TW200919555A - Technique for matching performance of ion implantation devices using an in-situ mask - Google Patents

Technique for matching performance of ion implantation devices using an in-situ mask Download PDF

Info

Publication number
TW200919555A
TW200919555A TW96138964A TW96138964A TW200919555A TW 200919555 A TW200919555 A TW 200919555A TW 96138964 A TW96138964 A TW 96138964A TW 96138964 A TW96138964 A TW 96138964A TW 200919555 A TW200919555 A TW 200919555A
Authority
TW
Taiwan
Prior art keywords
substrate
performance
ion
matching
devices
Prior art date
Application number
TW96138964A
Other languages
Chinese (zh)
Inventor
Peter D Nunan
Bret W Adams
Original Assignee
Varian Semiconductor Equipment
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Semiconductor Equipment filed Critical Varian Semiconductor Equipment
Priority to TW96138964A priority Critical patent/TW200919555A/en
Publication of TW200919555A publication Critical patent/TW200919555A/en

Links

Abstract

A technique for matching performance of ion implantation devices using an in-situ mask. In one particular exemplary embodiment, ion implantation is performed on a portion of a substrate while the remainder is masked off. The substrate is then moved to a second implanter tool. Implantation is then performed on another portion of the same substrate using the second tool while a mask covers the remainder of the substrate including the first portion. After the second implantation process, parametric testing may be performed on semicodubtor devices manufactured on the first and second portions to determine if there is varation in one or more performance characteristics of these semiconductor devices. If variations are found, changes may be suggested to one or more operating parameters of one of the implantation tools to reduce performance varation of implanters within the fabrication facility.

Description

200919555 九、發明說明: 【發明所屬之技術領域】 本發明是關於基板處理技術,特別是關於使用臨場光 罩(in-situ mask)匹配(match)離子植入裝置(implantation device)之效能(performance)的技摘^。 【先前技術】200919555 IX. INSTRUCTIONS: TECHNICAL FIELD OF THE INVENTION The present invention relates to substrate processing techniques, and more particularly to the performance of an ion implantation apparatus using an in-situ mask in-situ mask (performance) ) Technical summary ^. [Prior Art]

在半導體製造中,離子植入用於改變部份基板的材質 屬性。實際上’離子植入已經成爲各種基於半導體 (semiconductor-based)的産品的生產過程中變更半導體晶 圓屬性的標準技術。植入可用於將導電性變更雜質 (conductivity-altering impuriries)引入到產生的埋層(光暈植 入物/halo implants),改變晶體表面(預非晶化 /pfe-amorphization),以便產生污染物吸收(gettering)位置, 產生擴政屏P早(F及C植入物)。植入還用於平面顯示器製 造以及表面處理中的非晶體應用的半導體中,例如合金二 金屬接觸區域。所有這些離子植入應用一般可以 成材質屬性改性區域。 y 在離子植入製程中,所希望的雜質材質在離子源中離 子化,最終的離子進行加速以便形成規定能量的離子束, 亚且離=束引導到目標基板例如基於半導體的日日日圓。離子 束中的高能離子穿人晶圓的鬆散_k)的半導體材 嵌入半導體材質的晶格内’以便形成所希望的導電性 離子植入系統通常包括用於將氣體或固體材質轉化成 200919555 ^.uw ιυμιι 月確疋義的咸子束的離子源。離子束可以進行質量分析以 便消除不希望的種類,加速到所希望的能量,並且引導到 目払區域,通常是半導體材質的晶圓。離子束可以藉由光 ' 束純、目標區域移動或絲掃插與目標ϋ域移動兩者的 - 組合分配到目標區域上。目標可以相對離子束設定成規定 的角度以及方位。現有技術的離子植入器的實例公開於 En&amp;e的1981年6月30日公告的美國專利第4 276,477號、 〇 的_年8月η曰公告的美國專利第4,283,631 號、Freytsis等人的年2 β 6日公告的美國專利第 4,899,059號、BeiTian等人的酬年5月丨日公告的美國 專利第4,922,1〇6號以及White等人的1994年9月27日公 告的美國專利第5,350,926號。 半導體製造商的收益直接受到其保持高成品率能力的 影響。製造商的成品率是指可以成功處理成可用微電子裝 置(處理器、記憶格或者其他基於電晶體的半導體元件)的 υ W圓面積的百分比。由㈣晶圓的高成本以及處理設備 的回開支,製匕商希望保持高的成品率。舉個例子,如果 單個晶圓可以支持·個裝置’並且每個裝置的批發價爲 $150,如果整個可用表面區域可處理成可用裝置.即成品率 ,爲loo%,則單個處理晶圓的價值可高達$45,〇⑻。通常, -成品率必須_在7〇%以上,績㈣商實現或者甚 至可以進行生存發展,並且甚至是成品率的細小改良都可 以轉變成收益性的顯著增長。在半導體裝置製造業,由於 在每個晶圓上製造更多良好(即,可用)産品的增值成本相 200919555 對較低,因此,主要目標是最大化成品率。 影響成品率的一個重要因素是製造商的製程控制。因 此,確保製造設備始終如一地並且以正霉的操作參數操作 是非常重要的。消除製程變化可以大幅改進並且理論上最 大化成品率。 在離子植入設備的情况下’通常存在四種半導體製造 商需要針對其應用進行調節的裝置參數:離子束角度(i〇n beam angle)、離子劑量(ion dose)、離子種類(ion species) 以及離子能量(ion energy)。除了這些可調參數’還存在可 以調整的植入設備設定,所有這些都影響半導體裝置效能 並且從植入工具到植入工具&lt;能會發生變化。當前的技術 包括校準各植入器的各種設定、量測系統設定或者使用非 裝置無圖案晶圓(blanket wafef)。使用這些關注於一次一個 地校準植入器的技術,不可錐進行精確校準。此外,一次 一個地校準植入器是很耗時的’需要南成本的晶圓而且很 難與裝置成品率相互關聯。 考慮到前述原因,希望提供一種克服習知系統的上述 某些或者全部不足及缺點以降低工具間(t〇〇l-to-tool)效能 變化的技術。 【發明内容】 一種使用臨場光罩匹配離子植入裝置之效能的技術。 在一特定實施例中,該技術&lt;以實現一種降低工具間製程 變化的方法,該方法藉由遽覃剩餘晶圓並利用單個離子植 入态僅處理單個基板的一部份,卩过後使用另一離子植入器 200919555 Z.U\J I U|J11 ^晶重複制多讎子植人器,每 處理晶_單-部份;並隨後對各植人器處理的晶 =執行錄測試以便確定由不同植人器纽的 存在效能變化。 &amp;占 根據該特定實施例略H提供了—觀 體製造裝置之間效能的方法。栌轳寸楚七品从士 括:利用笛一狀罢老 根據該乐一方面的方法包 #衣置處理基板的第—部份;將基板從第—聿 第二裝置;用第二裝置處理基板的第二部份;將第 —二 t—部份與相應的第—和第二裝置相關聯;以及將第 邛份的一個或多個屬袖谢穿_ ^ 性進行比較。 ,、$ -箱的-個或多個對應屬 根據該特定實施例的另一方面,提供了一種匹配離子 =工具的臨場方法。根據該方面的方法包括:使用第— 2植人11在絲的第-部份上執㈣子植人,其中將呈 1恭露該第—部份的第—開孔的第—光罩施加在該基板 ’使用第二離子植人器在該基板的第二部份上執行離子 於將具有暴露該第二部份的第二開孔的第二光罩 =到該基板上;量測第—和第二部份兩者中至少一個特 L執行第-和第二部份的減特徵制比較,並且基 …車父結果確定對η第二植人器的可調參數進行至 八調整。 半導=本發明的其他方面,在由多個離子植人器構成的 的=衣造工廠雜中,提供了—種降低工具·能變化 〜。根據這些方面的方法包括向铸體基板施加第一 200919555 光罩,該第一光罩具有暴露該基板 孔;利用第-植入器在基板上執行离隹111份的第一開 板移到第二植人器;向該基板施加第程,·將該基 露該基板的第二部份的第二開用 -在邊基板上執行離子植人製程 編弟-植入 的每-個的至少一個特徵值;比4:,—!:第二部份 每,的量測值,·基於比較結果:整昂:部份的 至少—個可調操作參數。 或⑦二植入器的 行多巾,將包括__爲“在單健板上進 ”的共同受讓的美國專利申 :丄=ϊ61號(以下稱為‘761申請)中所公開的-種 4夕%方法執行遮罩,該申請併入本案以供來考。 在-實施例中’上4 ‘7611請中所描述的遮罩製程 1於對早個工具進行實驗設計(Design of E邛eriment, “ j以便建立該植入工具的最佳參數。隨後,所建立的 、主設定(&quot;master” settings)可用於匹配每個工具並將來 ^行重新校準。在各種實施例中,在試圖匹配多個工具時, 么761申請中所描述的這種遮罩製程是最有效的,因爲節 約更多成本並且備選方法的複雜性更差。 在各種實施例中’這種遮罩製程可用於基於裝置的參 乏、、、°果%擇最佳執行工具,以便匹配那些工具(以經驗方式 使其匹配“主”設定)或者選出“最佳,,工具進行特定應用。 心在各種實施例中’這種遮罩製程可用於在沒有如圖3 寅景中所討論進行優化的情况下檢查所有工具在控制下操 200919555 是進行假設,而是出於“絲 個晶圓可能經多個工具處理以 化。這種方法_建立“正常,,變化^不出敎具間的變 =取動作。Μ,這也可漂移(臟) 靜電方式、磁方弋掃在,又啕光罩的情況下以 的-部份進i者移動晶圓、僅移過晶圓 以或者不可能精稍住晶圓的區錢的,因爲難 (NiSi)製程等。 的矽板入物以便改良鎳矽化 例如本=各?允許優化非半導體植入物應用, 的磁阻式磁頭等。 尤用、用於硬碟驅動器 該應使用_子植人以外的應用, 隨後使用光罩,向不同植處理部份晶圓,並 行工具間的匹配。例如,在;藉此謝 圓的-小部份之前,也可;;人工具亚類似—次僅外露晶 動次,、他方法_到晶_固體光罩複製。 儘管實施例更詳細地描述本發明。 識到其他·導的本領域熟知此項技藝者將意 ,、把方式、㈣和實施例以及落在本中請所描述 200919555 =圍並且本發_财_其他使用 ί貫施方式】 、 第-^參,]’齡了可•本發_各種實施例的 Lt糸統100的區塊示意圖。該離子植入系統】⑻ 產生器(be_&amp;e觀i〇r_。本,引先束(beam)102的光束In semiconductor manufacturing, ion implantation is used to change the material properties of some substrates. In fact, ion implantation has become a standard technology for changing the properties of semiconductor crystals in the production of various semiconductor-based products. Implantation can be used to introduce conductivity-altering impurities into the resulting buried layer (halo implants), changing the crystal surface (pre-amorphization/pfe-amorphization) to produce contaminants The position of the gettering, resulting in the expansion screen P early (F and C implants). Implants are also used in semiconductors for the production of flat panel displays and for amorphous applications in surface treatments, such as alloyed metal contact areas. All of these ion implantation applications can generally be modified into material properties. y In an ion implantation process, the desired impurity material is ionized in the ion source, and the final ions are accelerated to form an ion beam of a defined energy, which is directed to the target substrate, such as a semiconductor-based day and day circle. The high-energy ions in the ion beam penetrate the loose _k) semiconductor material of the wafer into the crystal lattice of the semiconductor material to form the desired conductivity. The ion implantation system typically includes the conversion of gas or solid materials into 200919555 ^ .uw ιυμιι The ion source of the salty bunch of the moon. The ion beam can be mass analyzed to eliminate unwanted species, accelerate to the desired energy, and lead to the target area, typically a semiconductor wafer. The ion beam can be distributed to the target area by a combination of light 'beam purity, target area movement, or wire sweeping and target zone motion. The target can be set to a specified angle and orientation relative to the ion beam. An example of a prior art ion implanter is disclosed in U.S. Patent No. 4,276,477, issued June 30, 1981, to U.S. Patent No. 4,283,631, to Freysis et al. U.S. Patent No. 4,899,059, issued on Feb. 2, et al., U.S. Patent No. 4,922,1,6, issued on May 30, and U.S. Patent No. 4,1994, issued on September 27, 1994, by White et al. 5,350,926. The benefits of semiconductor manufacturers are directly affected by their ability to maintain high yields. The manufacturer's yield is the percentage of the area of the 圆 W that can be successfully processed into usable microelectronic devices (processors, memory cells, or other transistor-based semiconductor components). Manufacturers want to maintain high yields due to the high cost of (iv) wafers and the cost of processing equipment. For example, if a single wafer can support a device' and the wholesale price per device is $150, if the entire available surface area can be processed into usable devices, ie yield, loo%, the value of a single processed wafer Can be as high as $45, 〇 (8). In general, - the yield must be _ above 7〇%, the performance (4) is achieved or even survives, and even small improvements in yield can be turned into significant gains in profitability. In the semiconductor device manufacturing industry, since the value-added cost of manufacturing more good (ie, usable) products on each wafer is lower, the main goal is to maximize the yield. An important factor affecting the yield is the manufacturer's process control. Therefore, it is important to ensure that the manufacturing equipment is consistent and operating with the proper operating parameters. Eliminating process variations can greatly improve and theoretically maximize yield. In the case of ion implantation equipment, there are typically four device parameters that semiconductor manufacturers need to adjust for their application: ion beam angle, ion dose, ion species. And ion energy. In addition to these tunable parameters, there are also implantable device settings that can be adjusted, all of which affect the performance of the semiconductor device and can vary from implanted tool to implant tool&lt; Current technologies include calibrating various settings for each implant, measuring system settings, or using non-device blanket wafef. Using these techniques that focus on calibrating the implants one at a time, precise calibration is not possible with cones. In addition, calibrating the implants one at a time is time consuming 'requires a south cost wafer and is difficult to correlate with device yield. In view of the foregoing, it is desirable to provide a technique for overcoming some or all of the above-mentioned deficiencies and shortcomings of conventional systems to reduce the variation in tool-to-tool performance. SUMMARY OF THE INVENTION A technique for matching the performance of an ion implantation device using a field mask. In a particular embodiment, the technique &lt; </ RTI> achieves a method of reducing process variation between tools by processing only a portion of a single substrate with a single ion implantation state by licking the remaining wafers Using another ion implanter 200919555 ZU\JIU|J11 ^ crystal weight replication multi-scorpion implanter, each processing crystal_single-part; and then processing the crystals of each implanter = performing a recording test to determine The existence efficiency of different implanters. &amp; </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt;栌轳 楚 七 七 七 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : a second portion of the substrate; associated with the first and second devices; and comparing one or more of the members of the second portion. , - $- or more corresponding genus According to another aspect of this particular embodiment, a method of matching ions = tools is provided. The method according to the aspect comprises: using the second implanter 11 to perform (four) a sub-plant on the first part of the silk, wherein the first mask of the first opening of the first portion is applied Performing an ion on the second portion of the substrate on the second portion of the substrate using the second ion implanter to a second mask having a second opening exposing the second portion onto the substrate; measuring - performing at least one of the second and the second partial de-feature comparisons, and the base-to-family result determines to adjust the tunable parameters of the η second implanter to eight. Semi-conducting = other aspects of the present invention provide a reduction in tooling and energy variation in a manufacturing plant composed of a plurality of ion implanters. The method according to these aspects includes applying a first 200919555 reticle to the cast substrate, the first reticle having a hole for exposing the substrate; and performing, by the first implanter, performing a first opening plate of 111 copies on the substrate to move to the second Implanting a device; applying a second pass to the substrate, performing a second opening of the second portion of the substrate - performing at least one of each of the ion implantation process-implantation on the edge substrate Characteristic value; ratio 4:, -!: the measured value of each part of the second part, based on the comparison result: the whole: at least one of the adjustable operating parameters. Or a multi-skin towel of the 7th implanter, which will include the __ as disclosed in the commonly assigned U.S. Patent Application: 丄=ϊ61 (hereinafter referred to as the '761 application)- The 4th% method performs masking, and the application is incorporated into the present application for reference. In the embodiment, the mask process 1 described in 'Up 4'7611 is used to experimentally design an earlier tool (Design of E邛eriment, "j in order to establish the optimal parameters of the implant tool. Subsequently, The established &master (master) settings can be used to match each tool and will be recalibrated. In various embodiments, when attempting to match multiple tools, the mask described in the 761 application The process is the most efficient because it saves more cost and the complexity of the alternative method is worse. In various embodiments, 'this masking process can be used for device-based, optimal, and optimal execution tools. In order to match those tools (either empirically to match the "main" setting) or to select "best, tools for specific applications. In various embodiments, the mask process can be used in the absence of Figure 3 In the case of optimization discussed in the case of checking all tools under control, 200919555 is to make assumptions, but because "the wire wafer may be processed by multiple tools. This method _ establish "normal, change ^There is no change between the cookware = take action. Hey, this can also drift (dirty). The electrostatic method, the magnetic square sweep, and the case of the reticle - the part of the mobile wafer, only Moving over the wafer or not being able to fine-tune the wafer's cost, because of the difficult (NiSi) process, etc., the slab inclusions in order to improve the nickel bismuth, for example, allow optimization of non-semiconductor implant applications, Magnetoresistive magnetic heads, etc.. Especially for hard disk drives, it should be used in applications other than _ implants, followed by the use of reticle, processing of partial wafers to different implants, and matching between parallel tools. For example, This is a small part of the round, but also; the human tool is similar to the sub-only exposed crystal, and his method _ to the crystal_solid reticle replication. Although the embodiment describes the invention in more detail. Others are well-known in the art, and the art, the method, the (4) and the examples, and the descriptions of the 200919555, which are described in the present application, and the other methods of use,参,]' Ageing can be a block diagram of the Lt system 100 of various embodiments. Into the system] (8) generator (be_&amp;e view i〇r_. Ben, beam of beam 102

如用了疋任何類型的充電粒子束,例 如用於對+導體晶圓1〇 丁木W 體晶圓1〇3可以採用各植入的局能離子束。該半導 狀的常見圓碟形。半導體曰圓:J具有+面幾何形 - a .-曰曰口 1Cb可以包括任何類型的半 ; 進行植入的任何其他材質。同 抓1“在圖!中沒有描 討論,系統100還可以白私_ 一 θ在0 3的月景下更誶細 限制在半導體1()3触ir多個設計爲將離子植入 置。 、寸疋衣面區域的一個或多個遮罩裝 光束電流,即由古太,Λ 荷數量可以藉由檢測器;·〇4 2隹=離子帶至㈣圓則的電 檢測器104可以是拾 、玎里測以便保持劑量控制。 例如,檢測器束電流位準的任何_的裝置。 域習知的其他裝置。撿、吻c祕本領 移動,並且可以_由久’、為104可以固定在適當位置或可 到晶圓⑽的同以定位,例如沿光束搬 103後面等。若右命Θ 1所不與晶圓103相鄰、在晶圓 而要,可以使用量測光束電流的其他類 200919555 型裝置作爲檢測器104,例如使用熱量計(cal〇rimetery)或 光束感生磁場量測方法的裝置。 在各種貫施例中,檢測器104將代表檢測的光束電流 的讯號輸出到控制益105。該控制器1〇5可以是或者包括 程式化爲執行所希望的輪入/輸出以及其他功能的通用計 异機成者通用S十异機網路。在各種實施例中,控制器1 可以疋私式化名執行半導體製程的指令碼的資料處理器。 在各種實施例中,控制器105可以包括到各種系統元:的 動力和/或資料連接,包括光束產生器10〗、檢測器104、 晶圓^動器106、真空系統107以及氣體源1〇8。控制器 105還可以包#其他電子電路或元件,像是專用積體電路 (例如,Application Specific circuitry, ASIC)、其他硬接線 或可程式化電子裝置m件電路(discrete d⑽伽 drcmt)、現場可程式化閘陣列(Fidd朽〇抑_If any type of charged particle beam is used, for example, for a +conductor wafer, a seeded ion beam can be used for each of the implanted silicon wafers 1〇3. The semicircular shape is a common round dish. Semiconductor round: J has a + face geometry - a . - mouth 1Cb can include any type of half; any other material to be implanted. With the grasp of 1 "in the picture! There is no discussion in the figure, the system 100 can also be white private _ a θ under the moonlight of 0 3 is more limited in the semiconductor 1 () 3 touch ir multiple designs for ion implantation. One or more masks of the beam area in the area of the clothing area, that is, by Gu Tai, the amount of charge can be detected by the detector; · 〇 4 2 隹 = ion band to (four) circle, the electric detector 104 can be Measure, in order to maintain dose control. For example, any device that detects the current level of the beam. Other devices known in the field. The 秘, kiss c secret body moves, and can be fixed by _ long, 104 can be fixed Positioning in place or on the wafer (10), for example, behind the beam 103, etc. If the right gate 1 is not adjacent to the wafer 103 and is on the wafer, other beam currents can be used. A type 200919555 device is used as the detector 104, such as a device that uses a calorimeter or a beam-induced magnetic field measurement method. In various embodiments, the detector 104 outputs a signal representative of the detected beam current to Control benefit 105. The controller 1〇5 can be or include a program A general-purpose S-machine network for performing the desired round-in/output and other functions. In various embodiments, the controller 1 can perform data processing of the instruction code of the semiconductor process by using a private name. In various embodiments, the controller 105 can include power and/or data connections to various system elements: including a beam generator 10, a detector 104, a wafer actuator 106, a vacuum system 107, and a gas source. 1. The controller 105 can also package #other electronic circuits or components, such as dedicated integrated circuits (ASIC), other hard-wired or programmable electronic devices, m pieces of circuits (discrete d (10) gamma drcmt ), on-site programmable gate array (Fidd 〇 〇 _

Gat〜,脱)等。控制器1〇5還可以包括例如 入/輪出裝置(鍵盤、觸控螢幕、用戶指向裝置、顯示哭、_ 等)、通訊裝置、㈣料裝置、麵鶴裝置等, 以便执行所希望的功能。 今 對光可以與晶圓驅動器106通訊,其能夠相 :π⑽移動晶圓1〇3。例如,晶圓驅動器]06可以將 掃過光束搬*得離子植入到晶圓⑽的表面 ::==06可以包括各種不同襞置或系 二,動晶圓103。例如,晶圓驅動謂可: 伽驅動馬達、螺線管、螺桿驅動器、-個或多個* 13 200919555 氣軸承、位置編碼襞置、機械聯動裝置、機 ^ 丄、 眾所皆知的移動晶圓103的任何其他元件。,月4g 光束102藉由真空系統1〇7在處理室外 h〇USing)1〇9内產生的相對高真空環境内從光 ^ 傳輸到晶圓⑻。高真空意味著在處理室、二〇1 低壓二。相反地,低真空是指外罩1〇9 _相對較高壓二在 使用衆所皆知的糸統例如真空泵、真空隔離 ,等來保持外罩⑽内的真空。真空系、统1〇7可以血= 益105通訊,例如以便向控制器]〇5提供關於外罩⑽= ^固或多個部份内的當前真空位準。真空系統iQ $ 包括-個或多慨視外罩⑽⑽壓力 = ,:器_壓力輸。或者,_應=2 π具二乐統107亚與控制器1〇5直接通訊。 光+ 社圖1中顯不為沿著光束產生器1〇1到晶 103的直線前進。然而如圖2的植入系統·所示, 二:石在光:產生器101内和/或在光束產生器101和晶 員 之間具4 —個或多個偏轉的曲線路徑前進。該光&gt; 102可以例如由一個吱多個路雕各 」、忒九笊 置進行偏轉。叫,個韻、魏《他光束成形裝 心中,在植入之前,晶圓驅動器, 如上。光束產生Λ% /吏;:光束1〇2不會入射到晶圓 檢測光束電流的參考並且檢測請 址士 αχ Μ 早冋時外罩108内的真空位準保 '在所心的位準和7或是穩定的。舉侧子,以確定^束 14 200919555 .的參考位準的真空位準可以是藉由真办 罩109產生的最高真空位準。當然,也可統107在外 其他真空位準下確定光束電流參考位準。外罩109的 在各種實施例中,檢測器】〇4將苄 1 〇 5,控制器]〇 5將其作爲光束電流參考位^輸出到控制器 制窃105可以對該訊號進行處理以便產生井,用,或者控 準。例如,檢測器1〇4可以輸出代表檢=電流參考位 比訊號,並且控制器105將該類比訊號 子數量的類 器1〇5内的數位化數字。儲存的數位化成錯存於控制 光束電流的參考位準。 卞用來作為計算 在植入過程中,光束1〇2入射到晶圓】 份上並且/或者晶圓1〇3 的至&gt;'-部 光請,或者可以出現兩者的:^ 力万向上私動。米102和晶圓1〇3的 ^ 牡 面或者不同平面内。 曰® 103的私动可以在同-平 晶圓103内或去a 表面上的本阳1 上的材質,例如晶圓103的 束線(b_ne)降低位準在晶圓103附近並沿光 103的光束102⑽粒^座的降低可以引起行進到晶圓 如上文討論的,電荷交換^撞電==量f加。 與藉由_的出氣或揮發釋:==粒: 15 起光束102中各粒子的雷荷改烧 正電的離子可以藉由沿光 二:例如,光束1〇2的帶單 J可以帶雙倍正電。儘管離子二中和,或者該正電離 實質上不變。因而,儘營 、电荷變更,但粒子的能量 檢測器104無法檢測到該和的電荷可以變更成使得 擊晶圓103並且對晶,但該粒子仍可以衝 便晶圓103的總齊,丨量不〜_、‘作出貢獻。因而,即 輸出指示光束電流降低檢測器104在植入過程中 控制器105可以缉— 中真空波動已經引起^ ,即基於假設操作,在植入過程 測光束電流降低,但的光采電流降低或者-部份的檢 因此,控制器ω5 103的賴量不受影響。 空波動。應該理解測的光束電流的降低檢測真 程中變化,例如離工、=1該可以由於其他因素在植入過 105 以,、又化,並且在這種情況下,控制器 動引起,同的光束電流降低的某一部份是由真空波 子源的綠/如ί的另一部份是由其他因素引起,例如離 /原的茭化。如本領域所習知的,控制器105可以碉節某 =植^數以便校正不是由真空波動引起的光束電流的變 姑!1夕’出乳可以隨時間變化,而且控制器105可以在 、* P欠中確定與其他因素相比真空波動對檢測的光束電 t低的貢獻隨時間變化。在這種情況下,控制器K)5可 二敕3反ίΐ空波動的貢獻而不反應其他因素的貢獻的 调笪的置測光束電流來控制植入。 控釗态105可以感應光束電流的降低,但毋需調整特 16 200919555 ζου ιομιι 定植入參數,例如光束102的 速率等。取而代之,控制器105 G:直ί f 的掃描 指示已經檢測到真空壓力升高並隨之,r=统107輪出 空位準崎。除了由壓力感應器提::直;]:内的真 07 口而,基於來自控制器1〇5的 /、工不統 Γ: ο 在由與真空系統107_的壓力感應丄::咖ς糸統107 低之前開始調整外罩108内的直空位^、空位準降 的真空壓力。 卞乂便精此保持穩定 或者,控制器105可以將在植入 提供的檢測光束電流位準與儲存1〇4 行比較並使用兩個值之間的差來控制it 準進 器⑽或者兩者。例如,控制器105可“定 5fl息)在植人過程巾讀· 子的 y由於沿光束線的真空波動引起 降Γ不:㈡荷交換碰撞產生的那部份檢測的光^ 電流降二總劑量,同時檢測的先: 貢獻。例如,羊j晶圓1G3的總劑量降低作出 下中和光束粒碰#在不影響粒子動能的情% 仍對植的粒子將不被檢測器1G4檢測、 起檢測的ί束雷晶圓、103的執道前進。後面的碰趁5 奴的降低亚引起植入晶圓103内的總劑氣 200919555 的降低。控制器105可以放大檢測的光束電流和“ 參考值之間的差值,使得輸送到晶圓1〇3、的束電流 所希望的位準。還可以藉由例如將該差值除二二二:整到 規化(normalize)該差值。例如,控制器1〇5可^二1值正 驅動器106以便基於放大的以及正規化的放大矛二制曰曰圓 圓103更緩慢地移過光束路徑。控制器1〇5 ^使1值將晶 係數以經驗方式碟定並儲存在控制器]中。因用的放大 Γ 控制器105確定一特定差值時,可以檢索對應的^ ^ 並用於調節該差值以便適當控制光束1〇2、曰 人係數 動或者兩者。 —曰日W 1〇3的移 現在參照圖.2,顯示了可用於太發明 另-離子植入系統的區塊示意圖:圖2的I:?例的 2〇〇(採㈣_子束)是细】所示㈣、财:系統 圖2的系統中,離子束產生器21Q產生所希:二在 是,氣體源類型)的離子束,將離子束中的^=也就 望的能量,執行離子束的質量/能量分析 ^^希 f染物並供應具有低能量及質量污染物二? (未圖㈣的知描系統216偏轉離子I 2ΐ2 行或近似平行的離子軌_掃插離子朿23G。,、,平 端站(_ station)232包括將半導體晶圓 件(work piece)支;^力播祐7 一乂其他工 (platenP36,伟-牙幻田離子束230的路獲内的厥拓 (platen) 36 g 内,以便籍此改變所右去谏s * 卞命收日日1] 234 又所令未遮罩部份的材質屬性。端站232 200919555 也可以包括法拉第杯238或者檢測離子束劑量以及劑量均 勻性的其他劑量檢測器。 〇〇圖2的離子束產生器210包括離子束源260、源過濾 裔262、加速/減速筒264以及質量分析器。源過濾器 262優先選定位在離子束源260的附近。加速/滅速筒264 定位在源贼n 262和f量分析器27G之間。f量分析器Gat~, off) and so on. The controller 1〇5 may further include, for example, an in/out device (keyboard, touch screen, user pointing device, display crying, _, etc.), a communication device, a (four) material device, a crane device, etc., in order to perform a desired function. . The light can now communicate with the wafer driver 106, which is capable of moving the wafer 1〇3 with π(10). For example, the wafer driver 06 can implant the scanned beam onto the surface of the wafer (10). ::==06 can include a variety of different devices or systems. For example, the wafer driver can be: gamma drive motor, solenoid, screw driver, one or more * 13 200919555 gas bearing, position coding device, mechanical linkage, machine ^ 丄, the well-known mobile crystal Any other element of circle 103. The 4g beam 102 is transmitted from the light to the wafer (8) in a relatively high vacuum environment generated by the vacuum system 1〇7 in the processing chamber h〇USing)1〇9. High vacuum means two in the processing chamber, two 低压1 low pressure. Conversely, a low vacuum means that the outer casing 1 〇 9 _ relatively high pressure two uses a well-known system such as a vacuum pump, vacuum isolation, etc. to maintain the vacuum in the outer casing (10). The vacuum system can communicate with the blood 105, for example, to provide the controller 〇5 with a current vacuum level within the enclosure (10) = solid or multiple sections. The vacuum system iQ $ includes - or more of the cover (10) (10) pressure = , : _ pressure transmission. Or, _ should = 2 π with two music system 107 ya and controller 1 〇 5 direct communication. Light + is shown in Figure 1 as a straight line along the beam generator 1〇1 to the crystal 103. However, as shown in the implant system of Figure 2, two: the stone advances within the light: generator 101 and/or with a curved path of four or more deflections between the beam generator 101 and the crystallizer. The light &gt; 102 can be deflected, for example, by a plurality of road carvings. Called, a rhyme, Wei "he beam shaping device, before the implantation, the wafer driver, as above. The beam produces Λ% / 吏;: The beam 1〇2 will not be incident on the wafer to detect the beam current and the location of the inspection will be as follows: 请 χ 冋 冋 冋 冋 外 外 外 外 外 108 108 108 108 108 108 108 108 108 Or stable. Lifting the side to determine the vacuum level of the reference level of 200919555 can be the highest vacuum level produced by the real cover 109. Of course, the beam current reference level can also be determined under other vacuum levels. In various embodiments, the detector 〇4 will be benzyl 1 〇5, and the controller 〇5 outputs it as a beam current reference bit to the controller tamper 105 to process the signal to generate a well. Use, or control. For example, detector 1〇4 can output a representative = current reference bit ratio signal, and controller 105 digitizes the number within the class 1〇5 of the analog signal number. The stored digits are digitized into reference levels that are erroneous in controlling the beam current.卞 is used as a calculation during the implantation process, the beam 1 〇 2 is incident on the wafer] and/or the wafer 1 〇 3 to the ' ′′ light, or both can appear: ^ Li Wan Move up. The surface of the rice 102 and the wafer 1〇3 or in different planes. The private motion of the 曰® 103 can be in the same-flat wafer 103 or on the surface of the anode 1 on the surface of the wafer 103. For example, the beam line (b_ne) of the wafer 103 is lowered to the level near the wafer 103 and along the light 103. The reduction of the beam 102 (10) granules can cause travel to the wafer as discussed above, charge exchange = = amount f plus. With the venting or volatilization of _: == granules: 15 The lightning charge of each particle in the beam 102 can be changed by burning along the light two: for example, the band J of the beam 1 〇 2 can double Positive. Although the ions are neutralized, or the positive ionization is substantially unchanged. Therefore, the charge and charge change, but the energy detector 104 of the particle cannot detect that the charge of the sum can be changed so that the wafer 103 is struck and crystallized, but the particles can still flush the wafer 103. Do not ~_, 'contribute. Thus, the output indicates that the beam current reduction detector 104 can 缉 during the implantation process - the vacuum fluctuation has caused ^, that is, based on the hypothetical operation, the beam current decreases during the implantation process, but the photocurrent is reduced or - Partial inspection Therefore, the amount of controller ω5 103 is not affected. Empty fluctuations. It should be understood that the measured beam current is reduced to detect changes in the real process, such as separation, =1, which may be implanted by other factors, and re-converted, and in this case, the controller is caused by the same Part of the reduction in beam current is caused by the green of the vacuum source or another part of the ί, which is caused by other factors, such as deuteration. As is known in the art, the controller 105 can adjust a certain number of plants to correct the change of the beam current that is not caused by the vacuum fluctuations. The milk can be changed over time, and the controller 105 can be in, * P owing determines the contribution of vacuum fluctuations to the detected beam electrical t low over time compared to other factors. In this case, the controller K)5 can control the implantation by modulating the beam current without contributing to the contribution of other factors. The control state 105 can sense the decrease in beam current, but it is not necessary to adjust the implantation parameters, such as the velocity of the beam 102, etc. Instead, the scan of controller 105 G: Straight F indicates that the vacuum pressure has been detected and is followed by r = 107 rounds of vacancy. In addition to the pressure sensor:: straight;]: inside the real 07 mouth, based on the /1 from the controller 1 /, the work is not: ο in the pressure sensing with the vacuum system 107_ 丄:: curry Before the system 107 is low, the vacuum pressure of the straight space in the outer cover 108 and the vacancy level is adjusted. The sputum sputum remains stable or the controller 105 can compare the detected beam current level provided by the implant with the stored 1 〇 4 line and use the difference between the two values to control the it aligner (10) or both . For example, the controller 105 can "determine 5fl" in the implanting process towel reading y. The y is caused by the vacuum fluctuation along the beam line. (2) The portion of the detected light generated by the charge exchange collision is reduced by two. Dose, simultaneous detection of the first: contribution. For example, the total dose reduction of the sheep j wafer 1G3 is made to the lower neutral beam granule collision #% without affecting the kinetic energy of the particles. The particles still implanted will not be detected by the detector 1G4. Detecting the ray beam of the wafer, the progress of the 103. The subsequent reduction of the slave 5 causes a decrease in the total agent gas 200919555 implanted in the wafer 103. The controller 105 can amplify the detected beam current and "reference" The difference between the values is such that the beam current delivered to the wafer 1〇3 is at the desired level. It is also possible to normalize the difference by, for example, dividing the difference by two two two. For example, the controller 1〇5 can positively drive the driver 106 to move the beam path more slowly over the enlarged and normalized magnifying circle 103. The controller 1〇5 ^ causes a value of 1 to crystallize the crystal coefficient in an empirical manner and store it in the controller]. Since the amplification Γ controller 105 determines a particular difference, the corresponding ^^ can be retrieved and used to adjust the difference to properly control the beam 1, 2, or both. - The movement of W 1〇3 on the following day is shown in Fig. 2, which shows a block diagram of the block that can be used to invent the other-ion implant system: I of Fig. 2: 2 of the example (take (four)_ beamlet) (Detailed) (4), Cai: In the system of the system diagram 2, the ion beam generator 21Q generates the ion beam of the gas source type, and the energy of the ^= in the ion beam. Perform ion beam mass/energy analysis ^^H dyes and supply low energy and mass contaminants II? (The scanning system 216 of Fig. 4 does not deflect the ion I 2 ΐ 2 row or the approximately parallel ion ray _ sweep ion 朿 23G.,, the flat station (_ station) 232 includes a semiconductor wafer piece (work piece); Force broadcasts a 7 乂 other work (platenP36, the road of the Wei-Fantasian ion beam 230 is within the 36n of the platen, so that it can be changed to the right 谏 s * 卞 收 收 日 日 1] 234 The material properties of the unmasked portion are also provided. End station 232 200919555 may also include a Faraday cup 238 or other dose detector that detects ion beam dose and dose uniformity. The ion beam generator 210 of FIG. 2 includes ions. The beam source 260, the source filter 262, the acceleration/deceleration cylinder 264, and the mass analyzer. The source filter 262 is preferentially positioned in the vicinity of the ion beam source 260. The acceleration/deceleration cylinder 264 is positioned at the source thief n 262 and the f amount analysis Between 27G.

=〇包括偶極分析磁體272以及具有解析開孔讲的光罩 274。 6 + Γ描态220(可以是靜電掃描器)偏轉離子束212以便 )離子軌跡攸掃描源、頭28〇%離的掃描離子束。掃描器 r哭η括連接到掃描產生11的關的掃描板。掃描產 5二:::7 了電壓波形,例如三角波,以便根據掃描板之 來掃描離子束。通常在水平面内掃描離子束。 產生具偏轉掃描離子束内的離子以便 束。具體夺〜^勺㈣離子束’因而聚焦掃描離子 置,的磁線圈丄==: = 的電流進行調整。 豕了以糟由改變通過磁線圈 上掃描系統216將離子束212在水平方向 7 &gt; 十私昼板236和晶圓234。離工Α -與晶圓234的機械平移的組合使離子束分岐= 19 200919555 234的表面上。如上 時藉由法拉第杯2 3 8 *卿日子二M板23 6處於降低位置 訊號表示供應到系並麟子束電流的 作為水平束位置㈣數;;#®^)° 0掃描速度可以 儘管圖!和圖便貫現劑量的均句性。 Γ 知道根據本發明的各;的植入裝置,但應該 器或與其他杯柯㊆本不統和方法可與圖1和圖2的植入 1和圖,的植二:?基板處理裝置-起使用。因此,圖 各種實示範性的並且不應解釋爲输 參數如論=&amp;離子植人裝置通常具有至少4個可調 晉位淮角度、離子劑量、離子種類以及離子能 白ϋ。付疋半導體裳置的製造“處方㈣㈣”由這也來數 該裝f處方’,中的各離子植人步=定時^^ 穿|明人已經觀察到兩個看似-樣的離子植入 際制中呈現不同的效能特徵。也就是,儘管製 :廠^的兩個或多個植人器運行相同的“處方,,並且可使 周參數(角度、劑量、種類、能量)設定成相同的值, =數的—個或多個的實際值可能不同。例如,植入 ㈣高於處方所要求的,並且檢_統沒有讀取 巧的劑量。這種類型的變化可能導致由不精確的植入 ^理的半導體裝置的效能參數與同—製造工廠的其他植 入态相比有所不同。 植入益效能最實在的測量方法是量測形成於晶圓上的 、不、夏的效能。如果兩個植入器採用同一“處方,,製造特 200919555 ζουιομπ 定半導體裝置’例如’快閃記憶體晶片’由不精確的植入 器處理的基板上產生的晶片的參數效能不同於在其他植入 器上產生的那些晶片。給定晶片應在特定閥值電壓下開始 切換並且應以特定速度切換。由上述植入器產生的晶片的 這些參數值不同,有些低於可接受的偏差閥值,因此引起 晶粒浪費以及成品率降低。 現在參照圖3,在本圖中,詳細描述了根據本發明的 各種實施例中降低基板植入工具的工具間效能變化的方法 之流程圖。該方法開始於步驟300並進入到步驟305,其 中目標基板被遮罩。在各種實施例中,包括將矽晶圓插入 第一植入器裝置並用例如圖4所示的具有僅暴露一部份晶 圓開孔的遮罩裝置來遮罩晶圓。在各種實施例中,晶圓以 機械方式或藉由靜電力夾持在像是壓板的保持機構上。光 罩隨後定位在夹持的晶圓和離子束之間。光罩具有允許離 子束到達基板表面的暴露部份同時保護剩餘部份的開口或 開孔。在各種實施例中,光罩可在晶圓上方的遮罩位置和 非遮罩位置之間移動。非遮罩位置可以是植入器的處理室 内部或外部的儲存位置。在各種實施例中,植入器採用自 動光罩加載以及卸載機構。在其他實施例中,光罩可由植 入器的操作者手動安裝在遮罩位置。在各種實施例中,包 括根據’761申請中公開的一種或多種方法執行遮罩,該申 請併入本案以供麥考。在各種貫施例中’基板是与7晶圓。 繼續參考圖4的流程圖,在步驟305之後,操作進入 步驟310,其中使用第一植入器工具在遮罩基板上執行植 200919555 -iOUlOpli 入製程。在各種實闕巾m钟 =的離子植人製程。在各種實施例中,使用例 &quot;il:f 2005/0260354 ο 該申請併入本案以供參考。在各種實施例中, 當°σ可以在基板上執行正常植入製程,也就是說,通 執行的ί大裝置製造製程的子製程。在各種其 福::’植^將執彳了設計成展示典型製程條件下的 二效能而不作為裝置製程的一部份的僅測試用 =)衣程。在離子植入完成後’基板在步驟阳内移 押1==植人^具。在各種實施例中,這可以使用機器 夕行,例如藉由能夠將基板從一個植入器工具帶走並 二二移=到另一植入器工具的晶圓驅動裝置。在各種其他 =例中’這種步驟需要操作者縣板從第—植人器實體 幻〇 —植V裔工具的晶圓驅動器系統。隨後,在梦驟 板。I,用遮罩裝置遮罩基板。與步驟305 一樣,遮罩基 中I以包括利用共同受讓的美國申請第ll/ΧΧΧ,ΧΧΧ號 牛,的—彳里或多種方法和/或裝置進行遮罩。接下來,在 例中,。 使用乐二工具對基板進行植入。在各種實施 行與I^以包括利用第二植入器工具在基板的不同部份執 執行相同的製程。在各種實施例中,這可以包括 丁應=製程’例如裝置製程中的後續或附加子製程步驟。 況下ίί知這,在各種實施例中,可以在不遮罩基板的情 移過曰^所述的製程。例如,在採用掃描束(也就是,光束 表面)的離子植入器中,光束的動作可以程式化為 200919555 zoutopu 僅處理晶圓的 者,在移3曰;^份,藉此產生第一和第二處理部份。或 4日日圓的同時光束保持固定的植入哭曰或 動益糸統可以鞀斗/ °。〒日日圓驅 份晶圓在第爲在離子束前面移動晶圓使得僅〜部 式化為光束移動“恭:於離子束。可以使用程 ㈣合型的植人器Μ 。。心专同一日日圓上的兩個獨立處理部份。爱 間與針對藉由處理同—晶圓的不同部份匹配ς且 曰放此的本I明的各種實施例兼容。 、= 偶 includes a dipole analysis magnet 272 and a reticle 274 having an analytical aperture. The 6+ Γ-trace 220 (which may be an electrostatic scanner) deflects the ion beam 212 so that the ion trajectory scans the source, the head 28 〇% of the scanned ion beam. The scanner r cries the scan board connected to the off of the scan generation 11. Scanning 5:::7 A voltage waveform, such as a triangular wave, is used to scan the ion beam based on the scanning plate. The ion beam is typically scanned in a horizontal plane. The ions in the deflected scanning ion beam are generated for beaming. Specifically, the current of the magnetic coil 丄 ==: = is adjusted by focusing the scanning ion. The ion beam 212 is placed in the horizontal direction 7 &gt; ten private plates 236 and 234 by the scanning system 216. The combination of the work-mechanical translation with the wafer 234 causes the ion beam to be split on the surface of 19 200919555 234. As above, the Faraday Cup 2 3 8 * Qing Day 2 M board 23 6 is in the reduced position signal indicating the supply to the system and the lining beam current as the horizontal beam position (four) number;; #®^) ° 0 scanning speed can be despite the figure ! And the figure shows the uniformity of the dose.知道 Knowing each of the implant devices according to the present invention, but the device or the other cups can be combined with the implants 1 and 2 of Figure 1 and Figure 2: The substrate processing apparatus is used. Thus, the figures are illustrative and should not be construed as a transmission parameter such as an &lt;&gt; ion implanting device typically having at least four adjustable levels, ion doses, ion species, and ion energy. "The prescription (4) (four)" of the manufacture of the semiconductor skirts is also based on the number of the prescriptions, and the ions in the implant step = timing ^ ^ wear | Ming people have observed two seemingly - like ion implantation Different performance characteristics are presented in the system. That is, although the system: two or more implanters of the factory ^ run the same "prescription, and can set the weekly parameters (angle, dose, type, energy) to the same value, = number of - or The actual values of multiple may be different. For example, implant (4) is higher than required by the prescription, and the test does not read the dose. This type of change may result in inaccurate implanted semiconductor devices. The performance parameters are different from other implanted states in the same manufacturing plant. The most practical measurement method for implant efficiency is to measure the performance of the wafers that are formed on the wafer. The same "prescription, manufacture of special 200919555 ζουιομπ 定 semiconductor devices such as 'flash memory chips') The performance of the wafers produced on substrates processed by inaccurate implanters is different from those produced on other implants. . A given wafer should start switching at a specific threshold voltage and should switch at a specific speed. These parameters of the wafer produced by the implanter described above are different, some are below an acceptable deviation threshold, thus causing grain waste and reduced yield. Referring now to Figure 3, in the drawings, a flow chart of a method of reducing variations in inter-tool performance of a substrate implant tool in accordance with various embodiments of the present invention is described in detail. The method begins in step 300 and proceeds to step 305 where the target substrate is masked. In various embodiments, the wafer is inserted into the first implanter device and the wafer is masked with a masking device such as that shown in Figure 4 having only a portion of the crystalline opening exposed. In various embodiments, the wafer is held mechanically or by electrostatic force on a holding mechanism such as a platen. The mask is then positioned between the wafer being held and the ion beam. The reticle has openings or openings that allow the ion beam to reach the exposed portion of the substrate surface while protecting the remaining portion. In various embodiments, the reticle can be moved between a mask position and a non-mask position above the wafer. The unmasked position can be a storage location inside or outside the processing chamber of the implanter. In various embodiments, the implanter employs an automated reticle loading and unloading mechanism. In other embodiments, the reticle can be manually installed in the mask position by an operator of the implanter. In various embodiments, the masking is performed in accordance with one or more of the methods disclosed in the '761 application, which is incorporated herein by reference. In various embodiments, the substrate is with 7 wafers. With continued reference to the flow chart of Figure 4, after step 305, operation proceeds to step 310 where the implant 200919555 - iOUlOpli process is performed on the mask substrate using the first implanter tool. In various kinds of real towel m clock = ion implant process. In various embodiments, the use case &quot;il:f 2005/0260354&apos; is incorporated herein by reference. In various embodiments, the normal implantation process can be performed on the substrate when ° σ, that is, the sub-process of the process manufacturing process is performed. In all kinds of blessings:: 'plants' will be designed to show only the two performances under typical process conditions and not as part of the device process. After the ion implantation is completed, the substrate is transferred in the step yang 1 == implanted. In various embodiments, this may be done using a machine, such as by a wafer drive capable of taking the substrate away from one implanter tool and moving it to another implanter tool. In various other examples, this step requires the operator's county board to be from the first-planter entity to the illusion-planting V-based tool's wafer drive system. Then, in the dream board. I. Cover the substrate with a masking device. As with step 305, the mask base I is masked using a method or apparatus that utilizes the commonly assigned U.S. Application Serial No. 11/ΧΧΧ, nickname, or various methods and/or apparatus. Next, in the example, . The substrate is implanted using the Le Er tool. The same process is performed in various implementations, including the use of a second implanter tool, in different portions of the substrate. In various embodiments, this may include a D or a process, such as a subsequent or additional sub-process step in the process of the device. In other words, in various embodiments, the process described can be performed without masking the substrate. For example, in an ion implanter that uses a scanning beam (that is, the surface of the beam), the action of the beam can be programmed into 200919555. The zoutopu only processes the wafer, and moves it to create the first sum. The second processing part. Or on the 4th yen, the beam remains fixed at the same time as the implanted cry or the kinetic system can fight / °. The next day, the yen drives the wafer to move the wafer in front of the ion beam so that it is only partially converted into a beam. "Cong: In the ion beam. You can use the implant (4) type of implanter. Two separate processing sections on the yen. The love compartment is compatible with the various embodiments of the present invention that are adapted to handle different portions of the wafer.

、,、讀參考圖3的方法,在步驟33〇中,在植入製程$ 成之彳欠刀析基板以便量測由兩個植入器處理的兩個| 部份,—個或多個效能特徵。在各種實施例中=== ί對藉ί離子植入器在相應的第一和第二部份内形成的i‘ 置的參數測試。參數測試可以包括測試閥值電壓、所需= 流、切換速度等。在各種實施例中,這可包括使用晶圓= 針’執行晶片-準測試或者產生於其上的裝置的材質屬性^ 測。或者’可以執行裝置的破壞性截面分析以便使用例如 掃描式電子顯微鏡(Scanning Electron Microscopy,SEM)、 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)以及二次離子質譜儀(Secondary I〇n MassReferring to the method of FIG. 3, in step 33, in the implant process, the substrate is etched to measure two portions, one or more processed by the two implanters. Performance characteristics. In various embodiments, === ί is used to test the parameters of the i's formed in the respective first and second portions. Parametric testing can include testing threshold voltages, required = current, switching speed, and the like. In various embodiments, this may include performing a wafer-quasi-test using the wafer = pin' or a material property of the device produced thereon. Alternatively, a destructive cross-sectional analysis of the device can be performed to use, for example, a Scanning Electron Microscopy (SEM), a Transmission Electron Microscopy (TEM), and a Secondary Ion Mass Spectrometer (Secondary I〇n Mass).

Spectrometry, SIMS)等技術觀察參數變化的影響,例如, 摻雜物的實際位置以及幾何形狀,劑量位準等。各種製程 控制和測試方法以及設備是半導體製造領域所皆知的。例 如,在裝置製造中,可以量測以下特徵中的一個或多個:Spectrometry, SIMS) and other techniques observe the effects of parameter changes, such as the actual position and geometry of the dopant, the dose level, and so on. Various process control and test methods and equipment are well known in the semiconductor fabrication art. For example, in device fabrication, one or more of the following features can be measured:

Ion(或Idsat)-即“裝置處於“on”時的“驅動電流’’(在没極接 200919555Ion (or Idsat) - "the drive current" when the device is "on" (in the absence of 200919555)

ί量測);iGn的“skew”_即裝置結構的前向和後向上的ίοη 左二1〇抒(或Isubtheshold或者Ileak)-即裝置處於“〇ff,時 漏電流(在汲極接點量測);1〇11與1〇迁的比率;vu J壓二’㈣w電流充分導通時(例如,luA)的閘極 垒,當其相對阱區(基板)反向偏壓時在汲極量測的“二極體 逆偏漏電流’’ ;Cov-即汲極與閘極之間的“交疊,,雷容^亥命 容,間極邊緣在汲極上的實體交疊以及汲極 衝突(lateraljunction abruptness)非常敏感;Cd_即使相對^ 區的汲極電容-該電容對汲極結構中的垂直摻雜輪廓 (doping profile)非常敏感;St_即“反向次間值斜率,,-其^穿 置的打開特徵的銳利度(sharpness)的測量值;以及環振盪 盗延遲(逋常為幾微微秒)_即以重複次序連續打開和關閃 每個裝置的裝置環時間延遲-它將Ion、C0V、Cd參數的影 響整合成對電路位準有意義的參數。在優選實施例中,執 行翏數測試,因為如上文提到的,由於顯示了工具生產的 產品而不是理論上的産品因而實際裝置效能是可以提供給 製造商的最重要的驗證。 接下來,在步驟335中,在效能測試完成之後,確定 基板的該二處理部份的一個或多個是否可識別參數變化, 口而4曰示第一和弟一植入益工具之間的效能變化。如果在 步驟335中,確定變化超過可以接受的閥值,操作進入區 塊340 ’其中調節一個或兩個植入器工具的一個或多個可 調參數。在各種實施例中,這是自動執行的。例如,在各 種實施例中,測試設備可以與第一與第二植入器裝置的控 24 200919555 制器保持迆訊,以便能夠進行自動調整。在各種其他實施 例中,則使设備可以提供消息列表、列印輸出或識別對植 入器工具的一個或多個可調參數的推薦調節的其他線索。 在這種實施例中,由工具操作者進行調整。在各種實施例 中,步驟340之後,操作回到步驟3〇5並返回繼續,直到 在步驟奶巾確定不存在變化。在確枝餘態後,操作 進入步驟345,該方法停止。ίMeasurement; iGn's “skew” _ ie the forward and backward ίοη of the device structure is left 2 〇抒 (or Isubtheshold or Ileak) - that is, the device is at "〇ff, the leakage current (at the drain contact) Measurement); ratio of 1〇11 to 1〇; vu J voltage 2' (four)w gate is fully conductive (eg, luA) gate barrier, when its opposite well region (substrate) is reverse biased in the bungee Measured "diode reverse bias current"'; Cov- is the "overlap" between the bungee and the gate, the Thunder's life, the physical overlap of the interpole edge on the bungee and the bungee The lateraljunction abruptness is very sensitive; Cd_ is even sensitive to the drain capacitance of the region - the capacitance is very sensitive to the vertical doping profile in the drain structure; St_ is the "reverse inter-value slope, - a measure of the sharpness of the open feature of the wearer; and a ring oscillating delay (usually a few picoseconds) - ie a device loop time delay for continuously turning on and off each device in a repetitive order - It integrates the effects of Ion, C0V, and Cd parameters into parameters that are meaningful to the circuit level. In a preferred embodiment, the parameter test is performed because, as mentioned above, the actual device performance is the most important verification that can be provided to the manufacturer since the product produced by the tool is displayed rather than the theoretical product. Next, in step 335, after the performance test is completed, it is determined whether one or more of the two processed portions of the substrate can recognize the parameter change, and the port is between the first and the first implant. Performance changes. If, in step 335, it is determined that the change exceeds an acceptable threshold, operation proceeds to block 340' where one or more adjustable parameters of one or both implanter tools are adjusted. In various embodiments, this is done automatically. For example, in various embodiments, the test device can be kept in communication with the first and second implanter devices to enable automatic adjustment. In various other embodiments, the device can be provided with a list of messages, a printed output, or other clues that identify recommended adjustments to one or more tunable parameters of the implanter tool. In such an embodiment, the adjustment is made by the tool operator. In various embodiments, after step 340, the operation returns to step 3〇5 and returns to continue until the step determines that there is no change in the towel. After confirming the state, the operation proceeds to step 345, and the method stops.

應該知道,儘管是以離子植入器爲背景公開的,但圖 3的流程圖關示㈣法步驟也_於減少其他半導體處 理設備的工具_變化,包括用於沈積子製程、移除子製 t圖木化子製程以及執行基板材質的電氣屬性的改變的 同樣,應該知道儘管在圖3的實例令僅使用兩個植入 Μ具處理基板_應部份,但使用本申請所公開的各種 技術可以校準兩蚊上植人器。同時校準的不同植入哭工 ==限於是否能夠在目標基板表面上定義相異部 鮮聽部份使得各工具處_目標基板的不同 兄隹麥妝圖4,描述了根據本發 板遮罩裝置_。如上文提咖施例的基 例基於霞其立文扣W的,本發明的各種實施 爾^ 1份同時遮罩剩餘部份使得可以利 用兩個不同的植人器工|處 f⑽什J以利 在單個基板上板。取決於使用遮罩 晶圓數量。 4的數里,廷樣降低了所需的 200919555 圖4所示的基板遮罩装置4〇〇包括支撑基板(例如 體晶圓412)由如圖1和_ __ 圖2所不的離子植入器進行處 的壓板總成楊。該壓板總成由掃描系統 的 基板遮罩裝置4⑻更包括具有開孔422的光罩支^ 加載機構430以及改變夬 元草 又九罩420與晶圓412的相對位罟从 定位機構432。在至少_ 了位i的 個员例中,该疋位機構432 以是作為例如圖1所示的每 可 Ο 的貝%例中不思的晶圓驅動哭系 的部件的晶圓定向器。 糸统 圖4的壓板總成41() 用於將基板晶圓4!2支产減板 雜盤440具有 U 支拉到壓板440的表面。壓板滷成 更包括用於在處理過程中、入&amp;日m AA y 土板、,心成41〇 〜怔中冷部晶0 412的冷卻系統以及缒 :、中心旋轉轉扭轉㈣412的機構。在@ 4的實施例中二 壓板總成 ϋ包括光罩料元件442。如圖所示 物可以設有用於嗜合光罩保持元件祕的指狀物蝴。 壓板總成系統410由掃描系統414支撐。掃描系統41斗 可以相對離子束傾斜壓板總成410以便進行有角度植入 (angle implant)並且可以將壓板總成4丨〇旋轉到基板2圓力口 載/卸載位置。此外,掃描系統414可以在離子植入過程中° 垂直平移壓板總成41 〇。 在圖4所示的實施例中,光罩加載機構430包括具有 用於嚙合光罩420的元件452的傳輸臂450以及用於在加 載位置和儲存位置之間移動傳輸臂450的驅動系統454 / 在糸統400的操作過程中,光罩加載機構430藉由馭 動系統454的操作將光罩42 〇移動到基板晶圓4】2 面的 26 200919555 遮罩位置赠其從缝置移走。在遮罩位置,光罩嗜 合光罩保持7G件442。光罩加載機構430隨後收回並且掃 描系統414將壓板總成4] 〇移動到晶圓加載/卸载位置。基 . 板晶圓412藉由晶圓搬運系統加载到光罩42〇下方。曰= • 412隨,準備植入或進行其他處理。在由光罩42G内的開 孔422定義的第一區域對晶圓412進行植入。在對晶圓進 行植入後,藉由晶圓搬運系統將其移走。此時,操作者可 〇 以移走晶圓並將其插入另一植入器工具的晶圓搬運系统。 或者,晶圓搬運系統連接到運送器(convey or)、自動機㈨㈣ 或者能夠傳遞晶圓412到第二植入器工具進行與上述類似 的處理之其他裝置。在第二植入器中,遮罩位置將=對晶 圓定向以便暴露與藉由第一裝置植入的部份不同的未虎理 部份。 (一 因此,藉由本發明的各種實施例,可以有效地識別工 具間的製程變化並藉由比可能的傳統方法更低的成本降低 該變化。同樣,由不同植入器在同一晶圓處理的裝置^來 &gt; 數效能是可能的,藉此允許製造商在許多晶粒必須丟棄之 前和/或整個晶圓報廢事件發生之前快速識別製程變化$藉 由量測實際參數效能,由於微米以及亞微米寬度電晶= • 對製程變化的敏感性,可以檢測到更精確的製程變化。= 此,要知道降低植入器工具之間的效能變化將藉由增加声 品的成品率以及藉此增加收益性而減少製造工廠的浪費土 本發明並不侷限於本申請所描述的特定實施例的範 圍。實際上,除了本申請所描述的,本領域熟知此項浐= 27 200919555 -iouiopil 者藉由上述描述與附圖容易想到本發明的其他各種實施例 以及修飾。因而,這些其他的實施例以及修飾意圖落在本 發明的範圍内。更進一步,儘管出於特定目的在特定環境 下以特定的實施方式為背景描述了本發明,但本領域熟知 此項技藝者將意識到其有用性並不侷限於此,並且可出於 許多目的在許多環境下實施本發明。因而,下面闡述的申 請專利範圍應鑑廣之涵意.以及本申請所描述的本發明的精 神進行解釋。 【圖式簡單說明】 爲了便於更全面地理解本發明,現在參照附圖,其中 相似的構件由相似的標號表示。這些附圖不應解釋爲限制 本發明,而是意圖僅是示範性的。 圖1是可用於本發明的各種實施例的第一離子植入系 統的區塊不意圖。 圖2是可用於本發明的各種實施例的另一離子植入系 統的區塊不意圖。 圖3是根據本發明的各種實施例中降低基板植入工具 的工具間效能變化的詳細方法步驟的流程圖。 圖4是根據本發明的各種實施例的基板遮罩裝置的透 視圖。 【主要元件符號說明】 100 :離子植入系統 101 :光束産生器 28 200919555 ZOLMOpii ]02 :光束 103 ·晶圓 104 :檢測器 . 105:控制器 106 :晶圓驅動器 107 :真空系統 ]〇8 :氣體源 /、 109 :外罩 \ - 200 ··離子植入系統 210 :離子束產生器 212 :離子束 216 :掃描系統 220 :掃描器 224 :角度校正器 230 :掃描離子束 232 :端站 I’ .234:半導體晶圓 236 :壓板 .238 :法拉第杯 . 260 :離子束源 262 :源過濾器 _264 :加速/減速筒 270 :質量分析器 272 :偶極分析磁體光罩 29 200919555 -ΐυυ 1 υριι 274 :光罩 276 :解析開孔 280 •掃描源頭 300 :開始It should be understood that although disclosed in the context of an ion implanter, the flow diagram of Figure 3 illustrates the (four) method steps as well as reducing the tooling variations of other semiconductor processing equipment, including for deposition process, removal of subsystems. In the same manner as the change in the electrical properties of the substrate material, it should be understood that although the example of FIG. 3 is used to process only the substrate using only two implanted cookware, the various disclosed in the present application are used. The technology can calibrate the two mosquitoes on the implanter. Simultaneous calibration of different implants crying == is limited to whether the different parts of the target substrate can be defined on the surface of the target substrate so that each tool is different from the target substrate. Figure 4 shows the mask according to the present hair plate. Device_. The basic example of the above-mentioned coffee application is based on the Xiaqi Liwen W, and the various implementations of the present invention simultaneously cover the remaining portions so that two different implanters can be utilized | at f(10) Benefits on a single substrate. Depending on the number of wafers used in the mask. In the case of 4, the sample is lowered by the required 200919555. The substrate mask device 4 shown in FIG. 4 includes the support substrate (for example, the body wafer 412) by ion implantation as shown in FIG. 1 and FIG. The pressure plate assembly at the place where the device is made is Yang. The platen assembly is further comprised of a substrate masking device 4 (8) of the scanning system, and further includes a reticle loading mechanism 430 having an opening 422 and a relative positioning mechanism 432 for changing the imaginary grass and the hood 420 from the wafer 412. In the case of at least the member i of the position i, the clamp mechanism 432 is a wafer director which is, for example, a wafer-driven crying component which is not considered in every example of the case shown in Fig. 1. The platen assembly 41 () of Fig. 4 is used to pull the substrate wafer 4! 2 of the reduced plate 440 with the U leg to the surface of the platen 440. The platen halogenation further includes a cooling system for injecting &amp; day m AA y earth plate, a core 41 怔 怔 怔 middle cold part crystal 0 412, and a mechanism for 中心:, center rotation to twist (four) 412. In the embodiment of @4, the two platen assembly ϋ includes a photomask element 442. As shown, the object may be provided with a finger butterfly for the fascia retaining element. The platen assembly system 410 is supported by a scanning system 414. The scanning system 41 can tilt the platen assembly 410 relative to the ion beam for angle implant and can rotate the platen assembly 4 to the substrate 2 round force loading/unloading position. Additionally, scanning system 414 can vertically translate the platen assembly 41 在 during ion implantation. In the embodiment illustrated in FIG. 4, the reticle loading mechanism 430 includes a transfer arm 450 having an element 452 for engaging the reticle 420 and a drive system 454 for moving the transfer arm 450 between the loading position and the storage position. During operation of the system 400, the reticle loading mechanism 430 moves the reticle 42 to the substrate wafer 4 by the operation of the swaying system 454. The 2009 mask is placed in the mask position to remove it from the seam. In the mask position, the reticle opportunistic reticle holds the 7G member 442. The mask loading mechanism 430 then retracts and the scanning system 414 moves the platen assembly 4] to the wafer loading/unloading position. The plate wafer 412 is loaded under the reticle 42 by a wafer handling system.曰 = • 412, ready for implantation or other processing. Wafer 412 is implanted in a first region defined by openings 422 in reticle 42G. After the wafer is implanted, it is removed by a wafer handling system. At this point, the operator can remove the wafer and insert it into the wafer handling system of another implanter tool. Alternatively, the wafer handling system is coupled to a conveyor or automaton (9) (4) or other device capable of transferring wafer 412 to a second implanter tool for processing similar to that described above. In the second implanter, the mask position will = align the crystal to expose a different portion than the portion implanted by the first device. (Thus, with the various embodiments of the present invention, process variations between tools can be effectively identified and reduced by lower cost than possible conventional methods. Similarly, devices that are processed by the same implant on the same wafer ^ ** The number performance is possible, thereby allowing the manufacturer to quickly identify process changes before many dies must be discarded and/or before the entire wafer retirement event occurs. By measuring actual parameter performance, due to micron and sub-micron Width Electron Crystal = • Sensitivity to process variations can detect more precise process variations. = This, knowing to reduce the performance variation between implanter tools will increase the yield of the sound product and thereby increase the yield. The invention is not limited to the scope of the specific embodiments described herein. In fact, in addition to the description of the present application, it is well known in the art that the above-mentioned 浐= 27 200919555 -iouiopil by the above Other various embodiments and modifications of the present invention are readily apparent from the description and accompanying drawings. Further, although the invention has been described in the context of a particular embodiment in a particular context for a particular purpose, those skilled in the art will appreciate that their usefulness is not limited thereto, and The present invention may be embodied in a number of environments for a number of purposes. Accordingly, the scope of the invention as set forth below is intended to be construed as the meaning of the invention described herein. The present invention is generally understood by reference to the accompanying drawings, in which the like The block of the first ion implantation system of the embodiment is not intended. Figure 2 is a block diagram of another ion implantation system that can be used in various embodiments of the present invention. Figure 3 is a representation of various embodiments in accordance with the present invention. A flow chart of detailed method steps for reducing the change in performance between tools of a substrate implant tool. Figure 4 is a perspective view of a substrate masking device in accordance with various embodiments of the present invention. [Main Element Symbol Description] 100: Ion Implantation System 101: Beam Generator 28 200919555 ZOLMOpii ]02: Beam 103 · Wafer 104: Detector. 105: Controller 106: Wafer Driver 107: Vacuum System] 8: gas source /, 109: housing \ - 200 · ion implantation system 210: ion beam generator 212: ion beam 216: scanning system 220: scanner 224: angle corrector 230: scanning ion beam 232: end station I'.234: Semiconductor Wafer 236: Platen. 238: Faraday Cup. 260: Ion Beam Source 262: Source Filter _264: Acceleration/Deceleration Cylinder 270: Mass Analyzer 272: Dipole Analysis Magnet Mask 29 200919555 - Ϊ́υυ 1 υριι 274 : Photomask 276 : Analytical opening 280 • Scanning source 300 : Start

305 :遮罩基板以便暴露第一部份 310 :利用第一工具處理基板 315 :將基板移動到第二工具 3.20 :遮罩基板以便暴露第二部份 325 :利用第二工具處理基板 330 :測量效能特徵 335 :存在變化? 340 :調整二具 345 :停止 400 :基板遮罩裝置 410 :壓板總成 414 .掃描糸統 420 :光罩 422 :開孔 430 :光罩加載機構 432 :定位機構 440 :壓板 442 :光罩保持元件 444 ··指狀物 450 :傳輸臂 30 200919555 /OU〗〇pii 452 :嚙合元件 454 :驅動系統305: masking the substrate to expose the first portion 310: processing the substrate 315 with the first tool: moving the substrate to the second tool 3.20: masking the substrate to expose the second portion 325: processing the substrate 330 with the second tool: measuring Performance Feature 335: Is there a change? 340: adjustment two sets 345: stop 400: substrate masking device 410: pressure plate assembly 414. scanning system 420: reticle 422: opening 430: reticle loading mechanism 432: positioning mechanism 440: pressure plate 442: reticle retention Element 444 ·· Finger 450 : Transfer arm 30 200919555 /OU〗 〇pii 452 : Engagement element 454 : Drive system

Claims (1)

200919555 2t)UJ〇piI 十、申請專利範圍: 1 . 一種匹配半導體製造裝置之間效能的方法,包括: 利用一第一裝置處理基板的一第一部份; 將所述基板從所述第一裝置移動到一第二裝置; 利用所述第二裝置處理所述基板的所述第二部份; 將所述第一和第二部份與所述相應的第一和第二裝置 關聯;以及 將所述第一部份的一個或多個屬性與所述第二部份的 一個或多個對應屬性進行比較。 2·如申請專利範圍第1項所述匹配半導體製造裝置之 間效能的方法,其中處理所述第一部份包括在所述基板的 第一部份上執行離子植入。 3 ·如申請專利範圍第2項所述匹配半導體製造裝置之 間效能的方法,其中在一矽基板的一第一部份上執行離子 植入包括在一石夕晶圓的一第一部份上執行離子植入。 4.如申請專利範圍第2項所述匹配半導體製造裝置之 間效能的方法,其中處理所述基板的所述第一和第二部份 包括在所述基板和一離子源之間施加一遮罩裝置。 5 ·如申請專利範圍第4項所述匹配半導體製造裝置之 間效能的方法,其中施加所述遮罩II置包括施加具有一開 孔之所述遮罩裝置,該開孔暴露所述相應第一和第二部份 的同時,保護所述基板的剩餘部份。 6.如申請專利範圍第2項所述匹配半導體製造裝置之 間效能的方法,其中處理所述相應的第一和第二部份包括 32 200919555 zov ι οριι 利用一掃描離子束僅掃描所述基板的所述第一和第二部 份。 7·如申請專利範圍第2項所述匹配半導體製造裝置之 間效能的方法,其中處理所述相應的第一和第二部份包括 在所述相應的第一和第二裝置的一固定離子束前面移動所 述第一和第二部份。 8 .如申請專利範圍第1項所述匹配半導體製造裝置之 間效能的方法,其中將所述第一和第二部份與所述相應第 一和第二裝置進行關聯包括向一資料處理器確認使用所述 第一裝置對所述第一部份進行植入以及使用所述第二裝置 對所述第二部份進行植入。 9·如申請專利範圍第8項所述匹配半導體製造裝置之 間效能的方法,更包括將所述第一和第二裝置兩者的一或 多個操作參數供應給所述資料處理器。 10 ·如申請專利範圍第8項所述匹配半導體製造裝置 之間效能的方法,其中將所述第一部份的一個或多個屬性 與所述第二部份的一個或多個對應屬性進行比較包括對形 成於所述基板的所述第一和第二部份兩者的至少一個半導 體裝置執行參數測試。 11 ·如申請專利範圍第9項所述匹配半導體製造裝置 之間效能的方法,其中執行參數測試包括對所述第一和第 二部份兩者執行由以下測試所構成的族群中選出的至少一 種測試並比較量測值:(l)Ion或Idsat、(2)Ion中的Skew、 (3)Ioff、(4) Ion與Ioff的比率、(5)閥值電壓Vt、(6)當相對 200919555 ZOU I opii 阱區反向偏壓時在汲極量測的二極體逆偏漏電流、 (7)Cov、(8)Cd、(9)St、(10)環振盪器延遲以及(11)這些測 試的組合。 12·如申請專利範圍第10項所述匹配半導體製造裝置 之間效能的方法,更包括比較在所述第一和第二部份上製 造的所述半導體裝置之間的所述參數測試的結果。 13 ·如申請專利範圍第12項所述匹配半導體製造裝置 之間效能的方法,更包括利用所述資料處理器基於所述量 測值的比較結果識別對所述第一或第二裝置的一操作參數 進行至少一次的調整。 14 ·如申請專利範圍第1項所述匹配半導體製造裝置 之間效能的方法,其中移動所述基板包括利用一自動基板 搬運裝置自動移動所述基板。 15 ·如申請專利範圍第1項所述匹配半導體製造裝置 之間效能的方法,其中移動所述基板包括將所述基板從所 述第一裝置手動移動到所述第二裝置。 16 . —種臨場匹配離子植入工具效能的方法,包括: 使用一第一離子植入器在一基板的一第一部份執行離 子植入,其中向所述基板施加具有暴露所述第一部份的一 第一開孔的一第一光罩; 使用一第二離子植入器在所述基板的一第二部份上執 行離子植入,其中向所述基板施加具有暴露所述第二部份 的一第二開孔的一第二光罩; 量測所述第一和第二部份兩者的至少一個特徵值; 34 200919555 j wpi j 執行所述第一和第二部份的所述相應特徵值的比較; 以及 基於所述比較結果確定對所述第一或第二植入器的可 調參數進行至少一次的調整。 17 .如申請專利範圍第16項所述臨場匹配離子植入工 具效能的方法,其中確定對所述可調參數進行至少一次調 整包括確定對從下列參數所構成的群組中選出的參數進行 至少一次調整:離子束入射角度、離子劑量以及離子能量。 18 · —種降低工具間效能變化的方法,應用於由多個 離子植入器構成的半導體製造工廠環境下,該方法包括: 向半導體基板施加一第一光罩,所述第一光罩具有暴 露所述基板的一第一部份的一第一開孔: 利用一第一植入器在所述基板上執行一離子植入製 程; 將所述基板移動到一第二植入器; 向所述基板施加一第二光罩,所述第二光罩具有暴露 所述基板的一第二部份的一第二開孔; 利用所述第二植入器在所述基板上執行離子植入製 程; 量測所述第一和第二部份兩者的至少一個特徵值; 比較所述第一和第二部份兩者的所述量測值;以及 基於比較結果調整所述第一或第二植入器的至少一個 可調操作參數。 35200919555 2t) UJ〇piI X. Patent Application Range: 1. A method for matching the performance between semiconductor manufacturing devices, comprising: processing a first portion of a substrate with a first device; Moving the device to a second device; processing the second portion of the substrate with the second device; associating the first and second portions with the respective first and second devices; Comparing one or more attributes of the first portion to one or more corresponding attributes of the second portion. 2. A method of matching the performance of a semiconductor fabrication apparatus as recited in claim 1, wherein processing the first portion comprises performing ion implantation on a first portion of the substrate. 3. A method of matching the performance between semiconductor fabrication devices as described in claim 2, wherein performing ion implantation on a first portion of a substrate comprises a first portion of a wafer Perform ion implantation. 4. The method of matching the performance between semiconductor fabrication devices of claim 2, wherein processing the first and second portions of the substrate comprises applying a mask between the substrate and an ion source Cover device. 5. The method of matching the performance between semiconductor manufacturing devices according to claim 4, wherein applying the mask II comprises applying the masking device having an opening, the opening exposing the corresponding portion Simultaneously with the second portion, the remaining portion of the substrate is protected. 6. The method of matching the performance between semiconductor manufacturing devices according to claim 2, wherein processing the respective first and second portions comprises 32 200919555 zov ι ο οιι The first and second parts. 7. A method of matching performance between semiconductor fabrication devices as recited in claim 2, wherein processing said respective first and second portions comprises a fixed ion at said respective first and second devices The first and second portions are moved in front of the bundle. 8. The method of matching performance between semiconductor manufacturing devices according to claim 1, wherein the associating the first and second portions with the respective first and second devices comprises to a data processor Confirming that the first portion is implanted using the first device and the second portion is implanted using the second device. 9. The method of matching the performance of a semiconductor manufacturing apparatus according to claim 8 of the patent application, further comprising supplying one or more operational parameters of both the first and second devices to the data processor. 10. A method of matching performance between semiconductor fabrication devices as described in claim 8 wherein the one or more attributes of the first portion are associated with one or more corresponding attributes of the second portion Comparing includes performing a parametric test on at least one semiconductor device formed in both the first and second portions of the substrate. 11. A method of matching performance between semiconductor fabrication devices as recited in claim 9 wherein performing the parametric test comprises performing at least one of the first and second portions selected from the group consisting of: A test and comparison of measured values: (1) Ion or Idsat, (2) Skew in Ion, (3) Ioff, (4) ratio of Ion to Ioff, (5) threshold voltage Vt, (6) when relative 200919555 ZOU I opii Diode reverse bias current measured at the drain of the well region during reverse bias, (7) Cov, (8) Cd, (9) St, (10) ring oscillator delay and (11 ) A combination of these tests. 12. The method of matching performance between semiconductor fabrication devices as recited in claim 10, further comprising comparing results of said parameter test between said semiconductor devices fabricated on said first and second portions . 13. The method of matching performance between semiconductor manufacturing devices according to claim 12, further comprising identifying, by the data processor, one of the first or second devices based on a comparison result of the measured values The operating parameters are adjusted at least once. 14. A method of matching the performance of a semiconductor manufacturing apparatus as described in claim 1, wherein moving the substrate comprises automatically moving the substrate using an automated substrate handling device. The method of matching the performance between semiconductor manufacturing devices as described in claim 1, wherein moving the substrate comprises manually moving the substrate from the first device to the second device. 16. A method for matching the effectiveness of an ion implantation tool, comprising: performing ion implantation on a first portion of a substrate using a first ion implanter, wherein applying the first to the substrate is exposed a first photomask of a first opening; performing ion implantation on a second portion of the substrate using a second ion implanter, wherein applying the substrate to the substrate a second mask of a second opening; measuring at least one characteristic value of the first and second portions; 34 200919555 j wpi j performing the first and second portions Comparing the respective characteristic values; and determining, based on the comparison result, at least one adjustment of the adjustable parameter of the first or second implanter. 17. The method of matching field ion implantation tool performance according to claim 16, wherein determining to make at least one adjustment to the tunable parameter comprises determining at least a parameter selected from the group consisting of the following parameters; One adjustment: ion beam incident angle, ion dose, and ion energy. 18 - A method for reducing performance variation between tools, applied to a semiconductor manufacturing plant environment comprising a plurality of ion implanters, the method comprising: applying a first reticle to a semiconductor substrate, the first reticle having Exposing a first opening of a first portion of the substrate: performing an ion implantation process on the substrate by using a first implanter; moving the substrate to a second implanter; Applying a second mask to the substrate, the second mask having a second opening exposing a second portion of the substrate; performing ion implantation on the substrate by using the second implanter Entering a process; measuring at least one characteristic value of both the first and second portions; comparing the measured values of both the first and second portions; and adjusting the first based on the comparison result Or at least one adjustable operating parameter of the second implanter. 35
TW96138964A 2007-10-17 2007-10-17 Technique for matching performance of ion implantation devices using an in-situ mask TW200919555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96138964A TW200919555A (en) 2007-10-17 2007-10-17 Technique for matching performance of ion implantation devices using an in-situ mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96138964A TW200919555A (en) 2007-10-17 2007-10-17 Technique for matching performance of ion implantation devices using an in-situ mask

Publications (1)

Publication Number Publication Date
TW200919555A true TW200919555A (en) 2009-05-01

Family

ID=44727161

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96138964A TW200919555A (en) 2007-10-17 2007-10-17 Technique for matching performance of ion implantation devices using an in-situ mask

Country Status (1)

Country Link
TW (1) TW200919555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452313B (en) * 2012-11-29 2014-09-11 Univ Shu Te Fpga-based embedded inspection system for circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452313B (en) * 2012-11-29 2014-09-11 Univ Shu Te Fpga-based embedded inspection system for circuit board

Similar Documents

Publication Publication Date Title
US7619229B2 (en) Technique for matching performance of ion implantation devices using an in-situ mask
US8835845B2 (en) In-situ STEM sample preparation
US7026628B2 (en) Advanced ion beam detector for ion implantation tools
US20060255296A1 (en) Matching dose and energy of multiple ion implanters
US20020079465A1 (en) In-process wafer charge monitor and control system for ion implanter
US10032600B2 (en) Charged particle source
KR101423787B1 (en) Means to establish orientation of ion beam to wafer and correct angle errors
CN104335320A (en) Platen clamping surface monitoring
US10410829B1 (en) Methods for acquiring planar view stem images of device structures
US7199383B2 (en) Method for reducing particles during ion implantation
US9111719B1 (en) Method for enhancing beam utilization in a scanned beam ion implanter
US7160742B2 (en) Methods for integrated implant monitoring
US11295970B2 (en) System and method for analyzing a semiconductor device
TW200919555A (en) Technique for matching performance of ion implantation devices using an in-situ mask
US6452198B1 (en) Minimized contamination of semiconductor wafers within an implantation system
TW202235811A (en) Substrate-processing apparatus having optical distance-measuring device
US6737663B2 (en) Apparatus and method for detecting tilt angle of a wafer platform
JP3003219B2 (en) Method for manufacturing semiconductor device
TWI534868B (en) Ion implantation system and assembly thereof and method for performing ion implantation
US6869215B2 (en) Method and apparatus for detecting contaminants in ion-implanted wafer
US20050048679A1 (en) Technique for adjusting a penetration depth during the implantation of ions into a semiconductor region
Harlan et al. Overview of the Eaten 8250 medium current implanter
Demenev Evolution of Arsenic nanometric distributions in Silicon under advanced ion implantation and annealing processes
WO2023094098A1 (en) Charged-particle beam apparatus for voltage-contrast inspection and methods thereof
Brozek et al. Optimization of short-flow MOS charging monitor for ion implantation