TW200916559A - Fluorescent material having gadolinium aluminum garnet structure - Google Patents

Fluorescent material having gadolinium aluminum garnet structure Download PDF

Info

Publication number
TW200916559A
TW200916559A TW096138478A TW96138478A TW200916559A TW 200916559 A TW200916559 A TW 200916559A TW 096138478 A TW096138478 A TW 096138478A TW 96138478 A TW96138478 A TW 96138478A TW 200916559 A TW200916559 A TW 200916559A
Authority
TW
Taiwan
Prior art keywords
fluorescent material
aluminum garnet
garnet structure
light
yttrium aluminum
Prior art date
Application number
TW096138478A
Other languages
Chinese (zh)
Other versions
TWI358446B (en
Inventor
min-xiong Hong
jian-zhi Jiang
Ming-Xiong Cai
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW096138478A priority Critical patent/TW200916559A/en
Publication of TW200916559A publication Critical patent/TW200916559A/en
Application granted granted Critical
Publication of TWI358446B publication Critical patent/TWI358446B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

The invention relates to a fluorescent material having gadolinium aluminum garnet structure. The composition of the fluorescent material includes (Gd3-x-zAxCez)(Al5-yBy)O12, wherein A and B are selected from a group consisting of Lu, In, Ga, Sc and 0≤ x≤ 1.5, 0≤ y< 5, 0< z≤ 1. The fluorescent material can emit orange like light with the excitation of blue light, and therefore can be applied to white light emitting diodes.

Description

200916559 九、發明說明: 【發明所屬之技術領域】 特別是指一種具有釓 本發明是有關於一種螢光材料 鋁石榴石結構的螢光材料。 【先前技術】 ==相較於傳統的鶴絲燈泡、曰光燈等照 利用 Ί 率、環保、堅固耐用等優點,所以 曰:白光發光二極體來作為照明裝置將成為主流趨勢。而 二::見的白光發光二極體,主要是藉由藍光發光二極 日:㈣藍先,來激發用於發出黃光的螢光粉(例如 曰亞化學的YAG : θ ± 螢光叔,見美國專利US5,998,925號 矛J案),藉由藍光與黃光的混合即可得到白光。 Y在黃光螢光粉的應用上,除了錢上述以⑽石權石 (Y^Ou,yttrium aluminum gamet,簡稱 γΑ⑴為主結構 二光叙以外,相關業者都致力於開發其他種類的黃光螢 光^ I而採用其他種類的稀土族元素所構成的石榴石粉體 亦可製作出黃光螢光粉,例如美國專利US6,669,866號專利 案揭不的石榴石螢光粉八3仏〇12 ,其中,A主要為Tb元素 〇 另—方面,雖然目前已經有關於合成Gd3Al5012 (釓鋁 才田石’簡稱GAG)粉體的研究’但是相關文獻顯示,利 用共沈法、水熱法等化學反應法,或者是利用固態反應法 白無法得到主要為GAG相結構的粉體,所形成粉體大多偏 ° dAl〇3結構,此外,以添加助炫劑(打⑽)並在粉體锻 200916559 =:=速退火所得…結構,也幾乎都伴隨著 ,、目由於此不純相的存在與不純相的多 對於粉體發光的效果影響甚大目前域沒有任二^ :不GAG粉體可以作為黃色螢光粉。而本案發明人經二 九與多次實驗後’乃成功開發出亂銘石 料,將可以應用於白光照明中。 巴-光材 【發明内容】 種可以受激發光的 因此,本發明之目的,即在提供— 具釓鋁石榴石結構的螢光材料。 於是’本發明具見紹石權石結構的勞光材料,其組成 包 3 . ( Gd3.x.zAxCez ) ( Al5-yBy ) 〇12,所述 A、b 皆選自下 列材料所構成之族群:Lu、In、Ga、Sc,及其組合,且〇 -x-1·5 ( 〇^y&lt;5 &gt; 0&lt;z^ 1 〇 其中,就取代Gd元素的Α元素而言,其比例較佳地為 〇&lt;xS 1.5 ’更佳地為〇&lt;χ$〇 9,最佳地為。就取 代A1元素的b元素而言,其比例較佳地為,更佳地 為〇$ 3·75。而Ce的比例較佳地為0.005&lt;zg 1。 而本發明螢光材料是可以受到發光波長為250〜500nm 的激發光源或發光元件所激發,並發射出波長為又之寬廣 波段的光線,其最大發光強度所對應之波長為λ max,且 490nm $ Λ $ 700nm,530nm S λ max 蕊 580nm,較佳地 540nm S又max $ 57〇nm,亦即,本發明主要是發出寬廣的黃 色波段。 本發明在製造時,是可以利用化學法或固相混合的方 6 200916559 式,將包含有所需要元素之化合物取適當比例混合後,在 高溫下先進行煆燒與還原處理再進行燒結。其中,A、b元 素之形成是可以分別肖其所代表元素的碳豸鹽、硫酸鹽、 磷酸鹽、硼酸鹽、醋酸鹽、草酸鹽、檸檬酸鹽、或其氧化 物、氫氧化物、鹵化物之化合物來得到。而燒結的氣氛可 以為氫氣、氮氣、氦氣、氨氣、硫粉、碳粒中的一種或多 種氣體之組成,以及高溫所衍生之氣氛。此外,更可以於 前述混合該等化合物的步驟中添加助熔劑(flux),以幫助 該等含有Gd、A、B等元素的化合物均勻且充分地混合、 促進晶粒之成長。所述助熔劑可以選用NH4Ci、ΜΗ』、 H3:B〇3 ' B2〇3等鹼金屬或鹼土金屬化合物或鹵化物。 而本發明具釓鋁石榴石結構的螢光材料在製造完成後 ,疋利用X-ray繞射儀來檢驗其組成結構。另外,以47〇nm 的藍光激發來得到其螢光光譜。 【實施方式】 以下配合實施例及比較例對本發明進行詳細的說明。 實施例1 如表1所示,為本發明實施例i〜10中各成分的比例 關係與製程參數,實施例1的製造方法是取重量約2.4648g 的氣化飾(CeCl3)、34.401 g 之氧化釓(Gd2〇3)、〇〇3979g 之氧化Ι·&amp;、(Lu2〇3)以;e肖酸溶解後,再與重量i25.〇44g之石肖 酸鋁混合於去離子水(DI water)中,並加入沉澱劑進行沉 澱反應,所得粉體經過水洗乾燥後,進一步煆燒至15〇〇〇c 、4小時,即可得到實施例1之螢光材料。 200916559 參閱圖1、2 ’實施例1由xrd圖譜可以發現,該螢光 材料主要為GAG (釓鋁石榴石)結構,並伴隨有少量第二 相(pervoskite structure)的生成,在實施例1中的第二相 皆為GdAl〇3 (簡稱GAP)結構。此外,以470nm的藍光激 發所得到的螢光光譜呈現出,最大發光強度所對應的發射 波長(λ max)位於552nm之黃橘色螢光波段。 表3記載實施例1之測試結果,包含:是否有第二相 生成’以及最大發射波長等測試結果。 實施例2〜10 實施例2〜10的製造方法皆與實施例i相同,不同之 處在於各成份的比例關係,都已詳細記載於表!。而實施例 2〜10的測試結果亦載於表3,並可配合參閱圖3〜2〇,顯 示各實施例的XRD圖譜以及榮光光譜。 由本發明實施例1〜1〇的XRD結果可看出,實施例i 、2皆以GAG為主結構伴隨有第二相的生成,而實施例3 〜10皆為純相的GAG結構。此外,實施例i〜1〇皆可以受 到470nm藍光的激發而發出偏黃橘色波段的光線,且最大 發光強度所對應的發射波長Amax皆界於53〇〜57〇nm間。 會施例11〜13 如表2所示,為本發明實施例u〜13中各成分的比例 關係與製程參數,實施例U〜13的製造方法皆與實施例工 相同,不同之處在於.各成份的比例關係以及氧化姻( 8 200916559200916559 IX. Description of the invention: [Technical field to which the invention pertains] In particular, it relates to a fluorescent material which is related to a fluorescent material aluminum garnet structure. [Prior Art] == Compared with the traditional crane light bulbs, neon lights, etc., the advantages of Ί rate, environmental protection, durability and so on, so 白: white light-emitting diodes will become the mainstream trend as lighting devices. And the second:: see the white light emitting diode, mainly by the blue light emitting diode day: (four) blue first, to stimulate the fluorescent powder used to emit yellow light (such as YAG of 曰亚化学: θ ± fluorescent uncle See US Patent No. 5,998,925, Spear J, which can be obtained by mixing blue light and yellow light. Y in the application of yellow light fluorescent powder, in addition to the above (10) Shiquanshi (Y^Ou, yttrium aluminum gamet, referred to as γΑ (1) as the main structure of the second light, the relevant industry are committed to the development of other types of yellow light fluorescent ^ I Yellow fluorite powder can also be produced by using garnet powder composed of other kinds of rare earth elements, for example, garnet phosphor powder 8.3, which is not disclosed in U.S. Patent No. 6,669,866, wherein A is mainly Tb element. On the other hand, although there has been research on the synthesis of Gd3Al5012 (釓Gai Caitianshi's GAG) powder, the related literature shows that the chemical reaction method such as co-precipitation method or hydrothermal method is used, or solid-state reaction method is used. White can not obtain the powder mainly composed of GAG phase structure, and the formed powder is mostly biased to dAl〇3 structure. In addition, the addition of the assisting agent (打(10)) and the powder forging 200916559 =:= speed annealing to obtain the structure, Almost all of them are accompanied by, because the existence of this impure phase and the impure phase have a great influence on the effect of powder luminescence. There is no such thing as the current domain: no GAG powder can be used as yellow fluorescing powder. However, the inventor of this case succeeded in developing the chaotic stone after two and nine experiments, and it can be applied to white light illumination. Ba-light material [invention] The object can be excited by light, therefore, the object of the present invention , that is, providing a fluorescent material with a yttrium aluminum garnet structure. Thus, the present invention has a light-glossing material with a structure of Shao Shiquan stone, and its composition package is 3. (Gd3.x.zAxCez) (Al5-yBy) 〇 12. The A and b are all selected from the group consisting of Lu, In, Ga, Sc, and combinations thereof, and 〇-x-1·5 ( 〇^y&lt;5 &gt;0&lt;z^ 1 In other words, in the case of the yttrium element which replaces the Gd element, the ratio is preferably 〇&lt;xS 1.5 ', more preferably 〇&lt;χ$〇9, optimally. It replaces the element b of the A1 element. The ratio is preferably, more preferably, 3$3·75. The ratio of Ce is preferably 0.005 &lt; zg 1. The fluorescent material of the present invention can be excited by an emission wavelength of 250 to 500 nm. The light source or the light-emitting element excites and emits light having a wide wavelength band, and the maximum luminous intensity corresponds to a wavelength of λ max and 490 nm $ 700 $ 700 nm, 530 nm S λ max 580 nm, preferably 540 nm S and max $ 57 〇 nm, that is, the invention mainly emits a broad yellow band. The invention can be manufactured by chemical or solid phase. In the mixed formula 6, 200916559, a compound containing a desired element is mixed in an appropriate ratio, and then calcined and reduced at a high temperature and then sintered. Wherein, the formation of the elements A and b is a carbonium salt, a sulfate, a phosphate, a borate, an acetate, an oxalate, a citrate, or an oxide or a hydroxide thereof, which may be respectively represented by the element. A compound of a halide is obtained. The sintering atmosphere may be a composition of one or more of hydrogen, nitrogen, helium, ammonia, sulfur powder, carbon particles, and an atmosphere derived from high temperatures. Further, a flux may be added in the step of mixing the above compounds to help the compounds containing elements such as Gd, A, B and the like be uniformly and sufficiently mixed to promote the growth of crystal grains. The flux may be an alkali metal or alkaline earth metal compound or a halide such as NH4Ci, ΜΗ", H3:B〇3'B2〇3. However, after the fabrication of the fluorescent material having the yttrium aluminum garnet structure of the present invention, the X-ray diffractometer was used to examine its composition. In addition, the fluorescence spectrum was obtained by excitation with blue light of 47 〇 nm. [Embodiment] Hereinafter, the present invention will be described in detail with reference to the examples and comparative examples. Example 1 As shown in Table 1, the proportional relationship of each component in the examples i to 10 of the present invention and the process parameters, the manufacturing method of the example 1 is a gasification ornament (CeCl3) and 34.401 g of a weight of about 2.4648 g. Cerium oxide (Gd2〇3), 〇〇3,979g of yttrium oxide·&amp;, (Lu2〇3); e-chamoic acid is dissolved, and then mixed with deionized water (DI) with weight i25.〇44g of aluminum silicate In the water), a precipitating agent was added to carry out a precipitation reaction, and the obtained powder was washed with water and dried, and further calcined to 15 ° C for 4 hours to obtain the fluorescent material of Example 1. 200916559 Referring to Figures 1, 2 'Example 1 can be found from the xrd map, the phosphor material is mainly GAG (yttrium aluminum garnet) structure, accompanied by the formation of a small amount of second phase (pervoskite structure), in Example 1 The second phase is a GdAl〇3 (referred to as GAP) structure. Further, the fluorescence spectrum obtained by blue light excitation at 470 nm showed that the emission wavelength (λ max) corresponding to the maximum luminous intensity was located in the yellow-orange fluorescent band of 552 nm. Table 3 shows the test results of Example 1, including whether there is a test result such as the second phase generation ' and the maximum emission wavelength. Examples 2 to 10 The production methods of Examples 2 to 10 were the same as those of Example i except that the proportional relationship of each component has been described in detail in the table! . The test results of Examples 2 to 10 are also shown in Table 3, and the XRD patterns and glory spectra of the respective examples are shown in conjunction with Figs. 3 to 2B. It can be seen from the XRD results of the inventive examples 1 to 1 that both of the examples i and 2 have a GAG-based structure accompanied by the formation of a second phase, and the examples 3 to 10 are all pure phase GAG structures. In addition, all of the examples i to 1 can be excited by 470 nm blue light to emit light in a yellowish orange band, and the maximum emission intensity corresponding to the emission wavelength Amax is between 53 〇 and 57 〇 nm. Examples 11 to 13 As shown in Table 2, the ratios of the components in the embodiments u to 13 and the process parameters are the same, and the manufacturing methods of the embodiments U to 13 are the same as the embodiment, except that. The proportional relationship of each component and the oxidation of marriage (8 200916559

In2〇3)的添加,所以實施例Η〜13中用以取代Gd的元素 A為In。而實施例11〜13的測試結果亦载於表3,並可配 合參閱圖21〜26,顯示其XRD圖譜以及螢光光譜。由實驗 結果得知,實施例11〜13亦為純相GAG結構,並可受到 470nm藍光的激發而發出偏黃橘色波段的光線。 比較例1〜3 比較例1〜3的製造方法皆與實施例j相同,不同之處 在於各成份的比例關係,並已詳細記載於表4,而比較例ι 〜3的XRD圖譜以及螢光光譜等測試結果,請參閱圖”〜 32以及表5。 由比較例1顯示,該粉體中出現大量的GAp結構,且 比較例1之z的比例為〇,亦即沒有添加元素Ce,由於缺 乏發光中心所以不會發光。而比較例2與本發明實施例2 為相同的組成比例,但是煆燒溫度不同所得到的粉體,利 用比較例2之煆燒溫度下得到的粉體結構皆為GAp,並且 不會發光,所以由比較例1、2可知,材料中的不純相GAp 結構過多時’會影響到材料的發光與否。比較例3顯示, 當元素B的比例過高而完全取代A1時(y=5),該材料的發 光強度很小而無法應用於發光元件,由此可知當材料中元 素B比例過南’該材料不適合作為螢光材料。 由實驗結果得知’ z值(Ce的比例)與發光波段、發 光強度有明顯關聯,當z值太小時(Ce濃度太低)時,發 光強度趨近於0,而z值太大時會使材料失去石榴石結構。 9 200916559 而X、y值的比例亦影響所得材料之結構與發光強度。由以 上說明可知,本發明螢光材料可以受激發射出偏黃橘色的 光,因此可以應用於白光LED。 表1 實 施 例 (Gd3-X.z AxCez)(Al5.yBy)〇i2 氣化鈽 (g) 氧化亂 (g) 氧化鎵 (g) 氧化缚 (g) 硝酸鋁 (g) 煆 燒 溫 % r 煆 燒 時 間 5 X y z A B 1 0.003 0 0.15 Lu 無 2.4648 34.401 0 0.03979 125.044 1500 4 2 0.003 0 1 Lu 無 16.4303 24.1298 0 0.03979 125.044 1300 4 3 0.003 0.5 0.03 Lu Ga 0.493 35.851 3.121 0.03979 112.54 1500 8 4 0.003 0.5 0.06 Lu Ga 0.9859 35.4887 3.121 0.03979 112.54 1500 8 5 0.003 0.5 0.09 Lu Ga 1.4788 35.1262 3.121 0.03979 112.54 1500 4 6 0.005 2.5 0.03 Lu Ga 0.0369 2.6870 1.1716 0.005 4.689 1500 4 7 0.005 3.75 0.03 Lu Ga 0.0369 2.6870 1.7573 0.005 2.3446 1500 4 8 0.3 0 0.03 Lu 益 #»*&gt; 0.462 30.25 0 3.73 117.23 1500 8 9 0.6 0 0.03 Lu 無 0.0462 2.6847 0 0.7461 11.7228 1500 2 10 0.9 0 0.03 Lu 益 # **&gt; 0.0462 2.3449 0 1.11915 11.7228 1500 2 10 200916559 表2 實 施 例 (Gd3-x-zAxCez)(Al5-yBy)012 氯化錦 (g) 氧化釓 (g) 氧化鎵 (g) 氧化銦 (g) 硝酸鋁 (g) 煆 燒 溫 r 煆 燒 時 間 5 X y Z A B 11 0. 3 0 0.03 In 益 0.0739 4.8394 0 0.4165 18.7565 1500 4 12 0.6 0 0.03 In 無 0.0739 4.2956 0 0.832 18.7565 1500 4 13 0.9 0 0.03 In 無 0.0739 3.7519 0 1.2494 18.7565 1500 4 表3 實施例 第二相生成 λ max (nm) 1 GdA103 552 2 GdA103/Ce02 555 3 X 564 4 X 552 5 X 552 6 X 540 7 X 530 8 X 564 9 X 564 10 X 564 11 555 12 X 555 13 X 555 11 200916559 表4 比 較 例 (Gd3-x_zAxCez)(Al5.yBy)012 氯化筛 (g) 氧化釓 (g) 氧化鎵 (g) 氧化轉 (g) 石肖酸1呂 (g) 煆 燒 溫 度 °c 煆 燒 時 間 ? 5 X y z A B 1 0.005 0 0 Lu 無 0 2.7165 0 0.005 9.3783 1500 8 2 0.003 0 1 Lu 無 16.4303 24.1298 0 0.03979 112.54 1500 4 3 0.005 5 0.03 Lu Ga 0.0369 2.6870 2.343 0.005 0 1500 4 表5 比較例 第二相生成 λ max (nm) 1 GdA103 不發光 2 GdA103 不發光 3 X 不發光 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1〜26是本發明具釓鋁石榴石結構的螢光材料的實 施例1〜13的XRD圖譜以及螢光光譜;及 圖27〜32是比較例1〜3的XRD圖譜以及螢光光譜。 12 200916559 【主要元件符號說明】 無 13In2〇3) is added, so the element A used to replace Gd in the examples Η~13 is In. The test results of Examples 11 to 13 are also shown in Table 3, and can be combined with Figs. 21 to 26 to show their XRD patterns and fluorescence spectra. From the experimental results, Examples 11 to 13 were also pure phase GAG structures, and were excited by 470 nm blue light to emit light in a yellowish orange band. Comparative Examples 1 to 3 The production methods of Comparative Examples 1 to 3 were the same as those of Example j except that the proportional relationship of the respective components was described in detail in Table 4, and the XRD patterns of Comparative Examples 1 to 3 and the fluorescence were observed. For the results of the spectrum and the like, please refer to the figures "32" and Table 5. As shown in Comparative Example 1, a large amount of GAp structure appears in the powder, and the ratio of z in Comparative Example 1 is 〇, that is, no element Ce is added, In the absence of the luminescent center, it does not emit light. Comparative Example 2 is the same composition ratio as in the second embodiment of the present invention, but the powder obtained by using the simmering temperature of the comparative example 2 has the same powder composition. It is GAp and does not emit light. Therefore, it can be seen from Comparative Examples 1 and 2 that when the structure of the impurity phase GAp in the material is too large, it will affect the luminescence of the material. Comparative Example 3 shows that when the ratio of the element B is too high, it is completely When A1 is substituted (y=5), the luminescence intensity of the material is small and cannot be applied to a light-emitting element, and thus it can be known that when the ratio of element B in the material is too large, the material is not suitable as a fluorescent material. Value (the ratio of Ce) and The optical band and the luminescence intensity are obviously related. When the z value is too small (the Ce concentration is too low), the luminescence intensity approaches 0, and when the z value is too large, the material loses the garnet structure. 9 200916559 and the X and y values The ratio also affects the structure and luminescence intensity of the resulting material. As can be seen from the above description, the phosphor material of the present invention can be excited to emit yellowish orange light, and thus can be applied to white LEDs. Table 1 Example (Gd3-Xz AxCez) (Al5.yBy)〇i2 gasification 钸(g) Oxidation disorder (g) Gallium oxide (g) Oxidation binding (g) Aluminum nitrate (g) 煆 burning temperature % r 煆 burning time 5 X yz AB 1 0.003 0 0.15 Lu Without 2.4648 34.401 0 0.03979 125.044 1500 4 2 0.003 0 1 Lu No 16.4303 24.1298 0 0.03979 125.044 1300 4 3 0.003 0.5 0.03 Lu Ga 0.493 35.851 3.121 0.03979 112.54 1500 8 4 0.003 0.5 0.06 Lu Ga 0.9859 35.4887 3.121 0.03979 112.54 1500 8 5 0.003 0.5 0.09 Lu Ga 1.4788 35.1262 3.121 0.03979 112.54 1500 4 6 0.005 2.5 0.03 Lu Ga 0.0369 2.6870 1.1716 0.005 4.689 1500 4 7 0.005 3.75 0.03 Lu Ga 0.0369 2.6870 1.7573 0.005 2.3446 1500 4 8 0.3 0 0.03 Lu益#»*&gt; 0.462 30.25 0 3.73 117.23 1500 8 9 0.6 0 0.03 Lu No 0.0462 2.6847 0 0.7461 11.7228 1500 2 10 0.9 0 0.03 Lu 益# **&gt; 0.0462 2.3449 0 1.11915 11.7228 1500 2 10 200916559 Table 2 Example (Gd3-x-zAxCez)(Al5-yBy)012 Chlorinated Chloride (g) Antimony Oxide (g) Gallium Oxide (g) Indium Oxide (g) Aluminum Nitrate (g) Barium Burning Temperature r Burning Time 5 X y ZAB 11 0. 3 0 0.03 In Benefit 0.0739 4.8394 0 0.4165 18.7565 1500 4 12 0.6 0 0.03 In No 0.0739 4.2956 0 0.832 18.7565 1500 4 13 0.9 0 0.03 In No 0.0739 3.7519 0 1.2494 18.7565 1500 4 Table 3 Example second phase generation λ Max (nm) 1 GdA103 552 2 GdA103/Ce02 555 3 X 564 4 X 552 5 X 552 6 X 540 7 X 530 8 X 564 9 X 564 10 X 564 11 555 12 X 555 13 X 555 11 200916559 Table 4 Comparative Example (Gd3-x_zAxCez)(Al5.yBy)012 Chlorinated Sieve (g) Cerium Oxide (g) Gallium Oxide (g) Oxidation (g) Shichaoic Acid 1 Lu (g) Sintering Temperature °c Simmering Time? 5 X yz AB 1 0.005 0 0 Lu No 0 2.7165 0 0.005 9.3783 1500 8 2 0.003 0 1 Lu No 16.4303 24.1298 0 0.03979 112.54 1500 4 3 0 .005 5 0.03 Lu Ga 0.0369 2.6870 2.343 0.005 0 1500 4 Table 5 Comparative Example Second phase generation λ max (nm) 1 GdA103 No luminescence 2 GdA103 No luminescence 3 X No luminescence, only the above, only for the present invention The present invention is not limited by the scope of the invention, and the simple equivalent changes and modifications made by the invention in the scope of the invention and the scope of the invention are still within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 26 are XRD patterns and fluorescence spectra of Examples 1 to 13 of a phosphor material having a yttrium aluminum garnet structure according to the present invention; and FIGS. 27 to 32 are XRDs of Comparative Examples 1 to 3. Map and fluorescence spectra. 12 200916559 [Key component symbol description] None 13

Claims (1)

200916559 十、申請專利範圍: 1· -種具釓鋁石榴石結構的螢光材料,包含: (Gd3-x-zAxCez)(Al5 yBy)〇i2,其中,A、b 皆選自下 列材料所構成之族群:Lu、In、Ga、Sc,及其組合,且 °-x~1·5 ' °^y&lt;5 &gt; 〇&lt;z^i 〇 2 ·依據申請專利齡圓势 執圍弟1項所述之具釓鋁石榴石結構的 光材料,其中,0&lt;U1.5。 據申明專利耗圍第2項所述之具釓鋁石榴石結構的登 光材料’其中,0&lt;xg〇.9。 依據申專利範圍第1項所述之具Us石權;5結構的螢 光材料,其中,0&lt;y&lt;5。 5.依據巾請專利範圍第1至3項中任-項所述之具乱結石 權石結構的螢光材料,其中,3.75。 依據申β專利範圍第1項所述之具釓鋁石榴石結構的螢 光材料’其中,0.005&lt;Zgl。 依據申明專利範圍第1項所述之具釓鋁石榴石結構的螢 光材料疋發射出波長為λ之波段的光線,且49〇nm S λ S 7〇〇nm。 依據申印專利範圍第7項所述之具釓鋁石榴石結構的螢 光材料,其中,所發射出的光線之最大發光強度所對應 的波長為 λ max ’且 530nm$ λ max$ 580nm。 依據申清專利範圍第8項所述之具釓鋁石榴石結構的螢 光材料’其中 ’ 540nm$ λ max$ 570nm。 14200916559 X. Patent application scope: 1. A fluorescent material with yttrium aluminum garnet structure, comprising: (Gd3-x-zAxCez) (Al5 yBy) 〇i2, wherein A and b are all selected from the following materials Group of people: Lu, In, Ga, Sc, and combinations thereof, and °-x~1·5 ' °^y&lt;5 &gt;〇&lt;z^i 〇2 · According to the application for patent age The light material of the yttrium aluminum garnet structure, wherein 0 &lt; U 1.5. According to the patent, the enamel-aluminum garnet structure of the glazing material described in item 2 of the patent is omitted, where 0 &lt; xg 〇.9. According to the patent scope of claim 1, the Us stone right; 5 structure of the fluorescent material, wherein 0 &lt; y &lt; 5. A fluorescent material having a chaotic stone structure according to any one of items 1 to 3 of the patent application, wherein 3.75. According to the fluorescent material of the yttrium aluminum garnet structure described in the first aspect of the patent application, 0.005 &lt; Zgl. A fluorescent material having a yttrium aluminum garnet structure according to the first aspect of the claimed invention emits light having a wavelength band of λ, and 49 〇 nm S λ S 7 〇〇 nm. A fluorescent material having a yttrium aluminum garnet structure according to the seventh aspect of the invention, wherein the maximum luminous intensity of the emitted light corresponds to a wavelength of λ max ' and 530 nm $ λ max $ 580 nm. A fluorescent material having a yttrium aluminum garnet structure as described in claim 8 of the scope of the patent application, wherein ' 540 nm $ λ max $ 570 nm. 14
TW096138478A 2007-10-15 2007-10-15 Fluorescent material having gadolinium aluminum garnet structure TW200916559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096138478A TW200916559A (en) 2007-10-15 2007-10-15 Fluorescent material having gadolinium aluminum garnet structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096138478A TW200916559A (en) 2007-10-15 2007-10-15 Fluorescent material having gadolinium aluminum garnet structure

Publications (2)

Publication Number Publication Date
TW200916559A true TW200916559A (en) 2009-04-16
TWI358446B TWI358446B (en) 2012-02-21

Family

ID=44726074

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096138478A TW200916559A (en) 2007-10-15 2007-10-15 Fluorescent material having gadolinium aluminum garnet structure

Country Status (1)

Country Link
TW (1) TW200916559A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105297136A (en) * 2015-11-13 2016-02-03 孙雷 Cerium-doped gadolinium lutecium aluminate garnet crystal for laser illumination and preparation method thereof
RU2622124C2 (en) * 2011-01-31 2017-06-13 Фурукава Ко., Лтд. Garnet-structured crystal for scintillator and radiation detector using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2622124C2 (en) * 2011-01-31 2017-06-13 Фурукава Ко., Лтд. Garnet-structured crystal for scintillator and radiation detector using same
CN105297136A (en) * 2015-11-13 2016-02-03 孙雷 Cerium-doped gadolinium lutecium aluminate garnet crystal for laser illumination and preparation method thereof

Also Published As

Publication number Publication date
TWI358446B (en) 2012-02-21

Similar Documents

Publication Publication Date Title
Liao et al. Synthesis of K 2 SiF 6: Mn 4+ phosphor from SiO 2 powders via redox reaction in HF/KMnO 4 solution and their application in warm‐white LED
JP4617323B2 (en) Yellow light emitting Ce3 + activated silicate-based yellow phosphor having a new composition, method for producing the same, and white light emitting diode including the phosphor
RU2459855C2 (en) Red emitting luminescent materials
TWI357927B (en) Fluorescent substance and manufacturing method the
JP5005759B2 (en) Fluorescent powder, method for producing the same, and light-emitting device using the same
JP2014058678A (en) Oxynitride luminescent material, preparation method and application thereof
Song et al. Encapsulation of coumarin dye within lanthanide MOFs as highly efficient white-light-emitting phosphors for white LEDs
Wang et al. Synthesis, crystal structure, and photoluminescence of a novel blue-green emitting phosphor: BaHfSi 3 O 9: Eu 2+
JP5583670B2 (en) RED PHOSPHOR FOR SOLID LIGHTING AND METHOD FOR PRODUCING THE SAME {REDPHOSPHORANDITOSING
TW200946645A (en) ABOS: M-based phosphors and light sources containing these phosphors
US20080191234A1 (en) Yellow phosphor and white light emitting device using the same
TWI564367B (en) Fluoride phosphors, fabricating method thereof, and light emitting device and backlight module employing the same
KR101873221B1 (en) Phosphor and light emitting device
KR101405596B1 (en) New composition of aluminum silicate phosphor and preparing method thereof
JP6223988B2 (en) Phosphor, light emitting device and lighting device
CN103305216B (en) Borate red fluorescent powder and preparation method and application thereof
TW559627B (en) Method for producing bright white light diode with fluorescent powder
TWI242893B (en) White light-emitting apparatus
TW200916559A (en) Fluorescent material having gadolinium aluminum garnet structure
TWI378138B (en) Green-emitting phosphors and process for producing the same
JP4098354B2 (en) White light emitting device
CN107099291B (en) It is a kind of can be by the red fluorescence material of near ultraviolet excitation, preparation method and application
Lin et al. Introduction to the basic properties of luminescent materials
Sharma et al. Organic–Inorganic Hybrids for White-Light Phosphors
KR102113044B1 (en) Lithium-based garnet phosphor, preparing method of the same, and luminescent property of the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees