TW200917502A - A method for producing a metal backside contact of a semiconductor component, in particular, a solar cell - Google Patents

A method for producing a metal backside contact of a semiconductor component, in particular, a solar cell Download PDF

Info

Publication number
TW200917502A
TW200917502A TW97132991A TW97132991A TW200917502A TW 200917502 A TW200917502 A TW 200917502A TW 97132991 A TW97132991 A TW 97132991A TW 97132991 A TW97132991 A TW 97132991A TW 200917502 A TW200917502 A TW 200917502A
Authority
TW
Taiwan
Prior art keywords
layer
deposition
substrate
deposited
vacuum
Prior art date
Application number
TW97132991A
Other languages
Chinese (zh)
Inventor
Roland Trassl
Stephan Wieder
Jian Liu
Jurgen Henrich
Gerhard Rist
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP07017000A external-priority patent/EP2031659A1/en
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200917502A publication Critical patent/TW200917502A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

The present invention relates to a method for manufacturing a backside contact (21) of a semiconductor component, in particular, of a solar cell (20), comprising a metallic layer (24) on the backside of a substrate (22) in a vacuum treatment chamber, and the use of a vacuum treatment system for performing said method. Through this method and its use, in particular silicon based solar cells (20), can be provided with a back contact (21) in a simple manner in a continuous process sequence, wherein the process sequence can be provided particularly efficient and economical, since no handling systems for rotating the substrate (22) are required, and in particular silk screening steps can be dispensed with.

Description

200917502 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種半導體元件之背側接點的製造方 . 法,特別是如請求項1所定義的太陽能電池,以及用來執 行如請求項1 6所定義之方法的真空處理系統。 【先前技術】 f 光電技術是目前眾所矚目的焦點,且預期將來會隨著 ί 人類希望開發出不必仰賴原油的新能源而會愈來愈重要。 儘管近年來已加快對於薄膜太陽能電池的研發速度,但目 前主要收益仍然來自矽技術。主要原因在於此技術已相當 成熟,另一部分則是可用其來製造效益最高的太陽能電池。 在製造太陽能電池的過程中,需執行下列步驟。首先, 對矽晶圓執行損害修復及紋理化。其次,利用擴散一摻質 (如,磷掺質),其沉積在矽晶圓表面下約〇·5μιη處來形成 一發射層,而製造出發射器。同時,伴隨著Si 02發射器的 C.> 製造,在接下來的第三步驟中,利用蝕刻將其移除。之後, 以電漿強化之化學氣相沉積法或反應性濺鍍來沉積 SiN:Η 抗反射層。在下一步驟中,利用將氫擴散進入矽晶圓或進 入發射層、鈍化通孔,而使此S i N: Η抗反射層可做為一鈍 化層。在第四步驟中,利用前側(有發射層的那側)上的銀 泥及背側上的鋁泥,以絲網在晶圓的前側及背側沉積出接 點,做為具有凹陷處的金屬層,在凹陷處插入銀泥做為可 被焊接的層。在後續第五步驟中,執行加熱,使得接點被 5 200917502 硬化。藉此’將銀壓入該區中S i N: Η層的前側,而沉積在 SiN:H層及梦晶圓上,並與之接觸。如上述,透過氫擴散 入並沉積在通孔中而能同時執行鈍化前側通孔。至於背 側,藉由點燃步驟形成一背表面場(a back surface field, BSF),其也會引起背侧通孔鈍化這些都可透過擴散鋁進 入梦晶圓’藉以形成Al-Si -共熔合金(eutectic)來達成。最 後,可達成邊緣絕緣以避免出現漏電流。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of fabricating a backside contact of a semiconductor device, in particular, a solar cell as defined in claim 1, and for performing the request A vacuum processing system for the method defined in 16. [Prior Art] f Optoelectronic technology is currently the focus of attention, and it is expected that in the future, it will become more and more important as humans hope to develop new energy sources that do not have to rely on crude oil. Although the speed of research and development of thin film solar cells has been accelerated in recent years, the main revenue still comes from the technology. The main reason is that this technology is quite mature, and the other part is that it can be used to manufacture the most efficient solar cells. In the process of manufacturing a solar cell, the following steps are required. First, damage repair and texturing are performed on the wafer. Secondly, a diffuser-doped material (e.g., phosphorus dopant) is deposited at about 〇5 μmη below the surface of the germanium wafer to form an emissive layer to produce an emitter. At the same time, along with the C.> fabrication of the Si 02 emitter, it is removed by etching in the next third step. Thereafter, a SiN:iridium antireflection layer is deposited by plasma enhanced chemical vapor deposition or reactive sputtering. In the next step, the Si n N: anti-reflective layer can be used as a passivation layer by diffusing hydrogen into the germanium wafer or into the emissive layer and passivating the via. In the fourth step, the silver paste on the front side (the side with the emissive layer) and the aluminum paste on the back side are used to deposit a contact on the front side and the back side of the wafer as a metal having a recess. In the layer, silver paste is inserted into the depression as a layer that can be welded. In the subsequent fifth step, heating is performed so that the joint is hardened by 5 200917502. Thereby, silver is pressed into the front side of the S i N: germanium layer in the region, and deposited on the SiN:H layer and the dream wafer, and is in contact therewith. As described above, the passivation front side via hole can be simultaneously performed by diffusion and deposition of hydrogen in the via hole. As for the back side, a back surface field (BSF) is formed by the ignition step, which also causes the back side passivation to be passivated. These can be diffused into the dream wafer by diffusion of aluminum to form Al-Si-eutectic. Alloy (eutectic) to achieve. Finally, edge insulation can be achieved to avoid leakage currents.

如上述,這些矽太陽能電池的背侧接點一般是由金屬 層(且可能包含一阻障層與一可被焊接的層)製成的。一般 來說,此背側接點的金屬層目前是利用絲網技術製作。因 此,其對連續運作的真空處理系統的大型應用是必要的, 可使這類太陽電池的製造成本下降,且數個基板是同時被 鍍覆,以分別提供每一單片基板這類的背側接點。這也意 謂著必須為每一單片基板單獨執行絲網處理。因此,將使 這類真空處理腔室的產率受到限制。此外,需要特別的處 理系統,方能旋轉基板-,因此會增加這類系統的成本且進 一步對產出率造成限制。 再者,以此方式製造出來的背側接點還有一項不利之 處,就是所用的絲網泥很昂貴,且所形成的接點品質不佳, 因為硬化層具多孔性,且只有在此種形式可存在點狀接點 (a punctiform contact)。對金屬層來說’層厚度約需要 3 0μιη,使得薄晶圓可彎曲。此影響愈來愈重要,因此需要 降低晶圓厚度。因此,以晶圓厚度來交換成本和效率,其 中較厚的晶圓因為需使用較多材料’因此成本較高,極薄 6 200917502 較高,相反的,效 度來決定,另一方 結合所引起的損失 2 0 0 μιη 至 250 μπι 響。 具有金屬接點之太 是使一絲網步驟(a 可使製程變得更經 高的產出率(higher 第1項之特徵的方 特徵的真空沉積系 式係在於附屬請求 製造出具有金屬層 在於·•該金屬層是 vaccum deposition 經由氣相沉積,其 -至少一附加層(at 和/或背側上。 的晶圓則是因為構造複雜,因此成本也 率則是由用來吸收光之足夠大的層厚. 面’雖然厚度足夠小,因電荷載子再度 則可維持在最小狀態。目前’較佳是使用 之晶圓厚度,其中彎曲會帶來不利的影 【發明内容】As mentioned above, the backside contacts of these tantalum solar cells are typically made of a metal layer (and possibly a barrier layer and a layer that can be soldered). In general, the metal layer of the backside contact is currently fabricated using wire mesh technology. Therefore, it is necessary for large-scale applications of continuously operating vacuum processing systems, which can reduce the manufacturing cost of such solar cells, and several substrates are simultaneously plated to provide backs of each of the single-chip substrates, respectively. Side joints. This also means that the screen processing must be performed separately for each single substrate. Therefore, the yield of such vacuum processing chambers will be limited. In addition, a special handling system is required to rotate the substrate - thus increasing the cost of such systems and further limiting the yield. Moreover, the back side joint manufactured in this way has another disadvantage, that is, the screen mud used is expensive, and the joint formed is of poor quality because the hardened layer is porous and only here. The form may have a punctiform contact. For the metal layer, the layer thickness is about 30 μm, so that the thin wafer can be bent. This effect is becoming more and more important, so it is necessary to reduce the thickness of the wafer. Therefore, the cost and efficiency are exchanged in wafer thickness, where thicker wafers require more materials because of the higher cost, so the cost is higher, and the thinner 6 200917502 is higher. On the contrary, the validity is determined by the combination of the other side. The loss is 2 0 0 μιη to 250 μπι. The metal junction is too much to make a screen step (a can make the process more high yield rate (the vacuum deposition system of the feature of the higher feature of the first item is that the accessory request is made with a metal layer • The metal layer is vaccum deposition via vapor deposition, which - at least one additional layer (at and / or on the back side of the wafer is because of the complex structure, so the cost is also used to absorb light enough Large layer thickness. Although the thickness is small enough, the charge carriers can be kept at a minimum state again. At present, it is better to use the thickness of the wafer, in which bending will bring unfavorable shadows.

本發明目地之一在於提向用以製造 陽能電池的真空處理系統的效率,特別 silk screening step)變成多餘。因此, 濟、商業上可行且比目前製程具有更 throughput)· 此目的係藉由具有如申請專利範圍 法以及使用如申請專利範圍第1 6項之 統來實施此方法而實現,較佳的實施方 項之標的内容。 依據本發明,用以在基板之背側上 之太陽能電池背側接點的方法,其特徵 在一共轴的真空沉積系統(an inline system)中從一標把經由藏鐘而沉積,或 中在沉積該金屬層之前或之後,沉賴 least one additional layer)在該基板前側 對小批的矽太陽能電池來說,真空沉積金屬層的方式 已揭示在US 7,071,081 B2中。但是,前技從未揭示如何 200917502 在一共軸的真空沉積系統内操作,且其完全是用來產 BSF (背表面場),其一開始是透過氣相沉積或是濺鍍 一由鋁製成的金屬層,之後燒結該層並沉積第 V族 . 層。這3種步驟是分別在3種不同的設備中執行。因 其沉積步驟無法經濟有效地應用在同軸運作的真空沉 備中,此外,仍然需要透過絲網技術施加真正的金屬 接點。 從美國案7,071,018 B2中可知已可在實驗室階段 — 矽太陽能電池,其係以PVD方式在薄Si02或SiN層 積出厚度等於2μιη的銘層,此Si〇2或SiN層可幫助 的堆疊並避免摻質擴散。但是,此專利所揭示的方法 適合商業使用,因此法中所需的矽晶圓是以浮動區 (the floating zone method)來製造,其製造成本不符經 益。 經由本發明方法,將不再需要過去用來沉積背側 的絲網步驟,且不會打斷真空製程,因此不會產生不 ij 的氧化物,進而可避免後續的清洗步驟。 當用來沉積背側接點的沉積工具是參照產物動線 配置,而位在用來在基板前側沉積層之沉積工具的 時,將不再需要可旋轉基板的複雜處理系統。因此, 需要旋轉基板,且可直接從基板的任一側進行沉積。女 矽太陽能電池製程的主要部分原則上可連續地在一共 真空沉積設備内執行。 為了避免因載具而遮蔽基板,停放在載具上的基 生一 沉積 元素 此, 積設 背侧 實現 上沉 BSF 並不 方法 濟效 接點 欲求 進行 對面 不再 '此, 軸的 板實 8 200917502 質上是以點狀形式進行支撐。 因此,基板較佳是以水平方式沿著塗佈工具前進。如 此,可使用沉積工具與沉積方向垂直對齊且基板是水平傳 送的設備,藉此可簡化基板在傳送期間的處理過程,因為, 現在基板可直接在滚輪上傳送。 在本發明一特定實施方式中,金屬層包含一種選自以 下的材料:鋁'銀、鉬和/或鎳,或一或多種上述材料的組 合。這些金屬因為具導電性,因此具有優良的接觸性質。 但較佳是使用銘,因為銘的成本最低。金屬層的厚度較佳 是在Ο.ίμιη至ΙΟμπι間,最好是2μιη。因為接觸性質佳, 因此這様薄的層即已足夠,而不需使用經絲網技術沉積而 成的金屬層。透過使用這些薄層,也不會在薄基板中產生 有晶圓彎曲的問題。 在基板與金屬接觸層之間,可沉積一由 SiN:H、 SiC:H、Si02:H或a-Si:H中選出之材料所做成的鈍化層, 較佳是以SiN:H沉積成鈍化層。此外,也可提供由Wti製 {j 成的阻障層。為了改善金屬接觸層的焊接能力,將可焊接 的層沉積在此層上。該層可具有一或多層,其係由選自銀 (Ag)、鎳(Ni)、鎳鈒合金(NiV)、鎳鉻合金(NiCr)及鉻(Cr) 之材料所形成的。在本文中,層的含意代表沒有密封的表 面層。可被焊接的層代表只有部分可覆蓋表面。 可利用本發明製程來沉積這些層,其中可使用氣相沉 積或濺鍍沉積,但較佳是使用濺鍍沉積。 在一較佳實施方式中,透過強雷射束部分熔化基板並 9 200917502 創造出一雷射發射接點(laser fired contact, LFC),來 基板背側金屬層的接觸步驟。當鈍化層是位在基板與 層之間的背側上時,也可使用本方法。 在一特別好的實施方式中,在沉積至少一層至基 側期間,也沉積至少一層在基板前側。因此,在真空 設備的至少一真空處理腔室的兩相對側上設置沉積工 並使基板在這些沉積工具之間移動。經由基板,界定 室中的兩個各自分開的區域。因為可同時在基板上沉 I ? 層’因此,可將低實體體積大小和這類真空處理設備 本’同時提高產率。 當然’在此實施方式中,必須確信沉積製程彼此 互相干擾或妨礙。因此,當金屬彼此不互相干擾時, 時氣相沉積數種金屬。此外,由於處理氣體和層材料 不互相干擾’因此也可濺鍍沉積相同層。但是,無法 進行氣相沉積或濺鍍’因其彼此所需的壓力極為不同, 毫巴或1(Τ3毫巴。 CJ 關於本發明,「共轴處理(inline processing)」並 然代表實際將基板由真空腔室傳送到另一真空腔室, 沉積各層,而是在不實際傳送基板的情況下通過特定 步驟,此代表同時在基板前侧或背側沉積層。,「共軸 代表真空處理設備中的基板被傳送到真空處理腔室内 放在其中的一個位置上,並在前側和背側已被有效 後’離開真空腔室或真空設備。當然,也可在塗佈期 送基板。當數個基板同時位在一載器上並塗佈金屬層 執行 金屬 板背 處理 具, 出腔 積兩 的成 不會 可同 彼此 同時 10_4 不必 以便 處理 」也 ,停 塗佈 間傳 時, 10 200917502 更可進一步提高產出率。 為簡化設備的維護,可在真空腔室一抽屜内(a drawer) 設置至少一塗佈工具。「抽屜内」一詞在本文中代表當移除 一特定抽屜後,不會打斷製程的真空狀態,但基板仍可於 真空狀態下在不同真空腔室間進行傳送。對真空狀態來 說,這類真空處理腔室的傳送區域因此可與其插入件彼此 分開。 f、 當氣相沉積一層金屬層時,較佳是以金屬線(wire)方 式經由真空通道提供金屬到揮發區。 相反的,也可使用下列步驟。當氣相沉積金屬時:提 供金屬揮發器到後續真空處理腔室内,且金屬是在真空處 理腔室内揮發,直到第一揮發器内所包含的金屬均被消耗 至盡為止。當第一揮發器内所包含的金屬被消耗殆盡之 後,在不打斷氣相沉積的情況下,以第二揮發器將另一真 空處理腔室内的金屬揮發。接著,當第一揮發器是以抽屜 形式提供時,即可維持第一揮發器,接著,待第二揮發器 Cj 中的金屬被消耗完時,第一揮發器即可繼續揮發等等。藉 此,因為金屬可在不打斷沉積處理的情況下被揮發,因此 可提高產率。 當所執行的是濺鍍沉積而非氣相沉積時,較佳是分別 以一可轉動的陰極來滅鍍沉積金屬接觸.層。透過此可轉動 的陰極,長期來說可創造出較平面陰極更穩定的沉積條 件。特別是,藉此可在一直流-濺鍍製程中實施沉積,其中 也可使用脈衝式直流-濺鍍或至少兩標靶的中頻-濺鍍 11 200917502 (medium frequency-sputtering),並可在同時傳送 間’以特定動力學方式執行。 在一較佳實施方式中,可視陰極的濺锻產率、 的金屬層厚度、和真空處理設備的產出率來挑選所 的陰極。此代表可藉由一預定的層厚度、濺鍍率和J 來改變陰極的數目。當然,同時也可透過調整濺鍍 濺鍍產率和/或調整傳送速度,來改變產出率。 同時可透過這些氣相沉積條件或濺鍍技術來沉 層和可被焊接的層。但是,只能透過濺鍍來沉積鈍. 在此分別主張具有至少一真空處理腔室之真空 僙的用途,其中該真空處理設備包含至少兩個用來 述製程的塗佈工具。 較佳是,當真空處理設備具有一實質水平的傳 時’其中的沉積裝置和沉積工具是垂直地對齊。適 空沉積設備描述在DE 103 52 143A1和DE 103 52 中’其中所揭示的真空沉積設備在此併入本文作為. 當真空處理設備包含至少一抽屜元件時,其可 至少一真空處理腔室的内部’或是可從該内部被拉 中該塗佈工具是位在該插入元件内。如此,可為本. 法提供一種模組系統,其中因為塗佈工具可被置換 在特定簡單方式中,因此可將處理時間減至最少。相 當上述的氣相沉積時,兩揮發器可交替作用(其係以 式元件方式被設置在後續的真空處理腔室中),即可 略此塗佈工具的處理時間。 基板期 欲達成 需數目 .出率, 條件、 積阻障 ib層。 處理設 執行上 送路徑 當的真 1 44 A 1 參考。 被插入 出,其 發明芳 或維持 •別是, 可插入 完全省 12 200917502 EP 1 698 715A1中已描述有個別的真空預處理設備, 此文件和其中所揭示的真空處理系統在此併入本文作為參 考。 在一特別佳的實施方式中,此系統的真空處理腔室包 含至少兩沉積工具,其中一第一沉積工具指向欲在此真空 處理系統中進行塗佈之一或數個基板的前侧,且一第二沉 積工具則指向背側。如此,可依上述方式使系統的長度, 其成本與產出率被最佳化。在一較佳實施方式中,至少一 插入元件具有兩沉積工具,其分別指向基板的前側和背 側。因此,可更進一步縮短系統長度,且兩沉積工具可被 取出並經由此一插入元件同時進行維護。 對特定簡化處理來說,真空處理系統可具有傳輸滚 輪,使得基板或數基板的載器可被傳頌通過真空處理系統。 以下將透過兩實施例和附圖來說明本發明。 【實施方式】 I) 第1圖為水平共軸真空沉積系統1的示意圖。此系統 1被劃分成多個真空沉積腔室2、3、4、5、6、7、8和一 加載區9及卸載區I 0。且其具有一基板傳送系統位在一水 平面上(未示出),經由多個機械驅動的傳送滾輪來實現沿 著系統1的延伸方向,而在傳送滾輪上傳送位於載器上之 基板,使通過特定順序的真空腔室2、3、4、5、6、7、8 之目的。 用於塗佈之腔室4、5、6具有插入件11、12、13,該 13 200917502 些插入件11、12、13上設有與腔室相連的沉積工具14、 15、16。此外,每一沉積腔室有一特定的真空泵(未示出) 與其相連,一般是渦輪分子栗。滅鐘源(如,滅鍍陰極和磁 電管),及熱式揮發器及其類似物,都適合做為沉積工具。 提供這類可插入的元件〗1、1 2、1 3將使維修變得迅速並可 快速更換個別塗佈工具。 接著,依序將收納在載器上的單一或多個矽基板導入 滚輪上並連續移動通過特定腔室2、3、4、5、6、7、8, {: 並鍍覆上太陽能電池所需的沉積層。當然,也可進行不連 續的傳輸,如此,基板將不會在塗佈過程中進行傳送。 因此,透過基板上方傳輸路徑上垂直指向下方的沉積 工具而在基板前側沉積這些層,當這些層是透過濺鍍而沉 積時,此沉積是由稱為「往下濺鍍」模式來執行。但第1 圖的實施方式只顯示出如何製造背側接點。太陽能電池背 側接點的金屬層是透過設在基板傳輸路徑下方的沉積工具 14、15、16來沉積。當這些層經由濺鍍而沉積時,此沉積 是由稱為「往上濺鍍」模式來執行。 為了減少系統長度且同時提高產出率,可在沉積腔室 内同時設置用來沉積背側接點的沉積工具,以及用來在前 側沉積層的沉積工具(未示出)。但是,如上述,兩沉積製 程必須不會彼此干擾。舉例來說,可同時在基板前側或背 側執行S i N: Η層的沉積。因此將此腔室内的兩種沉積工具 分別放在個別的可插入式元件中,因此可輕易地更換或維 修。當濺鍍源是以沉積工具形式來提供時,接著就可同時 14 200917502 在-腔室内實&「往下賤鍍」&「往上機鐘」的處理 一連續式基板傳輪來說,必須調整兩沉積工具的沉 率,使得可依照基板在傳輪滾輪上的輸送速度,而在 兩面達成個別欲求的沉積厚度。同時,也可改變其他 沉積工具之沉積速率,使得基板可恆定地沿著系統内 個傳輸路徑來傳送。對不連續式傳輸來說,則不需要 沉積速率。 在製造矽太陽能電池時,對導入系統内的矽基板 沉積處理以製造背側接點,因此在「往上濺鍍」製程 一或多可轉動式陰極14、15、16可動態地沉積鈍化層 屬層,甚至是阻障層(未示出),以改善後續腔室4、 中矽基板背側上一可焊接層、及背側接點的可焊接能 因此,可視沉積速率、欲求的層厚度和系統的傳送速 決定每一塗佈腔室中可轉動式陰極14、15、16的數目 另一實施方式中(未示出),大致依照第一實施方式來 系統,其中用來沉積金屬層和/或阻障層和/或可焊接 的沉積工具,並非濺鍍源,而是一熱式揮發器。此熱 發器是設在一可插入式元件内,用來塗佈基板背面。区 可以密封在真空狀態的金屬線方式來將金屬提供到揮 内,或疋在後續腔室内以—可插入式元件分別設置兩 器的方式提供。當一揮發器内的金數被耗盡時,通常 作24小時候才會發生,將一水平閥移動到個別可插入 件上方,與傳送容積分開並移動基板。同時,啟動相 室内另一揮發器内的沉積製程。此由閥所分隔開的插 。對 積速 基板 腔室 的整 調整 執行 中, ,金 5、6 力。 率來 。在 提供 之層 式揮 I此, 發器 揮發 是操 式元 鄰腔 入式 15One of the objects of the present invention is that the efficiency of the vacuum processing system for manufacturing a solar cell, particularly silk screening step, becomes redundant. Therefore, it is commercially viable and has a more throughput than the current process. · This object is achieved by having the method as claimed in the patent application and using the method of claim 16 of the patent application, preferably implemented. The content of the subject of the party. According to the present invention, a method for backside contact of a solar cell on the back side of a substrate is characterized in that it is deposited from a header via a trap in an in-line vacuum system, or The manner in which a metal layer is vacuum deposited on a front side of the substrate for a small batch of tantalum solar cells before or after deposition of the metal layer is disclosed in US 7,071,081 B2. However, the former technology has never revealed how 200917502 operates in a coaxial vacuum deposition system, and it is entirely used to produce BSF (back surface field), which is initially made of aluminum by vapor deposition or sputtering. The metal layer is then sintered and deposited into a Group V. layer. These three steps are performed in three different devices. Since the deposition step cannot be cost-effectively applied to coaxially operated vacuum deposition, it is still necessary to apply true metal contacts through the wire mesh technique. It can be seen from the US case 7,071,018 B2 that it is available in the laboratory stage—the solar cell, which is a PVD-based layer of thin SiO 2 or SiN layer with a thickness equal to 2 μm. This Si〇2 or SiN layer can help. Stack and avoid diffusion of dopants. However, the method disclosed in this patent is suitable for commercial use, and thus the tantalum wafer required in the method is manufactured by the floating zone method, and the manufacturing cost thereof is inconsistent. By the method of the present invention, the screen step used to deposit the back side is no longer required, and the vacuum process is not interrupted, so that no oxide of ij is produced, thereby avoiding subsequent cleaning steps. When the deposition tool used to deposit the backside contacts is referenced to the product line configuration and the deposition tool is used to deposit the layer on the front side of the substrate, a complex processing system for the rotatable substrate will no longer be required. Therefore, it is necessary to rotate the substrate and deposit directly from either side of the substrate. The main part of the solar cell solar cell process can in principle be carried out continuously in a common vacuum deposition apparatus. In order to avoid shielding the substrate due to the carrier, a basal-based deposition element parked on the carrier, the back side is provided to achieve the sinking BSF, and the method is not effective. The contact is not required to be opposite. 200917502 is qualitatively supported in the form of dots. Therefore, the substrate is preferably advanced along the coating tool in a horizontal manner. Thus, a device in which the deposition tool is vertically aligned with the deposition direction and the substrate is horizontally transferred can be used, whereby the processing of the substrate during transfer can be simplified because the substrate can now be transferred directly on the roller. In a particular embodiment of the invention, the metal layer comprises a material selected from the group consisting of aluminum 'silver, molybdenum and/or nickel, or a combination of one or more of the foregoing. These metals have excellent contact properties because of their electrical conductivity. But it is better to use Ming because Ming has the lowest cost. The thickness of the metal layer is preferably between Ο.ίμιη and ΙΟμπι, preferably 2 μιη. Because of the good nature of the contact, this thin layer is sufficient without the use of a metal layer deposited by screen technology. By using these thin layers, there is no problem that the wafer is bent in the thin substrate. Between the substrate and the metal contact layer, a passivation layer made of a material selected from SiN:H, SiC:H, SiO 2 :H or a-Si:H may be deposited, preferably deposited as SiN:H. Passivation layer. In addition, a barrier layer made of WTi can also be provided. In order to improve the solderability of the metal contact layer, a solderable layer is deposited on this layer. The layer may have one or more layers formed of a material selected from the group consisting of silver (Ag), nickel (Ni), nickel-niobium alloy (NiV), nickel-chromium alloy (NiCr), and chromium (Cr). As used herein, the meaning of a layer refers to a surface layer that is not sealed. The layer that can be welded represents only a portion of the surface that can be covered. These layers can be deposited using the process of the present invention, where vapor deposition or sputter deposition can be used, but sputter deposition is preferred. In a preferred embodiment, the substrate is partially fused by a strong laser beam and a laser fired contact (LFC) is created by 200917502 to contact the backside metal layer of the substrate. The method can also be used when the passivation layer is on the back side between the substrate and the layer. In a particularly preferred embodiment, at least one layer is deposited on the front side of the substrate during deposition of at least one layer to the base side. Thus, depositors are placed on opposite sides of at least one vacuum processing chamber of the vacuum apparatus and the substrate is moved between the deposition tools. Two separate regions in the chamber are defined via the substrate. Since the layer can be deposited on the substrate at the same time, a low physical volume size and such a vacuum processing apparatus can be simultaneously improved. Of course, in this embodiment, it must be ensured that the deposition processes interfere with each other or interfere with each other. Therefore, when the metals do not interfere with each other, several metals are vapor-deposited. In addition, since the process gas and the layer material do not interfere with each other, it is also possible to deposit the same layer by sputtering. However, vapor deposition or sputtering cannot be performed 'because the pressures required for each other are very different, mbar or 1 (Τ3 mbar. CJ. Regarding the present invention, "inline processing") means that the substrate is actually Transfer from the vacuum chamber to another vacuum chamber, depositing the layers, but passing a specific step without actually transferring the substrate, which means depositing a layer on the front side or the back side of the substrate at the same time. "Coaxial represents vacuum processing equipment. The substrate is transferred to a position in the vacuum processing chamber and is removed from the vacuum chamber or vacuum device after the front and back sides have been activated. Of course, the substrate can also be delivered during the coating period. The substrates are simultaneously placed on a carrier and coated with a metal layer to perform the metal plate back processing tool. The two pieces of the cavity are not allowed to be simultaneously with each other 10_4, so that it is not necessary to be processed. Also, when the coating is stopped, 10 200917502 The production rate can be further increased. To simplify the maintenance of the equipment, at least one coating tool can be placed in a drawer of the vacuum chamber. The term "inside the drawer" is used in this paper. After removing a specific drawer, the vacuum state of the process is not interrupted, but the substrate can still be transferred between different vacuum chambers under vacuum. For the vacuum state, the transfer area of such vacuum processing chamber can therefore be The inserts are separated from each other. f. When a metal layer is vapor deposited, the metal is preferably supplied to the volatile region via a vacuum channel in a wire manner. Conversely, the following steps can also be used. Time: providing a metal volatilizer to the subsequent vacuum processing chamber, and the metal is volatilized in the vacuum processing chamber until the metal contained in the first volatile device is consumed until the metal contained in the first volatile device After being exhausted, the metal in the other vacuum processing chamber is volatilized by the second volatilizer without interrupting the vapor deposition. Then, when the first volatile device is provided in the form of a drawer, the first a volatilizer, then, when the metal in the second volatilizer Cj is consumed, the first volatilizer can continue to volatilize, etc. thereby, because the metal can be used In the case of a deposition process, it is volatilized, thereby increasing the yield. When sputtering deposition is performed instead of vapor deposition, it is preferred to extinguish the deposited metal contact layer with a rotatable cathode, respectively. Rotatable cathodes, in the long term, can create more stable deposition conditions than planar cathodes. In particular, deposition can be carried out in a DC-sputter process, in which pulsed DC-sputtering or at least two can also be used. The target's intermediate frequency-sputtering 11 200917502 (medium frequency-sputtering) can be performed in a specific kinetic manner during simultaneous transfer. In a preferred embodiment, the visible cathode is splash-forged, the metal layer The thickness and the yield of the vacuum processing equipment are used to select the cathode. This represents the number of cathodes that can be varied by a predetermined layer thickness, sputtering rate, and J. Of course, the yield can also be changed by adjusting the sputter sputtering yield and/or adjusting the transfer speed. At the same time, these vapor deposition conditions or sputtering techniques can be used to sink the layers and the layers that can be soldered. However, it is only possible to deposit blunt by sputtering. The use of a vacuum crucible having at least one vacuum processing chamber, respectively, is claimed herein, wherein the vacuum processing apparatus comprises at least two coating tools for the process. Preferably, when the vacuum processing apparatus has a substantially horizontal transmission, the deposition apparatus and the deposition apparatus are vertically aligned. A vacuum deposition apparatus is described in DE 103 52 143 A1 and DE 103 52. The vacuum deposition apparatus disclosed therein is incorporated herein by reference. When the vacuum processing apparatus comprises at least one drawer element, it can be at least one vacuum processing chamber The inner 'either can be pulled from the interior and the coating tool is located within the insert element. Thus, a modular system can be provided for this method in which processing time can be minimized because the coating tool can be replaced in a particularly simple manner. In contrast to the vapor deposition described above, the two vaporizers may alternate (which are disposed in a subsequent vacuum processing chamber in the form of a component), i.e., the processing time of the coating tool may be omitted. Substrate period To achieve the required number. Outflow rate, condition, and barrier ib layer. Processing settings Execute the upload path When the true 1 44 A 1 reference. Inserted, invented, or maintained, otherwise, can be inserted into the full province 12 200917502 EP 1 698 715 A1 has been described with individual vacuum pretreatment equipment, and this document and the vacuum processing system disclosed therein are incorporated herein by reference. reference. In a particularly preferred embodiment, the vacuum processing chamber of the system includes at least two deposition tools, wherein a first deposition tool is directed to the front side of one or more substrates to be coated in the vacuum processing system, and A second deposition tool is directed to the back side. Thus, the length of the system, its cost and yield can be optimized in the manner described above. In a preferred embodiment, at least one of the insert members has two deposition tools that are directed toward the front and back sides of the substrate, respectively. Therefore, the length of the system can be further shortened, and the two deposition tools can be taken out and maintained simultaneously via this insertion member. For a particular simplified process, the vacuum processing system can have a transfer roller such that the carrier of the substrate or substrates can be passed through the vacuum processing system. The invention will be described below by way of two embodiments and the accompanying drawings. [Embodiment] I) Fig. 1 is a schematic view of a horizontal coaxial vacuum deposition system 1. This system 1 is divided into a plurality of vacuum deposition chambers 2, 3, 4, 5, 6, 7, 8 and a loading zone 9 and an unloading zone I 0 . And having a substrate transport system on a horizontal surface (not shown), extending along the direction of the system 1 via a plurality of mechanically driven transfer rollers, and transporting the substrate on the carrier on the transfer roller, Through the purpose of a specific sequence of vacuum chambers 2, 3, 4, 5, 6, 7, 8. The chambers 4, 5, 6 for coating have inserts 11, 12, 13, which are provided with deposition tools 14, 15, 16 connected to the chambers. In addition, each deposition chamber has a specific vacuum pump (not shown) connected thereto, typically a turbo molecular pump. Sources of extinguishing clocks (e.g., cathodes and magnetrons), and thermal vaporizers and the like are suitable as deposition tools. Providing such insertable components 〖1, 1, 2, 1 3 will make repairs quick and quick replacement of individual coating tools. Then, the single or a plurality of ruthenium substrates accommodated on the carrier are sequentially introduced onto the roller and continuously moved through the specific chambers 2, 3, 4, 5, 6, 7, 8 {: and the solar cell is plated. The required sediment layer. Of course, it is also possible to carry out the discontinuous transmission so that the substrate will not be transported during the coating process. Therefore, the layers are deposited on the front side of the substrate through a deposition tool vertically downward directed on the transfer path above the substrate. When these layers are deposited by sputtering, the deposition is performed by a mode called "downspray". However, the embodiment of Figure 1 only shows how to make the backside contacts. The metal layer on the backside of the solar cell is deposited by deposition tools 14, 15, 16 disposed beneath the substrate transport path. When these layers are deposited by sputtering, this deposition is performed by a mode called "upward sputtering". In order to reduce the length of the system and at the same time increase the yield, a deposition tool for depositing the backside contacts and a deposition tool (not shown) for depositing the layer on the front side may be provided simultaneously in the deposition chamber. However, as mentioned above, the two deposition processes must not interfere with each other. For example, the deposition of the S i N: germanium layer can be performed simultaneously on the front side or the back side of the substrate. Therefore, the two deposition tools in the chamber are placed in separate pluggable components, so they can be easily replaced or repaired. When the sputtering source is provided in the form of a deposition tool, then it is possible to simultaneously treat the continuous substrate transfer wheel in the "in-cavity" & "down" plating" The sedimentation rate of the two deposition tools must be adjusted so that the desired deposition thickness can be achieved on both sides in accordance with the transport speed of the substrate on the transfer roller. At the same time, the deposition rate of other deposition tools can be varied so that the substrate can be constantly transported along the internal transmission paths of the system. For discontinuous transfers, no deposition rate is required. In the fabrication of tantalum solar cells, the tantalum substrate in the introduction system is deposited to produce backside contacts, so that one or more rotatable cathodes 14, 15, 16 can be dynamically deposited in the "upper sputtering" process. a layer, even a barrier layer (not shown), to improve the solderability of the subsequent chamber 4, a solderable layer on the back side of the middle substrate, and the backside contacts. Therefore, the deposition rate and the desired layer can be visualized. The thickness and the rate of transfer of the system determine the number of rotatable cathodes 14, 15, 16 in each coating chamber. In another embodiment (not shown), a system is generally used in accordance with the first embodiment, wherein the metal is deposited The layer and/or barrier layer and/or solderable deposition tool, not a sputtering source, but a thermal vaporizer. The hair conditioner is disposed in a pluggable component for coating the back side of the substrate. The zone may be sealed in a vacuumed metal wire to provide metal to the yoke, or may be provided in a subsequent chamber in such a manner that the pluggable component is separately provided. When the amount of gold in a vaporizer is exhausted, it usually takes 24 hours to move, moving a horizontal valve over the individual inserts, separating the transfer volume and moving the substrate. At the same time, the deposition process in another vaporizer in the phase chamber is initiated. This is separated by a valve. In the implementation of the adjustment of the accumulating substrate chamber, gold 5, 6 force. Rate comes. In the layer provided by the wave, the evaporator is volatile and the operating element is adjacent to the cavity.

磯鍍沉積 200917502 疋件可被柚空並移除,使得設在其中的空揮發器可再被填 滿新鮮材料。 再次經由一或多個可轉動的陰極而以「往上濺鍍」方 式沉積鈍化層。同時不利用氣相沉積,而是濺鍍沉積阻障 層和可被嬋接的層,使得只有金屬層是被氣相沉積。 依據本發明方法製造的太陽能電池20具有一如第2 圖所示的背側接點21,其被建構成矽基板22背側上的積 層系統且具有如下順序:鈍化層23、金屬接點層Μ、可焊 接層 25。鍊化層 23 包含 SiN:H、SiC:H、Si〇2:H 或 a_si H。 金屬層包含一種選自鋁 '銀、鉬和/或鎳的材料較佳是由 鋁製成》鈍化,23較佳是由SiN:H製成,金屬層較:式 由紹製成。在可焊接層25和金屬層24之間, 一 彳提供一鈍 化層(未示出)’其可由WTi製成。可焊接層25包含一哎數 層由以下材料製成的層:Ag ' Ni、NiV、NiCr和Cr,如一 層依序包’ Ag#NiV的層’較佳是由銀製成的層Γ。沉積 完金屬詹24之後,可提供-LFC步驟’利用雷射(包括熔 化)和創造出雷射發射接點,而使金屬層24在特定接點 基板22接觸^ , ’ 、 選擇*L相沉積或濺鍍沉積鋁金屬接觸層24,端視實際 所需的層厚度及沉積工具的沉積速率而 j 备,例如一 -接點(雷射發射接點)被創造時,僅需數μιη的層即可, 此時可使用氣相沉積。對厚度小於一的層來說,即需使 用濺鍍。因此,阻障層和可焊接層佳也是經由 因其厚度均+於1 μπι。 16 200917502 此 料(如’ 如接點 系統1 藉 可以簡 點,其 效益, 此外, 雖 域人士 範疇的 是對於 【圖式 其 於較佳 用,其 第 圖;以 第 【主要 1 外,太陽能電池具有一發射層26,其是透過摻質材 磷)的擴散來形成,一 SiN:H鈍化層27,和一柱形 28(由銀製成)。可將這些層的沉積整合進共軸沉積 的處理順序中。 由以上說明,可知利用本發明方法、真空處理系統, 單方式來提供矽系太陽能電池的金屬層一背側接 中製程順序將變得更有效率(高產出率),更具經濟 因為不再需要絲網處理步驟,因此不需打斷真空。 也可減少晶圓缺陷,因為晶圓處理次數減少之故。 然本發明係以一較佳實施方式來詳細說明,然本領 應瞭解,在不背離如附申請專利範圍所定義之保護 條件下,調整舆修改之方式也是可以實施的,特別 所揭露之特徵以及省略之單一特徵的不同組合。 簡單說明】 他的特性、優點與特徵將參考下列伴隨圖式而說明 實施方式詳細說明中,所示圖式僅作示意說明之 中: 1圖是用來實施本發明之共軸真空沉積系統的示意 及 2圖為根據本發明方法所產生的太陽能電池。 元件符號說明】 水平共軸真空沉積系統 17 200917502 2、3、4、5、6、7、8 真空腔室壁 9 加載區 10 卸載區 11 、 12 、 13 插入件 14、15、16 沉積工具 20 太陽能電池 21 背側接點 22 矽基板 23 純化層 24 金屬接點層 25 可焊接層 26 發射層 27 SiN:H鈍化層 28 柱形前接點Rock deposition 200917502 The pieces can be removed and removed by the pomelo, so that the empty volatiles placed in it can be filled with fresh material. The passivation layer is deposited again by "upward sputtering" via one or more rotatable cathodes. At the same time, instead of vapor deposition, the barrier layer and the layer that can be spliced are sputtered so that only the metal layer is vapor deposited. The solar cell 20 fabricated in accordance with the method of the present invention has a backside contact 21 as shown in Fig. 2, which is constructed as a laminate system on the back side of the substrate 22 and has the following sequence: passivation layer 23, metal contact layer Μ, weldable layer 25. The chaining layer 23 contains SiN:H, SiC:H, Si〇2:H or a_si H. The metal layer comprises a material selected from the group consisting of aluminum 'silver, molybdenum and/or nickel, preferably made of aluminum, passivation, 23 preferably made of SiN:H, and the metal layer is made of: Between the solderable layer 25 and the metal layer 24, a passivation layer (not shown) is provided which can be made of WTi. The solderable layer 25 comprises a layer of a plurality of layers made of Ag 'Ni, NiV, NiCr and Cr, such as a layer of sequentially packaged 'Ag#NiV', which is preferably a layer of silver. After the deposition of the metal 24, the -LFC step can be provided to utilize the laser (including melting) and create a laser emitting contact, so that the metal layer 24 contacts the specific contact substrate 22, ', selects *L phase deposition Or sputtering deposited aluminum metal contact layer 24, depending on the actual required layer thickness and the deposition rate of the deposition tool, for example, when a contact (laser emission contact) is created, only a few layers are required. That is, vapor deposition can be used at this time. For layers less than one thickness, sputtering is required. Therefore, the barrier layer and the solderable layer are also preferably via a thickness of + 1 μm. 16 200917502 This material (such as 'contact system 1 can borrow a simple point, its benefits, in addition, although the field of people is for the [picture is better, its figure; to the first [outside 1 The cell has an emissive layer 26 formed by diffusion of dopant material phosphorus, a SiN:H passivation layer 27, and a pillar 28 (made of silver). The deposition of these layers can be integrated into the processing sequence of the coaxial deposition. From the above description, it can be seen that by using the method of the present invention and the vacuum processing system, the single-layer method for providing the metal layer of the tantalum solar cell in the back side is more efficient (high yield), and more economical because A screen processing step is required again, so there is no need to interrupt the vacuum. Wafer defects can also be reduced because the number of wafer processing is reduced. The present invention has been described in detail with reference to a preferred embodiment thereof, and it is understood that modifications and modifications may be practiced without departing from the scope of the invention as defined by the appended claims. Different combinations of single features are omitted. Brief Description of the Invention The features, advantages and features of the embodiments will be described with reference to the following accompanying drawings, which are illustrated by way of illustration only: Figure 1 is a schematic diagram of a coaxial vacuum deposition system for carrying out the invention. Illustrated and 2 are solar cells produced in accordance with the method of the present invention. Component Symbol Description Horizontal Coaxial Vacuum Deposition System 17 200917502 2, 3, 4, 5, 6, 7, 8 Vacuum Chamber Wall 9 Loading Zone 10 Unloading Zone 11, 12, 13 Inserts 14, 15, 16 Deposition Tool 20 Solar cell 21 Backside contact 22 矽 Substrate 23 Purification layer 24 Metal contact layer 25 Solderable layer 26 Emissive layer 27 SiN: H passivation layer 28 Cylindrical front contact

C 18C 18

Claims (1)

200917502 十、申請專利範圍: 1. 一種用於產生一半導體元件(較佳是一太陽能電 池,特別是矽系太陽能電池(20))之背側接點(21 )的方法, 其中該背侧接點(2 1)包含位在一基板(22)背侧之一金屬層 (24),且該半導體組件(2〇)可在該基板(22)背側和/或前侧 具有更多層(2 3、25、27、28),且該些層(2 3、25、27、28) 是經由沉積工具(14、15、16)而沉積’其中該金屬層(24) 是在一共軸沉積系統(1)中以一標靶(1 5)經由濺鍍或是氣 相沉積而形成,且在金屬層(24)沉積之前和之後,在不打 斷真空的情況下,在該共軸沉積系統(1)中沉積至少一附加 層(23、25、27、28) ° 2. 如申請專利範圍第1項所述之方法,其中提供該些 沉積工具(1 4、1 5、1 6),使得可參照該真空沉積系統(1)的 產品動線來設置用來沉積該些層(23、24、25)在該基板(22) 背側的該些沉積工具(1 4、1 5、1 6),使位在用來沉積該些 層(27、28)在該基板(22)前側的該些沉積工具的對面,其 中該基板(22)停放在一載器的點狀支撐件上,以實質避免 因該載器而遮蔽了該基板(22)。 3_ 如申請專利範圍第1或2項所述之方法,其中該基 板(22)實質上沿著該些沉積工具(14、15、16)在一水平路 徑上移動,使得沉積方向是垂直的。 19 200917502 4. 如申請專利範圍第1或2或3項所述之 該金屬層(24)包含一種材料,或是一種=選自以1 料:鋁、銀、鉬和/或鎳,且其較佳是包含鋁,| 層的厚度是在Ο.ίμιη至ΙΟμιη間,較佳是·2μηι。 5. 如申請專利範圍第1或2或3或4項所 其中在沉積該金屬層(24)之前,先沉積一層鈍4 此鈍化層(23)是由選自SiN:H、SiC:H、Si02:H或 材料製成,較佳是由SiN:H製成。 6. 如申請專利範圍第1或2或3或4或5秀 法,其中在沉積該金屬層(24)之後,為了使該;Ϊ 的該金屬層(24)可與該基板接觸,透過一強雷期 分熔化該金屬層(24),使得可形成一雷射發射接 7. 如申請專利範圍第1或2或3或4或5資 之方法,其中在沉積該金屬層(2 4)之後,沉積一 其是由WTi製成。 8. 如申請專利範圍第5或7項所述之方法 積該金屬層(24)之後,或是在沉積該阻障層之毛 可焊接層(25),其包含依話多種選自以下的材料 方法,其中 7的混合材 [中該金屬 述之方法, 匕層(23), a-Si:H 的 ΐ所述之方 ;板背側上 卜光束,部 點(LFC)。 i 6項所述 -阻障層, ,其中在沉 L,沉積一 :Ag、Ni、 20 200917502 NiV ' NiCr 或 Cr。 9. 如前述申請專利範圍第1〜8項中任一項所述之方 法,其中至少兩層是在一真空處理腔室内沉積而成,其中 在該基板(22)背側上沉積一層的期間,並在該基板(22)前 侧上沉積一層。 10. 如前述申請專利範圍第I〜9項中任一項所述之方 法,其中同時提供位在一共同載器上的數個基板該層或該 些層。 11.如前述申請專利範圍第1~1〇項中任一項所述之方 法,以一種形狀像一抽屜的可插入式元件(11、12、13)而 在一真空處理腔室中提供至少一沉積工具(14、15、16)。200917502 X. Patent application scope: 1. A method for producing a back side contact (21) of a semiconductor component, preferably a solar cell, in particular a lanthanide solar cell (20), wherein the back side is connected Point (21) includes a metal layer (24) on the back side of a substrate (22), and the semiconductor component (2) can have more layers on the back side and/or front side of the substrate (22) ( 2 3, 25, 27, 28), and the layers (23, 25, 27, 28) are deposited via deposition tools (14, 15, 16) where the metal layer (24) is deposited in a coaxial In system (1), a target (15) is formed by sputtering or vapor deposition, and before and after deposition of the metal layer (24), the coaxial deposition is performed without interrupting the vacuum. At least one additional layer (23, 25, 27, 28) is deposited in the system (1). 2. The method of claim 1, wherein the deposition tools are provided (14, 15, 5, 16) So that the deposition tools for depositing the layers (23, 24, 25) on the back side of the substrate (22) can be provided with reference to the product line of the vacuum deposition system (1). 1 4, 1 5, 1 6), opposite to the deposition tools used to deposit the layers (27, 28) on the front side of the substrate (22), wherein the substrate (22) is parked in a carrier The point-like support member is substantially prevented from obscuring the substrate (22) by the carrier. The method of claim 1 or 2, wherein the substrate (22) moves substantially along a horizontal path along the deposition tools (14, 15, 16) such that the deposition direction is vertical. 19 200917502 4. The metal layer (24) as described in claim 1 or 2 or 3 comprises a material, or a = selected from the group consisting of aluminum, silver, molybdenum and/or nickel, and Preferably, the thickness of the layer is from Ο.ίμιη to ΙΟμιη, preferably 2μηι. 5. According to claim 1 or 2 or 3 or 4, before depositing the metal layer (24), a layer of blunt 4 is deposited. The passivation layer (23) is selected from the group consisting of SiN:H, SiC:H, Si02:H or made of material, preferably made of SiN:H. 6. The method of claim 1 or 2 or 3 or 4 or 5, wherein after depositing the metal layer (24), in order to allow the metal layer (24) of the crucible to be in contact with the substrate, The strong lightning period melts the metal layer (24) such that a laser emitting junction can be formed. 7. The method of claim 1 or 2 or 3 or 4 or 5, wherein the metal layer is deposited (2 4) Thereafter, the deposition is made of WTi. 8. After the metal layer (24) is deposited by the method described in claim 5 or 7, or in the deposition of the barrier layer, the hair solderable layer (25) comprises a plurality of selected from the following The material method, wherein the mixed material of 7 [the method described in the metal, the layer of bismuth (23), the ΐ of a-Si:H; the beam on the back side of the plate, the point (LFC). i. The barrier layer, wherein, at the sinking L, deposits one: Ag, Ni, 20 200917502 NiV 'NiCr or Cr. 9. The method of any one of the preceding claims, wherein at least two layers are deposited in a vacuum processing chamber, wherein a layer is deposited on the back side of the substrate (22) And depositing a layer on the front side of the substrate (22). 10. The method of any of the preceding claims, wherein the plurality of substrates or layers are simultaneously provided on a common carrier. The method of any one of the preceding claims, wherein at least one of the insertable elements (11, 12, 13) shaped like a drawer is provided in a vacuum processing chamber. A deposition tool (14, 15, 16). 12.如前述申請專利範圍第1~11項中任一項所述之方 法,以一種形狀像一抽屜的一共同可插入式元件而在一真 空處理腔室中提供至少兩塗佈工具,其中較佳是一第一沉 積工具是指向基板前侧,且一第二沉積工具是指向基板背 側。 1 3 .如前述申請專利範圍第1〜11項中任一項所述之方 法,其中該金屬層(24)、阻障層和可焊接層(25)中至少一 21 疋以金屬線方式 U 200917502 層是氣相沉積,其_個別層材料 通孔而提供到一揮發器内。 I4·如刖迷肀請專利範圍第i 2項中任一項 法’其中該金屬層(24)、阻障層和 j烊接層(25) 層是氣相沉積’其中可相對於兩後 具空處理腔 一第一和一第二揮發器中,將該歧 —调别層材料揮 是在該第一揮發器中的所有材料 — W輝發且消耗殆 者在不打斷個別真空腔室的真 放山 狀態下,開始揮. 發器中的材料,其中同時特別地 符第—揮發器. 15.如前述申請專利範圍第^ $ T任一項) 法,其中該些層(23、25)中至少一 增疋利用至少. 的陰極(14、16)濺鐘而成’較佳是 疋达過直流濺鍍i 金屬層且透過陶瓷濺鍍標靶沉積多層介電層,或』 中頻濺鍍透過金屬濺鍍標靶來濺鍍沉積該些介電為 16.如申請專利範圍第15項所述之方法,其中 些陰極的濺鍍產率、欲達成的該些金屬層厚度、和 處理設備的產出率來挑選所需陰極的數目。 17. —種具有至少一真空處理腔室之真空處理 的用途’其中該真空處理系统包含至少兩種可用來 過真空 述之方 至少一 ,而在 ,且其 時,接 第二揮 述之方 可轉動 積該些 反應性 〇 可視該 該真空 h 統(1) 實施如 22 200917502 前述任一申請專利範圍所述之方法的沉積工具。 18. 如申請專力範圍第17項所述之用途,其中 處理系統(1)具有實質水平的產物流動路徑,其中之 向是與該產物流動路徑垂直。 19. 如申請專力範圍第17或18項所述之用途, 真空處理系統(1)具有至少一可插入式元件(1 1、1 2 其可被插入至至少一真空處理腔室(4、5、6)之内名 或其可從該内部移除,其中至少一沉積工具(14、1 是位在該可插入式元件(11、12、13)中。 20. 如申請專力範圍第17~ 19項中任一項所 途,其中至少一真空處理腔室具有至少二沉積工具 一第一沉積工具指向該真空處理系統内欲被沉積之 基板的前側,且一第二沉積工具指向該(些)基板的, 21. 如申請專力範圍第17〜20項中任一項所 途,其中該真空處理系統(1)具有多個傳送滾輪,使 該些滚輪上的該(些)基板(22)或該些基板的一載器 傳送通過該真空處理系統(1)。 該真空 沉積方 其中該 、13), ,和 / 5、16) 述之用 ,其中 一或多 「側。 述之用 得位在 ,可被 2312. The method of any of the preceding claims, wherein at least two coating tools are provided in a vacuum processing chamber in a vacuum insert processing chamber in a shape similar to a common insertable component of a drawer, wherein Preferably, a first deposition tool is directed toward the front side of the substrate and a second deposition tool is directed toward the back side of the substrate. The method according to any one of the preceding claims, wherein at least one of the metal layer (24), the barrier layer and the solderable layer (25) is in a metal line U. The 200917502 layer is a vapor deposited layer, which is provided with a through hole to a vaporizer. I4·If you are confused, please refer to any of the patent scopes in item i 2, where the metal layer (24), the barrier layer and the j layer (25) layer are vapor deposited 'which can be relative to the two In the first processing chamber and the second vaporizer, the material of the discrimination layer is all materials in the first vaporizer - W is emitted and the consumer is not interrupted by the individual vacuum chamber In the true mountain state of the room, the material in the hair conditioner is started, and at the same time, in particular, the first-volatilizer is used. 15. The method according to the above-mentioned patent application No. ^ T T), wherein the layers (23 And at least one of the 25) is formed by using at least a cathode (14, 16) to be splattered. Preferably, the dc-sputtered i-metal layer is deposited and a plurality of dielectric layers are deposited through the ceramic sputtering target, or The intermediate frequency sputtering is performed by sputtering a metal sputtering target to deposit the dielectric. The method of claim 15, wherein the sputtering yield of the cathodes, the thickness of the metal layers to be achieved And the yield of the processing equipment to select the number of cathodes required. 17. Use of a vacuum treatment having at least one vacuum processing chamber wherein the vacuum processing system comprises at least two of at least two of which can be used to describe the vacuum, and wherein, at the time, the second wave is recited The deposition tool of the method of any of the preceding claims can be implemented by the method of the present invention as disclosed in the above-mentioned patent application. 18. The use of claim 17, wherein the treatment system (1) has a substantial level of product flow path, wherein the direction is perpendicular to the product flow path. 19. The vacuum processing system (1) has at least one pluggable component (1, 1 2 which can be inserted into at least one vacuum processing chamber (4, as claimed in claim 17 or 18). The name within 5, 6) or it can be removed from the interior, wherein at least one deposition tool (14, 1 is located in the pluggable element (11, 12, 13). In any one of 17 to 19, wherein at least one vacuum processing chamber has at least two deposition tools, a first deposition tool is directed to a front side of the substrate to be deposited in the vacuum processing system, and a second deposition tool is directed to the (a) substrate, 21. The method of any one of the items 17 to 20, wherein the vacuum processing system (1) has a plurality of transfer rollers, the substrate(s) on the rollers (22) or a carrier of the substrates is transported through the vacuum processing system (1). The vacuum deposition side, wherein, 13), , and / 5, 16) are used, one or more of the sides. Used in place, can be 23
TW97132991A 2007-08-30 2008-08-28 A method for producing a metal backside contact of a semiconductor component, in particular, a solar cell TW200917502A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US96894907P 2007-08-30 2007-08-30
EP07017000A EP2031659A1 (en) 2007-08-30 2007-08-30 Method for creating a metal backing pin for a semiconductor element, in particular a solar cell

Publications (1)

Publication Number Publication Date
TW200917502A true TW200917502A (en) 2009-04-16

Family

ID=40042667

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97132991A TW200917502A (en) 2007-08-30 2008-08-28 A method for producing a metal backside contact of a semiconductor component, in particular, a solar cell

Country Status (4)

Country Link
KR (1) KR20100046163A (en)
CN (1) CN101689569B (en)
TW (1) TW200917502A (en)
WO (1) WO2009030374A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102388467B (en) * 2009-03-18 2015-05-13 欧瑞康先进科技股份公司 Method of inline manufacturing a solar cell panel
CN102881763A (en) * 2011-07-11 2013-01-16 刘莹 Equipment for manufacturing back electrode of crystalline silicon solar cell by laser sintering
DE102013219560A1 (en) * 2013-09-27 2015-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Photovoltaic solar cell and method for producing a metallic contacting of a photovoltaic solar cell

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0376165A (en) * 1989-08-18 1991-04-02 Asahi Glass Co Ltd Manufacture of continuous solar cells
KR100366351B1 (en) * 2001-01-02 2002-12-31 삼성에스디아이 주식회사 Fabrication method of back side electrode part of solar cell
US6943423B2 (en) * 2003-10-01 2005-09-13 Optopac, Inc. Electronic package of photo-image sensors in cellular phone camera modules, and the fabrication and assembly thereof
DE10352143B4 (en) * 2003-11-04 2009-06-25 Von Ardenne Anlagentechnik Gmbh Long-stretched vacuum system for one or two-sided coating of flat substrates
US20060130891A1 (en) * 2004-10-29 2006-06-22 Carlson David E Back-contact photovoltaic cells
CN101087899A (en) * 2004-11-10 2007-12-12 德斯塔尔科技公司 Vertical production of photovoltaic devices
JP2008520525A (en) * 2004-11-15 2008-06-19 日本板硝子株式会社 Deposition method and equipment for coating with array structure
EP1698715A1 (en) * 2005-03-03 2006-09-06 Applied Films GmbH & Co. KG Coating apparatus with parts on a drawer
TWI295816B (en) * 2005-07-19 2008-04-11 Applied Materials Inc Hybrid pvd-cvd system
US7432184B2 (en) * 2005-08-26 2008-10-07 Applied Materials, Inc. Integrated PVD system using designated PVD chambers

Also Published As

Publication number Publication date
CN101689569A (en) 2010-03-31
WO2009030374A1 (en) 2009-03-12
CN101689569B (en) 2012-07-04
KR20100046163A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
US7763535B2 (en) Method for producing a metal backside contact of a semiconductor component, in particular, a solar cell
US7915144B2 (en) Methods for forming thermotunnel generators having closely-spaced electrodes
US8956906B2 (en) Method and device for producing a semiconductor layer
US10153386B2 (en) Photovaltaic device conducting layer
TW201126017A (en) Chamber for PECVD
TW201042065A (en) Methods for fabricating copper indium gallium diselenide (CIGS) compound thin films
US20110041917A1 (en) Doped Transparent Conductive Oxide
US10438798B2 (en) Apparatus and method for bonding substrates
TWI525845B (en) Semiconductor device and manufacturing method thereof
TW201214581A (en) Method and system for depositing a thin-film transistor
WO2011075579A1 (en) Photovoltaic device including doped layer
JP4703782B2 (en) Manufacturing method of semiconductor components, especially metal backside contacts of solar cells
TW200917502A (en) A method for producing a metal backside contact of a semiconductor component, in particular, a solar cell
US20110240115A1 (en) Doped buffer layer
CN101509122B (en) Process for producing microwave plasma of cuprous iodide semi-conducting film
CN115552639A (en) Method and system for producing starting materials for silicon solar cells with passivated contact structures
TW200824140A (en) Methods and systems for manufacturing polycrystalline silicon and silicon-germanium solar cells
US20100236920A1 (en) Deposition apparatus with high temperature rotatable target and method of operating thereof
KR20090132541A (en) Method for manufacturing wafer type solar cell
JP2015084348A (en) Photovoltaic element and method for manufacturing the same
JPH0524976A (en) Method for doping semiconductor and apparatus therefor
WO2010106432A2 (en) Deposition apparatus with high temperature rotatable target and method of operating thereof
US20090272642A1 (en) Method and arrangement for producing contacts on photovoltaic elements without carrier substrate
JPH0524977A (en) Method and device for doping semiconductor
FR2906077A1 (en) Thin monocrystalline or polycrystalline semiconductor substrate e.g. silicon on insulator substrate, manufacturing device for e.g. MOSFET, has roller exerting tension on stiffener and thin sheets to ensure separation of thin sheet