200917827 九、發明說明: 【明所屬領3 相關專利申請案之交互參照 本申請案主張序列號為12/184,160的美國專利申請案 5 之利益,名稱為“Circuits and Methods Allowing for Pixel Array Exposure Pattern Control”,於2008年7月 31 日提出申 請,其全部内容以參照方式被併入本文。本申請案主張序 列號為60/953,905的美國臨時申請案之利益,名稱為 “CMOS Imager”,於2007年8月3日提出申請,其全部内容 10 以參照方式被併入本文。本申請案主張序列號為61 /020,5 6 0 的美國臨時申請案之利益’名稱為“CMOS Image Sensor for Machine Vision”,於2008年1月11日提出申請,其全部内容 以參照方式被併入本文。序列號為12/184,160的美國專利申 請案也主張以上參考的序列號為60/953,905的美國臨時申 I5 請案以及序列號為61/020,560的美國臨時申請案之利益。 發明領域 本發明之實施例一般是關於影像處理系統、影像感測 器電路、晝素電路、影像擷取方法以及影像處理方法,以 及在特定實施例巾’是關於-種包括—晝料列及用於控制 20該畫素陣列的畫f電路之-或多個電路的影像感測器電路。 【先前技術3 發明背景 影像感測器電路廣泛地被用以獲得實體場景及物體之 影像。在許多情況下’影像感測器電路被用以獲得被人類 5 200917827 看到且觀察的影像。在其他情況下影像感測器電路被用 以獲得被用於機ϋ視覺以及其他自動圖樣韻程序的影 像。強調人類觀察的場景之實際描述的習知影像感測器電 路當被用於圖樣辨識應用時可能產生一些問題。 10 影像感測器電路-般包括一具有多數個以列及行配置 的晝素電路之晝素陣列。該等畫素電路中的每個一般包括 戸、光元件例如光二極體或類似者,用於對一被成像 H之Ϊ十應。Ρ分的光強度進行取樣。在影像操取期 間自5亥晝素陣列之晝素電路内的感光元件的累積電荷一 般依據指定給一快門操作之預先設定的時間期間被控制。 ,用於各種相關技術的影像感測器電路的兩種快門操作 疋·(1)-全域快門操作;以及⑼一滾動快門操作。 15 在「典型的全域快門操作中’―畫素陣列内的所有畫 二傻路被重q,且被同時曝光—指㈣間期間以擷取一 :;象在利用此等全域快門,該畫素陣列内的所 同的第—時間點自光聚集或累積電荷,接著在 快門,談查去睡τ止累積電何。因此’利用此等全域 門/旦’、歹1m的所有畫素電路具有-相同的聚集時 S在此聚集時間期間” 20累積。 職俅的场术’電荷自光被 在—典型的滾純門操作中, 列内的所有畫素電路被_1==之-相同的 的時間期間。被同時曝光一指定 内的所有畫素電路―素陣列之-相同列 相同的弟一時間點_1«自4 200917827 何,接著在一相同的第二時間點停止累積電荷。一旦 =電路之_列在此_滾動快門操作中已曝光—指定的聚 中'日’期間,則該程序繼續到該畫素陣列⑽下—列,其 Β#Ρ1#㈣的所有晝素電路接著㈣時曝光該指定的聚集 °該程序在該畫素陣列之間㈣_,直_畫 旦4路之所有列已被曝光該指定的聚集時間期間以一 景> 像。 以全域快Η及滾動快門操作尋求保持_場景内的光強 10 15 =點^間的—相對關係,使縣_實體場景内的一點比 點受時,則在該等畫素電路沒有完全飽和之範圍内, 該=體場景之被棘的影像内的情況是相同的。當被操取 ^像疋為了給人類觀看時,這是被期望的因為該等被 棟取的影像是為了 _實體衫之—真實物而被揭取。 :而田為了圖樣辨識目的而擷取—高動態範圍場景之一 影:時’嘗試維持一場景内的光強度之點之間的相對關係 可,產生$]題’因為實體場景内的光強度之變化可能超過 該等晝素電路之一動態範圍。 一杏例如’考慮具有-較明亮的中心部分以及邊緣黑暗的 一實體場景,例如當在-陽光明亮的下午從—黑暗_道 内料看時。在此-情形巾,如於在—全域快門或滾動 快門操作中累積電荷的—聚集時間被設定為—長的時間以 對於黑暗區域累積足夠的電荷量,則對於明亮區域累積電 荷的畫素電路可能電荷飽和。此電荷之鮮可能導致不能 看見該影像之明亮區域内的物體。另一方面,若在此一全 20 200917827 域快門或滚動快門操作的情形中累積電荷之聚集時間被設 定為一短的時間以對於該等明亮區域不使累積電荷的畫素 電路飽和,則對於黑暗區域累積電荷的畫素電路可能無法 累積足夠的電荷以允許看見黑暗區域内的物體。 5 如以上所描述的累積太多電荷或累積太少電荷的問題 在自動圖樣辨識之脈絡下可能是非常嚴重的,因為其難以 且一般不可能辨識在一影像内無法被看見的一物體。例 如,在以上提供的例子中,若被擷取的影像正被用以自動 控制在隧道中行駛的一汽車,則使在隧道之離開區域的一 10 影像飽和可能阻止在離開隧道時辨識物體之能力,這可能 有害地影響該汽車避開此等物體之能力。因此,在擷取具 有該等場景之不同區域之間的光強度之大的差值之高動態 範圍場景之影像的情形中,該等全域快門及滾動快門操作 可能產生問題。 15 第1圖描述了一習知的影像感測器電路100之一方塊 圖。該影像感測器電路100包括一畫素陣列101、一類比對 數位轉換器(ADC)方塊102、一數位影像處理器103、一列定 址電路104、一控制處理器105以及一影像記憶體緩衝器 106。該畫素陣列101包括以列及行配置的多數個畫素電路 20 112。每個晝素電路112包括一感光元件,例如一光二極體 或類似者,以對一被成像的場景之一對應部分之光強度取 樣,且每個畫素電路112被組配以基於被取樣的光強度產生 一類比晝素信號。 該晝素陣列101包括列控制線107,、1072,…,107n(各自 200917827 可包括多數個控制線(在第m中未示)),且該晝素陣列ι〇ι 也包括類比輸出線108l、K…,乳。該列定址電路刚 透過該等列控制線1071、1〇72, .··,W提供控制信號給該畫 素陣列ιοί内的畫素電路112以控制該等晝素電路ιΐ2之一 5操作。在該畫素障列101之相同的列(例如,該晝素陣列皿 之第i列)内的晝素電路112透過來自該列定址電路ι〇4的一 共同列控制線i〇7i共用共同列控制信號。在該晝素陣列ι〇ι 之相同的行(例如,該晝素陣列1〇1之第』行)内的晝素電路 U2共用一共同類比輸出線108_i以提供輸出。該列定址電路104 10控制該等畫素電路112以對一滾動快門操作執行逐列處理。 自S亥晝素陣列101輸出的類比晝素信號透過該等類比 輸出線108丨、1〇82,…,l〇8m輸入該ADC方塊102。該ADC方 塊102—般包括一用於該畫素陣列1〇1内的晝素電路丨12之 每一行的行ADC電路114。該等行ADC電路114被組配以將 15透過該等類比輪出線108ι、1082,…,l〇8m之個別輸出線自該 畫素陣列101接收的類比畫素信號轉換為在對應的數位輸 出線109!、1 Oh,…,1 〇9m上輸出的數位信號。該控制處理器 105被組配以控制該ADC方塊102之一操作,且也被組配以 控制該列定址電路104之一操作。在來自該ADc方塊1〇2的 2〇該等數位輸出線109P 1092,…,109„上輪出的數位晝素信號 被輸入至該數位影像處理器103。該數位影像處理器1〇3與 該影像記憶體緩衝器106以及該控制處理器1〇5協作處理該 等輸入數位畫素信號以在一輸出線上產生數位輸出信號。 第2圖描述了該畫素電路112之一習知設計。該畫素電 200917827 路112包括一光二極體121、一傳輸閘電晶體122、一感測節 點13卜一重設定電晶體124、一驅動電晶體125以及一讀取 選擇電晶體126。該傳輸閘電晶體122、該重設定電晶體 12 4、該驅動電晶體12 5以及該讀取選擇電晶體12 6各自包含 5 —N通道金屬氧化半導體(NMOS)場效電晶體。該等列控制 線107!、1072,…,107n(參看第1圖)中的一同屬線在第2圖中 被顯示為一列控制線107,且該等類比輸出線108,、1〇82,, l〇8m(參看第1圖)中的一同屬線在第2圖中被顯示為一類比 輸出線108。該列控制線1〇7包括一列讀出信號線127、一傳 10輸信號線129以及一重設定信號線13〇。該晝素電路112接收 該列讀出信號線127、該傳輸信號線129以及該重設定信號 線130上的輸入信號。該晝素電路112在該類比輸出線1〇8上 提供輸出信號。 如第2圖中所描述的,該光二極體121連接在地端133 15與該傳輸閘電晶體12 2之一第一終端之間。該傳輸閘電晶體 122之一第二終端連接到該感測節點131,且該傳輪閘電晶 體122之一閘極連接到該傳輸信號線129。該重設定電晶體 124之一第一終端連接到一電壓源132,該重設定電晶體DA 之一第二終端連接到該感測節點131,且該重設定電晶體 20 I24之一閘極連接到該重設定信號線130。該驅動電晶體125 之一第一終端連接到該電壓源132,該驅動電晶體125之一 第二終端連接到該讀取選擇電晶體126之一第一終端,且該 驅動電晶體125之一閘極連接到該感測節點1M。該讀取選 擇電晶體126之-第二終端連接到該類比輸出線1〇8,且該 10 200917827 讀取電晶體126之一閘極連接到該列讀出信號線127。 第3圖描述了該行ADC電路114之一習知設計。該行 ADC電路114包括一源電晶體140、一雙取樣放大器142以及 一類比對數位轉換器(ADC)電路144。該雙取樣放大器142 5被自該控制處理器1 〇5(參看第1圖)提供的控制信號控制,該 等控制信號由該雙取樣放大器142透過一放大器控制信號 線146被接收。該ADC電路144被自該控制處理器1〇5(參看 第1圖)提供的控制信號控制,該等控制信號由該ADC電路 144透過一轉換器控制信號線148接收。該等類比輸出線 10 1〇8ι、1〇82,…,108m(參看第1圖)中的一同屬線在第3圖中被 顯示為類比輸出線108,且該等數位輸出線丨ο、、1〇92,…, 109m中的一同屬線(參看第1圖)在第3圖中被顯示為一數位 輸出線109。該源電晶體140之一第一終端連接到該數位輸 出線108,以及遠源電晶體140之一第二終端連接到地端 15 I33。該雙取樣放大器142之一輪入端連接到該類比輸出線 108,以及該雙取樣放大器142之一輸出端連接到該ADC電 路144之一輸入端。該ADC電路144之一輸出端連接到該數 位輸出線109。 第4圖描述了第1圖之習知的影像感測器電路1〇〇,其中 20第2圖之畫素電路112以及第3圖之行ADC電路114被描述。 該影像感測器電路100之一操作現在參看第卜2、3及4圖被 描述。當一影像擷取操作被初始化時,光二極體丨21藉由在 該傳輸信號線129上提供一高(HIGH)信號以接通該傳輸閘 電晶體12 2以及在該重設定信號線丨3 〇上提供一 η〗G H信號 200917827 以接通該重設定電晶體124而被重設定。接著一低(LOW)信 號被提供在該重設定信號線13 0上以關閉該重設定電晶體 124,同時該傳輸閘電晶體122保持接通以允許該光二極體 121内產生的電荷在該感測節點131内累積。在一曝光時間 5 間隔結束時’ 一LOW信號被提供在該傳輸信號線129上以關 閉該傳輸閘電晶體122。 一旦該傳輪閘電晶體122被關閉,一HIGH信號被提供 在該列讀出信號線127上以接通該讀取選擇電晶體126,且 該雙取樣放大器142對該類比輸出線108上的一晝素電路輸 10出電壓取樣。接著,一LOW信號被提供在該列讀出信號線 127上以關閉該讀取選擇電晶體126 ’且一HIGH信號被提供 在該重設定信號線130及該傳輸信號線129上以接通該重設 疋電晶體124以及s玄傳輸閘電晶體122以重設定該感測節點 131。當該感測節點131處於一重設定狀態時,一 high信號 15 被提供在該列讀出信號線127上以接通該讀取選擇電晶體 126,且該雙取樣放大器142對該類比輸出線108上的一晝素 電路重設定電壓取樣。該雙取樣放大器142接著計算該晝素 電路輪出電壓與該畫素電路重設定電壓之間的一差值以達 到—被校正的畫素電路輸出電壓。該被校正的畫素電路輪 2〇出電壓自該雙取樣放大器142提供給該ADC電路144,且該 ADC電路144將該被校正的畫素電路輸出電壓轉換為—數 位仏唬,且將該數位信號提供給該數位影像處理器1〇3。 在n亥衫像感測器電路1 〇〇中,該畫素陣列1 〇 1之一 &定 列内的所有畫素電路112累積電荷-相等量的時間。因此, 12 200917827 影像時 當出於圖樣辨識目的擷取一高動態範 ,了、>厚a亏, 該影像感測器電路10 0具有以上討論的問題,因為實 γ旦 内的光強度之變化可能超過該等晝紊雷攸110 、 冲 —电格112之—動態範 5 15 20 圍。此專問題可能阻止物體或圖樣自該影像感剛器電請 擷取的影像中被辨識出。 c發明内容:J 發明概要 本發明之各個實施例允許在一彰德 仕〜像擷取操作期間隨著 時間控制-晝料狀㈣樣,使得錢影像操取操 作期間該畫素陣列内的該等晝素電路可被曝光不同的時間 量。在各個實施例中,該晝素陣列之曝光圖樣至少部分基 於自該晝素陣職出的信號被控制,該等信號表示在該書 素陣列之至少-部分内累積的電荷。在—些實施例中,基 於在該影像擷取操作制在該晝素陣列内已累積的電荷,該 畫素陣列之曝光_在_影像錄操作期間被疊代地更新。 依據本發明之一實施例的-影像感測器電路包括-畫 素陣列以及-或多個電路。該晝素陣列包含多數個書素電 路。該-或多個電路被組配以至少部分基於自該畫素陣列 輸出的《多個信號更新曝光資訊且被組配以基於該曝 光貢訊控制該晝素陣列之—曝光圖樣。在各個實施例中, Γ或多個電路被組配以當—影像正被該畫素陣列擷取 ’至^刀基於自該晝素陣列輪出的該—或多個信號以 及至少一擴張準則疊代地更新該曝光資訊。在-此實施例 中,該至少-擴張判由至少_結構元件指定。 13 200917827 在各個實施例中,該等晝素電路可被控制使得該晝素 陣列之-列内的至少-晝素電路可在該晝素電路之一感測 節點聚集電荷,同時該列内的至少_第二畫素電路在一影 像擷取操作之至少一部分期間被阻止在該第二晝素電路之 5 一感測節點聚集電荷。在一些實施例中,該一或多個雷路 被組配以至少部分基於自該畫素陣列輪出的該—或多個信 號之值疊代地更新該曝光資訊,其中該一或多個信號之該 等值表示在該畫素陣列之至少-部分内累積的電荷。 在各個實施例中,該-或多個電路被組配以基於該曝 H)光資訊個別地控制該等畫f電路之曝光狀態,轉制該晝 素陣列之該曝光圖樣。而且,在各個實施例中,該等晝素 電路中的每個畫素電路之曝光狀態包括一開啟狀態以及一 關閉狀悲,在該開啟狀態中,該晝素電路被允許在該書素 電路之一感測節點聚集電荷,在該關閉狀態中,該畫素電 15 路被阻止在該感測節點聚集額外的電荷。 在-些實施例中,該影像感測器電路進一步包含一或 多個記憶體裝置以將該曝光資訊儲存為曝光圖樣資料,該 曝光圖樣資料包括需被用於控制該晝素電路之一曝光狀態 的該等畫素電路中的每個晝素電路之至少_位元。在進二 20步的實施例中,該-或多個電路被組配以在一影像操取操 作之前重設定儲存在該-或多個記憶體裝置内的該曝光圖 樣資料為一初始圖樣。在-些實施例中,該一或多個電路 被組配以當-影像被該畫素陣列擷取時基於該曝光資訊多 次改變該畫素陣列之該曝光圖樣。 14 200917827 在各個實施例中,該等畫素電 包含一咸出-从 妨 夕思素電路 70 一電晶體以及-第二電晶體。兮第 連接到該感光元件的—終端。該第二二 ^在—曝光控制信號線與該第1晶體之—閘極之二 5在各個實施例中’該一或多個電路被組配以基於該暖γ 訊控制該曝光控制信號線上的一信號。在一些實施例中,、 =少—晝素電路進—步包含—第三電晶體以及-第四電 日日體。該第三電晶體連接到該感光元件。該第四電日日體連 接在-抗輝散控制信號與該第三電晶體之一問極之間。气 10 :或多個電路被組配以基於該曝光資訊㈣該抗輝散㈣ 信號線上的一抗輝散信號。 在各個實施例中,該-或多個電路被組配以在—影像 操取操作期間控制該抗輝散控制信號線上的抗輝散信號為 該曝光控制信號線上的該曝光控制信號之一相反的值。而 15且,在各個實施例中,該感光元件具有延伸到該曝光信號 線之下的一第一部分以及延伸到該抗輝散控制信號線之下 的一第二部分。在一些實施例中,該至少—晝素電路進一 步包含一或多個虛擬擴散,該一或多個虛擬擴散在一影像 拮頁取操作期間連接到一恆定電壓。 在一些實施例中,該至少一晝素電路進一步包含—重 設定電晶體。該重設定電晶體連接在—固定電壓與一感測 節點之間,其中該感測節點上的一電壓控制一輸出信號。 在各個實施例中,該一或多個電路被組配以控制一重設定 #號,該重設定信號被施加給該重設定電晶體之一問極 15 200917827 使得該重設定電晶體在一影像擷取操作期間的該輸出信號 之至少兩次讀出期間及之間保持關閉,以使該輸出信號之u 邊至少兩次讀出關於在該感測節點累積的電荷呈現非破壞 性的。 5 纟各個實施例中,該畫素陣列進-步包含多數個行讀 出線以提供該-或多個信號,且該一或多個信號被組配以 選擇性地控制該等行讀出線上的控制信號為電壓信號或電 流信號。在一些實施例中,該一或多個信號在一影像操取 操作期間的至少一部分時間是類比電流信號。在各個實施 1〇例中,該影像感測器電路進-步包含一行數位對類比轉換 器電路,該行數位對類比轉換器電路被組配以接收自位於 該畫素電路之-相同的行内的該等畫素電路中的兩個或多 個晝素電路的該畫素陣列之一行讀出線上輸出的類比信 唬,且被組配以將該等類比信號轉換為對應的數位信號。 15 纟各個實施例中,該等晝素電路以多數個列及多數個 行排列。在-些實施例中,該-或多個電路被組配以選擇 性地控制該晝素陣列以在一相同的時間提供來自兩列或多 列以及兩行或多行内的晝素電路之輸出,使得來自該兩列 或多列的該等輸出在該畫素陣列之行讀出線上以類比形式 20 組合。 在一些實施例中,該影像感測器電路進一步包含一電 阻柵。在各個實施例中,該電阻柵包括多數個可開關電阻 斋以及多數個電容器。在一些實施例中,該等電容器被連 接以接收具有基於自該畫素陣列輸出的該一或多個信號的 16 200917827 值之信號,且該等可開關電阻器被組配以依據指令信號選 擇性地連接該等電容器。在各個實施例中,在該等可開關 電阻器已被控制以連接該等電容器且已經過一時間期間 夺〇或夕個電路被組配以對儲存在該等電容器中的至 5 V者内的-電壓進行取樣^而且,在各個實施例中,該 -或多個電路被組配以基於該電壓更新該曝光資訊。 在些貫施例中,該等畫素電路以多數個列及多數個 行排列’其中遠等列中的每個進一步包括一臨界電流產生 ΠΠ在各個實細*例中,該一或多個電路被組配以比較自該 10等列中的一特定列内的一特定臨界電流產生器之一輸出導 出的一參考信號之-電壓與自該特定列内的該等晝素電路 中的-特定晝素電路之一輸出導出的一信號之一電壓,且 被組配以基於該比較之一結果更新該曝光資訊。在一些實 她例中,該一或多個電路被組配以基於一臨界數目與自該 U曝光資訊計算出的一數目之間的一比較終止該畫素陣列内 的一影像擷取操作。而且,在一些實施例中,該一或多個 電路包§ 一數位#號處理器。在各個實施例中,該影像感 測器電路進一步包含設於該等畫素電路中的至少一畫素電 路之至少一部分上的一紅外線濾波器。在一些實施例中, 2〇該影像感測器電路進一步包含設於該等晝素電路中的至少 一畫素電路之至少一部分上的一彩色濾波器。 一種用於依據本發明之一實施例的一影像感測器電路 的方法’包括以下步驟:(勾儲存與該影像感測器電路之一 a素陣列的一曝光圖樣相關的資訊;以及(b)至少部分基於 17 200917827 ⑴已被儲存的資H及⑼自該畫素 信號,改變該畫素陣列之該曝光圖樣。出的-或多個 5 10 於依據本發明之_實施例的—影像感測 的方法包括以下步驟··⑷開始該影像感測器電路之一金音 素:路中的每個内的電荷之聚集;(b)阻止 广於自該畫素陣列輸出的一或多個信號選擇的該 及:電路令的至少一特定畫素電路内的電荷之聚集·以 部分基於-擴張準則,阻止與該畫素陣列内的該 特疋里素電路相鄰的該等晝素電路中的至少-畫素電路内 一種依據本發明之〜實_的畫素電路包括-感光元 件:-第-電晶體以及一第二電晶體。在各個實施例中, 該感光元件包含-光二極體或類似者。該第一電晶體連接 在該感光元件與-感測節點之間。該第二電晶體連接在一 15曝光控制信號線與該第一電晶體之一閑極之間,且該第二 電晶體具有連接到—傳輸信號線的-閘極。 一種依據本發明之一實施例的影像處理系統包括一影 像感測器電路以及一處理器。該影像感測器電路包含—畫 素陣列且被組配以利用一種快門操作獲得一影像,其中該 20畫素陣列之一曝光圖樣依據曝光資訊被設定,該曝光資訊 至少部分基於該晝素陣列之至少一部分内累積的電荷隨著 %間而變化。該處理器被組配以檢測該影像内的一或多個 物體。在各個實施例中,該曝光資訊進一步基於由一結構 元件指疋的一擴張準則隨著時間變化。在各個實施例中, 18 200917827 該影像感測器電路及該處理器都設於一個單一晶片上。 本發明之各個實施例允許利用回饋控制一畫素陣列, 使得該晝素陣列至少部分基於自該畫素陣列輸出的信號被 控制,該等信號表示在一影像擷取操作期間在該晝素陣列 5 之至少一部分内累積的電荷。而且,本發明之各個實施例 允許在一個別晝素電路位準控制聚集時間之一期間,使得 在一影像擷取操作期間該畫素陣列中的一相同的列内的晝 素電路可各自以不同的時間量聚集電荷。在各個實施例 中,與對於一實體場景之較暗區域,聚集電荷的晝素電路 10 之聚集時間相比之下,一特定快門操作允許對於該實體場 景之明亮區域聚集電荷的畫素電路以較短的聚集時間聚集 電荷。因此,本發明之各個實施例提供控制個別晝素電路 被允許在一影像擷取操作期間累積電荷的一時間量,至少 部分基於在該影像擷取操作期間已由畫素電路累積的電 15 荷。 圖式簡單說明 第1圖描述了 一習知的影像感測器電路; 第2圖描述了 一習知的晝素電路; 第3圖描述了一習知的行類比對數位轉換器(ADC)電路; 20 第4圖描述了 一習知的影像感測器電路; 第5圖描述了依據本發明之一實施例的一影像處理系統; 第6圖描述了依據本發明之一實施例的一影像感測器 電路; 第7圖描述了依據本發明之一實施例的一晝素電路; 19 200917827 第8圖描述了依據本發明之一實施例的一臨界電流產 生器; 第9圖描述了依據本發明之一實施例的一行A D C電路; 第10圖描述了依據本發明之一實施例的一參考信號轉 5 換器; 第11圖描述了依據本發明之一實施例的一影像感測器 電路; 第12圖描述了依據本發明之一實施例的一行A D C電路; 第13圖描述了依據本發明之一實施例的一影像感測器 10 電路; 第14圖描述了依據本發明之一實施例的一畫素電路之 一佈局; 第15圖描述了用於依據本發明之一實施例的一影像感 測器電路之方法的一流程圖; 15 第16圖描述了用於依據本發明之一實施例的一影像感 測器電路之一方法的一流程圖; 第17圖描述了用於依據本發明之一實施例的一影像感 測器電路之一方法的一流程圖; 第18A圖描述了依據本發明之一實施例的由一結構元 20 件指定的一擴張準則; 第18B圖描述了依據本發明之一實施例的由一結構元 件指定的一擴張準則; 第18 C圖描述了依據本發明之一實施例的由一結構元 件指定的一擴張準則; 20 200917827 第18 D圖描述了依據本發明之一實施例的由一結構元 件指定的一擴張準則; 第19A圖描述了依據本發明之一實施例的一曝光圖樣 緩衝器之内容的一例子; * 5 第19B圖描述了依據本發明之一實施例的依據第ι9Α • 圖的曝光圖樣緩衝器之内容設定的一畫素陣列之一曝光圖 樣的一例子; 〆 第19(:圖描述了依據本發明之一實施例的一曝光圖樣 緩衝器之内容的一例子; 1〇 第19D圖描述了依據本發明之一實施例的一曝光圖樣 緩衝器之内容的一例子; 第19E圖描述了依據本發明之一實施例的依據第19D 圖的曝光圖樣緩衝器之内容設定的一畫素陣列之一曝光圖 樣的一例子; 15 第19F圖描述了依據本發明之一實施例的一曝光圖樣 (. 緩衝器之内容的一例子; ' 第19G圖描述了依據本發明之一實施例的一曝光圖樣 _ 緩衝器之内容的一例子;200917827 IX. INSTRUCTIONS: [Improvement of the related patent application of the singularity of the singularity of the present invention is based on the benefit of US Patent Application Serial No. 12/184,160, entitled "Circuits and Methods Allowing for Pixel Array Exposure Pattern Control". The application is filed on July 31, 2008, the entire contents of which are incorporated herein by reference. The present application claims the benefit of the U.S. Provisional Application Serial No. 60/953,905, entitled " CMOS Image", filed on Aug. 3, 2007, the entire content of which is incorporated herein by reference. This application claims the benefit of the US Provisional Application No. 61/020,560, entitled "CMOS Image Sensor for Machine Vision", filed on January 11, 2008, the entire contents of which are incorporated by reference. Incorporated herein. U.S. Patent Application Serial No. 12/184,160, the entire disclosure of which is hereby incorporated by reference in its entirety in its entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all FIELD OF THE INVENTION Embodiments of the present invention generally relate to image processing systems, image sensor circuits, pixel circuits, image capture methods, and image processing methods, and in particular embodiments, An image sensor circuit for controlling 20 or a plurality of circuits of the pixel array of the pixel array. [Prior Art 3 BACKGROUND OF THE INVENTION Image sensor circuits are widely used to obtain images of solid scenes and objects. In many cases, the image sensor circuit is used to obtain images that are seen and observed by humans 5 200917827. In other cases image sensor circuits are used to obtain images that are used for camera vision and other automatic pattern rhythm programs. Conventional image sensor circuits that emphasize the actual description of human observed scenes may present problems when used in pattern recognition applications. The image sensor circuit generally includes a pixel array having a plurality of pixel circuits arranged in columns and rows. Each of the pixel circuits generally includes a germanium, an optical element such as a photodiode or the like for use in imaging an image. The light intensity of the split is sampled. The accumulated charge of the photosensitive elements in the pixel circuit from the 5 voltaic array during image manipulation is generally controlled in accordance with a predetermined period of time assigned to a shutter operation. Two shutter operations for image sensor circuits of various related art 疋·(1)-wide shutter operation; and (9) a rolling shutter operation. 15 In "Typical Global Shutter Operation" - all the paintings in the pixel array are weighted q and are simultaneously exposed - referring to the period between (4) to capture one: as in the use of such a global shutter, the painting The same first-time point in the prime array accumulates or accumulates charge from the light, and then in the shutter, talks about how to accumulate the electric charge. Therefore, all the pixel circuits that use these global gates/deniers and 歹1m are used. When there is - the same aggregation, S accumulates during this aggregation time. The field of the job 'charges from the light is in the typical rolling pure door operation, all the pixel circuits in the column are _1 == - the same time period. Simultaneously exposing all the pixel circuits within a specified number - the same column - the same column, the same time point _1 « since 4 200917827, then stop accumulating charges at the same second time point. Once the = circuit is listed in this _ rolling shutter operation has been exposed - during the specified "day" period, then the program continues to the pixel array (10) under the column - Β #Ρ1# (four) of all the pixel circuits Next (4), the specified aggregation is exposed. The program is between the pixel arrays (four)_, and all columns of the straight_draw four-way have been exposed to the scene during the specified aggregation time. In the global fast and rolling shutter operation, it is sought to maintain the relative relationship between the light intensity in the scene 10 15 = point ^, so that the point in the county_physical scene is affected by the time, then the pixel circuits are not fully saturated. Within the range, the situation within the image of the spine of the body scene is the same. This is expected when it is manipulated to look at humans, because the images that were taken are taken for the sake of the physical body. : And Tian draws for the purpose of pattern recognition - one of the high dynamic range scenes: when 'try to maintain the relative relationship between the points of light intensity within a scene, can generate $] title 'because of the light intensity in the physical scene The change may exceed the dynamic range of one of the pixel circuits. An apricot, for example, considers a physical scene with a brighter central portion and a darker edge, such as when viewed from a dark-light afternoon. In this case, if the accumulation time of the accumulated charge in the - global shutter or rolling shutter operation is set to - a long time to accumulate a sufficient amount of charge for the dark area, the pixel circuit for accumulating charge for the bright area Possible charge saturation. This fresh charge may result in the inability to see objects in the bright areas of the image. On the other hand, if the accumulation time of the accumulated electric charge is set to a short time in the case of the full 20 200917827 domain shutter or rolling shutter operation to saturate the pixel circuits of the accumulated electric charge for the bright areas, A pixel circuit that accumulates charge in dark areas may not accumulate enough charge to allow viewing of objects in dark areas. 5 The problem of accumulating too much charge or accumulating too little charge as described above can be very severe under the context of automatic pattern recognition because it is difficult and generally impossible to identify an object that cannot be seen within an image. For example, in the example provided above, if the captured image is being used to automatically control a car traveling in the tunnel, saturating a 10 image in the exit area of the tunnel may prevent the object from being recognized when leaving the tunnel. Ability, which may adversely affect the ability of the car to avoid such objects. Thus, in the case of capturing images of high dynamic range scenes having large differences in light intensity between different regions of the scenes, such global shutter and rolling shutter operations may cause problems. 15 Figure 1 depicts a block diagram of a conventional image sensor circuit 100. The image sensor circuit 100 includes a pixel array 101, a type of analog-to-digital converter (ADC) block 102, a digital image processor 103, a column of addressing circuits 104, a control processor 105, and an image memory buffer. 106. The pixel array 101 includes a plurality of pixel circuits 20 112 arranged in columns and rows. Each of the pixel circuits 112 includes a light sensing element, such as a light diode or the like, to sample the light intensity of a corresponding portion of an imaged scene, and each pixel circuit 112 is assembled to be sampled based on The light intensity produces a class of ubiquitin signals. The pixel array 101 includes column control lines 107, 1072, ..., 107n (each 200917827 may include a plurality of control lines (not shown in the mth)), and the pixel array ι〇ι also includes an analog output line 108l , K..., milk. The column addressing circuit has just passed through the column control lines 1071, 1〇72, . . . , W to provide control signals to the pixel circuits 112 in the pixel array ιοί to control the operations of the pixel circuits ι2. The pixel circuits 112 in the same column of the pixel barrier 101 (e.g., the i-th column of the pixel array) are shared by a common column control line i〇7i from the column addressing circuit ι4 Column control signal. The pixel circuits U2 in the same row of the pixel array ι〇ι (e.g., the row of the pixel array 1〇1) share a common analog output line 108_i to provide an output. The column addressing circuit 104 10 controls the pixel circuits 112 to perform column-by-column processing on a rolling shutter operation. The analog pixel signals output from the S-cell array 101 are input to the ADC block 102 through the analog output lines 108A, 1B, 82, ..., l8m. The ADC block 102 generally includes a row ADC circuit 114 for each row of the pixel circuits 12 within the pixel array 101. The row ADC circuits 114 are configured to convert the analog pixel signals received from the pixel array 101 through the individual output lines of the analog wheel outputs 108, 108, ..., l8m to the corresponding digits. The digital signal output on the output line 109!, 1 Oh, ..., 1 〇 9m. The control processor 105 is configured to control the operation of one of the ADC blocks 102 and is also configured to control the operation of one of the column addressing circuits 104. The digital pixel signals that are rounded up from the two digit output lines 109P 1092, ..., 109' from the ADc block 1〇2 are input to the digital image processor 103. The digital image processor 1〇3 and The image memory buffer 106 and the control processor 〇5 cooperatively process the input digital pixel signals to produce a digital output signal on an output line. Figure 2 depicts a conventional design of the pixel circuit 112. The pixel circuit 200917827 includes a photodiode 121, a transmission gate transistor 122, a sensing node 13 and a resetting transistor 124, a driving transistor 125, and a read selection transistor 126. The transmission gate The transistor 122, the reset transistor 12 4, the drive transistor 125 and the read select transistor 12 each comprise a 5-N channel metal oxide semiconductor (NMOS) field effect transistor. The column control lines 107 The same line in !, 1072, ..., 107n (see Fig. 1) is shown in Fig. 2 as a column of control lines 107, and the analog output lines 108, 1〇82,, l〇8m (see The same line in Figure 1 is shown as an analogy in Figure 2. The output line 108. The column control line 1 〇 7 includes a column of read signal lines 127, a pass signal line 129, and a reset signal line 13. The pixel circuit 112 receives the column read signal line 127, the transmission a signal line 129 and an input signal on the reset signal line 130. The pixel circuit 112 provides an output signal on the analog output line 1 。 8. As described in Fig. 2, the photodiode 121 is connected to ground. The terminal 133 15 is between the first terminal of the transmission gate transistor 12. The second terminal of the transmission gate transistor 122 is connected to the sensing node 131, and one of the gates of the transmission gate transistor 122 Connected to the transmission signal line 129. One of the first terminals of the resetting transistor 124 is connected to a voltage source 132, and one of the second terminals of the resetting transistor DA is connected to the sensing node 131, and the resetting is performed. A gate of the crystal 20 I24 is connected to the reset signal line 130. One of the first terminals of the driving transistor 125 is connected to the voltage source 132, and one of the second terminals of the driving transistor 125 is connected to the read selection One of the first terminals of the crystal 126, and the driving transistor 12 One of the gates is connected to the sense node 1M. The second terminal of the read select transistor 126 is connected to the analog output line 1〇8, and the gate of the 10 200917827 read transistor 126 is connected to The column reads signal line 127. Figure 3 depicts a conventional design of the row of ADC circuits 114. The row of ADC circuits 114 includes a source transistor 140, a dual sampling amplifier 142, and a type of comparison digital converter (ADC). The circuit 144. The double sampling amplifier 142 5 is controlled by a control signal provided from the control processor 1 〇 5 (see FIG. 1), and the control signals are received by the double sampling amplifier 142 through an amplifier control signal line 146. . The ADC circuit 144 is controlled by a control signal provided from the control processor 1〇5 (see Figure 1), which is received by the ADC circuit 144 via a converter control signal line 148. The same line in the analog output lines 10 1 〇 8 ι, 1 〇 82, ..., 108 m (see Fig. 1) is shown in Fig. 3 as an analog output line 108, and the digital output lines 丨ο, A common line of 1, 92, ..., 109m (see Fig. 1) is shown as a digital output line 109 in Fig. 3. A first terminal of the source transistor 140 is coupled to the digital output line 108, and a second terminal of the remote source transistor 140 is coupled to the ground terminal 15 I33. One of the double sampling amplifiers 142 is coupled to the analog output line 108, and one of the dual sampling amplifiers 142 is coupled to one of the input terminals of the ADC circuit 144. An output of one of the ADC circuits 144 is coupled to the digital output line 109. Fig. 4 depicts a conventional image sensor circuit 1 of Fig. 1, wherein the pixel circuit 112 of Fig. 2 and the ADC circuit 114 of Fig. 3 are described. One of the operations of the image sensor circuit 100 is now described with reference to Figures 2, 3 and 4. When an image capturing operation is initialized, the photodiode 丨21 turns on the transmission gate transistor 12 2 and the reset signal line 藉3 by providing a high (HIGH) signal on the transmission signal line 129. A η GH signal 200917827 is provided on the 以 to turn the reset transistor 124 on and reset. A LOW signal is then provided on the reset signal line 130 to turn off the reset transistor 124 while the transfer gate transistor 122 remains turned on to allow charge generated in the photodiode 121 to be The sensing node 131 accumulates. At the end of an exposure time 5 interval, a LOW signal is supplied to the transmission signal line 129 to turn off the transmission gate transistor 122. Once the transfer gate transistor 122 is turned off, a HIGH signal is provided on the column read signal line 127 to turn on the read select transistor 126, and the double sample amplifier 142 is on the analog output line 108. A halogen circuit outputs 10 voltage samples. Next, a LOW signal is provided on the column read signal line 127 to turn off the read select transistor 126' and a HIGH signal is provided on the reset signal line 130 and the transfer signal line 129 to turn on the The germanium transistor 124 and the s-transfer gate transistor 122 are reset to reset the sensing node 131. When the sensing node 131 is in a reset state, a high signal 15 is provided on the column read signal line 127 to turn on the read select transistor 126, and the double sample amplifier 142 pairs the analog output line 108. The upper pixel circuit resets the voltage sampling. The double sampling amplifier 142 then calculates a difference between the pixel circuit turn-off voltage and the pixel circuit reset voltage to achieve the corrected pixel circuit output voltage. The corrected pixel circuit wheel 2 output voltage is supplied from the double sampling amplifier 142 to the ADC circuit 144, and the ADC circuit 144 converts the corrected pixel circuit output voltage into a digital position, and A digital signal is supplied to the digital image processor 1〇3. In the n-shirt-like sensor circuit 1 所有, all of the pixel circuits 112 in the one of the pixel arrays 1 & 1 accumulate charge-equal amount of time. Therefore, 12 200917827 image captures a high dynamic range for pattern recognition purposes, > thick a loss, the image sensor circuit 100 has the above discussed problem, because the light intensity in the real gamma The change may exceed the enthalpy of thunder 攸 110 , 冲 — cell 112 — dynamic range 5 15 20 . This specific problem may prevent an object or pattern from being recognized from the image captured by the image sensor. c SUMMARY OF THE INVENTION: SUMMARY OF THE INVENTION Various embodiments of the present invention allow for control over time during a capture operation, such as during a capture operation, such that within a pixel array during a money image manipulation operation The pixel circuit can be exposed for different amounts of time. In various embodiments, the exposure pattern of the pixel array is controlled based at least in part on signals from the pixel array, the signals representing charges accumulated in at least a portion of the pixel array. In some embodiments, the exposure of the pixel array is iteratively updated during the video recording operation based on the accumulated charge in the pixel array during the image capture operation. An image sensor circuit in accordance with an embodiment of the present invention includes a pixel array and/or a plurality of circuits. The pixel array contains a plurality of pixel circuits. The one or more circuits are configured to control the exposure information based on the plurality of signals from the pixel array and are configured to control the pixel array based on the exposure. In various embodiments, one or more circuits are configured to - when the image is being captured by the pixel array 'to the knife based on the one or more signals that are rotated from the pixel array and at least one expansion criterion Update the exposure information in an iterative manner. In this embodiment, the at least-expansion is specified by at least the _ structural element. 13 200917827 In various embodiments, the pixel circuits can be controlled such that at least a halogen circuit within the column of the pixel array can collect charge at one of the sensing nodes of the pixel circuit while At least the second pixel circuit is prevented from accumulating charge at the sensing node of the second pixel circuit during at least a portion of the image capturing operation. In some embodiments, the one or more lightning traces are configured to iteratively update the exposure information based at least in part on the value of the one or more signals that are rotated from the pixel array, wherein the one or more The equivalent of the signal represents the charge accumulated in at least a portion of the pixel array. In various embodiments, the one or more circuits are configured to individually control the exposure state of the f-circuits based on the exposure information to convert the exposure pattern of the pixel array. Moreover, in various embodiments, the exposure state of each pixel circuit in the pixel circuits includes an on state and a off state in which the pixel circuit is allowed to be in the pixel circuit One of the sensing nodes accumulates a charge, and in the off state, the pixel 15 is prevented from accumulating additional charges at the sensing node. In some embodiments, the image sensor circuit further includes one or more memory devices to store the exposure information as exposure pattern data, the exposure pattern data including an exposure to be used to control the pixel circuit At least _ bits of each of the pixel circuits in the state of the pixel circuits. In the embodiment of step 20, the one or more circuits are configured to reset the exposure pattern data stored in the one or more memory devices to an initial pattern prior to an image manipulation operation. In some embodiments, the one or more circuits are configured to change the exposure pattern of the pixel array a plurality of times based on the exposure information when the image is captured by the pixel array. 14 200917827 In various embodiments, the pixel charges comprise a salt-out-synchronization circuit 70-transistor and a second transistor.兮 The terminal connected to the photosensitive element. The second and second exposure-exposure control signal lines and the first crystal-gate 2 are in each embodiment 'the one or more circuits are configured to control the exposure control signal line based on the warm gamma a signal. In some embodiments, the = 少 - 昼 电路 circuit includes - the third transistor and - the fourth electric celestial body. The third transistor is connected to the photosensitive element. The fourth electric day is connected between the anti-dispersion control signal and one of the third transistors. The gas 10: or a plurality of circuits are combined to generate an anti-glow signal on the anti-glow (four) signal line based on the exposure information. In various embodiments, the one or more circuits are configured to control an anti-emitter signal on the anti-dispersion control signal line during an image manipulation operation as one of the exposure control signals on the exposure control signal line Value. Further, in various embodiments, the photosensitive element has a first portion extending below the exposure signal line and a second portion extending below the anti-dispersion control signal line. In some embodiments, the at least-halogen circuit further includes one or more virtual spreads that are coupled to a constant voltage during an image capture operation. In some embodiments, the at least one halogen circuit further comprises - resetting the transistor. The reset transistor is coupled between a fixed voltage and a sense node, wherein a voltage on the sense node controls an output signal. In various embodiments, the one or more circuits are configured to control a reset ##, the reset signal is applied to one of the reset transistors 15 200917827 such that the reset transistor is in an image The output signal during the fetch operation is held off during at least two readout periods and so that the u-edge of the output signal is at least twice read out with respect to the charge accumulated at the sense node being non-destructive. In various embodiments, the pixel array further includes a plurality of row readout lines to provide the one or more signals, and the one or more signals are combined to selectively control the row readouts The control signal on the line is a voltage signal or a current signal. In some embodiments, the one or more signals are analog current signals for at least a portion of the time during an image manipulation operation. In each of the implementations, the image sensor circuit further includes a row of digital-to-analog converter circuits that are configured to receive from the same row of the pixel circuit One of the pixel arrays of the two or more pixel circuits in the pixel circuits has an analog signal output on the line readout line, and is configured to convert the analog signals into corresponding digital signals. In each of the embodiments, the pixel circuits are arranged in a plurality of columns and a plurality of rows. In some embodiments, the one or more circuits are configured to selectively control the pixel array to provide output from two or more columns and two or more rows of pixel circuits at the same time The outputs from the two or more columns are combined in analogy 20 on the row readout line of the pixel array. In some embodiments, the image sensor circuit further includes a resistor grid. In various embodiments, the resistor grid includes a plurality of switchable resistors and a plurality of capacitors. In some embodiments, the capacitors are coupled to receive signals having 16 200917827 values based on the one or more signals output from the pixel array, and the switchable resistors are configured to select according to the command signals These capacitors are connected in a sexual manner. In various embodiments, after the switchable resistors have been controlled to connect the capacitors and have passed a period of time, the circuit or the circuit is assembled to be within 5 V of the capacitors. The voltage is sampled and, in various embodiments, the one or more circuits are configured to update the exposure information based on the voltage. In some embodiments, the pixel circuits are arranged in a plurality of columns and a plurality of rows, wherein each of the far columns further includes a threshold current generated in each of the real details, the one or more The circuit is configured to compare a voltage of a reference signal derived from an output of one of a particular threshold current generator in a particular one of the 10 columns to a voltage from the pixel circuit in the particular column One of the specific pixel circuits outputs a voltage of one of the derived signals and is configured to update the exposure information based on the result of the comparison. In some embodiments, the one or more circuits are configured to terminate an image capture operation within the pixel array based on a comparison between a threshold number and a number calculated from the U exposure information. Moreover, in some embodiments, the one or more circuit packs § a number ## processor. In various embodiments, the image sensor circuit further includes an infrared filter disposed on at least a portion of the at least one pixel circuit in the pixel circuits. In some embodiments, the image sensor circuit further includes a color filter disposed on at least a portion of the at least one pixel circuit of the pixel circuits. A method for an image sensor circuit in accordance with an embodiment of the present invention includes the steps of: (tapping information relating to an exposure pattern of an array of pixels of the image sensor circuit; and (b) At least in part based on 17 200917827 (1) stored H and (9) from the pixel signal, changing the exposure pattern of the pixel array. - or a plurality of 5 10 in accordance with the embodiment of the present invention - image The sensing method includes the following steps: (4) starting one of the image sensor circuits: aggregation of charges in each of the paths; (b) blocking one or more of the output from the pixel array The sum of the signal selections: the accumulation of charges in the at least one particular pixel circuit of the circuit, to partially block the pixel circuits adjacent to the special pixel circuit in the pixel array, based in part on the -expansion criterion In the at least one pixel circuit, a pixel circuit according to the present invention includes a photosensitive element: a first-electrode and a second transistor. In various embodiments, the photosensitive element includes a photodiode Body or similar. The first crystal Connected between the photosensitive element and the sensing node. The second transistor is connected between a 15 exposure control signal line and one of the first transistor, and the second transistor has a connection to the transmission An image processing system in accordance with an embodiment of the present invention includes an image sensor circuit and a processor. The image sensor circuit includes a pixel array and is configured to utilize a shutter The operation obtains an image, wherein an exposure pattern of the 20 pixel array is set according to exposure information, the exposure information being changed based at least in part on the accumulated charge in at least a portion of the pixel array as a function of %. Detecting one or more objects within the image. In various embodiments, the exposure information is further varied over time based on an expansion criterion indexed by a structural element. In various embodiments, 18 200917827 the image sense The detector circuit and the processor are all disposed on a single wafer. Various embodiments of the present invention allow control of a pixel array using feedback, such that the pixel array is Partially based on signals output from the pixel array, the signals represent charges accumulated in at least a portion of the pixel array 5 during an image capture operation. Moreover, various embodiments of the present invention allow for one The pixel circuit level controls one of the aggregation times such that the pixel circuits in the same column of the pixel array can each collect charge for different amounts of time during an image capture operation. In various embodiments In contrast to the aggregation time of the charge-distributing pixel circuit 10 for a darker region of a solid scene, a particular shutter operation allows for a shorter aggregation time for the pixel circuit that collects charge for the bright region of the solid scene. Accumulating charge. Accordingly, various embodiments of the present invention provide for controlling an amount of time that an individual pixel circuit is allowed to accumulate charge during an image capture operation, based at least in part on the accumulation of pixels by the pixel circuit during the image capture operation. Electricity 15 load. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 depicts a conventional image sensor circuit; Figure 2 depicts a conventional pixel circuit; Figure 3 depicts a conventional row analog-to-digital converter (ADC) Circuitry; 20 FIG. 4 depicts a conventional image sensor circuit; FIG. 5 depicts an image processing system in accordance with an embodiment of the present invention; FIG. 6 depicts an embodiment in accordance with an embodiment of the present invention Image sensor circuit; Figure 7 depicts a pixel circuit in accordance with an embodiment of the present invention; 19 200917827 Figure 8 depicts a critical current generator in accordance with an embodiment of the present invention; Figure 9 depicts A row of ADC circuits in accordance with an embodiment of the present invention; FIG. 10 depicts a reference signal to converter in accordance with an embodiment of the present invention; and FIG. 11 depicts an image sensing in accordance with an embodiment of the present invention Figure 12 depicts a row of ADC circuits in accordance with an embodiment of the present invention; Figure 13 depicts an image sensor 10 circuit in accordance with one embodiment of the present invention; Figure 14 depicts a circuit in accordance with the present invention a pixel of an embodiment One of the circuits; Figure 15 depicts a flow chart of a method for an image sensor circuit in accordance with an embodiment of the present invention; 15 Figure 16 depicts a method for use in accordance with an embodiment of the present invention A flowchart of one of the methods of the image sensor circuit; FIG. 17 depicts a flow chart of a method for an image sensor circuit in accordance with an embodiment of the present invention; FIG. 18A depicts a method in accordance with the present invention An expansion criterion specified by a structural element 20 of one embodiment; Figure 18B depicts an expansion criterion specified by a structural element in accordance with an embodiment of the present invention; Figure 18C depicts an in accordance with the present invention An expansion criterion specified by a structural element of an embodiment; 20 200917827 Figure 18D depicts an expansion criterion specified by a structural element in accordance with an embodiment of the present invention; Figure 19A depicts one of the aspects of the present invention An example of the content of an exposure pattern buffer of an embodiment; * 5 FIG. 19B depicts a pixel set according to the content of the exposure pattern buffer of the first embodiment according to an embodiment of the present invention. An example of an exposure pattern of a column; 〆 19 (: an example of the contents of an exposure pattern buffer in accordance with an embodiment of the present invention; 1 〇 19D depicts an embodiment in accordance with the present invention An example of the content of an exposure pattern buffer; FIG. 19E depicts an example of an exposure pattern of a pixel array set according to the content of the exposure pattern buffer of FIG. 19D according to an embodiment of the present invention; 15 Figure 19F depicts an exposure pattern (an example of the contents of a buffer; '19G depicting the contents of an exposure pattern_buffer according to an embodiment of the present invention. An example;
第19H圖描述了依據本發明之一實施例的依據第19G 2〇 门 圖的曝光圖樣缓衝器之内容設定的一畫素陣列之一曝光圖 樣的-—例子; 第191圖描述了依據本發明之一實施例的一曝光圖樣 緩衝器之内容的一例子; 第19J圖描述了依據本發明之一實施例的一曝光圖樣 21 200917827 緩衝器之内容的一例子; 第19K圖描述了依據本發明之一實施例的依據第19J圖 的曝光圖樣緩衝器之内容設定的一畫素陣列之一曝光圖樣 的一例子; 5 第20圖描述了依據本發明之一實施例的一影像感測器 電路; 第21圖描述了依據本發明之一實施例的一影像感測器 電路;以及 第2 2圖描述了描述了依據本發明之一實施例的一佈局。 10 【實施方式】 較佳實施例之詳細說明 第5圖描述了依據本發明之一實施例的一影像處理系 統700之一方塊圖。該影像處理系統700包括一影像感測器 電路200及一處理器800。該影像感測器電路200包括一晝素 15 陣列240以及一或多個電路290。在各個實施例中,該影像 感測器電路200及該處理器800都設於一個單一晶片上。在 各個實施例中,該影像感測器電路200允許擷取實體場景之 影像,且該處理器800被組配以處理被該影像感測器電路 200擷取的影像。在一些實施例中,該處理器800被組配以 20 自該影像感測器電路200接收一影像之資料且被組配以處 理該資料以檢測該影像内的一或多個物體。在各個實施例 中,該影像處理系統700可被用於機器視覺或其他自動圖樣 辨識應用。在一些實施例中,該影像處理系統700可被用於 獲得影像以供人類查看。 22 200917827 在一些實施例中,該處理器800可包括用於執行圖樣匹 配的電路以檢測一或多個物體,例如序號為6〇/991,545的美 國臣ππΒ守專利申凊案(名稱為“Vision System on a Chip”,於 2007年11月30日提出申請)中揭露的電路,其全部内容以參 5照方式被併入文本。在一些實施例中,該處理器800被組配 以利用一或多個特徵之一模型搜尋表示一物體之一或多個 特徵的影像。而且,在一些此等實施例中,該處理器8〇〇可 被組配以執行一種藉由搜尋一影像内的特徵而檢測物體之 方法’例如包括序列號為60/991,545的美國臨時專利申請案 10之第8圖的流程圖内的步驟802-810之方法。 第6圖描述了依據本發明之一實施例的影像感測器電 路200。該影像感測器電路2〇〇包括該畫素陣列240、一類比 對數位轉換器(ADC)方塊249、一畫素控制信號產生器213、 一控制處理器212、一數位影像處理器210以及一影像記憶 15體緩衝器211。在一些實施例中,該影像感測器電路200進 一步包括一曝光圖樣緩衝器295。該畫素陣列240包括以列 及行配置的多數個畫素電路250。例如,在各個實施例中, 該畫素陣列240可包括“η”列及“m”行的畫素電路250,其中η 及m是整數值。每個畫素電路250包括一感光元件,例如一 20 光二極體或類似者,以對一被成像的場景之一對應部分的 光強度進行取樣。在各個實施例中,該晝素陣列240進一步 包括以一行排列的多數個臨界電流產生器260。每個臨界電 流產生器260可與該畫素陣列240内的畫素電路250之一對 應列結合,且可被組配以提供需被用於信號比較的該對應 23 200917827 列之一參考信號。 該畫素陣列240包括列控制線223!、2232,…,223n,其 等可各自包括多數個控制線(在第6圖中未顯示),且該畫素 陣列240也包括行讀出線231,、2312,…,231m。該晝素控制 5信號產生器213被組配以透過該等列控制線223!、2232,…, 223n提供控制信號給該畫素陣列24〇内的該等晝素電路25〇 以控制該等畫素電路250之操作。在各個實施例中,該畫素 陣列240之一相同的列(例如,該畫素陣列24〇之第丨列)内的 晝素電路250透過來自該畫素控制信號產生器213的一共同 10列控制線223i共用共同的列控制信號。而且,在各個實施例 中,§玄畫素陣列240之一相同的行(例如,該晝素陣列240之 第j行)内的晝素電路250共用一共同行讀出線231』以提供輸 出。在各個實施例中,該畫素陣列240進一步包括一參考信 號線232,該等臨界電流產生器260中的每個透過參考信號 15線232能夠提供輸出。 透過該等行讀出線23h、2312,…,231m自該畫素陣列 240輸出的類比信號被輸入至該ADC方塊249。在各個實施 例中’該ADC方塊249包括用於該畫素陣列240内的畫素電 路250中的每一行之一或多個行ADC電路220。在各個實施 20例中’該等行ADC電路220被組配以將透過該等行讀出線 231!、2312,…,231m之個別讀取線自該畫素陣列240接收的 類比信號轉換為在對應的數位輸出線246,、2462, ...,246m 上輸出的數位信號。在各個實施例中,該ADC方塊249進一 步包括一參考信號轉換器221,該參考信號轉換器221用於 24 200917827 接收來自該畫素陣列240的該參考信號線232上的信號,且 用於將一參考電壓線243上的參考信號提供給該ADC方塊 249之s亥等行ADC電路220中的每個。在各個實施例中,該 ADC方塊249包括一或多個控制線241,該控制處理器212 5透過該一或多個控制線241提供控制信號以控制該參考信 5虎轉換器221之操作。而,在各個實施例中,該ADC方塊 249包括一或多個控制線242,該控制處理器212透過該一或 多個控制線242提供控制信號以控制該等行ADC電路22〇之 操作。 10 在各個實施例中,該控制處理器212被組配以控制該 ADC方塊249之操作,且也被組配以控制該畫素控制信號產 生器213之操作。在各個實施例中,該控制處理器212透過 一或多個控制線244提供控制信號給該畫素控制信號產生 态213。在來自該ADC方塊249的數位輸出線246丨、2462,…, 15 246m上輸出的數位信號被輸入至該數位影像處理器210。該 影像感測益電路200進一步包括畫素控制信號線226ι、 2262,…,226m,該等畫素控制信號線226]、2262, . .,22心 "T各自包括多數個控制線(在第6圖_未顯示)。該數位影像 處理器210被組配以透過該等畫素控制信號線226i、2262,…, 20 226m提供控制信號給該畫素陣列240内的該等畫素電路 250。在各個實施例中,位於該畫素陣列240之一相同的行 (例如,該畫素陣列240之一第j行)内的晝素電路250共用一 共同晝素控制信號線226』,控制信號透過該共同畫素控制信 號線226』自該數位影像處理器210被發送。 25 200917827 在各個實施例中,該數位影像處理器2丨〇透過一或多個 通訊線245與該控制處理器212進行通訊。而且,在各個實 施例中,該數位影像處理器210透過一讀取/寫入匯流排248 自該影像記憶體緩衝器211讀取資料且將資料寫入該影像 5記憶體緩衝器21卜在一些實施例中,一個別寫入匯流排247 允許將資料自該數位影像處理器2 i 〇傳給該影像記憶體緩 衝器211。在各個實施例中,該數位影像處理器21〇被組配 以處理透過該等數位輸出線246i、2462, , Mb自該adc 方塊249接收的數位信號且在一或多個輸出線2丨9上產生輸 1〇出#號。在各個實施例中,該影像記憶體緩衝器211包含一 k機存取§己憶體(RAM)或類似者以儲存且擷取資料。在一 些實施例中,該影像感測器電路200包括該曝光圖樣緩衝器 295 ’且該數位影像處理器21〇能夠自該曝光圖樣緩衝器 磺取且寫入曝光圖樣緩衝器295。在各個實施例中,該曝光 15圖樣緩衝器295包含一 RAM或類似者。 3亥影像感測器電路200之各個實施例允許在以下二者 之間選擇.(i)一電流-類比模式,其中在該等行讀出線23 ^ 1、 2312,…,231m上輸出的信號是類比電流信號;與(丨丨)一電壓_ 類比模式,其中在該行等讀取線231l、23l2, .. ,23^上輸出 的信號是類比電壓信號。在各個實施例中,該影像感測器 電路200進一步包括一電壓源23〇、多數個偏壓源234ι、 2342,…,234„以及多數個電壓源開關217ι、2172,·.., 217m(例如,類比開關或類似者)。而且,在各個實施例中, 4畫素陣列240進一步包括多數個電壓源線235ι、2352,·.., 26 200917827 235m。在各個實施例中,位於該晝素陣列240之一相同的行 (例如,該畫素陣列240之一第j行)内的畫素電路25〇共用一 共同電壓源線235』,且該行之電壓源線235』連接到該等電廢 源開關217〗、2172, ...,217m中的一對應的電壓源開關217j。 5 在各個實施例中,該控制處理器212被組配以控制該等電壓 源開關217^2171…,217m中的每個以可控制地在該電壓源 230之一終端與該等偏壓源234,、23七,…,234m中的一對應 的一者的一第一終端之間切換。在各個實施例中,該等偏 壓源234ρ2342,…,234m中的每個之一第二終端連接到地端 10 233 。 在各個實施例中,該畫素陣列240進一步包括連接到該 等臨界電流產生器260中的每個之一電壓源線238。而且, 在各個實施例中,該影像感測器電路200進一步包括一偏壓 源281,以及連接到該電壓源線238的一開關239。在各個實 15 施例中’該控制處理器212被組配以控制該開關239以可控 制地在該偏壓源281之一第一終端與一斷開狀態之間切 換。而且,在各個實施例中,該偏壓源281之一第二終端連 接到地端233。在各個實施例中,該畫素陣列240進一步包 括一臨界電壓線268,該臨界電壓線268連接到該等臨界電 20流產生器26〇中的每個。而且,在各個實施例中,該影像感 測器200進一步包括一臨界電壓源267,該臨界電壓源267具 有連接到該臨界電壓線268的一第一終端及連接到地端的 —第二終端。 參看第5及6圖,在各個實施例中,該一或多個電路290 27 200917827 包括s亥數位影像處理器21 〇。在一些實施例中,該數位影像 處理器210包含一可規劃的數位信號處理器或類似者。在一 些實施例中,該一或多個電路290進一步包括該晝素信號產 生器213。在一些實施例中’該一或多個電路290進—步包 5 括s亥控制處理器212。在各個實施例中,該一或多個電路29〇 進一步包括該ADC方塊249。而且,在各個實施例中,該一 或多個電路290進一步包括該等偏壓源234,、2342,..., 234„、該等電壓源開關217l、2172,…,217m、該偏壓源28ι、 該開關239以及該臨界電壓源267。 10 苐7圖描述了依據本發明之一實施例的晝素電路mo。 該畫素電路250包括一光檢測器或感光元件,例如一光二極 體201或類似者。該畫素電路250進一步包括一傳輸閘電晶 體202、一感測節點2〇3(例如,一浮動擴散節點)、一重設定 電晶體204、一驅動電晶體205、一讀取選擇電晶體206、一 15抗輝散閘電晶體216、一第一寫入選擇電晶體214以及一第 二寫入選擇電晶體215。在各個實施例中,該傳輸閘電晶體 202、該重設定電晶體2〇4、該驅動電晶體2〇5、該讀取選擇 電晶體206、該抗輝散閘電晶體216、該第一寫入選擇電晶 體214以及該第二寫入選擇電晶體215可各自包含一n通道 20金屬氧化半導體(NMOS)場效電晶體或類似者。該感測節點 203具有一特定電容且能夠儲存一些電荷。 該等列控制線223,、2232,…,223n(參看第6圖)中的一 示範性的一者在第7圖中顯示為一列控制線223。在各個實 施例中’該列控制線223包括一列讀出信號線254、一傳輸 28 200917827 信號線253以及一重設定信號線252。在各個實施例中,該 晝素電路2雜收該列讀出信餅254、該傳輸㈣線攻以 及該重設定信號線252上的輸入信號。該等晝素控制信號線 226],2262,…,226m(參看第6圖)中的一示範性的一者在第7 5圖中被顯示為一畫素控制信號線226。在各個實施例中,該 晝素控制信號線226包括一曝光控制信號線255以及一抗輝 散控制信號線256。在各個實施例中,該畫素電路25〇接收 該曝光控制信號線255以及該抗輝散控制信號線256上的輸 入信號。該等電壓源線235!、2352,…,235m(參看第6圖)中 10的一示範性的一者在第7圖中被顯示為一電壓源線235。在 各個實%例中,s亥畫素電路250透過該電壓源線235接收一 輸入電壓信號。該等行讀出線231,、23h,…,231m(參看第6 圖)中的一示範性的一者在第7圖中被顯示為一行讀出線 231。在各個實施例中,該畫素電路250在該行讀出線231上 15 提供輸出信號。 如第7圖中的晝素電路250之一實施例中所描述的,該 光二極體201之一陽極連接到地端233,且該光二極體2〇1之 一陰極連接到該傳輸閘電晶體202之一第一終端以及該抗 輝散閘電晶體216之一第一終端。該傳輸閘電晶體2〇2之一 20第二終端連接到該感測節點203,且該傳輸閘電晶體2〇2之 一閘極連接到該第二寫入選擇電晶體215之一第一終端。該 重設定電晶體204之一第一終端連接到一電壓源251,該重 設定電晶體204之一第二終端連接到該感測節點2〇3,且該 重設定電晶體204之一閘極連接到該重設定信號線252。該 29 200917827 驅動電晶體205之一第一終端連接到該電壓源線235,該驅 動電晶體20 5之一第二終端連接到該讀取選擇電晶體20 6之 一第一終端,且該驅動電晶體205之一閘極連接到該感測節 點203。該讀取選擇電晶體206之一第二終端連接到該行讀 5 出線231,以及該讀取選擇電晶體206之一閘極連接到該列 讀出信號線254。 該抗輝散閘電晶體216之一第二終端連接到該電壓源 251,且該抗輝散閘電晶體216之一閘極連接到該第一寫入 選擇電晶體214之一第一終端。該第一寫入選擇電晶體214 10 之一第二終端連接到該抗輝散控制信號線256,且該第一寫 入選擇電晶體214之一閘極連接到該傳輸信號線253。該第 二寫入選擇電晶體215之一第二終端連接到該曝光控制信 號線255,且該第二寫入選擇電晶體215之一閘極連接到該 傳輸信號線253。 15 第8圖描述了依據本發明之一實施例的臨界電流產生 器260。該臨界電流產生器260包括一電流控制電晶體265以 及一選擇電晶體266。在各個實施例中,該電流控制電晶體 265以及該選擇電晶體266各自包含一 NMOS場效電晶體或 類似者。該等列控制線223i、2232,…,223n(參看第6圖)中 20 的一示範性的一者之列讀出信號線254在第8圖中被顯示為 連接到該臨界電流產生器260。如第8圖中的臨界電流產生 器260之一實施例中所描述的,該電流控制電晶體265之一 第一終端連接到該電壓源線238。該電流控制電晶體265之 一閘極連接到該臨界電壓線268,且該電流控制電晶體265 30 200917827 之一第二終端連接到該選擇電晶體266之一第一終端。該選 擇電晶體266之一閘極連接到該列讀出信號線254,且該選 擇電晶體266之一第二終端連接到該參考信號線232。 第9圖描述了依據本發明之一實施例的該行a D C電路 5 220。該行ADC電路220包括一輸出模式開關227、一雙取樣 放大器207、一源電晶體208、一ADC電路209、一電流對電 壓轉換器222、一差值比較器225以及一數位多工器228。該 等行讀出線231!、2312,…,231m(參看第ό圖)中的一示範性 的一者在第9圖中被顯示為行讀出線231。該等數位輸出線 10 246!、2462,…,246m(參看第6圖)中的一示範性的一者在第9 圖中被顯示為一數位輸出線246。來自該控制處理器212(參 看第6圖)的一或多個控制線242被輸入至該行ADC電路 220。在各個實施例中’該控制處理器212(參看第6圖)被組 配以在該一或多個控制線242提供控制信號以控制該輸出 15模式開關227、該雙取樣放大器207、該源電晶體208、該電 流對電壓轉換器222、該ADC電路209、該差值比較器225 以及該數位多工器228之操作。在各個實施例中,該一或多 個控制線242包括一選擇信號線274以將來自該控制處理器 212(參看第6圖)的一選擇信號提供給該數位多工器228。 20 如第9圖中的該行ADC電路220之一實施例中所描述 的’該輸出模式開關227可被控制以將該行讀出線231連接 到該電流對電壓轉換器222之一輸入端,或者連接到該雙取 樣放大器207之一輸入端以及該源電晶體208之一第一終 端。在各個實施例中’該輸出模式開關227可由該控制處理 31 200917827 器212(參看第6圖)藉由透過該一或多個控制線242提供的控 制信號控制。在各個實施例中,該電流對電壓轉換器222被 組配以接收一類比電流信號、將該類比電流信號轉換為一 電壓信號,且輸出該電壓信號。該電流對電壓轉換器222之 5 一輸出端連接到該差值比較器225之一第一輸入端。該差值 比較器225之一第二輸入端連接到該參考電壓線243以自該 參考信號轉換器221(參看第6圖)接收一參考電壓信號。在各 個實施例中,該差值比較器225被組配以放大自該電流對電 壓轉換器222輸出的電壓信號與在該參考電壓線243上接收 10 的參考電壓信號之間的一差值,且基於該差值產生一數位 輸出。在各個實施例中,該差值比較器225之輸出被提供給 該數位多工器228之一第一輸入端。 在各個實施例中,該源電晶體208之第一終端連接到該 雙取樣放大器207之輸入端。而且,在各個實施例中,該源 15 電晶體208之一第二終端連接到地端233,且該源電晶體208 之一閘極連接到一電壓供應源273。在各個實施例中,該雙 取樣放大器207被組配以對該行讀出線2 31上的一晝素輸出 電壓取樣且在一不同的時間也對該行讀出線231上的一重 設定電壓取樣,且計算該畫素輸出電壓與該重設定電壓之 20 間的一差值以獲得一被校正的晝素輸出電壓。在各個實施 例中,該ADC電路209連接到該雙取樣放大器207之一輸出 端以自該雙取樣放大器207接收該被校正的畫素輸出電 壓。在各個實施例中,該ADC電路209被組配以對該被校正 的畫素輸出電壓數位化且將該被數位化校正的畫素輸出電 32 200917827 壓提供給該數位多工器228之一第二輸入端。在各個實施例 中,該數位多工器228被組配以基於在該選擇信號線274上 提供的一控制信號在該數位輸出線246上提供該差值比較 器225之輸出或該ADC電路209之輸出。 5 第圖描述了依據本發明之一實施例的參考信號轉換 器221。在各個實施例中,該參考信號轉換器221包括一開 關28卜一電流對電壓轉換器224以及一電壓驅動器229。在 各個實施例中’該開關281是可被控制以將該參考信號線 232與該電流對電壓轉換器224之一輸入端連接或斷開。在 10 各個實施例中’該開關281由被提供在來自該控制處理器 212(參看第6圖)的一或多個控制線241上的一控制信號控 制。在各個實施例中,該電流對電壓轉換器224被組配以將 該參考信號線232上提供的一參考類比電流信號轉換為一 對應的電壓信號,且輸出該對應的電壓信號。在各個實施 15例中’自該電流對電壓轉換器224輸出的電壓信號被提供給 該電壓驅動器229之一第一輸入端。在各個實施例中,該電 壓驅動器229之一輸出被提供為該電壓驅動器229之一第二 輸入的回饋,且該電壓驅動器229被組配以驅動該參考電壓 線243上的一參考電壓信號,其中該參考電壓信號至少部分 20基於該電流對電壓轉換器224之輸出。 第11圖描述了依據本發明之一實施例的第6圖之影像 感測器電路200 ’其中第7圖之畫素電路25〇、第8圖之臨界 電流產生器260、第9圖之行ADC電路220以及第10圖之參考 信號產生器221被描述。該等電壓源開關217!,2172,…, 33 200917827 217m(參看第6圖)中的一示範性的—者在第u圖中被顯示為 一電壓源開關217。該等偏壓源234,、2342,…,234m(參看第 6圖)中的一示範性的一者在第丨丨圖中被顯示為一偏壓源 234。在各個實施例中,該影像感測器電路2〇〇可被控制以 5 一電壓·類比模式或一電流-類比模式操作。在各個實施例 中,該控制處理器212被組配以藉由控制該電壓源開關 217、s玄輸出模式開關227以及該數位多工器228對來自該晝 素電路250的輸出設定電壓-類比模式或電流_類比模式。 為了設定該電壓-類比模式,在各個實施例中,該控制 10處理器212控制⑴該電壓源開關217使得該驅動電晶體205 之第一終端透過該開關217連接到該電壓源230 ; (ii)該輸出 模式開關227,使得該讀取選擇電晶體2〇6之第二終端連接 到該源電晶體208之第一終端以及該雙取樣放大器2〇7之輸 入端;以及(iii)該數位多工器228,使得該數位多工器228 15提供該ADC電路209之輸出為輸出。在此等電壓-類比模式 之實施例中’該畫素電路250能夠提供電壓信號給該行ADC 電路220,該等電壓信號被該雙取樣放大器207取樣。 為了設定該電流-類比模式,在各個實施例中,該控制 處理器212控制⑴該電壓源開關217使得該驅動電晶體205 20 之第一終端透過該開關217連接到該偏壓源234 ; (ii)該輸出 模式開關227使得該讀取選擇電晶體206之第二終端連接到 該電流對電壓轉換器222之輸入端;(iii)該開關239使得該電 流控制電晶體265之第一終端透過該開關239連接到該偏壓 源281 ;以及(iv)該數位多工器228使得該數位多工器228將 34 200917827 该差值比較器225之輸出提供為輸出。在此等電流_類比模 式之實施例中,該畫素電路250能夠提供一或多個電流信號 給該行ADC電路220 ’該-或多個電流信號被該電流對電壓 轉換為222轉換為一對應的一或多個電壓彳古號。 5 依據本發明之一實施例的影像感測器電路2〇〇之一操 作現在參看第6、7、8、9、10及11圖被描述。在一影像掏 取操作之蚋,該光二極體201及該感測節點2〇3藉由使該晝 素控制信號產生器213在該重設定信號線乃2上提供二 high信號且在該傳輸信號線253上提供號以及 10藉由使該數位影像處理器210在該曝光控制信號線况上提 供一 HIGH信號且在該抗輝散控制信號線256上提供一 l〇w 信號而被重設定。此-信號之組合使該重設定電晶體2 〇 4以 及該傳輸閘電晶體202都接通,且使該抗輝散控制信號線 216關閉。 15 纟各個實施例中,該抗輝散閘電晶體216以及該傳輸閘 電晶體202中的每個具有個別寄生電容,使得被寫入該抗輝 散閘電晶體216以及該傳輸閘電晶體2 〇 2之個別閘極的值可 待續(例如)直到它們被重新寫人新的值。而且,該抗輝散閑 〇電晶體216以及該傳輸閘電晶體2〇2之閘極可分別被該第一 寫入選擇電晶體214以及該第二寫入選擇電晶體215隔離。 因此,一旦值已對於重設定操作被提供給該第一寫入選擇 電晶體214及該第二寫入選擇電晶體215之個別第二終端, I該HIGH信號已被提供在該傳輸信號線253上,則該傳輸 尨號線253上的信號可被改變到L〇w,且由於寄生電容該 35 200917827 抗輝政閘電晶體216以及該傳輸閘電晶體2〇2將維 的值(例如)直到新的值被寫入。 、 ’、 在各個實施例中,當一影像擷取操作被初始化時,一 LOW信號被提供在該纽定㈣線252上則請該重設定 5電晶體204’同時該傳輸閘f晶體搬保雜通以允許該光 -極體内產生的電荷在該感測節點2 G 3内累積。在此一狀態 期間來自该光二極體201的電荷聚集到該感測節點2〇3 内。一旦電荷開始在該感測節點2〇3内累積,一類比電流讀 出可藉由依據該等電流-類比模式設定設定該電壓源開關 10 217、該輸出模式開關2 2 7、該開關2 3 9以及該數位多工器 228,且接著使該畫素控制信號產生器213在該列讀出信號 線254上提供一 HIGi^f號以接通該讀取選擇電晶體2〇6而 被執行。在3亥類比電流讀出已被執行之後,該控制信號產 生器213可在該列讀出信號線254上提供一L〇w信號。 15 當該high信號被提供在該列讀出信號線254上以接通 該讀取選擇電晶體206以電流-類比模式讀取時,與該感測 節點203之一電壓位準成正比的電流在該行讀出線231内產 生。該電流對電壓轉換器222將該行讀出線231上的電流轉 換為一晝素輸出電壓。一參考電流依據該臨界電壓源267提 20 供的一臨界電壓在該臨界電流產生器260内產生。該電流對 電壓轉換器224將該參考電流轉換為一參考電壓,該參考電 壓由該電壓驅動器229在該參考電壓線243上被驅動。該差 值比較器225放大該畫素輸出電壓與該參考電壓之間的一 差值以提供一數位輸出。該數位影像處理器21〇透過該多工 36 200917827 ΜFIG. 19H depicts an example of an exposure pattern of a pixel array set according to the content of the exposure pattern buffer of the 19th G 2 sigma diagram according to an embodiment of the present invention; FIG. 191 depicts the basis An example of the contents of an exposure pattern buffer of an embodiment of the invention; FIG. 19J depicts an example of the contents of an exposure pattern 21 200917827 buffer in accordance with an embodiment of the present invention; An example of an exposure pattern of a pixel array set in accordance with the content of the exposure pattern buffer of FIG. 19J in one embodiment of the invention; FIG. 20 depicts an image sensor in accordance with an embodiment of the present invention. Circuitry; Figure 21 depicts an image sensor circuit in accordance with an embodiment of the present invention; and Figure 2 depicts a layout in accordance with an embodiment of the present invention. [Embodiment] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Figure 5 depicts a block diagram of an image processing system 700 in accordance with an embodiment of the present invention. The image processing system 700 includes an image sensor circuit 200 and a processor 800. The image sensor circuit 200 includes a pixel 15 array 240 and one or more circuits 290. In various embodiments, the image sensor circuit 200 and the processor 800 are both disposed on a single wafer. In various embodiments, the image sensor circuit 200 allows for capturing images of a physical scene, and the processor 800 is configured to process images captured by the image sensor circuit 200. In some embodiments, the processor 800 is configured to receive data from an image sensor circuit 200 and is configured to process the data to detect one or more objects within the image. In various embodiments, the image processing system 700 can be used in machine vision or other automated pattern recognition applications. In some embodiments, the image processing system 700 can be used to obtain images for human viewing. 22 200917827 In some embodiments, the processor 800 can include circuitry for performing pattern matching to detect one or more objects, such as the US ππ Β patent application file numbered 6〇/991,545 (named The circuit disclosed in "Vision System on a Chip", filed on November 30, 2007, the entire contents of which is incorporated herein by reference. In some embodiments, the processor 800 is configured to search for an image representing one or more features of an object using one of the one or more features. Moreover, in some such embodiments, the processor 8 can be configured to perform a method of detecting an object by searching for features within an image, for example, including a US Provisional Patent Application Serial No. 60/991,545 The method of steps 802-810 in the flowchart of Figure 8 of the 10th. Figure 6 depicts an image sensor circuit 200 in accordance with an embodiment of the present invention. The image sensor circuit 2 includes the pixel array 240, a type of analog-to-digital converter (ADC) block 249, a pixel control signal generator 213, a control processor 212, a digital image processor 210, and An image memory 15 body buffer 211. In some embodiments, the image sensor circuit 200 further includes an exposure pattern buffer 295. The pixel array 240 includes a plurality of pixel circuits 250 arranged in columns and rows. For example, in various embodiments, the pixel array 240 can include pixel circuits 250 of "n" columns and "m" rows, where n and m are integer values. Each pixel circuit 250 includes a photosensitive element, such as a 20-diode or the like, to sample the light intensity of a corresponding portion of an imaged scene. In various embodiments, the pixel array 240 further includes a plurality of critical current generators 260 arranged in a row. Each of the critical current generators 260 can be associated with one of the pixel circuits 250 within the pixel array 240 and can be configured to provide a reference signal for the corresponding 23 200917827 column to be used for signal comparison. The pixel array 240 includes column control lines 223!, 2232, ..., 223n, which may each include a plurality of control lines (not shown in FIG. 6), and the pixel array 240 also includes a row read line 231. ,, 2312,...,231m. The pixel control 5 signal generator 213 is configured to provide control signals to the pixel circuits 25 in the pixel array 24 through the column control lines 223!, 2232, ..., 223n to control the The operation of the pixel circuit 250. In various embodiments, the pixel circuits 250 in the same column of the pixel array 240 (e.g., the third column of the pixel array 24) pass through a common 10 from the pixel control signal generator 213. Column control lines 223i share a common column control signal. Moreover, in various embodiments, the same row of one of the singular pixel arrays 240 (e.g., the pixel circuit 250 in the jth row of the pixel array 240) shares a common row readout line 231" to provide an output. . In various embodiments, the pixel array 240 further includes a reference signal line 232, each of which can provide an output through the reference signal 15 line 232. Analog signals output from the pixel array 240 through the row readout lines 23h, 2312, ..., 231m are input to the ADC block 249. In various embodiments, the ADC block 249 includes one or more row ADC circuits 220 for each of the pixel circuits 250 within the pixel array 240. In each of the 20 implementations, the row ADC circuits 220 are configured to convert the analog signals received from the pixel array 240 through the individual read lines of the row readout lines 231!, 2312, ..., 231m into A digital signal output on the corresponding digital output lines 246, 2462, ..., 246m. In various embodiments, the ADC block 249 further includes a reference signal converter 221 for receiving signals from the reference signal line 232 of the pixel array 240 at 24 200917827, and for A reference signal on a reference voltage line 243 is provided to each of the ADC blocks 249 of the ADC block 249. In various embodiments, the ADC block 249 includes one or more control lines 241 that provide control signals through the one or more control lines 241 to control the operation of the reference signal. Moreover, in various embodiments, the ADC block 249 includes one or more control lines 242 that provide control signals through the one or more control lines 242 to control the operation of the row ADC circuits 22A. In various embodiments, the control processor 212 is configured to control the operation of the ADC block 249 and is also configured to control the operation of the pixel control signal generator 213. In various embodiments, the control processor 212 provides control signals to the pixel control signal generation state 213 via one or more control lines 244. The digit signals outputted from the digital output lines 246, 2462, ..., 15 246m from the ADC block 249 are input to the digital image processor 210. The image sensing profit circuit 200 further includes pixel control signal lines 226ι, 2262, ..., 226m, and the pixel control signal lines 226], 2262, . . . , 22 cores each include a plurality of control lines (in Figure 6 _ not shown). The digital image processor 210 is configured to provide control signals to the pixel circuits 250 within the pixel array 240 via the pixel control signal lines 226i, 2262, ..., 20 226m. In various embodiments, the pixel circuits 250 located in the same row of one of the pixel arrays 240 (eg, the jth row of one of the pixel arrays 240) share a common pixel control signal line 226, the control signal The common pixel control signal line 226 is transmitted from the digital image processor 210. 25 200917827 In various embodiments, the digital image processor 2 communicates with the control processor 212 via one or more communication lines 245. Moreover, in various embodiments, the digital image processor 210 reads data from the image memory buffer 211 through a read/write bus 248 and writes the data into the image 5 memory buffer 21 In some embodiments, an individual write bus 247 allows data to be transferred from the digital image processor 2i to the image memory buffer 211. In various embodiments, the digital image processor 21A is configured to process digital signals received from the adc block 249 through the digital output lines 246i, 2462, Mb and one or more output lines 2丨9 The output is #1. In various embodiments, the image memory buffer 211 includes a k-machine access suffix (RAM) or the like to store and retrieve data. In some embodiments, the image sensor circuit 200 includes the exposure pattern buffer 295' and the digital image processor 21 can be fetched from the exposure pattern buffer and written to the exposure pattern buffer 295. In various embodiments, the exposure 15 pattern buffer 295 includes a RAM or the like. The various embodiments of the 3H image sensor circuit 200 allow for selection between (i) a current-to-analog mode in which the output lines 23^1, 2312, ..., 231m are output. The signal is an analog current signal; and (丨丨) a voltage _ analog mode in which the signal output on the read lines 231l, 23l2, . . . , 23^ on the line is an analog voltage signal. In various embodiments, the image sensor circuit 200 further includes a voltage source 23A, a plurality of bias sources 234ι, 2342, ..., 234, and a plurality of voltage source switches 217ι, 2172, . . . , 217m ( For example, an analog switch or the like. Moreover, in various embodiments, the 4-pixel array 240 further includes a plurality of voltage source lines 235ι, 2352, . . . , 26 200917827 235m. In various embodiments, located in the The pixel circuits 25 in the same row (for example, the jth row of one of the pixel arrays 240) share a common voltage source line 235 』, and the voltage source line 235 』 of the row is connected to the A corresponding voltage source switch 217j of the isoelectric waste source switches 217, 2172, ..., 217m. 5 In various embodiments, the control processor 212 is configured to control the voltage source switches 217^2171 Each of ..., 217m is switchably switchable between a terminal of one of the voltage sources 230 and a first terminal of one of the bias sources 234, 23, ..., 234m. In various embodiments, each of the bias sources 234ρ2342, ..., 234m The two terminals are connected to ground terminal 10 233. In various embodiments, the pixel array 240 further includes a voltage source line 238 coupled to each of the critical current generators 260. Moreover, in various embodiments, The image sensor circuit 200 further includes a bias source 281 and a switch 239 coupled to the voltage source line 238. In each of the embodiments, the control processor 212 is configured to control the switch 239 to Controllably switching between a first terminal of the bias source 281 and an open state. Also, in various embodiments, one of the bias terminals 281 is connected to the ground terminal 233. In the example, the pixel array 240 further includes a threshold voltage line 268 coupled to each of the critical power 20 stream generators 26. Moreover, in various embodiments, the image sensing The device 200 further includes a threshold voltage source 267 having a first terminal coupled to the threshold voltage line 268 and a second terminal coupled to the ground terminal. Referring to Figures 5 and 6, in various embodiments One or more Road 290 27 200917827 includes a digital image processor 21 〇. In some embodiments, the digital image processor 210 includes a programmable digital signal processor or the like. In some embodiments, the one or more Circuitry 290 further includes the pixel signal generator 213. In some embodiments, the one or more circuits 290 further include a control processor 212. In various embodiments, the one or more circuits The UI block 249 is further included. Moreover, in various embodiments, the one or more circuits 290 further include the bias sources 234, 2342, ..., 234, the voltage source switches 217l, 2172, ..., 217m, the bias Source 28i, the switch 239, and the threshold voltage source 267. The Figure 10 depicts a pixel circuit mo in accordance with an embodiment of the present invention. The pixel circuit 250 includes a photodetector or photosensitive element, such as a photodiode The pixel circuit 250 further includes a transmission gate transistor 202, a sensing node 2〇3 (eg, a floating diffusion node), a resetting transistor 204, a driving transistor 205, and a read. The selection transistor 206, a 15 anti-glow gate transistor 216, a first write selection transistor 214, and a second write selection transistor 215. In various embodiments, the transmission gate transistor 202, the Resetting the transistor 2〇4, the driving transistor 2〇5, the read selection transistor 206, the anti-glow gate transistor 216, the first write selection transistor 214, and the second write selection The crystals 215 can each comprise an n-channel 20 metal oxide semiconductor (NMOS) An effect transistor or the like. The sensing node 203 has a specific capacitance and is capable of storing some charge. An exemplary one of the column control lines 223, 2232, ..., 223n (see Fig. 6) is A row of control lines 223 is shown in Figure 7. In various embodiments, the column control line 223 includes a column of read signal lines 254, a transmission 28 200917827 signal line 253, and a reset signal line 252. In various embodiments, The pixel circuit 2 mixes the column readout packet 254, the transmission (four) line tap and the input signal on the reset signal line 252. The pixel control signal lines 226], 2262, ..., 226m (see An exemplary one of FIG. 6 is shown as a pixel control signal line 226 in FIG. 75. In various embodiments, the pixel control signal line 226 includes an exposure control signal line 255 and a Anti-dispersion control signal line 256. In various embodiments, the pixel circuit 25 receives the exposure control signal line 255 and the input signal on the anti-dispersion control signal line 256. The voltage source lines 235!, 2352 ,..., 235m (see Figure 6) One of the features is shown as a voltage source line 235 in Figure 7. In each of the real % examples, the s-pixel pixel circuit 250 receives an input voltage signal through the voltage source line 235. The row readout lines 231 An exemplary one of , , 23h, ..., 231m (see Figure 6) is shown in Figure 7 as a row of readout lines 231. In various embodiments, the pixel circuit 250 is read in the row. The output signal is provided on the outgoing line 231. As described in one embodiment of the pixel circuit 250 in Fig. 7, one of the photodiodes 201 is anode connected to the ground end 233, and the photodiode 2〇1 One of the cathodes is coupled to a first terminal of the transfer gate transistor 202 and a first terminal of the anti-glow gate transistor 216. a second terminal 20 of the transmission gate transistor 2〇2 is connected to the sensing node 203, and one of the gates of the transmission gate transistor 2〇2 is connected to one of the second write selection transistors 215. terminal. One of the first terminals of the resetting transistor 204 is connected to a voltage source 251, one of the second terminals of the resetting transistor 204 is connected to the sensing node 2〇3, and one gate of the resetting transistor 204 is Connected to the reset signal line 252. A first terminal of the 29 200917827 driving transistor 205 is connected to the voltage source line 235, and a second terminal of the driving transistor 205 is connected to a first terminal of the read selection transistor 206, and the driving A gate of the transistor 205 is connected to the sensing node 203. A second terminal of the read select transistor 206 is coupled to the row read 5 output line 231, and a gate of the read select transistor 206 is coupled to the column read signal line 254. A second terminal of the anti-diffusion gate transistor 216 is coupled to the voltage source 251, and a gate of the anti-glow gate transistor 216 is coupled to a first terminal of the first write select transistor 214. A second terminal of the first write selection transistor 214 10 is coupled to the anti-dispersion control signal line 256, and a gate of the first write selection transistor 214 is coupled to the transmission signal line 253. A second terminal of the second write selection transistor 215 is connected to the exposure control signal line 255, and a gate of the second write selection transistor 215 is connected to the transmission signal line 253. Figure 8 depicts a critical current generator 260 in accordance with an embodiment of the present invention. The critical current generator 260 includes a current control transistor 265 and a selection transistor 266. In various embodiments, the current control transistor 265 and the select transistor 266 each comprise an NMOS field effect transistor or the like. An exemplary one of the column control lines 223i, 2232, ..., 223n (see FIG. 6) 20 of the read signal lines 254 is shown in FIG. 8 as being coupled to the critical current generator 260. . One of the first terminals of the current control transistor 265 is coupled to the voltage source line 238 as described in one embodiment of the threshold current generator 260 of FIG. A gate of the current control transistor 265 is coupled to the threshold voltage line 268, and a second terminal of the current control transistor 265 30 200917827 is coupled to a first terminal of the selection transistor 266. A gate of the select transistor 266 is coupled to the column read signal line 254, and a second terminal of the select transistor 266 is coupled to the reference signal line 232. Figure 9 depicts the row a DC circuit 5220 in accordance with an embodiment of the present invention. The row ADC circuit 220 includes an output mode switch 227, a dual sampling amplifier 207, a source transistor 208, an ADC circuit 209, a current to voltage converter 222, a difference comparator 225, and a digital multiplexer 228. . An exemplary one of the line readout lines 231!, 2312, ..., 231m (see the figure) is shown as a line readout line 231 in Fig. 9. An exemplary one of the digital output lines 10 246!, 2462, ..., 246m (see Figure 6) is shown in Figure 9 as a digital output line 246. One or more control lines 242 from the control processor 212 (see Figure 6) are input to the row of ADC circuits 220. In various embodiments, the control processor 212 (see FIG. 6) is configured to provide control signals at the one or more control lines 242 to control the output 15 mode switch 227, the dual sampling amplifier 207, the source The transistor 208, the current to voltage converter 222, the ADC circuit 209, the difference comparator 225, and the digital multiplexer 228 operate. In various embodiments, the one or more control lines 242 include a select signal line 274 to provide a select signal from the control processor 212 (see FIG. 6) to the digital multiplexer 228. 20 The output mode switch 227 can be controlled to connect the row sense line 231 to one of the current-to-voltage converters 222 as described in one embodiment of the row of ADC circuits 220 in FIG. Or connected to one of the input terminals of the double sampling amplifier 207 and the first terminal of the source transistor 208. In various embodiments, the output mode switch 227 can be controlled by the control process 31 200917827 212 (see Figure 6) by a control signal provided through the one or more control lines 242. In various embodiments, the current to voltage converter 222 is configured to receive an analog current signal, convert the analog current signal to a voltage signal, and output the voltage signal. The output of the current to voltage converter 222 is coupled to a first input of the difference comparator 225. A second input of the difference comparator 225 is coupled to the reference voltage line 243 to receive a reference voltage signal from the reference signal converter 221 (see Figure 6). In various embodiments, the difference comparator 225 is configured to amplify a difference between a voltage signal output from the current to voltage converter 222 and a reference voltage signal received on the reference voltage line 243. And generating a digital output based on the difference. In various embodiments, the output of the difference comparator 225 is provided to a first input of the digital multiplexer 228. In various embodiments, the first terminal of the source transistor 208 is coupled to the input of the double sampling amplifier 207. Moreover, in various embodiments, one of the source 15 transistors 208 has a second terminal connected to ground terminal 233 and one of the source transistors 208 is coupled to a voltage supply source 273. In various embodiments, the double sampling amplifier 207 is configured to sample a pixel output voltage on the row sense line 2 31 and also to a reset voltage on the row sense line 231 at a different time. Sampling, and calculating a difference between the pixel output voltage and 20 of the reset voltage to obtain a corrected pixel output voltage. In various embodiments, the ADC circuit 209 is coupled to an output of the dual sampling amplifier 207 to receive the corrected pixel output voltage from the double sampling amplifier 207. In various embodiments, the ADC circuit 209 is configured to digitize the corrected pixel output voltage and provide the digitally corrected pixel output power 32 200917827 to one of the digital multiplexers 228 The second input. In various embodiments, the digital multiplexer 228 is configured to provide an output of the difference comparator 225 or the ADC circuit 209 on the digital output line 246 based on a control signal provided on the select signal line 274. The output. 5 The figure depicts a reference signal converter 221 in accordance with an embodiment of the present invention. In various embodiments, the reference signal converter 221 includes a switch 28, a current to voltage converter 224, and a voltage driver 229. In various embodiments, the switch 281 is controllable to connect or disconnect the reference signal line 232 to one of the current to voltage converters 224. In the various embodiments, the switch 281 is controlled by a control signal provided on one or more control lines 241 from the control processor 212 (see Figure 6). In various embodiments, the current to voltage converter 224 is configured to convert a reference analog current signal provided on the reference signal line 232 to a corresponding voltage signal and output the corresponding voltage signal. The voltage signal output from the current to voltage converter 224 is supplied to one of the first inputs of the voltage driver 229 in each of the 15 examples. In various embodiments, one of the voltage drivers 229 outputs a feedback that is provided as a second input to the voltage driver 229, and the voltage driver 229 is configured to drive a reference voltage signal on the reference voltage line 243, The reference voltage signal is at least partially 20 based on the output of the current to voltage converter 224. 11 is a diagram showing the image sensor circuit 200 of FIG. 6 in which the pixel circuit 25 of FIG. 7, the threshold current generator 260 of FIG. 8, and the line of FIG. 9 are performed according to an embodiment of the present invention. The ADC circuit 220 and the reference signal generator 221 of Fig. 10 are described. An exemplary one of the voltage source switches 217!, 2172, ..., 33 200917827 217m (see Fig. 6) is shown as a voltage source switch 217 in Fig. u. An exemplary one of the bias sources 234, 2342, ..., 234m (see Figure 6) is shown as a bias source 234 in the second diagram. In various embodiments, the image sensor circuit 2 can be controlled to operate in a voltage/analog mode or a current-to-analog mode. In various embodiments, the control processor 212 is configured to set a voltage-to-analog ratio of the output from the pixel circuit 250 by controlling the voltage source switch 217, the s-ary output mode switch 227, and the digital multiplexer 228. Mode or current_ analog mode. In order to set the voltage-to-analog mode, in various embodiments, the control 10 processor 212 controls (1) the voltage source switch 217 such that the first terminal of the drive transistor 205 is coupled to the voltage source 230 through the switch 217; The output mode switch 227 is such that a second terminal of the read select transistor 2〇6 is coupled to a first terminal of the source transistor 208 and an input of the double sampling amplifier 2〇7; and (iii) the digit The multiplexer 228 causes the digital multiplexer 228 15 to provide the output of the ADC circuit 209 as an output. In the embodiment of the voltage-to-analog mode, the pixel circuit 250 can provide a voltage signal to the row of ADC circuits 220, which are sampled by the double sampling amplifier 207. In order to set the current-to-analog mode, in various embodiments, the control processor 212 controls (1) the voltage source switch 217 such that the first terminal of the drive transistor 205 20 is coupled to the bias source 234 through the switch 217; Ii) the output mode switch 227 is such that the second terminal of the read select transistor 206 is coupled to the input of the current to voltage converter 222; (iii) the switch 239 causes the first terminal of the current control transistor 265 to pass through The switch 239 is coupled to the bias source 281; and (iv) the digital multiplexer 228 causes the digital multiplexer 228 to provide 34 200917827 the output of the difference comparator 225 as an output. In an embodiment of the current-to-analog mode, the pixel circuit 250 can provide one or more current signals to the row of ADC circuits 220. The one or more current signals are converted to a voltage by the current-to-voltage conversion to 222. Corresponding one or more voltages. 5 Operation of an image sensor circuit 2 in accordance with an embodiment of the present invention is now described with reference to Figures 6, 7, 8, 9, 10 and 11. After an image capturing operation, the photodiode 201 and the sensing node 2〇3 provide a two high signal on the reset signal line 2 by causing the pixel control signal generator 213 to be in the transmission. The signal line 253 provides a number and 10 is reset by causing the digital image processor 210 to provide a HIGH signal on the exposure control signal line condition and provide a l〇w signal on the anti-dispersion control signal line 256. . The combination of this-signal causes both the reset transistor 2 〇 4 and the transfer gate transistor 202 to be turned on, and the anti-dispersion control signal line 216 is turned off. In each of the embodiments, the anti-glow gate transistor 216 and the transfer gate transistor 202 each have an individual parasitic capacitance such that the anti-glow gate transistor 216 and the transfer gate transistor 2 are written. The values of the individual gates of 〇2 can be continued (for example) until they are rewritten to new values. Moreover, the anti-diffusion idler transistor 216 and the gate of the transfer gate transistor 2〇2 can be isolated by the first write select transistor 214 and the second write select transistor 215, respectively. Therefore, once the value has been supplied to the first write select transistor 214 and the individual second terminal of the second write select transistor 215 for the reset operation, the HIGH signal has been provided on the transfer signal line 253. Above, the signal on the transmission semaphore line 253 can be changed to L 〇 w, and due to the parasitic capacitance, the 35 200917827 anti-Glory gate transistor 216 and the transmission gate transistor 2 〇 2 will be the value of the dimension (for example) until The new value is written. In each of the embodiments, when an image capturing operation is initialized, a LOW signal is provided on the button (252) line 252, and the 5 transistor 204' is reset. Miscellaneous to allow charge generated in the photo-pole to accumulate within the sensing node 2 G 3 . The charge from the photodiode 201 is concentrated in the sensing node 2〇3 during this state. Once the charge begins to accumulate in the sensing node 2〇3, an analog current readout can be set by setting the voltage source switch 10 217 according to the current-analog mode setting, the output mode switch 2 27, the switch 2 3 9 and the digital multiplexer 228, and then the pixel control signal generator 213 is provided with an HIGi^f number on the column read signal line 254 to turn on the read select transistor 2〇6 to be executed. . The control signal generator 213 can provide an L〇w signal on the column read signal line 254 after the analog current readout has been performed. 15 when the high signal is provided on the column read signal line 254 to turn on the read select transistor 206 in a current-to-analog mode, a current proportional to a voltage level of one of the sense nodes 203 Generated in the row readout line 231. The current to voltage converter 222 converts the current on the row sense line 231 to a pixel output voltage. A threshold voltage supplied by the reference current source 267 is generated within the threshold current generator 260. The current-to-voltage converter 224 converts the reference current into a reference voltage that is driven by the voltage driver 229 on the reference voltage line 243. The difference comparator 225 amplifies a difference between the pixel output voltage and the reference voltage to provide a digital output. The digital image processor 21 transmits the multiplex 36 200917827 Μ
10 1510 15
器228讀取該差值比較器225之數位輸出。 ▲在該晝素電路2 5 〇上對從行讀出線2 3 i讀出電流是非破 壞性的,使得在該行讀出線231上讀出電流之後,在該感測 節錢3累積的電荷仍保留在該感測節點203。因此,在各 個實施例中,自該畫素電路250讀出電流可在影像擷取操作 期間被執仃多次,而不會在影像掏取操作期間消滅在該感 測節點2〇3内累積的電荷。一或多個額外的類比電流讀出可 2由在該影_取操作期間依據該電流·類比模式設定設 定該電壓源_217、該輸出模式開關奶、該開關239以及 該數位多工器228,且接著使該畫素控制信號產生器213在 該列讀出信號線254上提供— HIG號以接通該讀取選擇 電晶體206而被執行。在該類比電流讀出已被執行之後,該 控制信號產生器213可在剌讀出信號線254上提供一 l〇w 信號。因此’在該感測節點2〇3内累積的電荷可藉由在該影 像摘取操作期間在不同的時間執行多數個類比電流讀出而 在該影像掏取操作期間被監測,其中每個類比電流讀取關 於4感測節點203内累積的電荷是非破壞性的。 在各個實施例中,在該感測節點2〇3聚集電荷可在該影 像操取操作期間停止,同時維持在該感測節點203内已累積 20的電荷。為了停止電荷在該感測節點2〇3聚集,該數位影像 處理器210可在該曝光控制信號線255上提供-L〇W信號且 在該抗輝散控制信號線256上提供一mGH信號,且該畫素 控制信號產生器213可在該傳輸信號線253上提供— mGH 信號。此信號之一組合使該傳輸閘電晶體2〇2被關閉,且該 37 200917827 抗輝政閘電晶體216被接通。因為該抗輝散閘電晶體216及 傳輸閘電晶體2〇2具有允許該等電晶體儲存值的一些寄 生閘電容,所以該晝素控制信號產生器213可接著在該傳輸 線253上提供— L〇w信號,且該抗輝散閘電晶體216以 5及。亥傳輸閘電晶體2〇2將維持它們的值直到被寫入新的值。 田°亥抗輝散閘電晶體216接通時,該光二極體201被耗盡。 一類比電壓讀出可藉由依據該電壓-類比模式設定設 定該電壓源開關217、該輸出模式開關227、以及該數位多 工器228,且接著使該畫素控制信號產生器213在該列讀出 10仏號線254上提供一 HIGH信號以接通該讀取選擇電晶體 206而被執行。當該號被提供在該列讀出信號線254 上以接通該讀取選擇電晶體20 6而以該電壓-類比模式讀出 時,一畫素輪出電壓在該源電晶體2〇8之第一終端被提供在 該行讀出線231上,該畫素輸出電壓與該感測節點2〇3之一 15電壓位準成正比。在自該畫素電路250讀出電壓期間,該雙 取樣放大器207在該源電晶體208之第一終端對該畫素輸出 電壓取樣。在該類比電壓讀出已被執行之後,該控制信號 產生器213可在該列讀出信號線254上提供一 LOW信號。當 該感測節點203處於一重設定狀態時,該雙取樣放大器2〇7 2 0也在該源電晶體20 8之第一終端對一重設定電壓取樣。該雙 取樣放大器207計算該畫素輸出電壓與該重設定電壓之間 的一差值以達到一被校正的畫素輸出電壓,該被校正的晝 素輸出電壓被該ADC電路209數位化。對於該類比電壓讀 取,該數位影像處理器210透過該多工器讀取該ADc電路 38 200917827 209之數位輸出。 藉由使該數位影像處理器21 〇在該曝光控制線2 5 5上提 供一 ΗIG Η信號以及在該抗輝散控制信號線2 5 6上提供一 LOW信號’且藉由使該晝素控制信號產生器213在該傳輸信 5唬線253上提供一 HIGH信號以及在該重設定信號線252上 提供一HIGH信號,該晝素電路25〇可被重設定以將該感測 卽點203 於重设定狀態。此信號之一組合使該重設定電 晶體204及該傳輸閘電晶體2〇2都接通,且使該抗輝散閘電 晶體216關閉。當該感測節點2〇3處於重設定狀態且_^腿 ίο信號由該畫素控制信號產生器213提供在該列讀出信號線 254上以接通該讀取選擇電晶體施時,一與該感測節點 之一重没疋電壓位準成正比的重設定電壓被提供在該源電 體之第、、冬^。該雙取樣放大器207可在該源電晶體 208之第—終端對該重設定電壓取樣以被用於自該晝素電 15路250的一電壓類比讀出。 —” 讀出之一優點是每—讀出類型具有期望的品質。該類比電 流讀出可提供自該晝素陣列的高速讀出,因為該行讀出 線231之@電谷(對於大的畫素陣列可能存在)不|阻止類比 允許自該晝素電路250的類比電流讀出以及類比電壓 。該類比電壓讀出可提供自該晝素陣The 228 reads the digital output of the difference comparator 225. ▲ Reading current from the row read line 2 3 i is non-destructive on the pixel circuit 2 5 , so that after the current is read on the row read line 231, the accumulated money is accumulated in the sense. The charge remains at the sensing node 203. Thus, in various embodiments, the read current from the pixel circuit 250 can be asserted multiple times during the image capture operation without being accumulated in the sense node 2〇3 during the image capture operation. The charge. One or more additional analog current readouts 2 may be set by the current/analog mode setting during the shadow capture operation, the output mode switch milk, the switch 239, and the digital multiplexer 228 And then the pixel control signal generator 213 is supplied with the -HIG number on the column read signal line 254 to turn on the read selection transistor 206. The control signal generator 213 can provide a l〇w signal on the chirp read signal line 254 after the analog current sense has been performed. Thus, the charge accumulated in the sensing node 2〇3 can be monitored during the image capturing operation by performing a plurality of analog current readings at different times during the image capturing operation, wherein each analogy The current reading is non-destructive with respect to the charge accumulated within the 4 sense node 203. In various embodiments, accumulating charge at the sense node 2〇3 may be stopped during the image capture operation while maintaining a charge of 20 accumulated in the sense node 203. In order to stop the charge from accumulating at the sensing node 2〇3, the digital image processor 210 can provide a -L〇W signal on the exposure control signal line 255 and a mGH signal on the anti-dispersion control signal line 256. And the pixel control signal generator 213 can provide a -mGH signal on the transmission signal line 253. A combination of this signal causes the transmission gate transistor 2〇2 to be turned off, and the 37 200917827 anti-gate gate transistor 216 is turned "on". Since the anti-glow gate transistor 216 and the transfer gate transistor 2〇2 have some parasitic gate capacitances that allow the transistors to store values, the pixel control signal generator 213 can then provide - L on the transmission line 253. 〇 w signal, and the anti-diffusion gate transistor 216 is 5 and. The relay gate transistors 2〇2 will maintain their values until a new value is written. When the Tianhui anti-diffusion gate transistor 216 is turned on, the photodiode 201 is depleted. A type of voltage readout can be set according to the voltage-to-analog mode setting, the output mode switch 227, and the digital multiplexer 228, and then the pixel control signal generator 213 is in the column. Reading a 10 仏 line 254 provides a HIGH signal to turn the read select transistor 206 on. When the number is supplied on the column read signal line 254 to turn on the read select transistor 20 6 and read in the voltage-to-analog mode, a pixel pull-out voltage is at the source transistor 2〇8. The first terminal is provided on the row readout line 231, and the pixel output voltage is proportional to the voltage level of one of the sense nodes 2〇3. The dual sampling amplifier 207 samples the pixel output voltage at a first terminal of the source transistor 208 during a voltage read from the pixel circuit 250. The control signal generator 213 can provide a LOW signal on the column read signal line 254 after the analog voltage readout has been performed. When the sensing node 203 is in a reset state, the double sampling amplifier 2〇72 2 also samples a reset voltage at the first terminal of the source transistor 208. The dual sampling amplifier 207 calculates a difference between the pixel output voltage and the reset voltage to achieve a corrected pixel output voltage that is digitized by the ADC circuit 209. For the analog voltage reading, the digital image processor 210 reads the digital output of the ADc circuit 38 200917827 209 through the multiplexer. By providing the digital image processor 21 to provide an Η Η signal on the exposure control line 255 and providing a LOW signal on the anti-dispersion control signal line 256 and by controlling the ellipses The signal generator 213 provides a HIGH signal on the transmission signal line 253 and a HIGH signal on the reset signal line 252. The pixel circuit 25A can be reset to set the sensing node 203 to Reset the status. A combination of this signal causes both the reset transistor 204 and the transfer gate transistor 2〇2 to be turned on and the anti-glow gate transistor 216 to be turned off. When the sensing node 2〇3 is in the reset state and the signal is provided by the pixel control signal generator 213 on the column read signal line 254 to turn on the read selection transistor, A reset voltage proportional to the voltage level of one of the sensing nodes is provided at the first, the winter of the source. The double sampling amplifier 207 can sample the reset voltage at the first terminal of the source transistor 208 to be used for reading from a voltage analog of the halogen battery 150. One of the advantages of reading is that each read type has a desired quality. The analog current readout can provide high speed readout from the pixel array because the row read line 231 is @电谷 (for large The pixel array may be present) not | blocking analog to allow analog current readout and analog voltage from the pixel circuit 250. The analog voltage readout may be provided from the pixel array
電流輸出快速地發展。Ί 列240的低雜訊信號讀出 電流讀出可被用以在 次快速地獲得值,间拉― 39 200917827 類比電流讀出之另一優點是其允許該畫素陣列240内 的晝素電路250之多列被同時選擇以產生該晝素陣列24〇之 每一行的一輸出電流,該輪出電流與該晝素陣列240之該等 被選擇的列之該等晝素電路250之輸出電流的總和成正 5比。此多列讀出允許以一垂直方向對一輸出影像進行空間 平均或平滑化。在一些影像操取方法中,此局部影像平均 對於濾波某些雜訊(例如’一般由畫素電路缺陷產生的雜訊 以及由不同畫素電路之驅動電晶體之間的差值產生的固定 圖樣雜訊)可能是有利的,因為當對一影像逐列次取樣時, 10局部影像平均在該影像之一垂直方向提供低通濾波以及抗 混淆濾波。 第12圖描述了依據本發明之一實施例的行ADC電路 220之另一實施例。與第9圖之行ADC電路220之實施例的元 件相同的第12圖之行ADC電路220之實施例的元件以相同 15 的參考符號被標示。第12圖之行ADC電路220之實施例不同 於第9圖之行ADC電路220之實施例,因為該電流對電壓轉 換器222及該差值比較器225被一電流比較器222b代替。該 電流比較器222b被組配以檢測被輸入至該電流比較器222b 的一電流是正的還是負的,且提供表示該檢測之一結果的 20 二進制輸出。在該開關227被控制以將該行讀出線231連接 到該電流比較器222b之輸入端的情形中,該電流比較器 222b之輸入端連接到該行讀出線231。該電流比較器222b之 輸出被提供給該多工器228之第一輸入端。 第13圖描述了依據本發明之一實施例的影像感測器電 40 200917827 路200之另一實施例◦第π圖之影像感測器電路2〇〇之實施 例不同於第11圖之影像感測器電路2〇〇之實施例,因為第13 圖之影像感測器電路200的實施例包括第12圖之行ADC電 路220的實施例,而不是第9圖之ADC行電路220之實施例。 5而且,第13圖之影像感測器電路200的實施例不包括該參考 信號轉換器221(參看第6圖)。除此之外,第丨3圖之影像感測 器電路200之實施例進一步包括用於畫素電路之每一行的 一電流源,其等之示範性的一者被顯示為電流源218,且也 進一步包括用於畫素電路之每一行的電流源開關,其等之 10示範性的一者被顯示為電流源開關283。與第11圖之影像感 測器電路200之實施例的元件相同的第13圖之影像感測器 電路200之實施例的其他元件以相同的參考符號標示。 在第13圖之影像感測器電路200之實施例中,用於畫素 電路之每一行的每個電流源(例如電流源218)連接到該參考 15 信號線232。該電流源218提供一偏電流,當該臨界電流產 生器260利用來自該臨界電壓源267的一偏電壓被激發時, 該偏電流藉由映射該臨界電流產生器260產生的一電流而 被設定。在各個實施例中,該電流源開關283可被該控制處 理器212控制以處於一斷開狀態或者將該電流源218連接到 20 該行讀出線231。在第13圖之影像感測器電路200之實施例 的一電壓-類比模式中,該控制處理器212控制該電流源開 關283處於斷開狀態。 在第13圖之影像感測器電路200之實施例的電流-類比 模式中,該控制處理器212控制該電流源開關283以將該電 41 200917827 μ源218連接到該行讀出線23i。在此一狀態中,當一電流 由該畫素電路250產生時,到達該電流比較器22沘之輸入端 @ ―總電流等於該晝素電路25G產生的電流減去由該電流 源218產生的偏電流。該電流比較器222b決定該到達的電流 5疋正的還是貞的’且對於此等實施射的電流類比模式, 基於》亥决疋提供二進制資訊為該數位多工器228之輸出。在 各個貝鼽例中,該一或多個電路29〇(參看第5圖)進一步包含 。亥畫素陣列240之畫素電路之每—行的電流源(例如電流源 218)及電流源開關(例如電流源開關283)。 。第14圖描述了依據本發明之一實施例的第7圖之晝素 %路250的一示範性佈局。與第7圖之畫素電路内的元件 相同的第14圖中的畫素電路25〇之示範性佈局内的元件以 相同的參考符號標不。在各個實施例中,該傳輸問電晶體 1 202及該抗輝散閘電晶體216可彼此設於該光二極體201之 5相反的面上。在-些實施例中,該傳輸問電晶體2〇2、該感 切點203、邊重设疋電晶體2〇4、該驅動電晶體⑽、該讀 取選擇電晶體206、該第-寫入選擇電晶體214以及該第二寫 入選擇電晶體215各自設置在該光二極體2()1之相同側上。 第15圖描述了依據本發明之—實施例的方法之流程 20圖。第15圖之方法將參看第6圖之影像感測器電路2〇〇以及 第7圖之畫素電路250被解釋。而且,依據本發明之一實施 例的方法之一示範性操作被提供在第19八_19民圖中。在第 19A-19K圖中提供的例子是該畫素陣列24〇具有7列及8行晝 素電路之-實施例。應該明白的是,該畫素陣列24〇之此一 42 200917827 實施例僅僅被提供為一例子,且在各個其他實施例中,該 畫素陣列240可具有較多或較少列以及較多或較少行的畫 素電路。例如’該晝素陣列24〇之一些實施例可包括多於7 列及多於8行的畫素電路。 5 第15圖中的一些步驟關於一曝光圖樣緩衝器。在各個 實施例中,該影像記憶體緩衝器211之一部分被用作該曝光 圖樣緩衝器。在各個其他實施例中’該影像感測器電路200 可包括作為一記憶體的曝光圖樣緩衝器295,其與該影像記 憶體緩衝器211分開。在第19A-19K圖之例子中,該例子之 10 一些圖式描述了該曝光圖樣缓衝器295之一實施例的示範 性内容。應該明白的是,此例子中的曝光圖樣緩衝器295之 實施例的大小僅僅被提供為一例子,且在各個其他實施例 中,該曝光圖樣緩衝器295具有比此例中描述的容量較大或 較小的容量。 15 第15圖之方法中,在S301中,該曝光圖樣緩衝器295 被該數位影像處理器210清空,且該畫素陣列240被該畫素 控制信號產生器213以及該數位影像處理器21〇重設定。在 各個實施例中,該曝光圖樣緩衝器295儲存曝光資訊,例如 包括該畫素陣列240内的每個畫素電路250之一或多個位元 20的曝光圖樣資料。而且,在各個實施例中,該曝光圖樣緩 衝器295藉由將該曝光圖樣緩衝器295内的該等被儲存的位 元中的每個設定為一初始狀態而被清空。第19A圖描述了在 該曝光圖樣缓衝器295已被清空之後的依據本發明之一實 施例的該曝光圖樣緩衝器295之示範性内容。在第19A圖之 43 200917827 例子中,戎曝光圖樣緩衝器295包括該畫素陣列24〇(參看第 19B圖)之一實施例内的每個晝素電路之一位元,且該例子 中的該曝光圖樣緩衝器295藉由將所有位元設定為一 ‘‘〇,, 值而被清空,使得該記憶體被歸零。 5 在該影像感測器電路200之各個實施例中,該畫素陣列 240藉由使該畫素控制信號產生器213在該等列控制線2231 2232,…,223n中的每個之該重設定信號線252以及該傳輪信 號線253上提供一 HIGH信號且藉由使該數位影像處理器 210在該畫素控制信號線226l,2262, ,226m中的每個之該 10曝光控制信號線255上提供一HIGH信號以及在該抗輝散控 制#號線256上提供一LOW信號而被重設定。利用信號之此 一組合,該等晝素電路250之重設定電晶體204以及傳輸閘 電晶體202被接通,同時該等畫素電路25〇中的每個之該抗 輝散閘電晶體216被關閉。一旦該抗輝散閘電晶體216以及 15該傳輸閘電晶體202在其等各自的閘極上接收到被提供的 信號,其等各自的閘極上的寄生電容被充電或放電(取決於 被寫入的值),使得當該等畫素電路中的每個之第_寫入弯 擇電晶體214以及第二寫入選擇電晶體215利用對應的傳輸 信號線253上的一 LOW信號被關閉時,該抗輝散閘電晶^ 20 216以及該傳輸閘電晶體202之狀態可維持。實際上,、言表 示只寫入數位記憶體的兩位元維持該抗輝散閘電晶體 以及該傳輸閘電晶體202之狀態。該方法接著繼續到幻〇2 在S302中’一影像掘取操作被初始化,使得影像推員取 在該晝素陣列240内被初始化。在各個實施例中, 4 ' 稭由俊該 44 200917827 畫素控制信號產生器213在該等列控制線223,、2232, 223n中的每個之重設定信號線252上提供一 LOW信號以關 閉S亥等畫素電路250中的每個之重設定電晶體204,影像擷 取在該畫素陣列240内被初始化。在各個實施例中,該等晝 5素電路250中的每個之光二極體201被控制在一電壓,導致 每當該畫素電路250之該傳輸閘202接通時,來自該晝素電 路250之光二極體2〇丨的電荷自發遷移到該感測節點2〇3。在 «亥旦素皂路25〇之各個實施例中,當該重設定電晶體接 通時,該重設定電晶體204用以使該感測節點2〇3保持在一 1〇重°又疋電壓位準,從而實質上阻止電荷在該感測節點203内 累積,但是當該重設定電晶體2 〇 4被關閉且該傳輸閘電晶體 202接通時,電荷將以一與照射在該光二極體2〇ι上的光能 量成正比的速率在該感測節點203内累積。 第19B圖描述了該畫素陣列24〇之一實施例的一曝光圖 樣之例子,其中影像擷取已被初始化。為了說明之目的, 被致能以在其等的感測節點内累#電荷的第19b圖之例子 中的畫素陣列240之畫素電路被顯示為白色方塊。在第19β 圖中’因為影像擷取已被初始化,所以該畫素陣列24〇内的 所有晝素電路被顯示為白色方塊,因為第19B圖之實施例的 畫素陣列240内的所有晝素電路被致能以在一影像擷取操 作開始時在其等的感測節點累積電荷。一旦影像操取已在 該晝素陣列240内初始化,則該方法繼續到S3〇3。 在S303中,一個二進制影像自該畫素陣列24〇讀取。在 各個實施射,S303中自該畫素陣列的讀出以電流類 45 200917827 比模式被執行’使得該等行讀出線231ι、23l2, ,231m上自 該畫素陣列240輸出的信號是電流信號。在使用第u圖之影 像感測器電路200之實施例的情形中,用於晝素電路25〇之 每一行的電壓源開關217、輸出模式開關227及數位多工器 5 228以及開關239依據以上討論的電流_類比模式被設定。在 第13圖之影像感測器電路2〇〇之實施例被使用的情形中,畫 素電路250之每一行的電流源開關283進一步依據以上討論 的電流類比模式被設定。 在各個實施例中’在該電流-類比模式中,該等晝素電 10路250中的每個被取樣,且它們的電流_類比輸出位準(表示 從重設定之結束而被它們的光二極體2〇1吸收的光子之數 目)與一參考位準相比以產生目前被擷取的一影像之一個 二進制表示且被儲存在該畫素陣列240之該等畫素電路250 内。在各個實施例中,每個晝素電路250之重設定電晶體204 15在幻03内的畫素電路讀出過程中保持關閉,從而使該畫素 電路讀出過程關於每個畫素電路250之感測節點203内累積 的電荷是非破壞性的。 在各個實施例中’ S303内的讀出過程以一逐列基準進 行。例如’在各個實施例中,該畫素陣列240内的畫素電路 2〇 250之一列被讀出,接著該該畫素陣列240内的畫素電路250 之另一列被讀出等等’直到所有列已被讀出。例如,當每 一列需被讀出時,藉由使該晝素控制信號產生器在該列的 該列控制線223之列讀出信號線254上提供一HIGH信號,且 接著在該列已被讀出之後’在該列之列控制信號線223的讀 46 200917827 出k號線254上提供一L〇w信號,每一列可以被讀出。在— 些實細*例中,可能對列次取樣且/或一次選擇該晝素陣列 240之多於一列而讀出。在電流-類比模式中在一相同的 時間夕於一列被選擇讀出時’該畫素陣列240之任何給定行 5的行續出線231提供被選擇的該等畫素電路250之該等輪出 的〜和以&供邊行之輸出。此一技術可被用於(例如)實施 一垂直影像平滑操作,完全在該影像感測器電路200之一電 瓜類比域内,且此種渡波具有一般與空間雜訊減少相關的 好處,其中一些特定用途包括抗混淆以及減輕畫素電路製 10造缺陷之影響。—旦該三進制影像已自該畫素陣列細讀 取,該方法繼續到S3〇4。 在S304内,S303内獲得的二進制影像資料被處理。例 如’該二進制影像資料可被空間滤波以消除雜訊。用於對 „亥一進制影像貢料濾波的一些方法包括中值濾波或形態上 15閉合以消除太小而不能被視為對於第15圖之方法是重要的 特徵。在垂直方向平滑已作為S303之電流類比讀出流程之 部分被應用之情形中,各個實施例中的S3〇4内的處理可藉 由限制該二進制影像資料之處理在一水平方向處理而被簡 化。在第15圖之方法的一些實施例中,該步驟S304是可取 2〇捨的且可完全略過。在一些實施例中,接著S304之以上描 述的雜訊濾波,該步驟幻〇4也可包括由一結構元件產生的 衫像之擴張,從而加速一曝光控制信號圖樣在由該二進制 衫像 >、料提供的初始點附近之傳播。在各個實施例中,s3〇4 内的處理被該數位影像處理器21〇執行。該流程接著繼續到 47 200917827 S305。 在S305内,在該步驟S304已被執行之情形中,來自S304 的被濾波的二進制影像資料與儲存在該曝光圖樣缓衝器 295内的曝光圖樣資料組合。在該步驟S304已略過之情形 5中,來自S303的二進制影像資料與儲存在該曝光圖樣緩衝 器295内的曝光圖樣資料組合。在各個實施例中,藉由(例 如)執行該被濾波的二進制影像資料與儲存在該曝光圖樣 緩衝器295内的曝光圖樣資料之一邏輯“或(OR)”,且接著 將該結果存回該曝光圖樣緩衝器295,該數位影像處理器 10 21〇將該被濾波的二進制影像資料與該儲存在曝光圖樣緩 衝器295中的曝光圖樣資料組合。 第19C圖描述了在第19A圖之曝光圖樣緩衝器295之内 容已藉由與該示範性的被濾波的二進制影像資料組合而被 更新之後的該曝光圖樣緩衝器295之内容的一例子。在該例 5 子中,除了具有對應該畫素陣列240之列5及行3内的一畫素 電路之一輸出的一“Γ位元之外,該被濾波的二進制影像資 料與第19A圖之曝光圖樣緩衝器295内的曝光圖樣資料相 同,因此在第19A圖之曝光圖樣資料與該被經濾波的二進制 影像資料進行邏輯‘OR”之後,在第19C圖内產生的曝光圖 樣緩衝器295内對於列5及行3具有一“1”位元。第19C圖之例 子中的對應該畫素陣列240之列5及行3内的畫素電路的“1” 饭元可表示(例如)當電流信號在S303内被讀出時,來自該畫 素電路的一輸出電流信號超過一臨界值。在此一例子中, 列5及行3的畫素電路可以自一正被成像的場景之一最明亮 48 200917827 的部分取樣光,使得在該畫素電路之一感測節點内累積的 電荷可能已超過某一值,而其他晝素電路内累積的電荷可 能還沒有達到該值。 在各個實施例中,一旦該曝光圖樣緩衝器295已在S305 5 内被更新,則該方法繼續到S306。在S306内,該曝光圖樣 緩衝器295之該等内容被更新以依據一擴張準則提供擴 張。在各個實施例中,該擴張準則由一或多個結構元件指 定。一結構元件可指定(例如)如何擴張該曝光圖樣緩衝器 295之内容。在一些實施例中,一結構元件可指定如何將該 10 曝光緩衝器295内的一邏輯值“1”在該曝光圖樣缓衝器295 内的一或多個方向内擴展一些單位。依據本發明之實施例 的結構元件指定的擴張準則之各個例子在第18A-18D圖被 描述。應明白的是,第18A-18D圖中提供的示範性結構元件 僅僅是例子,且任何期望的結構元件可被用於第15圖之方 15 法中。 第18 A圖描述了由依據本發明之一實施例的一結構元 件指定的一擴張準則之一例子。在第18A圖中,黑色方塊表 示在一曝光圖樣緩衝器内的一項目具有一“1”之邏輯值。具 有“1”之邏輯值的項目與一畫素陣列内的一特定晝素電路 20 相關。具有“X”的方塊表示與緊鄰該特定畫素電路右邊的該 晝素陣列内的一畫素電路相關的該曝光圖樣緩衝器内的一 項目也需被設定為“1”之邏輯值。因此,若由第18A圖之結 構元件指定的擴張準則被用於擴張,則該曝光圖樣緩衝器 内的每個邏輯值“1”將被擴展到右邊的一項目。 49 200917827 第18B圖描述了由一結構元件指定的一擴張準則之一 例子,其中一曝光圖樣緩衝器内的一“1”之邏輯值在該具有 “1”之邏輯值的項目上方擴展兩個項目,使得該項目上方的 兩個項目被設定為“1”之邏輯值。第18C圖描述了由一結構 5 元件指定的一擴張準則之一例子,其中與一畫素陣列的兩 個相鄰晝素電路相關的一曝光圖樣緩衝器内的具有一 “1” 之邏輯值的兩個相鄰項目各自在該項目上方被擴展一個項 目。在此一例子中,一具有“1”之邏輯值的單一項目(其無一 具有“1”之邏輯值的相鄰項目)不會被擴展到其他項目。第 10 18D圖描述了由一結構元件指定的一擴張準則之一例子,其 中一曝光圖樣緩衝器之一項目内的一“1”之邏輯值需在該 曝光圖樣緩衝器内的所有方向被擴展一個項目。 第19D圖描述了在第19C圖之曝光圖樣緩衝器295之内 容已依據由第18D圖之結構元件指定的示範性擴張準則被 15 擴張之後的曝光圖樣緩衝器295之内容的一例子。在第19D 圖之例子中,在該曝光圖樣緩衝器295之列5及行3内的“1” 之邏輯值依據第18D圖之擴張準則在所有方向内擴展,使得 圍繞列5及行3之項目的所有項目被設定具有一“1”之邏輯 值。因此,在各個實施例中,步驟S306允許該曝光圖樣緩 20 衝器295内的曝光圖樣資料在形態上被擴大,從而使特徵在 該曝光圖樣緩衝器295内的一或多個方向内增加一些畫素 單元。該曝光圖樣資料相對於一晝素陣列之一讀出速率傳 播的速度可藉由修改定義一擴張圖樣的一或多個結構元件 之大小及形狀而被控制。一旦該曝光圖樣緩衝器295之内容 50 200917827 已利用一或多個結構元件透過擴張被更新,則第15圖之方 法繼續到S307。 參看第6、7及15圖,在步驟S307内,來自該曝光圖樣 緩衝器295的被更新的曝光圖樣資料被寫入該晝素陣列240 5 以改變該畫素陣列240之曝光圖樣。在各個實施例中,該畫 素陣列240之曝光圖樣被定義,該晝素陣列24〇内的畫素電 路250藉以被致能以在其等各自的感測節點内累積額外的 電荷,且該晝素陣列240内的畫素電路250藉以正被阻止或 停止在其等各自的感測節點内累積額外電荷。在各個實施 10例中,藉由將來自該曝光圖樣緩衝器295的曝光圖樣資料寫 入該畫素陣列240,該晝素陣列240之曝光圖樣與該曝光圖 樣缓衝器295之内容重新同步化。在各個實施例之曝光圖樣 緩衝器295内,一項目的一“〇,,之邏輯值表示該畫素陣列24〇 内的對應畫素電路2 5 0被允許在影像擷取操作期間在其各 15自感測節點2〇3内繼續聚集或累積電荷,而—項目的一“Γ, 之邏輯值表示該晝素陣列240内的對應晝素電路25〇需被阻 止或停止在其個別感測節點203内累積額外電荷,但是需維 持其個別感測節點2〇3内已累積的電荷。 雖然具有其他可能性’但是在如第15圖之方法中的各 20個實施例中,假設每個畫素電路250之抗輝散閘電晶體216 之一狀態需總是與相同的畫素電路25〇之傳輪閘電晶體2〇2 之一狀態相反。換言之,在此等實施例中,當該畫素電路 250之傳輪閘電晶體202被控制以接通時,相同的晝素電路 250之抗輝散閘電晶體216被控制以關閉,且當該畫素電路 51 200917827 250之傳輪閘電晶體2〇2被控制以關閉時,相同的晝素電路 250之抗輝散閘電晶體216被控制以接通。 在各個實施例中,當該曝光圖樣緩衝器295之内容被寫 入該畫素陣列24〇時,每個畫素電路25〇内的該傳輪閘電晶 5體202被關閉且該抗輝散閘電晶體216被接通,對應該曝光 圖樣緩衝器295内的已被指定“1”之邏輯值的一項目。在此 等畫素電路250中,當該傳輸閘電晶體2〇2被關閉且該抗輝 散閘電晶體216被接通時,對應的感測節點203内的額外的 光產生電荷之累積被阻止或禁止或停止,且由該對應的光 10二極體201接著產生的任何電荷實質上透過該抗輝散閘電 晶體216被排出。而且,在各個實施例中,當該曝光圖樣緩 衝器295之内容被寫入該畫素陣列24〇時,每個晝素電路25〇 内的傳輸閘電晶體202接通且抗輝散閘電晶體216保持關 閉’對應s亥曝光圖樣緩衝器295内的已被指定一之邏輯值 15的一項目。在此等畫素電路250中,當該傳輸閘電晶體202接 通且§亥抗輝散閘電晶體216關閉時,來自對應的光二極體2〇1 的光產生的電荷被允許繼續在對應的感測節點2〇3内累積。 在各個實施例中’該曝光圖樣緩衝器295之内容被一次 一列寫入該晝素陣列240。在各個實施例中,該曝光圖樣緩 20衝器295内的對應需被寫入的一選定列内的一晝素電路250 的每個位元被解譯為連接到該畫素電路250之對應的畫素 控制信號線226上的信號。在各個實施例中,當對應—晝素 電路250的該曝光圖樣緩衝器295内的一項目具有一“〇,,之 邏輯值時,該數位影像處理器21〇在連接到該晝素電路250 52 200917827 的"亥畫素控船s號線226之該曝光控制信號線255上提供-HIGHk號且在該抗輝散控制信號線256上提供一 LOW信 號。而且,在各個實施例中,當對應-畫素電路250的該曝 光圖樣緩衝器295内的-項目具有_“Γ,之邏輯值時,該數 5位衫像處理器210在連接到該畫素電路25〇的該畫素控制信 號線226之該曝光控制信號線255上提供一 L〇w信號且在該 抗輝散控制信號線256上提供一 mGH信號。 因此,在各個實施例中,該數位影像處理器21〇基於該 曝光圖樣緩衝器295之内容提供信號給該等晝素控制信號 1〇線2201、2262,…,226m中的每個以控制一特定列内的畫素電 路250。因此,在此等實施例中,該畫素控制信號產生器3 可在该特定列之列控制信號線223上提供一 HIGH信號,使 得該特定列内的每個晝素電路250之傳輸閘電晶體2〇2以及 抗輝散閘電晶體216依據該等對應被提供的信號被寫入。該 15晝素控制信號產生器213可接著在該特定列之列控制信號 線223上挺供一 LOWt说,且該特定列内的每個晝素電路 250之傳輸閘電晶體202以及抗輝散閘電晶體216將維持其 等的值,由於該等電晶體之寄生閘電容。在各個實施例中, 依據§亥曝光圖樣緩衝器295之内容寫入該畫素陣列240之流 20程可繼續到該畫素陣列240内的下一列等等,直到所有列已 被寫入。在一些實施例中,步驟S303至S307可以一管線化 方式操作,使得每當(例如)少量的列已被讀取時,該畫素陣 歹1J 24〇之一第一列的曝光圖樣資料可被用以更新第一列的 晝素電路250之一狀態,因此允許以較少的時間來執行讀出 53 200917827 及狀態更新。 第19E圖描述了依據第19D圖之該曝光圖樣緩衝器295 内的曝光圖樣資料設定的畫素陣列2 4 〇之曝光圖樣之一例 子。依據第19E圖中的晝素陣列24〇之曝光圖樣,位於該畫 5素陣列240之列4-6中的一者以及行2-4中的一者内的晝素電 路已被控制停止在其等各自的感測節點内聚集額外的電 荷’且被控制以維持在其等各自的感測節點内已累積的任 何電荷。該等畫素電路對應第19D圖之該曝光圖樣緩衝器 295内的具有一 1”之邏輯值的項目。第19E圖之該畫素陣列 1〇 240内的其他畫素電路被控制以繼續在其等各自的感測節 點内?κ集或累積電荷。該等畫素電路對應第19D圖之該曝光 圖樣緩衝器295内的具有一“〇”之邏輯值的項目。再次參看 第6及15圖,-旦來自該曝光圖樣緩衝器295的被更新的曝 光圖樣資料已在S307内被寫人該晝素陣列,以改變該畫 15素陣列240之曝光圖樣’則該方法繼續到謂8。 在S308,對於該影像擷取操作進_步的曝光已被停止 的畫素電路250之-總數目相對於—預定臨界值被測試,該 總數目等於該曝光圖樣緩衝器295内的已被指定一“】”之邏 輯值的位元之總和。在違曝光圖樣緩衝器295内的位元之總 20和不大於該臨界值的情形下,該方法返回到㈣。另一方 面,在該曝光圖樣緩衝器295内的位元之總和大於該臨界值 的情形下,該方法繼續到S3Q9。該曝光圖樣緩衝器295之位 2的總和是可被用以在步驟S3_作出決定的許多可能的 象特徵之例子。在s亥曝光圖樣緩衝器295内的一項目之 54 200917827 一 “1”之邏輯值對應一晝素電路(對應該項目)之一感測節點 内的進一步電荷之累積之停止或阻止或禁止的實施例中, 一旦該曝光圖樣緩衝器295内的所有位元已被設定為一“1” 之邏輯值,則返回到步驟S303並沒有好處。在一些實施例 5 中,一最大的時間限制值也可被設定給該影像擷取操作。 在第19A-19K圖之例子中,假設被用於第15圖之步驟 S308的臨界值是45。當然,該臨界值僅僅被提供給該例子, 且其他臨界值可被用於其他實施例。因為第19D圖之該曝光 圖樣緩衝器295内的位元之總和是9(不大於45),所以該例子 10 將導致返回到步驟S303。第19F圖描述了在第19D圖之該曝 光圖樣緩衝器295之内容已藉由與該示範性的被滤波的二 進制資料組合而被更新之後的該曝光圖樣緩衝器295之内 容的一例子。在該例子中,該被濾波的二進制影像資料包 括一“1”位元,對應第19E圖之該畫素陣列240之列2及行7内 15的一畫素電路之一輸出。應該注意到的是,對於該畫素陣 列240之各個輸出,在該被濾波的影像資料内可能具有多個 “1”位元。第19G圖描述了在第19F圖中之曝光圖樣緩衝器 295之内容已依據由第18D圖之結構元件指定的示範性擴張 準則被擴張之後的該曝光圖樣緩衝器295之内容的一例子。 2〇 第19H圖描述了依據第19G圖之該曝光圖樣緩衝器295 之内容設定的該畫素陣列240之一曝光圖樣的一例子。依據 第19H圖之該曝光陣列240之曝光圖樣,在該晝素陣列240 之列3-7中的一者以及行1-5中的一者,或者列1-3中的一者 以及行6-8中的一者内的晝素電路已被控制以停止在其等 55 200917827 個別感測節點内聚集額外的電荷,且被控制以維持在立等 各自的感測節點内已累積的任何電荷。該等對 在第19G圖之曝光圖樣緩衝器295内 “:: '' n旳畀有—1”之邏輯值 的項目。第19H圖之畫素陣列240内的豆 、 197/、他畫素電路被控制 以繼續在其等各自_測節點内聚集或累積電荷。該等畫 素電路對應在第19G1I之曝光圖樣緩衝器295内的具有一 “〇”之邏輯值的項目。因為第19G圖之曝光圖樣緩衝器295 内的位元之總和是34(其不大於該示範性臨界值45),該例子 將導致返回到第15圖内的步驟S303。 第191圖描述了在第19G圖之曝光圖樣緩衝器295之内 容已藉由與該示範性的被濾波的二進制影像資料組合而被 更新之後的該曝光圖樣緩衝器295之内容的一例子。在該例 子中’該被濾波的二進制影像資料包括對應第19H圖之畫素 陣列240之列1及行1-2内的畫素電路之“1”位元。第19J圖描 15述了在第191圖之該曝光圖樣緩衝器295的内容已依據第 18D圖之結構元件指定的示範性擴張準則被擴張之後的該 曝光圖樣缓衝器295之内容的一例子。第19K圖描述了依據 第19J圖之曝光圖樣緩衝器295的内容設定的晝素陣列240 之一曝光圖樣的一例子。因為第19J圖之曝光圖樣緩衝器 20 295内的位元之總和是49(其大於45之示範性臨界值),該例 子將接著進行第15圖中的步驟S309。 再次參看第6、7及15圖,在步驟S309内,該晝素陣列 240内的影像擷取終止。在各個實施例中’該晝素陣列240 内的影像擷取終止,係藉由停止仍然正從其等個別光二極 56 200917827 體201在其等個別感測節點2_累積電荷的任何其餘書 電路250之曝光。在各個實施例中,該曝光之停止可藉由將 該等畫素電路25◦中的每個之傳輸閘電晶體202強迫到一關 閉狀態且將該等晝素電路2 5 〇中的每個之抗輝散閑電晶體 5 216強迫到一接通狀態而被執行。例如,該數位影像處理器 210可在該等晝素控制信號線η%,22〜中的每個 之曝光控制信號線2 5 5上提供一 L 〇 w信號且在該抗輝散控 制信號線256上提供— HIGH信號,且該晝素㈣信號產生 器213可在該等列控制線223】,223h…,223n中的每個之傳 10輸信號線253上提供一HIGH信號。在各個實施例中,當在 步驟S309内的該畫素陣列24〇之影像擷取終止時,每個畫素 電路250之每個感測節點2〇3内已累積的電荷在該畫素電路 250内被維持。該方法接著繼續到S310。 在S310内,在該畫素陣列24〇内擷取的一影像自該晝素 15陣列240被讀出。在各個實施例中,步驟S310内的影像之讀 取利用電壓類比模式被執行。若第11圖之影像感測器電路 200之實施例或第13圖之影像感測器電路200之實施例被使 用,則該畫素陣列240之每一行的電壓源開關217、輸出模 式開關227以及數位多工器228依據以上討論的電壓_類比 20模式被控制。在各個實施例中,自該畫素陣列240的一電壓 -類比讀出可能比自該畫素陣列240的一電流-類比讀出慢, 但是自該晝素陣列240的電壓-類比讀出比該電流-類比讀出 具有較高的信號對雜訊效能。因此,在各個實施例中,對 一影像擷取操作,使自該晝素陣列240的最後的讀出為一電 57 200917827 壓類比讀出是有利的’以獲得來自該畫素陣列24〇的最佳品 質信號以定義被擷取的影像。在各個實施例中,步驟S31〇 内的電壓-類比讀出利用該等行ADC電路220中的每個之雙 取樣放大器207被執行’因此被校正的畫素輸出電壓基於書 5素輸出電壓與重設定電壓之間的差值被計算出。該方法在 S311結束。符合第15圖之方法的一些電子快門操作在本文 被稱為“波快門”操作。 在各個實施例中,一畫素陣列可被初始化、該書素陣 列内的影像擷取可被初始化’且集中在一影像強度導出度 10 量超過一臨界位準的空間附近的晝素電路内以及遇到自曝 光已被停止的畫素電路傳播的一信號的晝素電路内的曝光 可被停止。而且,在各個實施例中,在一影像擷取操作期 間,當該畫素陣列之一些畫素電路内的曝光已被停止時, 一畫素陣列内的影像擷取可以是完整的。在各個實施例 15中,一適用於機器視覺處理的被空間濾波的類比影像依據 以下一方法被擷取:其中一畫素陣列之一曝光由一多維控 制圖樣及一結構元件決定,該多維控制圖樣以該畫素陣列被 部分曝光時的類比資料内容的一非線性函數間歇性地發展。 第16圖描述了依據本發明之一實施例的一方法之一流 2〇 程圖。在S601内,與一畫素陣列之一曝光圖樣相關的曝光 資訊被儲存。在各個實施例中,該曝光資訊可包括該畫素 陣列内的每個畫素電路之一或多個位元。在各個其他實施 例中,該曝光資訊可包括比該畫素陣列的畫素電路之一總 數目更少數目的位元。在一些實施例中,該曝光資訊可指 58 200917827 定與該畫素陣列之曝光圖樣相關的一數目或其他指示符。 而且’在一些實施例中,該曝光資訊可包括與該畫素陣列 之曝光圖樣相關的位元之一或多個組合。在該曝光資訊已 被儲存之後’該方法繼續到S6〇2。 5 在%02内’該畫素陣列之曝光圖樣至少部分基於以下 被改變.⑴已被儲存的曝光資訊;以及(丨丨)自該晝素陣列輸 出的一或多個信號。在各個實施例中,已被儲存的曝光資 訊基於自該畫素陣列輸出的該一或多個信號被改變,且該 被改變的曝光資訊被用以控制該畫素陣列之曝光圖樣内的 10 一變化。在一些實施例中,已被儲存的曝光資訊依據一擴 張準則被改變,且該被改變的曝光資訊被用以控制該晝素 陣列之曝光圖樣内的一變化。在各個實施例中,該晝素陣 列内的每個畫素電路之可能的曝光狀態包括⑴一開啟狀 態,其中该畫素電路被允許在該晝素電路之一感測節點聚 15集電荷,以及(11)一關閉狀態,其中該畫素電路被阻止或停 止在該感測節點聚集額外的電荷。而且,在各個實施例中, 該晝素陣列之曝光圖樣被定義,該畫素陣列内的晝素電路 藉以處於開啟狀態使得它們仍在其等的感測節點累積電 荷,以及該畫素陣列内的畫素電路藉以處於關閉狀態,使 2〇得它們沒有在其等的感測節點内累積額外的電荷。_曰兮 畫素陣列之曝光圖樣已在S602内被改變,該方法在S6〇3内 結束。 第17圖描述了依據本發明之一實施例的一方法之—充 程圖。在S651内,電荷之一累積在一畫素陣列之多數個^ 59 200917827 素電路中的每個内開始,且該方法繼續到S652。在S652内, 電荷之聚集在至少部分基於自該畫素陣列輸出的一或多個 信號選擇的該等晝素電路之至少一特定畫素電路内被阻 止。该方法繼續到S653。在S653内,至少部分基於一擴張 5準則,在與該畫素陣列内的特定畫素電路相鄰的該等畫素 電路之至少一晝素電路内電荷之聚集被阻止。在各個實施例 中,該擴張準則由一結構元件指定。該方法在S654内結束。 第20圖描述了依據本發明之一實施例的影像感測器電 路200之另一實施例。第2〇圖之影像感測器電路2〇〇之實施 10例不同於第11圖之影像感測器電路200之實施例,因為第20 圖之衫像感測裔電路200之貫施例包括·一電阻拇400。與第 11圖之影像感測器電路200之實施例的元件相同的第20圖 之影像感測器電路200之實施例的元件以相同的參考符號 標示。在各個實施例中,該電阻柵4〇〇包括多數個可規劃或 15可開關電阻器401以及多數個電容器402。在各個實施例 中,該電阻柵400包括用於晝素電路250之每一行的一可開 關電阻器401以及一電容器402。在各個實施例中,每個可 開關電阻器401連接到一對應電流對電壓轉換器222之一輸 出且連接到一或多個相鄰的可開關電阻器4〇 1。而且,在各 20個實施例中,每個電容器402連接在一對應的電流對電壓轉 換為222之一輸出端與地端之間。 在各個實施例中,該電阻柵4〇〇可被用以執行可(例如) 在第15圖之方法的步驟S304内使用的一種空間濾波。在各 個貫細*例中利用該電阻柵400在一類比域内執行空間濾波 60 200917827 可改良空間濾波之一速度,相較於空間濾波在一數位域内 由(例如)該數位影像處理器210執行的其他實施例。在一些 實施例中,該電阻柵400被用以對一影像執行信號之水平濾 波。在各個實施例中,該等可開關電阻器4〇1中的每個由該 5控制處理器212控制。在各個實施例中,第2〇圖之影像感測 器電路200可被用以執行第15圖中所描述的方法,且步驟 S304之空間濾波可利用該電阻柵4〇〇被執行。 在各個貫知》例中’使用該電阻棚·40〇的一操作模式包含 二個功能步驟。在一第一步驟中,晝素電路25〇中的每一行 10之母個電流對電壓轉換器222載入一對應的電容器402,同 時該等可開關電阻器4〇 1中的每個被斷開。在一第二步驟 中,每個電流對電壓轉換器222之一輸出被設定為高阻抗, 且該等可開關電阻器401被連接。在此一狀態中,每個電容 器402上的電壓值經空間低通濾波,其中該空間濾波頻寬與 15濾波處理作用的一時間以及每個可開關電阻器4〇1之一電 阻的值以及每個電容器402之一電容的值相關。在一第三步 驟中,對應的差值比較器225比較儲存在每個電容器4〇2内 的—電壓值與~臨界值以提供被濾波的二進制影像資料。 第21圖描述了依據本發明之一實施例的影像感測器電 20路200之另一實施例。第21圖之影像感測器電路2〇〇之實施 例不同於第13圖之影像感測器電路200之實施例,因為第21 圖之影像感測器電路200之實施例包括一電阻柵4〇〇。與第 13圖之影像感測器電路200之實施例的元件相同的第21圖 之影像感測器電路2〇〇之實施例的其他元件以相同的參考 61 200917827 符號標示。在各個實施例中,該電阻栅400包括多數個可規 劃或可開關電阻器401、多數個電容器402以及多數個電壓 比較器403。 在各個實施例中’該電阻柵4〇〇包括用於晝素電路25〇 5中的每一行之一可開關電阻器401、一電容器402以及一電 壓比較器403。在各個實施例中,每個可開關電阻器4〇 1連 接到一對應的電流比較器222b之一輸出且連接到一或多個 相鄰的可開關電阻器401。而且,在各個實施例中,每個電 容器402連接在一對應的電流比較器222b之一輸出端與地 10端之間。在各個實施例中,每個電壓比較器403之一輸入連 接到一對應電容器402,且每個電壓比較器4〇3之一輸出連 接到一對應的數位多工器228。 在各個實施射’該電阻柵_可被用於執行在(例如) 15 20 第15圖之方法的步驟㈣怕使㈣―種空㈣波。相較於 空間遽波在-數位域内由(例如)該數位影像處理器210執行 的其他實施例,在各個實施例中利用該電阻柵铜在一類比 域内執行"遽波可改^間遽波之—速度。在―些實施 例中,該電阻柵·被用關1像執行信號之水平濟波。 在各個實施例中,該等可開關電随器仙中的每個由該控制 處理器職制。在各個實施例巾,第21圖之影像感測器電 路200可被用以執行第15圖中所描 延的方法,且步驟S304 之空間濾波可利用該電阻柵400被執行。 在各個實施例中,使用第21圖中 肀的電阻柵400的一操作 核式包含三個功能步驟。在一第〜 步驟中,畫素電路250中 62 200917827 的每一行之每個電流比較器222b載入一對應的電容器 402,當該等可開關電阻器401中的每個被斷開時。在一第 二步驟中,每個電流比較器222b之一輸出被設定為高阻 抗,且該等可開關電阻器401被連接。在此/狀態中,每個 5電容器402上的電壓值獲得空間低通濾波,其中空間濾波頻 寬與該滤波程序作用的一時間以及每個可開關電阻器401 之一導通電阻的值以及每個電容器402之一電容的值相 關。在一第三步驟中’儲存在每個電容器402内的一電壓值 被對應的電壓比較器4 0 3數位化以提供被濾波的二進制影 10 像資料。 再二人參看弟6及7圖,在各個實施例中 15Current output develops rapidly. The low noise signal readout current readout of column 240 can be used to obtain values quickly, Another advantage of analog current sensing is that it allows multiple columns of the pixel circuit 250 within the pixel array 240 to be simultaneously selected to produce an output current for each of the pixel arrays 24, The round current is positively proportional to the sum of the output currents of the pixel circuits 250 of the selected columns of the halogen array 240. This multi-column readout allows spatial averaging or smoothing of an output image in a vertical direction. In some image manipulation methods, This partial image averaging may be advantageous for filtering certain noises (e.g., noise typically generated by pixel circuit defects and fixed pattern noise caused by differences between the driving transistors of different pixel circuits). Because when an image is sampled column by column, The 10 partial images provide low pass filtering and anti-aliasing filtering in one of the vertical directions of the image. Figure 12 depicts another embodiment of a row ADC circuit 220 in accordance with an embodiment of the present invention. Elements of the embodiment of the ADC circuit 220 of the same row as the embodiment of the embodiment of the ADC circuit 220 of Fig. 9 are labeled with the same reference numerals. The embodiment of the ADC circuit 220 of the row of Fig. 12 differs from the embodiment of the ADC circuit 220 of the row of Fig. 9, Because the current to voltage converter 222 and the difference comparator 225 are replaced by a current comparator 222b. The current comparator 222b is configured to detect whether a current input to the current comparator 222b is positive or negative, A 20 binary output representing one of the results of the test is provided. In the case where the switch 227 is controlled to connect the row sense line 231 to the input of the current comparator 222b, The input of the current comparator 222b is coupled to the row readout line 231. The output of the current comparator 222b is provided to a first input of the multiplexer 228. FIG. 13 illustrates another embodiment of an image sensor circuit 40 according to an embodiment of the present invention. The embodiment of the image sensor circuit 2 is different from the image of FIG. An embodiment of the sensor circuit 2, Because the embodiment of image sensor circuit 200 of Figure 13 includes an embodiment of row ADC circuit 220 of Figure 12, Rather than the embodiment of ADC row circuit 220 of Figure 9. 5 and, The embodiment of the image sensor circuit 200 of Fig. 13 does not include the reference signal converter 221 (see Fig. 6). Other than that, The embodiment of image sensor circuit 200 of Figure 3 further includes a current source for each row of the pixel circuit, An exemplary one of them is shown as current source 218, And further including a current source switch for each row of the pixel circuit, One of the exemplary ones of which is shown as current source switch 283. Other elements of the embodiment of the image sensor circuit 200 of Fig. 13 which are identical to the elements of the embodiment of the image sensor circuit 200 of Fig. 11 are designated by the same reference numerals. In the embodiment of the image sensor circuit 200 of FIG. 13, Each current source (e.g., current source 218) for each row of the pixel circuit is coupled to the reference 15 signal line 232. The current source 218 provides a bias current, When the critical current generator 260 is activated with a bias voltage from the threshold voltage source 267, The bias current is set by mapping a current generated by the critical current generator 260. In various embodiments, The current source switch 283 can be controlled by the control processor 212 to be in an open state or to connect the current source 218 to the row readout line 231. In a voltage-to-analog mode of an embodiment of the image sensor circuit 200 of Figure 13, The control processor 212 controls the current source switch 283 to be in an open state. In the current-analog mode of the embodiment of the image sensor circuit 200 of Figure 13, The control processor 212 controls the current source switch 283 to connect the electrical source 41 200917827 μ source 218 to the row readout line 23i. In this state, When a current is generated by the pixel circuit 250, The input terminal @ ― reaching the current comparator 22 等于 is equal to the current generated by the pixel circuit 25G minus the bias current generated by the current source 218. The current comparator 222b determines whether the current arriving 5 疋 is positive or ’' and for the current analog pattern of the shots, The binary information is provided based on the output of the digital multiplexer 228. In each case, The one or more circuits 29 (see Figure 5) further comprise . Each row of current sources (e.g., current source 218) and current source switches (e.g., current source switch 283) of the pixel circuit of the Hierarchy array 240. . Figure 14 depicts an exemplary layout of a pixel % road 250 of Figure 7 in accordance with an embodiment of the present invention. The elements in the exemplary layout of the pixel circuit 25A of Fig. 14 which are the same as those in the pixel circuit of Fig. 7 are designated by the same reference numerals. In various embodiments, The transmission transistor 1 202 and the anti-glow gate transistor 216 can be disposed on opposite sides of the photodiode 201. In some embodiments, The transmission transistor 2〇2 The sense point 203, Reset the transistor 2〇4, The driving transistor (10), The read selects the transistor 206, The first write select transistor 214 and the second write select transistor 215 are each disposed on the same side of the photodiode 2 ()1. Figure 15 depicts a flow diagram 20 of a method in accordance with an embodiment of the present invention. The method of Fig. 15 will be explained with reference to the image sensor circuit 2A of Fig. 6 and the pixel circuit 250 of Fig. 7. and, An exemplary operation of one of the methods in accordance with an embodiment of the present invention is provided in the 19th-19th. The example provided in Figures 19A-19K is an embodiment in which the pixel array 24 has 7 columns and 8 rows of pixel circuits. It should be understood that The pixel array 24 is a 42 200917827 embodiment which is merely provided as an example. And in various other embodiments, The pixel array 240 can have more or fewer columns and more or fewer rows of pixel circuits. For example, some embodiments of the pixel array 24 can include more than 7 columns and more than 8 rows of pixel circuits. 5 Some of the steps in Figure 15 relate to an exposure pattern buffer. In various embodiments, A portion of the image memory buffer 211 is used as the exposure pattern buffer. In various other embodiments, the image sensor circuit 200 can include an exposure pattern buffer 295 as a memory. It is separated from the image memory buffer 211. In the example of Figure 19A-19K, Some of the drawings of this example describe exemplary aspects of one embodiment of the exposure pattern buffer 295. It should be understood that The size of the embodiment of the exposure pattern buffer 295 in this example is merely provided as an example. And in various other embodiments, The exposure pattern buffer 295 has a larger or smaller capacity than that described in this example. 15 In the method of Figure 15, In S301, The exposure pattern buffer 295 is emptied by the digital image processor 210. The pixel array 240 is reset by the pixel control signal generator 213 and the digital image processor 21. In various embodiments, The exposure pattern buffer 295 stores exposure information. For example, exposure pattern data for one or more of the bits 20 of each pixel circuit 250 within the pixel array 240 is included. and, In various embodiments, The exposure pattern buffer 295 is emptied by setting each of the stored bits in the exposure pattern buffer 295 to an initial state. Figure 19A depicts an exemplary content of the exposure pattern buffer 295 in accordance with an embodiment of the present invention after the exposure pattern buffer 295 has been emptied. In the example of 43A, 200917827, Figure 19A, The exposure pattern buffer 295 includes one bit of each of the pixel circuits in one embodiment of the pixel array 24 (see FIG. 19B). And the exposure pattern buffer 295 in this example sets all bits to a ‘‘〇, , Value is emptied, The memory is zeroed. 5 In various embodiments of the image sensor circuit 200, The pixel array 240 is caused by the pixel control signal generator 213 on the column control lines 2231 2232, ..., a reset signal line 252 and a transfer signal line 253 for each of the 223n are provided with a HIGH signal and by causing the digital image processor 210 to be on the pixel control signal line 2261, 2262, , A HIGH signal is provided on the 10 exposure control signal line 255 of each of 226m and a LOW signal is provided on the anti-radiation control ## line 256 to be reset. Using this combination of signals, The resetting transistor 204 of the halogen circuit 250 and the transmission gate transistor 202 are turned on. At the same time, the anti-glow gate transistor 216 of each of the pixel circuits 25A is turned off. Once the anti-glow gate transistors 216 and 15 receive the supplied signals on their respective gates, The parasitic capacitances on their respective gates are charged or discharged (depending on the value being written), When the _ write flex transistor 214 and the second write select transistor 215 of each of the pixel circuits are turned off by a LOW signal on the corresponding transfer signal line 253, The state of the anti-glow gate transistor 20 and the transmission gate transistor 202 can be maintained. Actually, , It is stated that only two bits written to the digital memory maintain the state of the anti-glow gate transistor and the transfer gate transistor 202. The method then proceeds to the illusion 2 in S302, an image capture operation is initialized, The image pusher is initialized within the pixel array 240. In various embodiments, 4' straw Yujun 44 200917827 The pixel control signal generator 213 is in the column control line 223, , 2232, A LOW signal is provided on each of the reset signal lines 252 of 223n to turn off the reset transistor 204 of each of the pixel circuits 250 such as S The image capture is initialized within the pixel array 240. In various embodiments, The photodiode 201 of each of the NMOS circuits 250 is controlled to a voltage, Resulting that whenever the transfer gate 202 of the pixel circuit 250 is turned on, The charge from the photodiode 2〇丨 of the halogen circuit 250 spontaneously migrates to the sensing node 2〇3. In each of the embodiments of the «Hidan Suanzao Road 25, When the reset transistor is turned on, The resetting transistor 204 is configured to maintain the sensing node 2〇3 at a voltage level of 1 〇 and 疋, Thereby substantially preventing charge from accumulating within the sensing node 203, But when the reset transistor 2 〇 4 is turned off and the transfer gate transistor 202 is turned on, The charge will accumulate within the sensing node 203 at a rate proportional to the amount of light energy incident on the photodiode 2''''''' Figure 19B depicts an example of an exposure pattern of one embodiment of the pixel array 24〇, The image capture has been initialized. For illustrative purposes, The pixel circuits of the pixel array 240 in the example of Fig. 19b, which is enabled to accumulate #charges in their sensing nodes, are shown as white squares. In the 19th figure, 'because the image capture has been initialized, Therefore, all the pixel circuits in the pixel array 24 are displayed as white squares. Because all of the pixel circuits within the pixel array 240 of the embodiment of Figure 19B are enabled to accumulate charge at their sensing nodes at the beginning of an image capture operation. Once the image manipulation has been initialized in the pixel array 240, Then the method continues to S3〇3. In S303, A binary image is read from the pixel array 24〇. In each implementation, The reading from the pixel array in S303 is performed in the current class 45 200917827 ratio mode to make the row readout lines 231ι, 23l2, , The signal output from the pixel array 240 at 231 m is a current signal. In the case of an embodiment using the image sensor circuit 200 of Fig. u, a voltage source switch 217 for each row of the pixel circuit 25A, The output mode switch 227 and the digital multiplexer 5 228 and the switch 239 are set in accordance with the current_analog mode discussed above. In the case where the embodiment of the image sensor circuit 2 of Fig. 13 is used, The current source switch 283 of each row of the pixel circuit 250 is further set in accordance with the current analog mode discussed above. In various embodiments, in the current-analog mode, Each of the halogen batteries 10 is sampled, And their current_ analog output levels (representing the number of photons absorbed by their photodiodes 2〇1 from the end of the reset) are compared to a reference level to produce a binary of the currently captured image. Represented and stored in the pixel circuits 250 of the pixel array 240. In various embodiments, The resetting transistor 204 15 of each of the pixel circuits 250 remains off during the pixel circuit readout in the phantom 03. Thereby, the pixel circuit readout process is non-destructive with respect to the charge accumulated in the sensing node 203 of each pixel circuit 250. The readout process in 'S303' in various embodiments is performed on a column by column basis. For example, 'in various embodiments, One column of the pixel circuits 2〇 250 in the pixel array 240 is read out, Then another column of pixel circuits 250 within the pixel array 240 is read and so on until all columns have been read. E.g, When each column needs to be read, By providing the halogen control signal generator with a HIGH signal on the column read signal line 254 of the column of control lines 223 of the column, And then after the column has been read, a L〇w signal is provided on line k 254 of the read control line 223 of the column of the control signal line 223. Each column can be read. In the case of some real details, Readout may be performed by sampling the columns and/or selecting more than one column of the pixel array 240 at a time. The row continuation line 231 of any given row 5 of the pixel array 240 provides the selected pixel circuits 250 in a row in a current-analog mode at a same time in a row. Take out ~ and to & For the output of the side line. This technique can be used, for example, to implement a vertical image smoothing operation. Completely within the analog domain of one of the image sensor circuits 200, And such a wave has the general benefits associated with reduced spatial noise, Some of these specific uses include anti-aliasing and mitigating the effects of pixel circuit fabrication. Once the ternary image has been read from the pixel array, The method continues to S3〇4. In S304, The binary image data obtained in S303 is processed. For example, the binary image data can be spatially filtered to eliminate noise. Some methods for filtering the gamma image include median filtering or morphologically closing 15 to eliminate too small a feature that is considered important for the method of Figure 15. In the case where the smoothing in the vertical direction has been applied as part of the current analog reading process of S303, The processing in S3〇4 in the various embodiments can be simplified by limiting the processing of the binary image data in a horizontal direction. In some embodiments of the method of Figure 15, This step S304 is optional and can be completely skipped. In some embodiments, Following the noise filtering described above in S304, This step of illusion 4 may also include the expansion of the shirt image produced by a structural element, Thereby accelerating an exposure control signal pattern in the image by the binary shirt > , Propagation near the initial point provided by the material. In various embodiments, The processing in s3〇4 is performed by the digital image processor 21〇. The process then proceeds to 47 200917827 S305. In S305, In the case where this step S304 has been performed, The filtered binary image data from S304 is combined with the exposure pattern data stored in the exposure pattern buffer 295. In the case 5 which has been skipped in this step S304, The binary image data from S303 is combined with the exposure pattern data stored in the exposure pattern buffer 295. In various embodiments, Performing a logical "OR" of, for example, one of the filtered binary image data and the exposure pattern data stored in the exposure pattern buffer 295, And then storing the result back to the exposure pattern buffer 295, The digital image processor 10 21 combines the filtered binary image data with the exposure pattern data stored in the exposure pattern buffer 295. Figure 19C depicts an example of the content of the exposure pattern buffer 295 after the content of the exposure pattern buffer 295 of Figure 19A has been updated by combining with the exemplary filtered binary image data. In the example 5, In addition to having a "spot" output corresponding to one of the pixel circuits in column 5 and row 3 of the pixel array 240, The filtered binary image data is the same as the exposure pattern data in the exposure pattern buffer 295 of Fig. 19A. Therefore, after the exposure pattern data of Fig. 19A and the filtered binary image data are logically ORed, The exposure pattern buffer 295 generated in Fig. 19C has a "1" bit for column 5 and row 3. The "1" rice element corresponding to the pixel circuit in column 5 and row 3 of the pixel array 240 in the example of Fig. 19C can indicate, for example, when the current signal is read out in S303, An output current signal from the pixel circuit exceeds a threshold. In this example, The pixel circuits of columns 5 and 3 can sample light from a portion of one of the scenes being imaged 48 200917827, Causing that the charge accumulated in one of the sensing nodes of the pixel circuit may have exceeded a certain value, The accumulated charge in other halogen circuits may not have reached this value. In various embodiments, Once the exposure pattern buffer 295 has been updated in S305 5, The method then continues to S306. In S306, The contents of the exposure pattern buffer 295 are updated to provide expansion in accordance with an expansion criterion. In various embodiments, The expansion criterion is specified by one or more structural elements. A structural component can specify, for example, how to expand the content of the exposure pattern buffer 295. In some embodiments, A structural component can specify how to extend a logic value "1" within the 10 exposure buffer 295 by some unit in one or more directions within the exposure pattern buffer 295. Various examples of the expansion criteria specified by the structural elements in accordance with embodiments of the present invention are described in Figures 18A-18D. It should be understood that Exemplary structural elements provided in Figures 18A-18D are merely examples. And any desired structural element can be used in the method of Figure 15. Figure 18A depicts an example of an expansion criterion specified by a structural element in accordance with an embodiment of the present invention. In Figure 18A, The black square indicates that an item in an exposure pattern buffer has a logical value of "1". An item having a logical value of "1" is associated with a particular pixel circuit 20 within a pixel array. A square having an "X" indicates that an item in the exposure pattern buffer associated with a pixel circuit in the pixel array immediately to the right of the particular pixel circuit also needs to be set to a logical value of "1". therefore, If the expansion criteria specified by the structural elements of Figure 18A are used for expansion, Then each logical value "1" in the exposure pattern buffer will be expanded to an item on the right. 49 200917827 Figure 18B depicts an example of an expansion criterion specified by a structural element, A logical value of "1" in one of the exposure pattern buffers expands two items above the item having a logical value of "1". Make the two items above the item set to the logical value of "1". Figure 18C depicts an example of an expansion criterion specified by a structure 5 component. Two adjacent items having a logical value of "1" in an exposure pattern buffer associated with two adjacent pixel circuits of a pixel array are each expanded by an item above the item. In this example, A single item with a logical value of "1" (with no adjacent items with a logical value of "1") will not be extended to other items. Figure 10 18D depicts an example of an expansion criterion specified by a structural element, A logical value of a "1" in one of the items of the exposure pattern buffer needs to be expanded by one item in all directions within the exposure pattern buffer. Figure 19D depicts an example of the content of the exposure pattern buffer 295 after the content of the exposure pattern buffer 295 of Figure 19C has been expanded 15 according to the exemplary expansion criteria specified by the structural elements of Figure 18D. In the example of Figure 19D, The logic values of "1" in column 5 and row 3 of the exposure pattern buffer 295 are expanded in all directions according to the expansion criterion of Fig. 18D. All items surrounding the items of column 5 and line 3 are set to have a logical value of "1". therefore, In various embodiments, Step S306 allows the exposure pattern data in the exposure pattern buffer 295 to be enlarged in form. Thus, the feature adds some pixel units in one or more directions within the exposure pattern buffer 295. The rate at which the exposure pattern data is propagated relative to the read rate of one of the pixel arrays can be controlled by modifying the size and shape of one or more structural elements defining an expanded pattern. Once the content of the exposure pattern buffer 295 50 200917827 has been updated by expansion using one or more structural elements, Then the method of Fig. 15 continues to S307. See section 6, Figures 7 and 15, In step S307, The updated exposure pattern data from the exposure pattern buffer 295 is written to the pixel array 240 5 to change the exposure pattern of the pixel array 240. In various embodiments, The exposure pattern of the pixel array 240 is defined, The pixel circuits 250 within the pixel array 24 are enabled to accumulate additional charges within their respective sensing nodes, And the pixel circuits 250 within the pixel array 240 are being blocked or stopped accumulating additional charges within their respective sensing nodes. In each of the 10 implementations, By writing the exposure pattern data from the exposure pattern buffer 295 to the pixel array 240, The exposure pattern of the pixel array 240 is resynchronized with the contents of the exposure pattern buffer 295. In the exposure pattern buffer 295 of the various embodiments, One item of a project, , The logical value indicates that the corresponding pixel circuit 250 in the pixel array 24 is allowed to continue to accumulate or accumulate charge in each of its 15 self-sensing nodes 2〇3 during the image capturing operation. And - a "Γ" of the project, The logical value indicates that the corresponding pixel circuit 25 within the pixel array 240 is not required to be blocked or stopped accumulating additional charges in its individual sensing node 203, However, it is necessary to maintain the accumulated charge in its individual sensing node 2〇3. Although there are other possibilities, but in each of the 20 embodiments in the method of Figure 15, It is assumed that one of the states of the anti-diffusion gate transistor 216 of each pixel circuit 250 is always opposite to the state of one of the transfer gate transistors 2〇2 of the same pixel circuit 25〇. In other words, In these embodiments, When the transfer gate transistor 202 of the pixel circuit 250 is controlled to be turned on, The anti-glow gate transistor 216 of the same halogen circuit 250 is controlled to be turned off, And when the pass gate transistor 2〇2 of the pixel circuit 51 200917827 250 is controlled to be turned off, The anti-diffusion gate transistor 216 of the same halogen circuit 250 is controlled to be turned "on". In various embodiments, When the content of the exposure pattern buffer 295 is written into the pixel array 24, The pass gate transistor body 202 in each of the pixel circuits 25A is turned off and the anti-glow gate transistor 216 is turned on. An item in the pattern buffer 295 that has been assigned a logical value of "1" is correspondingly exposed. In the pixel circuit 250, When the transfer gate transistor 2〇2 is turned off and the anti-glow gate transistor 216 is turned on, The accumulation of additional light-generating charges within the corresponding sense node 203 is prevented or inhibited or stopped, Any charge subsequently generated by the corresponding light 10 diode 201 is substantially discharged through the anti-bright gate transistor 216. and, In various embodiments, When the content of the exposure pattern buffer 295 is written to the pixel array 24, The transfer gate transistor 202 in each of the pixel circuits 25A is turned "on" and the anti-glow gate transistor 216 remains "off" an item corresponding to a specified logic value 15 in the sigma exposure pattern buffer 295. In these pixel circuits 250, When the transfer gate transistor 202 is turned on and the anti-glow gate transistor 216 is turned off, The charge generated by the light from the corresponding photodiode 2〇1 is allowed to continue to accumulate in the corresponding sensing node 2〇3. The contents of the exposure pattern buffer 295 are written to the pixel array 240 one column at a time in various embodiments. In various embodiments, Each bit in the exposure pattern buffer 295 corresponding to a pixel unit 250 in a selected column to be written is interpreted as a corresponding pixel control signal line connected to the pixel circuit 250. Signal on 226. In various embodiments, When an item in the exposure pattern buffer 295 corresponding to the pixel circuit 250 has a "〇, , Logic value, The digital image processor 21 is connected to the pixel circuit 250 52 200917827 " The -HIGHk number is provided on the exposure control signal line 255 of the HI line 226 and a LOW signal is provided on the anti-dispersion control signal line 256. and, In various embodiments, When the - item in the exposure pattern buffer 295 of the corresponding-pixel circuit 250 has _ "Γ, Logic value, The 5-digit shirt image processor 210 provides an L〇w signal on the exposure control signal line 255 connected to the pixel control signal line 226 of the pixel circuit 25 and is on the anti-scatter control signal line 256. A mGH signal is provided on it. therefore, In various embodiments, The digital image processor 21 提供 provides a signal to the pixel control signal 1 220 line 2201 based on the content of the exposure pattern buffer 295. 2262, ..., Each of 226m controls a pixel circuit 250 within a particular column. therefore, In these embodiments, The pixel control signal generator 3 can provide a HIGH signal on the control signal line 223 of the specific column. The transmission gate transistor 2A2 and the anti-glow gate transistor 216 of each of the pixel circuits 250 in the particular column are written in accordance with the corresponding supplied signals. The 15-cell control signal generator 213 can then provide a LOWt on the control signal line 223 of the particular column. And the transmission gate transistor 202 and the anti-glow gate transistor 216 of each of the pixel circuits 250 in the particular column will maintain their values, Due to the parasitic gate capacitance of the transistors. In various embodiments, The flow of writing to the pixel array 240 according to the content of the § 曝光 exposure pattern buffer 295 can continue to the next column in the pixel array 240, etc. Until all columns have been written. In some embodiments, Steps S303 to S307 can be operated in a pipelined manner. So that whenever, for example, a small number of columns have been read, The exposure pattern data of the first column of the pixel array 歹1J 24〇 can be used to update one of the states of the first column of the pixel circuit 250. This allows readouts 53 200917827 and status updates to be performed in less time. Fig. 19E depicts an example of an exposure pattern of the pixel array 24 〇 set in accordance with the exposure pattern data in the exposure pattern buffer 295 of Fig. 19D. According to the exposure pattern of the halogen array 24〇 in Fig. 19E, The pixel circuits located in one of columns 4-6 of the five-element array 240 and one of rows 2-4 have been controlled to stop accumulating additional charges in their respective sensing nodes' and are Control to maintain any charge that has accumulated within its respective sensing node. The pixel circuits correspond to items having a logical value of 1" in the exposure pattern buffer 295 of Fig. 19D. The other pixel circuits in the pixel array 1 〇 240 of Fig. 19E are controlled to continue in their respective sensing nodes? κ set or accumulated charge. The pixel circuits correspond to an item having a logical value of "〇" in the exposure pattern buffer 295 of Fig. 19D. Referring again to Figures 6 and 15, The updated exposure pattern data from the exposure pattern buffer 295 has been written to the pixel array in S307. To change the exposure pattern of the image 15 array, then the method continues to the eighth. At S308, The total number of pixel circuits 250 for which the exposure of the image capture operation has been stopped is tested relative to a predetermined threshold value, The total number is equal to the sum of the bits in the exposure pattern buffer 295 that have been assigned a logical value of "". In the case where the total 20 of the bits in the violation pattern buffer 295 is not greater than the threshold, The method returns to (4). on the other hand, In the case where the sum of the bits in the exposure pattern buffer 295 is greater than the threshold, The method continues to S3Q9. The sum of bits 2 of the exposure pattern buffer 295 is an example of many of the possible image features that can be used to make the decision at step S3. In the s-illumination pattern buffer 295, a project of 54 200917827 a "1" logic value corresponds to the stop or block or prohibition of the accumulation of further charge in the sensing node of one of the pixel circuits (corresponding to the item) In an embodiment, Once all the bits in the exposure pattern buffer 295 have been set to a logical value of "1", Returning to step S303 is not advantageous. In some embodiment 5, A maximum time limit value can also be set for the image capture operation. In the example of Figure 19A-19K, It is assumed that the critical value used in step S308 of Fig. 15 is 45. of course, This threshold is only provided to the example. And other threshold values can be used in other embodiments. Since the sum of the bits in the exposure pattern buffer 295 of Fig. 19D is 9 (not greater than 45), So this example 10 will result in a return to step S303. Figure 19F depicts an example of the content of the exposure pattern buffer 295 after the content of the exposure pattern buffer 295 in Figure 19D has been updated by combining with the exemplary filtered binary data. In this example, The filtered binary image data includes a "1" bit, One of the pixel circuits of column 2 and row 7 of the pixel array 240 corresponding to Fig. 19E is output. It should be noted that For each output of the pixel array 240, There may be multiple "1" bits within the filtered image material. Figure 19G depicts an example of the content of the exposure pattern buffer 295 after the content of the exposure pattern buffer 295 in Figure 19F has been expanded in accordance with the exemplary expansion criteria specified by the structural elements of Figure 18D. 2〇 Figure 19H depicts an example of an exposure pattern of the pixel array 240 set in accordance with the contents of the exposure pattern buffer 295 of Fig. 19G. According to the exposure pattern of the exposure array 240 in Fig. 19H, One of the columns 3-7 of the halogen array 240 and one of the rows 1-5, Or one of the columns 1-3 and the pixel circuit in one of the rows 6-8 have been controlled to stop accumulating additional charges in their respective sense nodes. And being controlled to maintain any charge that has accumulated in the respective sensing nodes. These pairs are in the exposure pattern buffer 295 of Fig. 19G ": : The item ''n旳畀 has a logical value of -1'). Beans in the pixel array 240 of Figure 19H, 197/, His pixel circuits are controlled to continue to accumulate or accumulate charge in their respective nodes. The pixel circuits correspond to items having a logical value of "〇" in the exposure pattern buffer 295 of the 19th G1I. Because the sum of the bits in the exposure pattern buffer 295 of the 19Gth image is 34 (which is not greater than the exemplary threshold 45), This example will result in returning to step S303 in Fig. 15. Figure 191 depicts an example of the content of the exposure pattern buffer 295 after the content of the exposure pattern buffer 295 of Figure 19G has been updated by combining with the exemplary filtered binary image data. In this example, the filtered binary image data includes "1" bits corresponding to the pixel circuits in column 1 and row 1-2 of pixel array 240 of Figure 19H. An example of the content of the exposure pattern buffer 295 after the content of the exposure pattern buffer 295 in FIG. 191 has been expanded according to the exemplary expansion criteria specified by the structural elements of FIG. 18D is described in FIG. . Fig. 19K depicts an example of an exposure pattern of the pixel array 240 set in accordance with the contents of the exposure pattern buffer 295 of Fig. 19J. Because the sum of the bits in the exposure pattern buffer 20 295 of Figure 19J is 49 (which is an exemplary threshold greater than 45), This example will proceed to step S309 in Fig. 15. See page 6, again. Figures 7 and 15, In step S309, Image capture within the pixel array 240 is terminated. In various embodiments, image capture within the pixel array 240 is terminated. By exposing any remaining book circuit 250 that is still accumulating charge from its individual photodiode 56 200917827 body 201 at its individual sensing node 2_. In various embodiments, The stopping of the exposure can be performed by forcing the transfer gate transistor 202 of each of the pixel circuits 25A to a closed state and anti-radio discharge of each of the pixel circuits 25 5 The crystal 5 216 is forced to an on state to be executed. E.g, The digital image processor 210 can control the signal line η%, An L 〇 w signal is provided on each of the exposure control signal lines 2 5 5 of 22 to 22, and a HIGH signal is provided on the anti-bright emission control signal line 256. And the halogen (four) signal generator 213 can be in the column control line 223], 223h..., A HIGH signal is provided on each of the 203n transmission lines 253. In various embodiments, When the image capture of the pixel array 24 in step S309 is terminated, The accumulated charge in each of the sensing nodes 2〇3 of each pixel circuit 250 is maintained within the pixel circuit 250. The method then proceeds to S310. In S310, An image captured within the pixel array 24 is read from the pixel 15 array 240. In various embodiments, The reading of the image in step S310 is performed using the voltage analog mode. If the embodiment of the image sensor circuit 200 of Fig. 11 or the image sensor circuit 200 of Fig. 13 is used, Then, the voltage source switch 217 of each row of the pixel array 240, Output mode switch 227 and digital multiplexer 228 are controlled in accordance with the voltage-to-class ratio 20 mode discussed above. In various embodiments, A voltage-to-analog readout from the pixel array 240 may be slower than a current-to-analog read from the pixel array 240. However, the voltage-to-analog readout from the pixel array 240 has a higher signal-to-noise performance than the current-to-analog readout. therefore, In various embodiments, For an image capture operation, The final read from the pixel array 240 is an electrical 57 200917827. Analogue readout is advantageous 'to obtain an optimal quality signal from the pixel array 24' to define the captured image. In various embodiments, The voltage-to-analog readout in step S31 is performed using the double sampling amplifier 207 of each of the row ADC circuits 220. Thus, the corrected pixel output voltage is based on the between the book 5 output voltage and the reset voltage. The difference is calculated. The method ends at S311. Some electronic shutter operations that conform to the method of Figure 15 are referred to herein as "wave shutter" operations. In various embodiments, A pixel array can be initialized, The image capture in the pixel array can be initialized and concentrated in a pixel circuit near the space where the image intensity is derived by more than a critical level and is encountered by a pixel circuit that has been stopped from exposure. The exposure within the pixel circuit of a signal can be stopped. and, In various embodiments, During an image capture operation, When the exposure in some of the pixel circuits of the pixel array has been stopped, Image capture within a pixel array can be complete. In each of the embodiments 15, A spatially filtered analog image suitable for machine vision processing is captured according to one of the following methods: One of the pixel arrays is exposed by a multidimensional control pattern and a structural component. The multi-dimensional control pattern develops intermittently with a non-linear function of the analog data content when the pixel array is partially exposed. Figure 16 depicts a flow diagram of a method in accordance with an embodiment of the present invention. In S601, Exposure information associated with an exposure pattern of a pixel array is stored. In various embodiments, The exposure information can include one or more bits of each pixel circuit within the pixel array. In various other embodiments, The exposure information can include a smaller number of bits than the total number of one of the pixel circuits of the pixel array. In some embodiments, The exposure information may refer to a number or other indicator associated with the exposure pattern of the pixel array at 58 200917827. And in some embodiments, The exposure information can include one or more combinations of bits associated with the exposure pattern of the pixel array. After the exposure information has been stored, the method continues to S6〇2. 5 Within %02, the exposure pattern of the pixel array is changed based at least in part on the following. (1) exposure information that has been stored; and (丨丨) one or more signals output from the pixel array. In various embodiments, the stored exposure information is changed based on the one or more signals output from the pixel array, and the changed exposure information is used to control 10 of the exposure patterns of the pixel array. A change. In some embodiments, the stored exposure information is changed in accordance with an expansion criterion, and the changed exposure information is used to control a change in the exposure pattern of the pixel array. In various embodiments, the possible exposure states of each of the pixel circuits within the pixel array include (1) an on state, wherein the pixel circuit is allowed to collect 15 sets of charge at one of the sensing nodes of the pixel circuit, And (11) a closed state in which the pixel circuit is blocked or stopped from accumulating additional charges at the sensing node. Moreover, in various embodiments, the exposure pattern of the pixel array is defined, and the pixel circuits within the pixel array are in an on state such that they are still accumulating charges at their sensing nodes, and within the pixel array. The pixel circuits are thus turned off so that they do not accumulate additional charge in their sensing nodes. The exposure pattern of the _ 画 pixel array has been changed in S602, and the method ends in S6 〇 3. Figure 17 depicts a process diagram of a method in accordance with an embodiment of the present invention. In S651, one of the charges is accumulated starting in each of a plurality of pixel circuits of a pixel array, and the method continues to S652. In S652, the accumulation of charge is blocked in at least one particular pixel circuit of the pixel circuits selected based at least in part on the one or more signals output from the pixel array. The method continues to S653. In S653, based at least in part on an expansion 5 criterion, accumulation of charge in at least one of the pixel circuits of the pixel circuits adjacent to a particular pixel circuit within the pixel array is blocked. In various embodiments, the expansion criterion is specified by a structural element. The method ends in S654. Figure 20 depicts another embodiment of an image sensor circuit 200 in accordance with an embodiment of the present invention. The image sensor circuit 2 of FIG. 2 is implemented in an embodiment different from the image sensor circuit 200 of FIG. 11, because the embodiment of the shirt image sensing circuit 200 of FIG. 20 includes · A resistance thumb 400. Elements of an embodiment of the image sensor circuit 200 of Fig. 20, which is identical to the elements of the embodiment of the image sensor circuit 200 of Fig. 11, are designated by the same reference numerals. In various embodiments, the resistor grid 4 includes a plurality of programmable or 15 switchable resistors 401 and a plurality of capacitors 402. In various embodiments, the resistor grid 400 includes a switchable resistor 401 and a capacitor 402 for each row of the pixel circuit 250. In various embodiments, each switchable resistor 401 is coupled to one of a corresponding current to voltage converter 222 and is coupled to one or more adjacent switchable resistors 4〇1. Moreover, in each of the twenty embodiments, each capacitor 402 is coupled between a corresponding current-to-voltage conversion 222 output terminal and ground. In various embodiments, the resistive grid 4 can be used to perform a spatial filtering that can be used, for example, in step S304 of the method of Figure 15. Performing spatial filtering 60 in a class-like domain using the resistive gate 400 in various fine-grained examples can improve one of the spatial filtering speeds, as compared to spatial filtering in a digital domain by, for example, the digital image processor 210. Other embodiments. In some embodiments, the resistor grid 400 is used to perform horizontal filtering of signals for an image. In various embodiments, each of the switchable resistors 4〇1 is controlled by the 5 control processor 212. In various embodiments, the image sensor circuit 200 of Figure 2 can be used to perform the method described in Figure 15, and the spatial filtering of step S304 can be performed using the resistance gate 4〇〇. In the various examples, an operation mode using the resistor housing 40 包含 includes two functional steps. In a first step, the parent current of each row 10 of the pixel circuit 25A loads a corresponding capacitor 402 to the voltage converter 222, and each of the switchable resistors 4〇1 is broken. open. In a second step, each current to one of the voltage converters 222 is set to a high impedance, and the switchable resistors 401 are connected. In this state, the voltage value on each capacitor 402 is spatially low pass filtered, wherein the spatial filtering bandwidth is a function of 15 filtering effects and the value of one of each switchable resistor 4〇1 and The value of one of the capacitances of each capacitor 402 is related. In a third step, the corresponding difference comparator 225 compares the voltage value and the -th threshold stored in each capacitor 4〇2 to provide filtered binary image data. Figure 21 depicts another embodiment of an image sensor electrical circuit 200 in accordance with an embodiment of the present invention. The embodiment of the image sensor circuit 2 of FIG. 21 is different from the embodiment of the image sensor circuit 200 of FIG. 13 because the embodiment of the image sensor circuit 200 of FIG. 21 includes a resistor grid 4. Hey. Other elements of the embodiment of the image sensor circuit 2 of Fig. 21 which are identical to the elements of the embodiment of the image sensor circuit 200 of Fig. 13 are designated by the same reference numeral 61 200917827. In various embodiments, the resistor grid 400 includes a plurality of programmable or switchable resistors 401, a plurality of capacitors 402, and a plurality of voltage comparators 403. In various embodiments, the resistor grid 4 includes a switchable resistor 401, a capacitor 402, and a voltage comparator 403 for each of the rows of the pixel circuits 25A. In various embodiments, each switchable resistor 4〇1 is coupled to one of a corresponding current comparator 222b output and to one or more adjacent switchable resistors 401. Moreover, in various embodiments, each capacitor 402 is coupled between an output of one of the corresponding current comparators 222b and the ground 10 end. In various embodiments, one of each voltage comparator 403 input is coupled to a corresponding capacitor 402, and one of each voltage comparator 4〇3 output is coupled to a corresponding digital multiplexer 228. In each implementation, the resistive grid can be used to perform the steps (4) of the method of (e), for example, 15 20, FIG. 15 for fear of (four) - seeding (four) waves. In contrast to the other embodiments in which the spatial chopping is performed in the digital domain by, for example, the digital image processor 210, the resistive gate copper is used in various embodiments to perform "chopping in the analog domain. Wave - speed. In some embodiments, the resistor grid is used to perform horizontal signaling of the signal. In various embodiments, each of the switchable devices is operated by the control processor. In various embodiments, the image sensor circuit 200 of Fig. 21 can be used to perform the method described in Fig. 15, and the spatial filtering of step S304 can be performed using the resistance gate 400. In various embodiments, an operational core using the resistor grid 400 of Figure 21 includes three functional steps. In a first step, each current comparator 222b of each row of 62 200917827 in pixel circuit 250 loads a corresponding capacitor 402 when each of the switchable resistors 401 is turned off. In a second step, one of the outputs of each of the current comparators 222b is set to a high impedance, and the switchable resistors 401 are connected. In this/state, the voltage value on each of the 5 capacitors 402 is spatially low pass filtered, wherein the spatial filtering bandwidth is a function of the filter program and a value of the on-resistance of each of the switchable resistors 401 and each The value of one of the capacitors 402 is related to the capacitance. In a third step, a voltage value stored in each capacitor 402 is digitized by a corresponding voltage comparator 403 to provide filtered binary image data. Two more people refer to brothers 6 and 7 in various embodiments.
20 電路200被組配以利用一種電子快門操作獲得一影像,其中 該畫素陣列2 4 G之-曝光圖樣依據隨著時間變化的曝光資 訊被設定,至少部分基於在該畫素陣列細之至少—部分内 累積的電荷。當符合(例如)第15圖之方法的快門操作被使用 時,用以完成一影像擷取操作的—最大可允許的時間可由 該畫素電路250之㈣效率限制。快門效村麵該書素電 路25时的每個在—影像掏取操作期間精確地維射們的 =^點2_的電荷之能力’該影像梅取操 外的電何被禁止或阻止或停止在該感挪節錢= 時間到-最後的影像被讀出影擷取操作之書辛陣二積: 時間。在此-時間期間,測節 的 而降級。此降級之-數量可與昭射產生的電荷 、、、在4畫素電路250上的光 63 200917827 之強度以及該被儲存的電荷必須被維持的時間之量成正 比’直到其最後自該晝素陣列240讀出。 在各個實施例中,一自動快門機制允許使用光強度控 制一影像感測器電路内的個別晝素電路或畫素電路組之一 5 曝光時間。在一些此等實施例中,在一影像擷取操作期間, 接收明亮的光的晝素電路之曝光可比接收較低強度的光之 晝素電路之曝光較早停止。在各個實施例中,當曝光在一 畫素陣列之一晝素電路内結束時,該畫素電路之一感測節 點内被感測的值必須在該感測節點内被保持,直到該畫素 10陣列内的其餘晝素電路内的曝光結束且一影像之最後的信 號自該晝素陣列被讀出。快門效率可表示類比資訊可被儲 存在該畫素陣列之一晝素電路的一感測節點(例如,—浮動 擴散節點)内的時間之一最大量,而沒有顯著的降級。 參看第22圖,可允許改良—快門效率的各種技術在此 15被描述。第22圖描述了依據本發明一實施例的一佈局90〇。 该佈局900包括該畫素電路25〇。與第14圖中的畫素電路25〇 之實施例的元件類似的第22圖中的畫素電路250之實施例 的元件以相同的參考符號榡示。 在各個實施例中,該畫素電路25〇包括該抗輝散閘電晶 20體216。將該抗輝散閘電晶體216併入該畫素電路250可提供 —種用以在該畫素電路250之曝光已停止到達該畫素電路 250之感測節點203之後阻止在光二極體201内的光產生的 電荷之機制。一抗輝散閘電晶體之此一使用可不同於抗輝 散閘電晶體之一使用以避免一飽和的畫素電路附近的畫素 64 200917827 電路之光二極體擷取此畫素電路之過量的電荷。 在各個實施例中,一光感測器(例如光二極體201)被延 伸。例如,該光二極體2〇1之一區域可被增加一或多個延伸 區域501。在一些實施例中,該光二極體2〇1是一釘札型光 5二極體。而且,在一些實施例中,該光二極體201之一區域 被盡可被儘可能多地延伸或增加。在一些實施例中,該一 或多個延伸區域501甚至可在一或多條線下延伸,例如曝光 控制線255、抗輝散控制信號線256、電壓源線235、行讀出 線231或類似者。在各個實施例中,該一或多條線是金屬 線。在一些實施例中,雖然該一或多個延伸區域可能沒 有改良該畫素電路250之一回應,但是該一或多個延伸區域 5〇1可增加光產生的電荷被吸收的區域,因此減少了此電荷 不小心到達該感測節點203的可能性。因此,在各個實施例 中’該一或多個延伸區域5〇1可允許改良一快門效率。 15 在各個實施例中,該佈局9〇〇進一步包括一或多個虛擬 擴散502。在一些實施例中,該一或多個虛擬擴散5〇2可位 於不屬於該光二極體201或該等電晶體214、215、205、205 及206的該晝素電路250之其他空區域。若沒有該一或多個 虛擬擴散502 ’到達§亥等空區域的一些光產生的電荷可能擴 散到該感測節點203且降低一快門效率。在各個實施例中, 為了阻止此發生,該等空區域覆蓋一或多個虛擬擴散5〇2。 在各個實施例中,該一或多個虛擬擴散5 〇 2連接到一恆定的 電壓源(在第22圖中未顯示),例如一電壓供應源或類似者, 因此穿過該一或多個虛擬擴散502的任何光產生的電荷被 65 200917827 吸收到該電壓供應源。 率 因 在各個實施例中,短波長照明被用以幫助改良快門效 1在各個實施例中,使用短波長光可幫助改良快門 為短波長光子可在-⑪表面附近被吸收,因此可被該光 =2:掏取。較長波長的光子可到達1材較深處,且 光二極斷—作用區域’因此增加 達忒感測郎點203之可能性且降低了快門敦率。 10 15 20 在各個實施例中,該佈局9〇〇進一步包括該畫 ^上的-紅外線(Ι·波請。藉由穿透到不躲任何電 场的«素電路2歡-基㈣常深_方,紅外線光子可 能產生問題’且來自該等光子的電子可能隨機擴散且到達 該感測節點203,從而降級儲存在該感測節點2〇3内的資 料。在各個實關中,藉由使㈣畫钱路25吐的财波 ㈣3,該畫素電路25Q之—深的基材内的光產生的電荷之 數量可能減少,從而允許改良快門效率。在—些實施例中, 該佈局9GG可包括該畫素電路25()上的—彩色濾波器(在第 22圖中未示)。可見光譜内的長波長光子之行為可能類似爪 光子且可能由於牙透到該畫素電路25〇之一基材内非常深 的地方而產生問題。在各個實施例中,一彩色濾波器可被 用以禁止此等光子到達該晝素電路25〇之一基材。在—些實 施例中’該畫素電路250可被紐配以感測可見光頻譜内的 光。在一些實施例中’該晝素電路25〇可被組配以感測可見 光譜外的光。 在各個實施例中,該佈局9〇〇進一步包括一金屬保護特 66 200917827 徵504。在各個實施例中,該金屬保護特徵504可覆蓋該感 測節點203之至少一部分。在一些實施例中,利用一金屬保 護保護該感測節點20 3可允許減少由於光產生的儲存在該 感測節點203内的電荷之降級。 5 再次參看第6圖,在各個實施例中,該影像感測器電路 200可被組配以允許接收一指令,該指令指定了需被用於一 或多個特定影像擷取操作的快門模式之類型。例如,在各 個實施例中,該影像感測器電路200可被組配以接收一指 令,該指令選擇需被用於一影像擷取操作的⑴一全域快門 10 操作;(ii)一滾動快門操作;以及(iii)一波快門操作中的一 者。在此等實施例中,在該指令指定一全域快門操作之情 形中,該影像感測器電路200可利用一全域快門操作擷取一 影像。而且,在此等實施例中,在該指令指定一滾動快門 操作之情形中,該影像感測器電路200可利用一滾動快門操 15 作擷取一影像。此外,在此等實施例中,在該指令指定一 波快門操作之情形中,該影像感測器電路200可利用符合第 15圖之方法的一波快門操作擷取一影像。在各個實施例 中,在該影像感測器電路200被用以執行一波快門操作之情 形中,該影像擷取感測器電路200可接收一信號,該信號指 20 定了需被用於該波快門操作的一或多個結構元件。在一些 實施例中,該影像擷取感測器電路200可被組配以基於感測 光條件自動選擇快門操作之一類型。 影像感測器電路(例如影像感測器電路200)之各個示範 性應用包括(例如)製造自動化、產品組件、識別(ID)讀取 67 200917827 器、車輛控制、姿勢辨識、視訊監控、三維(3D)建模、移動 分析、醫學裝置、軍事裝置、映射系統或類似者中的用途。 本文所揭露的實施例在所有層面中被認為是本發明之 說明性且非限制性的。本發明並不限於以上所描述的實施 5 例。在不背離本發明之精神及範圍下,可對本發明作出各 種修改及變化。落於申請專利範圍之等效意義之範圍内的 各種修改及變化意指在本發明之範圍内。 t圖式簡單說明3 第1圖描述了 一習知的影像感測器電路; 10 第2圖描述了 一習知的畫素電路; 第3圖描述了一習知的行類比對數位轉換器(A D C)電路; 第4圖描述了 一習知的影像感測器電路; 第5圖描述了依據本發明之一實施例的一影像處理系統; 第6圖描述了依據本發明之一實施例的一影像感測器 15 電路; 第7圖描述了依據本發明之一實施例的一晝素電路; 第8圖描述了依據本發明之一實施例的一臨界電流產 生器; 第9圖描述了依據本發明之一實施例的一行A D C電路; 20 第10圖描述了依據本發明之一實施例的一參考信號轉 換器; 第11圖描述了依據本發明之一實施例的一影像感測器 電路; 第12圖描述了依據本發明之一實施例的一行ADC電路; 68 200917827 第13圖描述了依據本發明之—實施例的一影像感測器 電路; 第14圖描述了依據本發明之—實施例的一晝素電路之 一佈局; 5 冑15圖描述了用於依據本發明之-實施例的-影像感 測器電路之方法的一流程圖; 第16圖描述了用於依據本發明之一實施例的一影像感 測器電路之一方法的一流程圖; 第17圖描述了用於依據本發明之一實施例的一影像感 10測器電路之一方法的一流程圖; 第18A圖描述了依據本發明之—實施例的由一結構元 件指定的一擴張準則; 第18B圖描述了依據本發明之_實施例的由一結構元 件指定的一擴張準則; 15 帛18C圖描述了依據本發明之-實施例的由-結構元 件指定的一擴張準則; 第18D圖描述了依據本發明之—實施例的由一結構元 件指定的一擴張準則; 第19A圖描述了依據本發明之一實施例的一曝光圖樣 20 緩衝器之内容的一例子;20 circuit 200 is configured to obtain an image using an electronic shutter operation, wherein the exposure pattern of the pixel array 2 4 G is set based on exposure information that changes over time, based at least in part on the fineness of the pixel array - the charge accumulated in the part. When a shutter operation conforming to, for example, the method of Fig. 15 is used, the maximum allowable time for performing an image capturing operation can be limited by the efficiency of the pixel circuit 250. The ability of the shutter to accurately reproduce the charge of the ^^ point 2_ during the image capture operation is 'the ability of the image to be prohibited or blocked or Stop the money in the sense of loss = time to - the last image is read out of the book of the operation of the film. During this time, the section is degraded. The amount of this degradation can be proportional to the amount of charge generated by the singulation, the intensity of the light 63 200917827 on the 4 pixel circuit 250, and the amount of time the stored charge must be maintained 'until it is finally from the 昼The matrix array 240 is read. In various embodiments, an automatic shutter mechanism allows for the use of light intensity to control one of the individual pixel circuits or pixel circuits within an image sensor circuit. In some such embodiments, during an image capture operation, the exposure of the pixel circuit receiving the bright light may be stopped earlier than the exposure of the pixel device receiving the lower intensity light. In various embodiments, when exposed in a pixel circuit of a pixel array, the sensed value within one of the pixel circuits must be maintained within the sensing node until the drawing The exposure in the remaining pixel circuits within the array of primes 10 ends and the last signal of an image is read from the pixel array. Shutter efficiency may indicate that analog information may be stored in one of the sensing nodes (e.g., - floating diffusion nodes) of one of the pixel arrays of the pixel array for a maximum amount of time without significant degradation. Referring to Fig. 22, various techniques that allow for improved shutter efficiency are described herein. Figure 22 depicts a layout 90 in accordance with an embodiment of the present invention. The layout 900 includes the pixel circuit 25A. The elements of the embodiment of the pixel circuit 250 in Fig. 22 which are similar to the elements of the embodiment of the pixel circuit 25A in Fig. 14 are denoted by the same reference symbols. In various embodiments, the pixel circuit 25A includes the anti-glow gate transistor 20 body 216. Incorporating the anti-diffusion gate transistor 216 into the pixel circuit 250 can provide a way to block the photodiode 201 after the exposure of the pixel circuit 250 has stopped reaching the sensing node 203 of the pixel circuit 250. The mechanism of the charge generated by the light inside. The use of a primary anti-gap gate transistor can be used differently from one of the anti-gluence gate transistors to avoid a pixel of the pixel near the pixel of a saturating pixel circuit. The photodiode of the 200917827 circuit draws an excess of the pixel circuit. The charge. In various embodiments, a light sensor (e.g., photodiode 201) is extended. For example, one of the regions of the photodiode 2〇1 can be added to one or more of the extended regions 501. In some embodiments, the photodiode 2〇1 is a pin-type light 5 diode. Moreover, in some embodiments, a region of the photodiode 201 can be extended or increased as much as possible. In some embodiments, the one or more extension regions 501 may even extend under one or more lines, such as exposure control line 255, anti-dispersion control signal line 256, voltage source line 235, row readout line 231, or Similar. In various embodiments, the one or more lines are metal wires. In some embodiments, although the one or more extended regions may not improve one of the response of the pixel circuit 250, the one or more extended regions 〇1 may increase the area in which the charge generated by the light is absorbed, thus reducing The possibility of this charge accidentally reaching the sensing node 203. Thus, the one or more extended regions 5〇1 in various embodiments may allow for improved shutter efficiency. In various embodiments, the layout 9 further includes one or more virtual diffusions 502. In some embodiments, the one or more virtual diffusions 5〇2 may be located in other empty regions of the pixel circuit 250 that do not belong to the photodiode 201 or the transistors 214, 215, 205, 205, and 206. If some of the light generated by the one or more virtual diffusions 502' arrives at the vacant space, it may diffuse to the sensing node 203 and reduce the shutter efficiency. In various embodiments, to prevent this from happening, the equal-space region covers one or more virtual diffusions 〇2. In various embodiments, the one or more virtual diffusions 〇2 are connected to a constant voltage source (not shown in FIG. 22), such as a voltage supply or the like, thereby passing through the one or more The charge generated by any light of the virtual diffusion 502 is absorbed by the voltage supply source 65 200917827. Rate Because in various embodiments, short wavelength illumination is used to help improve shutter efficiency. In various embodiments, the use of short wavelength light can help improve the shutter to short wavelength photons that can be absorbed near the -11 surface, and thus can be Light = 2: Capture. Longer wavelength photons can reach the deeper part of the material, and the photodiode-action area' thus increases the probability of reaching the sensing point 203 and reduces the shutter ratio. 10 15 20 In various embodiments, the layout 9〇〇 further includes an infrared ray on the painting (by 穿透·波 please. By penetrating to the non-occlusion of the electric field, the prime circuit 2 Huan-based (four) is deep _ square, infrared photons may cause problems' and electrons from the photons may randomly diffuse and reach the sensing node 203, thereby degrading the data stored in the sensing node 2〇3. (4) The money wave (4) 3 of the money road 25, the number of charges generated by the light in the deep substrate of the pixel circuit 25Q may be reduced, thereby allowing the shutter efficiency to be improved. In some embodiments, the layout 9GG may A color filter (not shown in Fig. 22) is included on the pixel circuit 25(). The behavior of long wavelength photons in the visible spectrum may be similar to the claw photons and may be due to the penetration of the pixel into the pixel circuit 25 A problem occurs in a very deep area of the substrate. In various embodiments, a color filter can be used to prevent such photons from reaching one of the substrate of the pixel circuit 25. In some embodiments, The pixel circuit 250 can be matched to sense the visible light spectrum In some embodiments, the halogen circuit 25 can be configured to sense light outside the visible spectrum. In various embodiments, the layout 9 further includes a metal protection feature 66 200917827 sign 504. In various embodiments, the metal protection feature 504 can cover at least a portion of the sensing node 203. In some embodiments, protecting the sensing node 203 with a metal protection can allow for reduced storage due to light generation. The degradation of the charge within node 203 is measured. 5 Referring again to Figure 6, in various embodiments, image sensor circuit 200 can be configured to allow receipt of an instruction that specifies that it needs to be used for one or more The type of shutter mode for a particular image capture operation. For example, in various embodiments, the image sensor circuit 200 can be configured to receive an instruction that is selected for use in an image capture operation (1) a global shutter 10 operation; (ii) a rolling shutter operation; and (iii) one of a wave shutter operation. In such embodiments, in the case where the command specifies a global shutter operation, the image The sensor circuit 200 can capture an image using a global shutter operation. Moreover, in such embodiments, the image sensor circuit 200 can utilize a rolling shutter operation in the event that the command specifies a rolling shutter operation. 15 is to capture an image. Further, in such embodiments, in the case where the command specifies a shutter operation, the image sensor circuit 200 can utilize a wave shutter operation in accordance with the method of FIG. In various embodiments, in the case where the image sensor circuit 200 is used to perform a wave shutter operation, the image capture sensor circuit 200 can receive a signal that is determined by the signal 20 One or more structural elements that are used for the shutter operation of the wave. In some embodiments, the image capture sensor circuit 200 can be configured to automatically select one of a type of shutter operation based on the sensed light condition. Exemplary applications for image sensor circuits (eg, image sensor circuit 200) include, for example, manufacturing automation, product components, identification (ID) reading 67 200917827, vehicle control, gesture recognition, video surveillance, three-dimensional ( 3D) Use in modeling, mobile analysis, medical devices, military devices, mapping systems, or the like. The embodiments disclosed herein are considered to be illustrative and not limiting of the invention in all aspects. The present invention is not limited to the embodiment described above. Various modifications and changes may be made to the invention without departing from the spirit and scope of the invention. Various modifications and variations are intended to be included within the scope of the invention. t-Simple Description 3 Figure 1 depicts a conventional image sensor circuit; 10 Figure 2 depicts a conventional pixel circuit; Figure 3 depicts a conventional row analog-to-digital converter (ADC) circuit; FIG. 4 depicts a conventional image sensor circuit; FIG. 5 depicts an image processing system in accordance with an embodiment of the present invention; FIG. 6 depicts an embodiment in accordance with the present invention An image sensor 15 circuit; FIG. 7 depicts a pixel circuit in accordance with an embodiment of the present invention; FIG. 8 depicts a threshold current generator in accordance with an embodiment of the present invention; A row of ADC circuits in accordance with an embodiment of the present invention; 20 FIG. 10 depicts a reference signal converter in accordance with an embodiment of the present invention; FIG. 11 depicts an image sensing in accordance with an embodiment of the present invention Figure 12 depicts a row of ADC circuits in accordance with an embodiment of the present invention; 68 200917827 Figure 13 depicts an image sensor circuit in accordance with an embodiment of the present invention; Figure 14 depicts in accordance with the present invention a glimpse of the embodiment One of the circuits; FIG. 15 is a flow chart depicting a method for an image sensor circuit in accordance with an embodiment of the present invention; FIG. 16 depicts a method for use in accordance with an embodiment of the present invention. A flowchart of one of the methods of the image sensor circuit; FIG. 17 depicts a flow chart of a method for an image sensor circuit in accordance with an embodiment of the present invention; Inventive - an expansion criterion specified by a structural element of the embodiment; Figure 18B depicts an expansion criterion specified by a structural element in accordance with an embodiment of the present invention; 15 帛 18C depicts a method in accordance with the present invention - An expansion criterion specified by the structural element of the embodiment; FIG. 18D depicts an expansion criterion specified by a structural element in accordance with an embodiment of the present invention; FIG. 19A depicts an embodiment in accordance with an embodiment of the present invention An example of the content of the exposure pattern 20 buffer;
第19B圖描述了依據本發明之一實施例的依據第19A 圖的曝光圖樣緩衝器之内容設定的一畫素陣列之一曝光圖 樣的一例子; 第19C圖描述了依據本發明之一實施例的一曝光圖樣 69 200917827 緩衝器之内容的一例子; 第19 D圖描述了依據本發明之一實施例的一曝光圖樣 緩衝器之内容的一例子; 第19E圖描述了依據本發明之一實施例的依據第 5圖的曝光圖樣緩衝器之内容設定的一畫素陣列之一曝光圖 樣的一例子; 第19 F圖描述了依據本發明之一實施例的一曝光圖樣 緩衝器之内容的一例子; 第19G圖描述了依據本發明之一實施例的一曝光圖樣 10 緩衝器之内容的一例子; 第19H圖描述了依據本發明之一實施例的依據第19G 圖的曝光圖樣緩衝器之内容設定的一畫素陣列之一曝光圖 樣的一例子; 第191圖描述了依據本發明之一實施例的一曝光圖樣 15 緩衝器之内容的一例子; 第19 J圖描述了依據本發明之一實施例的一曝光圖樣 緩衝器之内容的一例子; 第19K圖描述了依據本發明之一實施例的依據第19J圖 的曝光圖樣緩衝器之内容設定的一畫素陣列之一曝光圖樣 20 的一例子; 第20圖描述了依據本發明之一實施例的一影像感測器 電路; 第21圖描述了依據本發明之一實施例的一影像感測器 電路;以及 70 200917827 第2 2圖描述了描述了依據本發明之一實施例的一佈局 【主要元件符號說明】 129…傳輸信號線 130···重設定信號線 131…感測節點 132···電壓源 133…地端 140···源電晶體 142…雙取樣放大器 144…類比對數位轉換器 (ADC)電路 146···放大器控制信號線 148…轉換器控制信號線 200…影像感測器電路 201…光二極體 202···傳輸閘電晶體 203···感測節點 204···重設定電晶體 205…驅動電晶體 206…讀取選擇電晶體 207…雙取樣放大器 208···源電晶體 209...ADC 電路 210.··數位影像處理器 100…影像感測器電路 101…畫素陣列 102…類比對數位轉換器(ADC) 方塊 103…數位影像處理器 104…列定址電路 105…控制處理器 106…影像記憶體緩衝器 107^ 1072, ...,107广.列控制線 108!、1082,...,108^…類比輸 出線 109丨、1092,…,109m…數位輸 出線 112···晝素電路 114…行ADC電路 121…光二極體 122···傳輸閘電晶體 131…感測節點 124···重設定電晶體 125···驅動電晶體 126···讀取選擇電晶體 127···列讀出信號線 71 200917827 211···影像記憶體緩衝器 212··.控制處理器 213···畫素控制信號產生器 214···第一寫入選擇電晶體 215···第二寫入選擇電晶體 216···抗輝散閘電晶體 217···電壓源開關 217^217^··電壓源開關 218···電流源 219…輸出線 220···行ADC電路 221···參考信號轉換器 222···電流對電壓轉換器 222b…電流比較器 223…列控制線 223^223^4]控制線 224…電流對電壓轉換器 225···差值比較器 226…晝素控制信號線 2261〜226m…晝素控制信號線 227…輸出模式開關 228···數位多工器 229···電壓驅動器 230···電壓源 231···行讀出線 231^231…行讀出線 232···參考信號線 233···地端 234…偏壓源 234丨〜234m···偏壓源 235···電壓源線 2351〜235m…電壓源線 238···電壓源線 239…開關 240…晝素陣列 241…控制線 242···控制線 243···參考電壓線 245…通訊線 246···數位輸出線 246,~246m·· •數位輸出線 247…寫入匯流排 248…讀取/寫入匯流排 249…ADC方塊 250…晝素電路 251···電壓源 252···重設定信號線 253…傳輸信號線 72 200917827 254···列讀出信號線 400…電阻柵 255···曝光控制信號線 401···可開關電阻器 256…抗輝散控制信號線 402…電容器 260···臨界電流產生器 403…電壓比較器 265···電流控制電晶體 501…延伸區域 266…選擇電晶體 502…虛擬擴散 267···臨界電壓源 503…紅外線濾波器 268···臨界電壓線 504…金屬保護特徵 273···電壓供應源 700…影像處理系統 274…選擇信號線 800…處理器 281…偏壓源 900…佈局 283···電流源開關 S301〜S311…步驟 290…一或多個電路 295…曝光圖樣緩衝器 S601〜S654…步驟 1/ 73Figure 19B depicts an example of an exposure pattern of a pixel array set in accordance with the contents of the exposure pattern buffer of Figure 19A in accordance with an embodiment of the present invention; Figure 19C depicts an embodiment in accordance with the present invention. An exposure pattern 69 200917827 An example of the contents of the buffer; Figure 19D depicts an example of the contents of an exposure pattern buffer in accordance with an embodiment of the present invention; Figure 19E depicts an implementation in accordance with one embodiment of the present invention An example of an exposure pattern of a pixel array set according to the content of the exposure pattern buffer of FIG. 5; FIG. 19F depicts a content of an exposure pattern buffer according to an embodiment of the present invention. Example; Figure 19G depicts an example of the contents of an exposure pattern 10 buffer in accordance with an embodiment of the present invention; Figure 19H depicts an exposure pattern buffer in accordance with Figure 19G in accordance with an embodiment of the present invention. An example of an exposure pattern of a pixel array of content settings; FIG. 191 depicts an example of the contents of an exposure pattern 15 buffer in accordance with an embodiment of the present invention; Figure 19J depicts an example of the contents of an exposure pattern buffer in accordance with an embodiment of the present invention; Figure 19K depicts the content setting of the exposure pattern buffer in accordance with Figure 19J, in accordance with an embodiment of the present invention. An example of an exposure pattern 20 of one of the pixel arrays; FIG. 20 depicts an image sensor circuit in accordance with an embodiment of the present invention; and FIG. 21 depicts an image sense in accordance with an embodiment of the present invention. Detector circuit; and 70 200917827 FIG. 2 2 depicts a layout according to an embodiment of the present invention [main component symbol description] 129...transmission signal line 130···reset signal line 131...sensing node 132 ···Voltage source 133... Ground terminal 140···Source transistor 142...Double sampling amplifier 144... Analog-to-digital converter (ADC) circuit 146···Amplifier control signal line 148... Converter control signal line 200...Image Sensor circuit 201...photodiode 202···transmission gate transistor 203···sensing node 204···resetting transistor 205...driving transistor 206...reading selection transistor 207...double sampling amplifier 2 08···Source transistor 209...ADC circuit 210.············································· 104...column addressing circuit 105...control processor 106...image memory buffer 107^1072, ..., 107 wide. column control lines 108!, 1082, ..., 108^... analog output lines 109丨, 1092 ,...,109m...digital output line 112···昼 电路 circuit 114...row ADC circuit 121...photodiode 122···transmission gate transistor 131...sensing node 124···resetting the transistor 125··· Driving transistor 126···Reading selection transistor 127··· Column reading signal line 71 200917827 211···Image memory buffer 212··. Control processor 213··· pixel control signal generator 214 ···First write selection transistor 215···Second write selection transistor 216···Anti-glow gate transistor 217···Voltage source switch 217^217^··Voltage source switch 218·· Current source 219...output line 220···row ADC circuit 221···reference signal converter 222···current to voltage converter 222b...electric Comparator 223...column control line 223^223^4] control line 224...current to voltage converter 225···difference comparator 226... elementary control signal line 2261~226m... 昼 control signal line 227... output mode Switch 228···Digital multiplexer 229···Voltage driver 230···voltage source 231···row readout line 231^231...row readout line 232···reference signal line 233···ground end 234...bias source 234丨~234m···bias source 235··voltage source line 2351~235m...voltage source line 238···voltage source line 239...switch 240...morphe array 241...control line 242· ··Control line 243···Reference voltage line 245...Communication line 246···Digital output line 246,~246m··•Digital output line 247...Write bus 248...Read/write bus 249...ADC Block 250... 昼 电路 circuit 251 ···voltage source 252···reset signal line 253...transmission signal line 72 200917827 254··· column readout signal line 400...resistance gate 255···exposure control signal line 401· ··Switchable resistor 256...anti-dispersion control signal line 402...capacitor 260···critical current generator 403...voltage ratio Comparator 265···current control transistor 501...extension region 266...selection transistor 502...virtual diffusion 267···threshold voltage source 503...infrared filter 268···threshold voltage line 504...metal protection feature 273·· Voltage supply source 700...image processing system 274...selection signal line 800...processor 281...bias source 900...layout 283··current source switch S301~S311...step 290...one or more circuits 295...exposure pattern buffer S601~S654...Step 1/73