One of the reasons why the converter is still used at a low cost is its 7〇%_75% limited efficiency. Synchronizing the entire Λ1 is a common method for improving the efficiency of many converter topologies with low output voltages. Here, the switch is used to replace the rectifier diode in the output stage, which reduces the voltage drop across the rectifier 131652.doc 200919921 from a typical 700 mV-1000 mV to 1 〇〇 mV or more (and So 'reduce the loss'. Renhao MOSFETs are difficult to apply to low output voltage sops compared to other competitors because of their high gate voltage requirements of 5 ν_ι〇 v. Another problem can be caused by the M〇SFET intrinsic body diode. WQ G1/6G167 A2 discloses a flashlight that includes a switch mode conversion thief for converting an energy reserve to a fixed voltage to supply a bulb to maintain a constant brightness over the useful life of the energy reserve. Typically, the 7-turn transistor is an M〇SFET. However, if desired, a bipolar transistor can be used along with an external anti-parallel diode. These synchronous switches are driven by a controller' which adds considerable complexity and cost to the circuit. SUMMARY OF THE INVENTION The present invention is directed to providing a synchronous self-driving power converter that converts a DC input voltage to a DC output voltage or a DC output current to supply a load; and provides an operation for the synchronization. A corresponding method of self-driving V power converters.

在本&月之第一態樣中,一種同步自我驅動功率轉換哭 包含: 、D 斬波器單元’其用於斬取該直流輸入電壓至一交流 中間電壓; - —* ί今哭留- "π,其用於整流該交流中間電壓及輸出該 出電屋至該負載,該整流器單元包含一雙極電晶 :曰’’H件’當該斬波器單元為關閉狀態日夺,該雙極 電曰曰體之基極被耦合至一控制電流供應端子,該控制電流 I31652.doc 200919921 供應端子用於提供一控制電流至該基極,以轉換該雙極電 晶體至一導通狀態。 在本發明之-進—步態樣中’一種操作一同步自我驅動 功率轉換益之相應方法包含以下步驟: • -斬取該直流輸入電壓至一交流中間電壓; _ - #1由-整流器單元整流該交流中間電壓,該整流器單 元包含一雙極電晶體; f '· _輸出該整流之輸出電壓至該負載; -開啓及關閉該輪出電壓至該整流器單元之耗合,及 -當該斬波器單元為關閉狀態時,提供一控制電流至該 雙極電晶體之基極以轉換該雙極f晶體至導通狀態。 在本發明之一進—步態樣中,一種驅動器被用於提供一 胸動電壓及/或-直流驅動電流至-負載,尤其係至 7LED單元、一背光單元、-lcd單元或-後組合燈單 元》亥驅動器包含一如請求項】之同步自我驅動功率轉換 u -其用於轉換一直流輸入電壓至該直流驅動電壓及/或 該直流驅動電流。 本發明之較佳實施例由相關請求項定義。吾人將瞭解該 方法及該驅動器具有如該同步自我驅動功率轉換器之相似 及/或相同較佳實施例,且其由請求項1之附屬請求項定 義。 本發明係基於以-同步開關取代直流轉直流轉換器(例 如’降壓轉換器)之整流器二極體之概念。不同於通常利 用的MOSFET ’ -雙極電晶體被用於替代(或並聯)標準整 131652.doc 200919921 流器二極體,使得電路理想地適合於傳統上最佳價格效能 比率之自振盪電源供應器(S0PS)。帛決方案進—步提供_ 低成本且較高效率之做法,以用於低輸出㈣應用中之同 步整流’在該等應用中使用M0SFET因額外驅動工作而更 加困難。 該斬波器單元(其可為一單獨電晶體 屯曰日肢 ---—丁何驭 電晶體全橋)用以轉換一直流輸入電壓至一交流電壓。 較佳地,該斬波器單元充當—用於開啓及關閉該輸入電壓 至該整流器單元之耦合的開關單元。 本發明所提議之同步功率轉換器係自我驅動的,且與 W〇〇:/6〇127A2*示之電路相比,不需任何控制器。係由、 電路操作自動設定開通與關斷狀態。這減少了電路成本及 複雜性,並達成相同於具有一專用控制器之電路的相同效 能/功能。 較佳地’該斬波器單元進—步將該輸出㈣關於該整 流器單元之搞合/退福’即’該輸出電壓至該整流器單元 ()之耦D “由该斬波器單元啓用/撤銷啓用(直接或間接 ^此處’措詞"麵合被啓用"係關於同步整流器為導通狀 =(=開通)之狀態’謂詞、合被撤銷啓用,,係關於一種同 二:盗為非導通狀態(,斷)之狀態。藉由利用已存在 於該^之正確電路本徵信號即可獲得合適㈣_作。 ::叙方法可顯著提高標準自振盪降壓轉換器之驅動 夕〆ς而不增加(或甚至減少)總驅動^成本。這對需要 ^低功率(〇)LED驅動器之應用尤其具備吸弓丨力,例如 I31652.doc 200919921 用於LCD電視機之⑴或犯分段式背力;亦對高度成本驅 動之應用(例如用於後組合燈RCL之汽車用驅動器)具備吸 引力。 本發明因而提供一種於幾乎任何類型之直流轉直流轉換 器中實現同步整流的極便宜且高效率之方法(並因此,高 效功率轉換)。 呵 根據-較佳實施例,該整流器單元進一步包含耦合至該 斬波器單元、該雙極電晶體及該負載的一或多個電抗性: 件’尤其係一或多個電容器、電感元件及/或變壓器。例 如,提供一電感元件(例如一簡單電感器),其被串聯耦合 至該雙極電晶體及該負載。該(等)電抗性元件係用作能量 儲備兀件,其在輸入電壓至該整流器單元開啟時被充電, 而在輸入電壓至該整流器單元關閉時被放電。 根據-進-步實施例,提供—阻抗單元,其—端子被麵 合至該雙極電晶體之基極以提供該控制電流。該附加阻抗 (例如一簡單電阻器)連接該雙極電晶體基極至一電壓電 位,以使該雙極電晶體在需要時接管標準整流器二極體之 續流電流。 較佳地’該阻抗單元之另一端子被耦合至該輸出電壓。 例如’在該電抗性元件為一電感元件之情況下,該阻抗單 元之另-端子被耦合至該電感元件之未被麵合至該雙極電 晶體之-端子。這樣’當在該輸出電壓自該整流器單元退 耦之同時該電感元件被放電時,餘抗元件提供控制電流 以用於轉換該雙極電晶體至導通狀態。 131652.doc -10. 200919921 該控制電流有利地自該直流 予以導出。選用該等直流電壓 該直流電壓是否係已在電路中 哪一者引起最小整流器損失。 輸出電壓或一直流參考電壓 之哪—者係取決於:首先, 可取用;其次,該等電壓之 在一實施例中,該整流芎輩分、任 杰早70進一步包含一整流器二極 體’其耦合於該雙極電晶體之射κ <射極與集極之間。在此實施 例中’該二極體用於在輸出電壓尚未完全增至其經調節值In the first aspect of this & month, a synchronous self-driving power conversion cry includes: , D chopper unit 'which is used to draw the DC input voltage to an AC intermediate voltage; - — * ί - "π, which is used to rectify the AC intermediate voltage and output the power outhouse to the load, the rectifier unit includes a bipolar transistor: 曰 ''H piece' when the chopper unit is off The base of the bipolar electrode body is coupled to a control current supply terminal, and the control current I31652.doc 200919921 supply terminal is used to provide a control current to the base to convert the bipolar transistor to a conduction. status. In the present invention, a method for operating a synchronous self-driving power conversion benefit comprises the following steps: • - extracting the DC input voltage to an alternating current intermediate voltage; _ - #1 by - rectifier unit Rectifying the alternating current intermediate voltage, the rectifier unit includes a bipolar transistor; f '· _ outputting the rectified output voltage to the load; - turning on and off the turn-off voltage to the rectifier unit, and - when When the chopper unit is in the off state, a control current is supplied to the base of the bipolar transistor to convert the bipolar f crystal to a conducting state. In one aspect of the invention, a driver is used to provide a chest voltage and/or a DC drive current to the load, particularly to a 7 LED unit, a backlight unit, a -lcd unit or a post-combination. The lamp unit includes a synchronous self-driving power conversion u as required to convert the DC input voltage to the DC drive voltage and/or the DC drive current. The preferred embodiment of the invention is defined by the associated claim. We will appreciate that the method and the driver have similar and/or identical preferred embodiments as the synchronous self-driven power converter, and are defined by the dependent request item of claim 1. The present invention is based on the concept of a rectifier diode instead of a DC to DC converter (e.g., a buck converter) with a synchronous switch. Unlike the commonly used MOSFET's - bipolar transistors are used to replace (or in parallel) the standard full 131652.doc 200919921 flow diode diode, making the circuit ideally suited to the traditional best price-performance ratio self-oscillating power supply (S0PS). The solution provides step-by-step _ low cost and high efficiency for simultaneous rectification in low output (IV) applications. The use of MOSFETs in these applications is more difficult due to extra drive operation. The chopper unit (which can be a single transistor 屯曰 肢 -- - 丁 驭 驭 驭 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) Preferably, the chopper unit acts as a switching unit for turning the input voltage to the coupling of the rectifier unit. The synchronous power converter proposed by the present invention is self-driven and does not require any controller as compared to the circuit shown by W〇〇:/6〇127A2*. The circuit is operated to automatically set the on and off states. This reduces circuit cost and complexity and achieves the same benefits/functions as circuits with a dedicated controller. Preferably, the chopper unit advances the output (4) with respect to the rectifier unit, ie, the coupling voltage of the output voltage to the rectifier unit (" is enabled by the chopper unit / Undo enable (direct or indirect ^ here 'words " face is enabled " is about the state of the synchronous rectifier = conduction = (= open) the state 'predicate, the union is revoked, the system is about the same two: thieves It is a state of non-conduction state (, break). By using the correct circuit eigensignal that already exists in the ^, the appropriate (4) _ can be obtained. :: The method can significantly improve the driving of the standard self-oscillating buck converter. Even without increasing (or even reducing) the total driver cost. This is especially useful for applications that require low-power (〇) LED drivers, such as I31652.doc 200919921 for LCD TVs (1) or offenses. Segmented back force; also attractive for highly cost-driven applications such as automotive drives for rear combination lamps RCL. The present invention thus provides a synchronous rectification in almost any type of DC to DC converter. Very cheap and high The method of efficiency (and therefore, efficient power conversion). According to a preferred embodiment, the rectifier unit further comprises one or more reactive components coupled to the chopper unit, the bipolar transistor, and the load: 'In particular, one or more capacitors, inductive components and/or transformers. For example, an inductive component (eg, a simple inductor) is provided that is coupled in series to the bipolar transistor and the load. The component is used as an energy storage component that is charged when the input voltage is applied to the rectifier unit, and is discharged when the input voltage is turned off to the rectifier unit. According to the embodiment, an impedance unit is provided, a terminal is coupled to the base of the bipolar transistor to provide the control current. The additional impedance (eg, a simple resistor) connects the base of the bipolar transistor to a voltage potential to cause the bipolar transistor to If necessary, take over the freewheeling current of the standard rectifier diode. Preferably, the other terminal of the impedance unit is coupled to the output voltage. For example, 'the reactive element is an electric In the case of an element, the other terminal of the impedance unit is coupled to the terminal of the inductive element that is not surfaced to the bipolar transistor. Thus 'when the output voltage is decoupled from the rectifier unit, the inductance When the component is discharged, the residual component provides a control current for switching the bipolar transistor to a conducting state. 131652.doc -10. 200919921 The control current is advantageously derived from the direct current. The DC voltage is selected for the DC voltage. Whether it is in the circuit which causes the minimum rectifier loss. Which of the output voltage or the direct current reference voltage depends on: First, it can be taken; secondly, in the embodiment, the voltage is in the embodiment Ren Jiezao 70 further includes a rectifier diode 'coupled between the κ < emitter and collector of the bipolar transistor. In this embodiment, the diode is used to increase the output voltage to its adjusted value.

之情況(例如,於電路啓動期間)下亦保證電壓整流。 在另-實施例中’該電抗性元件為一變壓器,其用於變 換該輸入電壓至-中間電壓,且該斬波器單元被耦合於該 變壓器之初級繞組及一輸入電壓供應單元之間。此實施例 通常使用於在介於輸出電壓與輸入電壓之間需要直流電 (gaWanie)隔離之轉換器,或變壓器㈣於調節特定電流電 壓以最小化損失及/或成本之轉換器。 進一步地,該整流器單元較佳包含—對雙極電晶體,其 中該阻抗單元包含兩個阻抗元件,未耗合至相關聯雙極電 晶體之基極的該等S件之端子係彼此_合且相合至該變壓 器之一分離次級繞組之一中問她; 丫间和千。此實知例通常使用於 使用全波整流之諧振轉換器中。 本發明尤其有用於需要多個驅動器之應用(例如用於 L⑶電視機之戰2D背光)或高度成本敏感之應用(例如用 於汽車應用之後組合燈或RCL)。本發明亦適用於pwM或 AM凋光電路及多種轉換器拓撲,提供良好整合可能生並 導致一極具競爭力之驅動器概念。 13I652.doc 200919921 【實施方式】 下文’藉由闡釋具有用於自振盪降壓轉換器之雙極電晶 體之同步整流的實施方案及效能之實例,將解說本發明π 圖1繪示標準自振盪降壓轉換器,例如,如2〇〇1年8月 27-28 S ^^iljGraz <EPE,2〇〇1j 9th Eur〇pean c〇nferenceIn the case of the case (for example, during circuit startup) voltage rectification is also guaranteed. In another embodiment, the reactive component is a transformer for transforming the input voltage to an intermediate voltage, and the chopper unit is coupled between the primary winding of the transformer and an input voltage supply unit. This embodiment is typically used in converters that require galvanic isolation between the output voltage and the input voltage, or transformers (4) to regulate the particular current voltage to minimize losses and/or cost. Further, the rectifier unit preferably comprises a pair of bipolar transistors, wherein the impedance unit comprises two impedance elements, and the terminals of the S components that are not consuming to the base of the associated bipolar transistor are combined with each other. And in the middle of one of the separated secondary windings of the transformer, ask her; This practical example is commonly used in a resonant converter using full-wave rectification. The invention is particularly useful for applications requiring multiple drivers (e.g., for 2D backlighting of L(3) televisions) or for highly cost sensitive applications (e.g., combined lamps or RCLs for automotive applications). The invention is also applicable to pwM or AM withering circuits and a variety of converter topologies, providing good integration possibilities and resulting in a highly competitive driver concept. 13I652.doc 200919921 [Embodiment] Hereinafter, by explaining an embodiment and performance of synchronous rectification with a bipolar transistor for a self-oscillating buck converter, the present invention will be illustrated. FIG. 1 illustrates standard self-oscillation. Buck converters, for example, such as August 27-28 S ^^iljGraz <EPE, 2〇〇1j 9th Eur〇pean c〇nference

二 Power Electronics and AppUcati〇ns> m 〇崎瞻 ’’Srniple cheap converters f〇r the 山伽⑽"所揭示。該轉 換器經調適用於轉換由一電壓源VSm提供之一直流輸入電 壓Vin至一直流輸出電壓v〇或一直流輸出電流丨〇,以供應一 負載L0(在此實例中為一 led)。 該轉換器包含兩個電晶體T1及T3,其連同電阻器汉2共 同形成一電流限制開關,其中主電流流經丁丨。在71為閉= (開通狀態)時,輸入電壓Vin減去橫跨分路電阻器R2之電壓 降Vr2(與Vin相比,VR2很小)被施加於二極體〇之陰極,對 其進行反偏壓以使電流不流經該整流器二極體D。在穩態 操作中,在此情況下橫跨電感器之電壓降為約Vin_v。,其 導致電感器電流iL線性上升。當達到一定峰值電流(由約 700 mV之射極基極臨限值電壓之商數及電阻器R2所界定) 時,電晶體T3開始導通,接管起初流經丁丨基極之電流。在 這時,經過電感器L之電流不再繼續流經T1,而是被迫流 經二極體D。這導致D的陰極電壓由Vin變為接地,並因此 繼而關閉電晶體T2之基極電流,及因此亦關閉流經電晶體 T3之電流。橫跨電感器L之電壓降現在為_v。,因此線性遞 減該電感器電流iL至零。在這時,電晶體丁2經由(啓動)電 131652.doc -12· 200919921 阻态R1被再次開啟且整個循環再次開始。 值得注意的是’由電阻器们所設定之•值 出LED LO之理想平均電流 3際為輪 田, L的兩倍。電容器C係選用的且可 用以減小酬波電流1晶體T2中之電流受 :3。該,,電流限制開關”在本文中亦被稱為斬波器,直用: 極體電壓)。 “中間電壓vD(亦被稱為二 此種降壓轉換器之佈局及功能對於熟習此項技術 知的,因此不再贅述。 备 圖2及圖3中分別繪示經過電感器之電“以及橫跨二極 體之電壓vD與二極體雷、,* ; # # • ㈣電*lD°尤其’圖2繪示該電感器電 “及該二極體電壓九,且圖3繪示該二極體電流及該二 極體電壓VD。 圖4中,可看到對於3 v LED電壓、5〇誕咖電流及 V,l〇 V之輸入電壓之瞬時二極體損失。從該圖中可看出 一極體D之損失可令轉換器效率顯著下降。 圖5繪示用於自振盪降壓轉換器之所提議新電路之一實 施例。除圖1中所示電路之外’該新電路亦包含—用於同 步整流之雙極電晶體T4,該電晶體之基極經由一基極阻抗 Ζ連接至LED串電壓(連接電感器L及負載L〇之端子處的電 壓),即該阻抗Z之第一端子Z1耦合至該雙極電晶體丁4之基 極且其第二端子Ζ2耦合至該LED串電壓ν〇之正端子。當 ”開關"關閉時,用於轉換該雙極電晶體丁4至導通狀態之控 制電流經由該阻抗(例如在此實施例中為一簡單電阻器)被 131652.doc • 13- 200919921 知供至》亥雙極電a曰體T4之基極。此種雙極電晶體·具有一 尚電流增益、便宜、實現快速開關並且提供約1〇〇 mV低臨 限值電壓(取決於所用雙極電晶體之類型,例如5〇 mV)。 進一步,其具有比MOSFET(其具有5-10 V高閘極電幻或 一標準整流器二極體(Si二極體)(其具有7〇〇 mV_〗〇〇〇 ^^正 向電歷降)低得多的偏壓電壓(例如,〇 7 V基極射極電壓II Power Electronics and AppUcati〇ns> m 〇崎瞻 ’’Srniple cheap converters f〇r the saga (10)" The converter is adapted to convert a DC input voltage Vin supplied from a voltage source VSm to a DC output voltage v〇 or a DC output current 丨〇 to supply a load L0 (in this example, a led). The converter comprises two transistors T1 and T3 which, together with the resistor Han 2, form a current limiting switch in which the main current flows through the cesium. When 71 is closed = (on state), the input voltage Vin is subtracted from the voltage drop Vr2 across the shunt resistor R2 (the VR2 is small compared to Vin) is applied to the cathode of the diode ,, and is performed. The bias voltage is reversed so that current does not flow through the rectifier diode D. In steady state operation, the voltage drop across the inductor in this case is about Vin_v. This causes the inductor current iL to rise linearly. When a certain peak current is reached (defined by the quotient of the emitter base threshold voltage of about 700 mV and the resistor R2), the transistor T3 begins to conduct, taking over the current flowing through the base of the butadiene. At this time, the current passing through the inductor L no longer continues to flow through T1, but is forced to flow through the diode D. This causes the cathode voltage of D to change from Vin to ground, and thus turns off the base current of transistor T2 and thus also the current flowing through transistor T3. The voltage drop across inductor L is now _v. Therefore, the inductor current iL is linearly decremented to zero. At this time, the transistor D2 is turned on again by the (starting) power 131652.doc -12· 200919921, and the entire cycle starts again. It is worth noting that the value set by the resistors is the ideal average current of the LED LO. Capacitor C is selected and can be used to reduce the current in the recharge current 1 crystal T2 :3. Therefore, the current limit switch is also referred to herein as a chopper, which is used directly: the body voltage. "Intermediate voltage vD (also known as the layout and function of such a buck converter) The technology is known, so it will not be described again. In Figure 2 and Figure 3, respectively, the electricity through the inductor "and the voltage across the diode vD and the diode body, *; # # • (4) electricity * lD ° In particular, FIG. 2 shows the inductor "and the diode voltage nine", and FIG. 3 shows the diode current and the diode voltage VD. In FIG. 4, it can be seen that the voltage is 3 v LED The instantaneous diode loss of the input voltage of V, l〇V. It can be seen from the figure that the loss of one pole D can significantly reduce the efficiency of the converter. An embodiment of the proposed new circuit of an oscillating buck converter. In addition to the circuit shown in Figure 1, the new circuit also includes a bipolar transistor T4 for synchronous rectification, the base of which is via a The base impedance Ζ is connected to the LED string voltage (the voltage at the terminal connecting the inductor L and the load L )), that is, the first end of the impedance Z Z1 is coupled to the base of the bipolar transistor D4 and its second terminal T2 is coupled to the positive terminal of the LED string voltage ν〇. When the "switch" is turned off, it is used to convert the bipolar transistor D to The control current of the on state is supplied to the base of the "Thai Bipolar" a T2 via the impedance (for example, a simple resistor in this embodiment). The crystal has a current gain, is inexpensive, implements fast switching and provides a low threshold voltage of about 1 〇〇 mV (depending on the type of bipolar transistor used, eg 5 〇 mV). Further, it has a specific MOSFET ( It has a 5-10 V high gate phantom or a standard rectifier diode (Si diode) (which has 7 〇〇 mV _ 〇〇〇 ^ ^ forward electrical calendar drop) much lower bias voltage (for example, 〇7 V base emitter voltage

Vbe)。 ' 尤其,當"開關"開啟時,該雙極電晶體T之射極處的電 壓(等於交流中間電壓Vd)對應於該輸入電壓,且該雙極 電日日體T4之基極射極電壓Vbe為負。當"開關π關閉且該交 *中間電壓VD為零(或接近零)時,該雙極電晶體之射極處 的電壓變為零且該基極射極電壓Vbe變得大於零,以使該 又極電晶體變為導通。結果,該雙極電晶體T4接管L,否 則iL將流經D,由此顯著減小整流器損失。因此,根據本 發明之電路之同步”開關”係自我驅動的。 用於圖5之轉換器實施例之元件典型值為: L :典型 10 μΗ 至 50 mH ; Z(R):典型 1〇〇 〇至 1〇〇 ; c·選用 ’L:典型 10nF至 1〇〇〇μρ; R1 :典型 1 ΙίΩ至 1000 kQ ; R3 :典型 100 Ω至 500 kQ ; R2 :典型 1 γώΩ至 1000 Ω ; 顯然該等值僅為可用於一較佳實施例之實例。但是,本 發明絕不限制於使用該等值的元件。其他值當然也是可取 131652.doc 14 200919921 的。 圖6繪示該雙極電晶體τ 4之集極電流丨c及二極體電壓 VD。可看出’運用同步整流可顯著減小該二極體正向電 壓’並且因此顯著減小整流損失,藉此增大轉換器效率。 下列圖式繪示本發明之進—步實施例,展示如何在所有 主要直流轉直流轉換器拓撲中達成利用一或多個雙極電晶 體的同步整流。該等圖中藉由8標示開關,由丁或分別由 Ta、Tb標示雙極電晶體。 圖7繪不具有標準降壓轉換器之雙極電晶體丁之同步整流 實施例。該整流器功能(其通常由昂貴二極體來實行,二 極體產生很多正向損失,且在較高溫度下亦產生很多反向 損失)現在已被電晶體T所代替,其不具上述之該等缺點。 在續流時間期間,二極體D之陰極具有一負電壓電位, 且電壓V〇之電位高於二極體D之陰極電位。這意味著阻抗 Z供應電晶體T之基極電流,且該電晶體丁將導通以執行整 流功能。該二極體D可係一非常便宜之二極體,此係因為 其功能現在僅啓動整流。當該整流係完全作用中時,該二 極體D將被電晶體τ之集極射極飽和電壓旁路。在無該二 極體D情況下,電路亦將運作,這是因為實事上在整流時 間期間阻抗L電壓Vl之極性互換而使電壓v〇之電壓電位始 終咼於该電晶體T之射極之電壓電位。該電晶體1可係任意 類型電晶體,例如雙極電晶體或FET。 圖8緣不具有標準增壓轉換器中之雙極電晶體之同步整 流實施例。圖9繪示具有標準降壓增壓轉換器之雙極 日日 131652.doc 15 200919921 體τ之同步整流實施例。圖丨〇繪示具有標準反驰轉換器(其 使用—具有一初級繞組prim及一次級繞組sec的變壓器Tr) 中之雙極電晶體T之同步整流(半波整流)實施例。圖丨丨繪 不具有標準諧振轉換器中之雙極電晶體Ta、Tb之同步整流 (可有變堡器Tr之分離次級繞組sec_a、sec_b的全波整流; 圖中未緣示諸振轉換器之主級側)實施例。 圖1 2繪示根據本發明之一電晶體同步整流器之進一步實 知方案’尤其一降壓轉換器電路,其用於汽車RCL應用 中’連同一附加電晶體同步整流器。當達到峰值電流值 (其可由R11調整)時,電晶體Q16將被關閉,且運算放大器 U11D之輸入V-將低於輸入V+,並因此該運算放大器UUD 之輸出將被提高。結果導致電晶體Q17的導通。現在已開 始整流循環部分。這將一直發生直至經過阻抗以之遞減電 流變低’並且啓動電路再次啓用電晶體q14。當該電晶體 Q14已再次啓用時,運算放大器U11D之輸入v_之電壓電位 向於輸入V+之電壓電位。這將導致停止該電晶體q 1 7之導 通。 當採用該運算放大器UUD之輸入v_(而不是以⑴之陽極 電壓)作為參考電壓(已呈現於圖12之電路中)時,則電阻器 R9(其被提議設置於一可能的積體電路之外部)可係一固定 值。廷麽做的益處是若干串聯之LED將不再需要電阻器Μ 之調適。按這種方式可整合該電阻器R9。 已附加二極體D10(其為一非常便宜二極體)以確保無高 負電壓發生於電晶體Q16之集極。該電晶體⑽在正常操 丨職.dGe _i6_ 200919921 但非必須,因為電 作中旁路該二極體D10。這係可能的 阻器R16輸出及運算放大器υΐ 1D輸出限制了該電壓。 注意該運算放大器U11D之V+輸入亦可被連接至一參考 電Μ源,而非LED 1之陽極。 圖13繪示根據本發明之一 AM(調幅)降壓轉換器實施 例,尤其用於AM調光及同步整流應用之可能性。Vbe). 'In particular, when the "switch" is turned on, the voltage at the emitter of the bipolar transistor T (equal to the alternating intermediate voltage Vd) corresponds to the input voltage, and the base shot of the bipolar electric solar body T4 The pole voltage Vbe is negative. When the " switch π is off and the intermediate voltage VD is zero (or near zero), the voltage at the emitter of the bipolar transistor becomes zero and the base emitter voltage Vbe becomes greater than zero to The epipolar transistor is turned on. As a result, the bipolar transistor T4 takes over L, otherwise iL will flow through D, thereby significantly reducing rectifier losses. Thus, the synchronous "switch" of the circuit in accordance with the present invention is self-driven. Typical values for the components of the converter embodiment of Figure 5 are: L: typically 10 μΗ to 50 mH; Z(R): typically 1〇〇〇 to 1〇〇; c· select 'L: typical 10nF to 1〇 〇〇μρ; R1: typically 1 ΙίΩ to 1000 kQ; R3: typically 100 Ω to 500 kQ; R2: typically 1 γ ώ Ω to 1000 Ω; obviously these values are only examples that can be used in a preferred embodiment. However, the invention is in no way limited to the use of such equivalents. Other values are of course also desirable 131652.doc 14 200919921. FIG. 6 illustrates the collector current 丨c and the diode voltage VD of the bipolar transistor τ 4 . It can be seen that 'using synchronous rectification can significantly reduce the diode forward voltage' and thus significantly reduce rectification losses, thereby increasing converter efficiency. The following figures illustrate a further embodiment of the present invention showing how synchronous rectification with one or more bipolar transistors can be achieved in all major DC to DC converter topologies. In these figures, the bipolar transistor is indicated by D or by Ta, Tb, respectively, by means of a switch. Figure 7 depicts an embodiment of a synchronous rectification of a bipolar transistor without a standard buck converter. The rectifier function (which is usually implemented by an expensive diode, the diode generates a lot of forward losses, and also produces a lot of reverse losses at higher temperatures) is now replaced by a transistor T, which does not have the above And so on. During the freewheeling time, the cathode of the diode D has a negative voltage potential, and the potential of the voltage V〇 is higher than the cathode potential of the diode D. This means that the impedance Z supplies the base current of the transistor T, and the transistor is turned on to perform the rectifying function. The diode D can be a very inexpensive diode, since the function now only initiates rectification. When the rectifying system is fully active, the diode D will be bypassed by the collector emitter saturation voltage of the transistor τ. In the absence of the diode D, the circuit will also operate because the polarity of the impedance L voltage V1 is actually interchanged during the rectification time so that the voltage potential of the voltage v〇 is always at the emitter of the transistor T. Voltage potential. The transistor 1 can be any type of transistor, such as a bipolar transistor or FET. Figure 8 does not have a synchronous rectification embodiment of a bipolar transistor in a standard boost converter. FIG. 9 illustrates a synchronous rectification embodiment of a bipolar daytime 131652.doc 15 200919921 body τ with a standard buck boost converter. The figure shows a synchronous rectification (half-wave rectification) embodiment of a bipolar transistor T in a standard down converter (which uses a transformer Tr having a primary winding prim and a primary winding sec). Figure 2 shows the synchronous rectification of the bipolar transistors Ta, Tb in the standard resonant converter (full-wave rectification of the separated secondary windings sec_a, sec_b of the variable Tr; Tr; The main stage side of the device) embodiment. Figure 12 illustrates a further embodiment of a transistor synchronous rectifier in accordance with the present invention, particularly a buck converter circuit for use in automotive RCL applications with the same additional transistor synchronous rectifier. When the peak current value is reached (which can be adjusted by R11), transistor Q16 will be turned off and the input V- of operational amplifier U11D will be lower than input V+, and thus the output of the operational amplifier UUD will be boosted. As a result, the transistor Q17 is turned on. The rectification cycle section has now started. This will continue until the current is reduced by the impedance minus and the start-up circuit again activates the transistor q14. When the transistor Q14 is enabled again, the voltage potential of the input v_ of the operational amplifier U11D is directed to the voltage potential of the input V+. This will cause the conduction of the transistor q 17 to be stopped. When the input v_ of the operational amplifier UUD (instead of the anode voltage of (1)) is used as the reference voltage (presented in the circuit of FIG. 12), then the resistor R9 (which is proposed to be placed in a possible integrated circuit) External) can be a fixed value. The benefit of Ting is that several LEDs in series will no longer require the adaptation of resistors. In this way, the resistor R9 can be integrated. A diode D10 (which is a very inexpensive diode) has been added to ensure that no high negative voltage occurs at the collector of transistor Q16. The transistor (10) is in normal operation. dGe _i6_ 200919921 but not necessarily because the diode D10 is bypassed during operation. This is the possible resistor R16 output and the op amp υΐ 1D output limits this voltage. Note that the V+ input of the operational amplifier U11D can also be connected to a reference source instead of the anode of LED 1. Figure 13 illustrates an embodiment of an AM (Amplitude Modulation) buck converter, particularly for AM dimming and synchronous rectification applications, in accordance with the present invention.

Dm加控制㈣以降低LED光輸出位準,而二極體D2意欲 具有高LED光輸出位準。 對於高LED光輸出位準,一電阻器们決定電流舉值位 準。當橫跨該電阻器R3之電壓達到0.7 v 基極將由電晶_之集極/射極連接至一更高電壓,2 該電晶體Q3停止導通,且續流二極體⑴開始導通。 时對於低led光輪出料,電阻器R2&R3為電流感測電阻 益。因3亥電阻器R2之值高於電阻器R3之值,所以主峰值 電抓斷路電位準(tnp level)由該電阻器们決定。因此,在 -杈低蜂值電流位準,電晶體⑴將被關閉。 圖13中,一運算放大器及一電阻器電晶體組合(如圖u 中斤示)亦可取代該續流二極體D3。一般而言,對於以何 種方式控制調光並無限制。 圖14、.曰不根據本發明之一用於遲滯控制之降壓轉換 器貝化例運异放大器U13D決定最大電流峰值,且運算 放大器U14D沐中田ϊ々 疋取小峰值電流值。該最小電流峰值可以 接近於零然後導致—臨界模式轉換器。運算放大器川 關位準由分別處於該等運算放大器之-輸入及 131652.doc 200919921 +輸入的參考電壓予以決定。該等參考電壓之間的電壓差 將導致電晶體Q18及Q67決不同時導通之狀況。一無作用 區將按此引進。橫跨電阻器R23之放大感測電壓饋給運算 放大器U13D及U14D之其他輸入。運算放大器U12D周圍之 電流感測電路係轉換電流至電壓之熟知構件。 感測電路之放大率A^R23/R2^電阻器R232tUllD處 之輸出電壓連同參考電壓一起決定該轉換器之遲滯行為, 例如電流漣波振幅及(由此導出之)頻率。事實上在無作用 時間期間¥線圈連接係在浮動中且一高負電壓可能發生 時,二極體D28具有一續流二極體之功能,以防電晶體 Q76之非導通。因該無作用時間係小,所以二極體加8可 係便且一極體,此二極體D28的功率消耗可忽略不計。 因此,圖14係依賴於一種不同於基本尋找(=自偏置)之 做式的簡單遲滯控制電路之實例,但亦適用於雙極電晶體 而非Schottky二極體。 根據本發明,提議一種標準直流轉直流轉換器(例如 SOPS)之修改案,其致使標準整流器二極體能夠用一基於 一雙極電晶體(而非M0SFET)之同步整流器所替換。作為 必要元件,提供並聯於(或替代)標準整流器二極體的 一雙極電晶體。與M0SFET(其歸因於5 V_1() v之高閘極電 壓需求而難以施用於低輸出電壓S〇PS)相比,一雙極電晶 體僅需約700 mv基極射極電壓。進一步,一雙極電晶體不 具有一(MOSFET本徵)主體二極體。因此,一種非常便宜 且内效率之於幾乎任何類型直流轉直流轉換器中實施同步 131652.doc -18- 200919921 整流(及因此’高效率功率轉換) 千种)的方式係可能的。本發明 二進一步優點為該功率轉換器係自我驅動的且不需-專 用控制器。 寻 本發明可應用於:汽直靡用φ ^ π車應用中之組合式煞車、尾燈及轉 2燈:LCD電視機中之⑴或扣背光;汽車應用中之後組 口燈或RCL,OLED驅動器;或普通照明應用。 當本發明藉由料圖式及先前描料料細説明時,庫 瞭解該等描述及説明僅被認為係説明性及例證性,而非限 制性;本發明並不限於所揭示之實施例。所揭示實施例之 其他變化案亦可被熟習此項技術者在實踐所請求之發明時 理解並實現,藉由對該等圖式,本文所揭示内容,及附加 請求項之研習 在請求項中,措詞,’包含,,並不排除其他元件或步驟,且 不疋过θ —個'’並不排除—複數。-個單獨元件或 其他單元可執行請求項所列舉之多項功能。特定方法由互 不相同之相關請求項列舉之事實並不表示該等方法之一组 合的使用不具優越性。 «月求項中任何參考標記皆不應被解釋為限制其範圍。 【圖式簡單說明】 圖1繪示-標準自振盪降壓轉換器之電路圖; 圖2繪不圖1轉換器之電感器電流及二極體電壓; 圖3繪不圖1轉換器之二極體電流及二極體電壓; 圖4繪不對於圖1轉換器中之3 V LED電壓、50 mA lED 電流及輸入電壓的二極體損失。 131652.doc -19- 200919921 圖5繪示根據本發明之自振盡降壓轉換器之第一,施 例; 圖6繪示圖5所示之轉換器中之雙極電晶體之集極電流及 二極體電壓VD ; 圖7繪示具有標準降壓轉換器中之雙極電晶體的根據本 發明之轉換器之第二實施例; 圖8繪示具有標準增壓轉換器中之雙極電晶體的根據本 發明之轉換器之第三實施例; 圖9繪示具有標準降壓增壓轉換器中之雙極電晶體的根 據本發明之轉換器之第四實施例; 圖10繪示具有標準反驰轉換器中之雙極電晶體的根據本 發明之轉換器之第五實施例; 圖11繪示具有標準諧振轉換器中之雙極電晶體的根據本 發明之轉換器之第六實施例; 圖12繪示根據本發明之轉換器之第七實施例,尤其一用 於汽車用RCL應用中之降壓轉換器電路; 圖13繪示根據本發明之轉換器之第八實施例,尤其一 am降壓轉換器電路;及 圖14繪示根據本發明之轉換器之第九實施例,尤其一用 於遲滯LED控制之降壓轉換器。 【主要元件符號說明】 Αν 放大率 C 電容器 D'Dl〇'D28 二極體 131652.doc •20· 200919921 icDm plus control (4) to reduce the LED light output level, and diode D2 is intended to have a high LED light output level. For high LED light output levels, a resistor determines the current value level. When the voltage across the resistor R3 reaches 0.7 v, the base will be connected to a higher voltage by the collector/emitter of the transistor, 2 the transistor Q3 will stop conducting, and the freewheeling diode (1) will begin to conduct. For low led light wheel discharge, resistor R2 & R3 is the current sense resistor. Since the value of the RH resistor R2 is higher than the value of the resistor R3, the main peak electric pick-up potential (tnp level) is determined by the resistor. Therefore, the transistor (1) will be turned off at - low current level. In Fig. 13, an operational amplifier and a resistor transistor combination (shown in Fig. u) can also replace the freewheeling diode D3. In general, there is no limit to the way in which dimming can be controlled. Fig. 14. 降压 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰 降压 降压 降压 降压 U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U This minimum current peak can be close to zero and then result in a critical mode converter. The operational amplifier pass level is determined by the input voltage of the op amp and the reference voltage of the input of 131652.doc 200919921 + respectively. The voltage difference between the reference voltages will cause the transistors Q18 and Q67 to be turned on at different times. A no-action area will be introduced here. The amplified sense voltage across resistor R23 is fed to the other inputs of operational amplifiers U13D and U14D. The current sensing circuit around operational amplifier U12D is a well-known component that converts current to voltage. The amplification factor of the sensing circuit A^R23/R2^ The output voltage at resistor R232tUllD, together with the reference voltage, determines the hysteresis behavior of the converter, such as the current chopping amplitude and the frequency derived therefrom. In fact, during the inactive time period, when the coil connection is floating and a high negative voltage may occur, the diode D28 has a function of a freewheeling diode to prevent the transistor Q76 from being non-conductive. Since the inactivity time is small, the diode plus 8 can be tied and one pole, and the power consumption of the diode D28 is negligible. Thus, Figure 14 relies on an example of a simple hysteresis control circuit that differs from the basic seek (= self-bias) approach, but is also applicable to bipolar transistors rather than Schottky diodes. In accordance with the present invention, a modification of a standard DC to DC converter (e.g., SOPS) is proposed that enables a standard rectifier diode to be replaced with a synchronous rectifier based on a bipolar transistor (rather than a MOSFET). As an essential component, a bipolar transistor is provided in parallel with (or instead of) a standard rectifier diode. A bipolar transistor requires only about 700 mv of base emitter voltage compared to a MOSFET (which is difficult to apply to a low output voltage S〇PS due to the high gate voltage requirement of 5 V_1() v). Further, a bipolar transistor does not have a (MOSFET intrinsic) body diode. Therefore, a very inexpensive and intrinsic efficiency is achieved in almost any type of DC-to-DC converter. Synchronization (and therefore 'high-efficiency power conversion') is possible. A further advantage of the present invention is that the power converter is self-driven and does not require a dedicated controller. The invention can be applied to: combination brake, taillight and turn 2 lamp in φ ^ π car application: (1) or buckle backlight in LCD TV; group port lamp or RCL, OLED driver in automotive applications Or general lighting applications. The present invention is to be considered as illustrative and illustrative and not restrictive. Other variations of the disclosed embodiments can also be understood and effected by those skilled in the art in the practice of the claimed invention. The disclosure of the drawings and the appended claims are in the claims. , the wording, 'includes, does not exclude other elements or steps, and does not θ θ — a '' does not exclude the plural. - A single component or other unit can perform the functions listed in the request. The fact that certain methods are recited by mutually different related claim items does not mean that the use of one of the methods is not advantageous. «No reference to any reference in the monthly proposal should be construed as limiting its scope. [Simple diagram of the diagram] Figure 1 shows the circuit diagram of the standard self-oscillating buck converter; Figure 2 shows the inductor current and the diode voltage of the converter of Figure 1; Figure 3 depicts the diode of the converter of Figure 1. Body current and diode voltage; Figure 4 depicts the diode loss for the 3 V LED voltage, 50 mA lED current, and input voltage in the converter of Figure 1. 131652.doc -19- 200919921 FIG. 5 illustrates a first embodiment of a self-oscillating buck converter according to the present invention; FIG. 6 illustrates a collector current of a bipolar transistor in the converter illustrated in FIG. And a diode voltage VD; FIG. 7 illustrates a second embodiment of a converter according to the present invention having a bipolar transistor in a standard buck converter; FIG. 8 illustrates a bipolar with a standard boost converter A third embodiment of a converter according to the invention of a transistor; FIG. 9 shows a fourth embodiment of a converter according to the invention having a bipolar transistor in a standard buck boost converter; A fifth embodiment of a converter according to the invention having a bipolar transistor in a standard flyback converter; Figure 11 shows a sixth converter according to the invention having a bipolar transistor in a standard resonant converter Embodiments; Figure 12 illustrates a seventh embodiment of a converter in accordance with the present invention, particularly a buck converter circuit for use in automotive RCL applications; Figure 13 illustrates an eighth embodiment of a converter in accordance with the present invention , especially an am step-down converter circuit; and Figure 14 shows The ninth embodiment of the converter embodiment Ming, in particular a hysteretic buck converter for LED control purposes. [Main component symbol description] Αν Magnification C Capacitor D'Dl〇'D28 Diode 131652.doc •20· 200919921 ic

IdId

i〇 L 集極電流 二極體電流 電感器電流 直流輸出電流 連接電感器 L2 阻抗 LO 負載 Q14、Q16、Q17、Q18、 電晶體 Q67 、 Q76I〇 L Collector Current Diode Current Inductor Current DC Output Current Connected Inductor L2 Impedance LO Load Q14, Q16, Q17, Q18, Transistor Q67, Q76

Rl、R2、R3、R4、R5、 電阻器 R9 、 R23 、 R24 、 R25 、 R26 、 R27 、 R28 S 開關Rl, R2, R3, R4, R5, resistor R9, R23, R24, R25, R26, R27, R28 S switch

Sec a 、 Sec b T 、 Ta 、 TbSec a , Sec b T , Ta , Tb

ΤΙ 、 T2 、 T3 、 T4ΤΙ , T2 , T3 , T4

TrTr

U11D、U12D、U13D、U14D 分離次級繞組 雙極電晶體 電晶體 變壓器 運算放大器 V- 輸入 V+ Vbe Vd Vin V〇 輸入 基極射極電壓 交流中間電壓 直流輸入電壓 直流輸出電壓 131652.doc 21 200919921 VR2 電壓降 VS 電壓源 Ζ 阻抗 Z1 第一端子 Ζ2 第二端子 Ο 1 131652.doc -22-U11D, U12D, U13D, U14D Separate secondary winding bipolar transistor transistor transformer operational amplifier V- input V+ Vbe Vd Vin V〇 input base emitter voltage AC intermediate voltage DC input voltage DC output voltage 131652.doc 21 200919921 VR2 Voltage drop VS Voltage source 阻抗 Impedance Z1 First terminal Ζ 2 Second terminal Ο 1 131652.doc -22-

Claims (1)

200919921 十、申請專利範圍: 其用於轉換一直流輸入200919921 X. Patent application scope: It is used to convert DC input 1. 一種同步自我驅動功率轉換器 一斬波器單元(s),用於斬取該直流輸入電壓(Vin)成為 一交流中間電壓(vD), 一整流器單元,用於整流該交流中間電壓及輸出該經 整流之輸出電壓至該負載,該整流器單元包含一雙極電 當該斬波器單元為關閉狀態 晶體(T、T4)作為整流元件, 守°亥雙極電晶體之基極被耦合至一控制電流供應端 子,該控制電流供應端子其用於提供一控制電流至該雙 極電晶體之基極以轉換該雙極電晶體至一導通狀態。 2.如請求項1之同步自我驅動功率轉換器,其進一步包含 耦σ至5亥斬波器單元(s)、該雙極電晶體(T、T4)及該負 載(LO)的一或多個電抗性元件,尤其一或多個電容器 (C)、電感元件(L)及/或變壓器(Tr)。 3 ·如μ求項1之同步自我驅動功率轉換器,其進一步包含 阻抗單凡(Ζ) ’其一端子(Ζ1)被耦合至該雙極電晶體 (Τ、丁4)之基極’以用於供應該控制電流。 4·如清求項2及3之同步自我驅動功率轉換器,其中該阻抗 單7°(Ζ)之另—端子(Ζ2)被耦合至該輸出電壓(V〇)。 5 · 士 °月求項1之同步自我驅動功率轉換器,其中該控制電 L係自°亥輸出電壓(V〇)或一直流參考電壓予以導出。 131652.doc 200919921 6 . 言奮了5 1 时—、1之同步自我驅動功率轉換器,其中該整流器 Y -進步包含一整流器二極體(D),其耦合於該雙極電 日日體(T、T4)之射極及集極之間。 如哨求項1之同步自我驅動功率轉換器,其中該電抗性 元件為一電感器(L)。 士 °月求項1之同步自我驅動功率轉換器,其中該電抗性 :牛為變壓器(Tr),該變壓器用於變換該輸入電壓成 二、中間電壓,且其中該斬波器單元(S)被耦合於該變壓 器(Tr)之一初級繞組(pdm)及一輸入電壓供應單元之間。 9·如明求項8之同步自我驅動功率轉換器,其中該整流器 °° 一匕έ對雙極電晶體(Ta,Tb),其中該阻抗單元包含 兩個阻抗το件(Za,Zb),其未耦合至相關聯雙極電晶體 (Ta,Tb)之基極的該等元件之端子係彼此耦合且耦合至該 變壓器(Tr)之一分離次級繞組(Sec一a,之—中 子。 1 〇種驅動器,丨用於提供一直流驅動電麼及/或一直流驅 動電流至-負載(L0),尤其至—LED單元、—背光單 70 LCD單凡或一後組合燈單元,該驅動器包含—如 請求項1之同步自我驅動功率轉換器,該轉換器用於轉 換輸入電壓(Vin)成為該直流驅動電壓(V〇)及/或該直流 驅動電流(i〇)。 種操作同步自我驅動功率轉換器以轉換一直流輪入 電壓(Vin)成為一直流輸出電麼(v〇)及/或一直流輸出電流 (i〇)以供應一負載(L0)之方法,其包含以下步驟:抓 131652.doc 200919921 斬取該直流輸入電壓(Vjn)成為一交流中間電壓(ν〇), 藉由一整流器單元整流該交流中間電壓,該整流器單 元包含一雙極電晶體(丁、T4), 輸出該經整流之輪出電壓至該負載, 開啟及關閉該輸出電壓至該整流器單元之耦合,及 田該斬波器為關閉狀態時,提供一控制電流至該雙極 電晶體之基極以轉換該雙極電晶體至導通狀態。A synchronous self-driving power converter, a chopper unit (s), for drawing the DC input voltage (Vin) into an alternating current intermediate voltage (vD), a rectifier unit for rectifying the alternating intermediate voltage and Outputting the rectified output voltage to the load, the rectifier unit includes a bipolar electric when the chopper unit is a closed state crystal (T, T4) as a rectifying element, and a base of the sigma bipolar transistor is coupled To a control current supply terminal, the control current supply terminal is configured to provide a control current to the base of the bipolar transistor to convert the bipolar transistor to a conducting state. 2. The synchronous self-driving power converter of claim 1, further comprising one or more of a coupling σ to 5 斩 chopper unit (s), the bipolar transistor (T, T4), and the load (LO) Reactive components, in particular one or more capacitors (C), inductive components (L) and/or transformers (Tr). 3. A synchronous self-driving power converter as in item 1, which further comprises an impedance (Ζ) 'one of its terminals (Ζ1) is coupled to the base of the bipolar transistor (Τ, D) Used to supply the control current. 4. A synchronous self-driving power converter as claimed in claims 2 and 3, wherein the other terminal (Ζ2) of the impedance of 7° (Ζ) is coupled to the output voltage (V〇). 5 · Synchronous self-driving power converter of item 1 of the month, wherein the control circuit L is derived from the output voltage (V〇) or the current reference voltage. 131652.doc 200919921 6 . The synchronous self-driving power converter of 5 1 -1, wherein the rectifier Y-progress comprises a rectifier diode (D) coupled to the bipolar electric solar body ( T, T4) between the emitter and the collector. A synchronous self-driving power converter such as the whistle of claim 1, wherein the reactive element is an inductor (L). The synchronous self-driving power converter of claim 1 wherein the resistance is: a transformer (Tr), the transformer is used to transform the input voltage into two, an intermediate voltage, and wherein the chopper unit (S) It is coupled between a primary winding (pdm) of the transformer (Tr) and an input voltage supply unit. 9. The synchronous self-driving power converter of claim 8, wherein the rectifier is a pair of bipolar transistors (Ta, Tb), wherein the impedance unit comprises two impedances τ (Za, Zb), The terminals of the elements that are not coupled to the base of the associated bipolar transistor (Ta, Tb) are coupled to each other and to one of the transformers (Tr) to separate the secondary windings (Sec-a, neutrons) 1 驱动 drive, 丨 used to provide DC drive power and / or DC drive current to - load (L0), especially to - LED unit, - backlight single 70 LCD single or a rear combination lamp unit, The driver includes a synchronous self-driving power converter such as claim 1, which is used to convert the input voltage (Vin) into the DC drive voltage (V〇) and/or the DC drive current (i〇). A method of driving a power converter to convert a DC input voltage (Vin) into a DC output power (v〇) and/or a DC output current (i〇) to supply a load (L0) includes the following steps: Grab 131652.doc 200919921 Capture the DC input The input voltage (Vjn) becomes an alternating current intermediate voltage (ν〇), and the alternating current intermediate voltage is rectified by a rectifier unit, the rectifier unit includes a bipolar transistor (D, T4), and the rectified wheel output voltage is output to The load, turning on and off the coupling of the output voltage to the rectifier unit, and when the chopper is in a closed state, providing a control current to the base of the bipolar transistor to convert the bipolar transistor to a conducting state . 131652.doc131652.doc
TW97123972A 2007-06-29 2008-06-26 Synchronous self-driven power converter TW200919921A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07111399 2007-06-29

Publications (1)

Publication Number Publication Date
TW200919921A true TW200919921A (en) 2009-05-01

Family

ID=40019259

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97123972A TW200919921A (en) 2007-06-29 2008-06-26 Synchronous self-driven power converter

Country Status (2)

Country Link
TW (1) TW200919921A (en)
WO (1) WO2009004529A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242633A (en) * 2014-09-05 2014-12-24 京东方科技集团股份有限公司 Step-down circuit and driving device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102740525B (en) * 2012-07-13 2014-08-13 木林森股份有限公司 Constant current power supply of HV-LED lamp without electrolytic capacitor and integrated circuit
RU2679893C2 (en) * 2014-05-30 2019-02-14 Филипс Лайтинг Холдинг Б.В. Led driver circuit, led circuit and drive method
CN106055004B (en) * 2016-07-15 2018-02-27 宁波帝洲自动化科技有限公司 A kind of adjustable constant flow source circuit
CN210518944U (en) * 2019-09-11 2020-05-12 苏州欧普照明有限公司 BUCK topology circuit for power supply

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4409473A (en) * 1981-01-09 1983-10-11 Sunx Limited Apparatus for detecting an object
JP2767783B2 (en) * 1994-01-14 1998-06-18 東光株式会社 Switching power supply
US5691632A (en) * 1995-05-26 1997-11-25 Toko, Inc. Switching power supply
JPH09149631A (en) * 1995-11-24 1997-06-06 Rohm Co Ltd Power supply apparatus
GB2359150A (en) * 2000-02-08 2001-08-15 Univ Bristol Controlling the output of a flashlight or torch
JP4385717B2 (en) * 2003-10-10 2009-12-16 日本電気株式会社 Power supply device using step-up DC-DC converter and failure detection control method
JP4379182B2 (en) * 2004-03-31 2009-12-09 ミツミ電機株式会社 Power control circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242633A (en) * 2014-09-05 2014-12-24 京东方科技集团股份有限公司 Step-down circuit and driving device
CN104242633B (en) * 2014-09-05 2016-11-02 京东方科技集团股份有限公司 Reduction voltage circuit and driving means

Also Published As

Publication number Publication date
WO2009004529A3 (en) 2009-02-19
WO2009004529A2 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
CN108028605B (en) Converter with hold-up operation
US7486055B2 (en) DC-DC converter having a diode module with a first series circuit and a second series with a flywheel diode
US7023186B2 (en) Two stage boost converter topology
US8488355B2 (en) Driver for a synchronous rectifier and power converter employing the same
JP5584089B2 (en) Drive circuit with increased power factor
US6728118B1 (en) Highly efficient, tightly regulated DC-to-DC converter
TWI297977B (en) Soft switching dc-dc converter
US7342811B2 (en) Lossless clamp circuit for DC-DC converters
TW201251501A (en) Light emitting diode driving circuit for AC or DC power source
WO2021104407A1 (en) Voltage conversion circuit and power supply system
US6952354B1 (en) Single stage PFC power converter
WO2016125561A1 (en) Switching power supply device
US20050088865A1 (en) High power switching converter
TW200919921A (en) Synchronous self-driven power converter
Lu et al. High efficiency adaptive boost converter for LED drivers
JP5042879B2 (en) Switching power supply
Chen et al. A novel ZVS step-up push-pull type isolated LLC series resonant dc-dc converter for UPS systems and its topology variations
US7196920B2 (en) Synchronous rectifier drive circuit for low output voltage active clamp forward converter
US20080074090A1 (en) Tapped converter
TW201939868A (en) Coupled-inductor cascaded buck convertor with fast transient response
WO2022074378A1 (en) Isolated dc-dc converter
JP2007104881A (en) Switching power supply unit
US7157887B2 (en) Direct amplitude modulation for switch mode power supplies
WO2014075338A1 (en) Backlight-driven direct-current booster topology circuit
JP4093116B2 (en) Power factor converter