TW200915584A - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
TW200915584A
TW200915584A TW96136325A TW96136325A TW200915584A TW 200915584 A TW200915584 A TW 200915584A TW 96136325 A TW96136325 A TW 96136325A TW 96136325 A TW96136325 A TW 96136325A TW 200915584 A TW200915584 A TW 200915584A
Authority
TW
Taiwan
Prior art keywords
solar cell
memory alloy
shape memory
cell module
layer
Prior art date
Application number
TW96136325A
Other languages
Chinese (zh)
Other versions
TWI407572B (en
Inventor
Ga-Lane Chen
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96136325A priority Critical patent/TWI407572B/en
Publication of TW200915584A publication Critical patent/TW200915584A/en
Application granted granted Critical
Publication of TWI407572B publication Critical patent/TWI407572B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a solar cell module. The solar cell module includes a flexible solar cell. The flexible solar cell includes a first surface and a second surface. The first surface is configured for receiving the radiation from sun. The second surface is opposite to the first surface. A shape memory alloys layer is stick on the second surface of the flexible solar cell configured for changing a shape of the flexible solar cell.

Description

200915584 九、發明說明: 【發明所屬之技術領域】 : 本發明涉及太陽能電池組件,特別涉及一種可改變形 狀之太陽能電池組件。 【先前技術】 太陽能電池主要應用光電轉換原理,其結構主要包括 基板以及設置於基板上之P型半導體材料層和N型半導體 材料層。 光電轉換係指太陽之輻射能光子通過半導體物質轉變 為電能之過程(請參見 “Grown junction GaAs solar cell”, Shen, C.C.; Pearson, G.L.; Proceedings of the IEEE, Volume 64, Issue 3, March 1976 Page(s):384-385)。當太陽光照射至 半導體上時,其中一部分被表面反射掉,其餘部分被半導 體吸收或透過。被吸收之光,有一些變成熱能,另一些光 子則同組成半導體之原子價電子碰撞,產生電子-空穴對。 光能以產生電子-空穴對之形式轉變為電能,並於P型和N 型交界面兩邊形成勢壘電場,將電子驅向N區,空穴驅向 P區,從而使得N區有過剩之電子,P區有過剩之空穴, 於P -N結附近形成與勢壘電場方向相反之光生電場。光生 電場之一部分除抵消勢壘電場外,還使P型層帶正電,N 型層帶負電,於N區與P區之間之薄層產生所謂光生伏打 電動勢。若分別於P型層和N型層焊上金屬引線,接通負 載,則外電路便有電流通過。如此形成一個個電池組件, 將其串聯、並聯起來,就能產生一定電壓和電流,輸出功 5 200915584 率。 近年來,太陽能電池已經廣泛應用於航空、工業、氣 象等領域,如何將太陽能電池應用於日常生活中,以解決 能源短缺、環境污染等問題已成為一個熱點問題。這其中, 太陽能建築:將太陽能電池與建築材料相結合,使得未來 之大型建築或家庭房屋實現電力自給,係未來—大發展方 向,德國、美國等國家更提出光伏屋頂計劃。 然而,一般之太陽能電池之基板都採用單晶矽、多曰 石夕或玻璃等材料,以這些材料為基板之太陽能電池大多曰口曰 能以一個固定方向接收太陽之輻射,這樣會有較多輕射能 因不能被太陽能電池接收而浪費掉。 【發明内容】 、有馨於此,提供-種可改變形狀之太陽能電池組件實 -種太陽能電池組件’包括一個可撓面太陽能電池, 該可撓曲太陽能電池包括用於接收太陽輻射能之第 面’及與該第一表面相對之笛_ 于之弟一表面。一形狀記憶體合全 層貼附於該第二表面,以你姑π #1丄θ 使該可撓曲太%能電池隨該形狀 記憶體合金層之形狀變化而改變 相對於先前技術,本發明提供之太陽能電池組件可根 之㈣強度改變太陽能電池之形狀,使 收更多之太陽輕射能,提高光電轉換效率。 口接 【實施方式】 請參見圖 本發明第 一實施例提供一種太陽能電池組 200915584 件1,該太陽能電池組件1包括一可撓曲太陽能電池10。 該可撓曲太陽能電池10包括用於接收太陽輻射能之第一表 面100,以及與該第一表面100相對之第二表面101。該第 二表面101上形成有一形狀記憶體合金層15(Shape Memory Alloys layer, SMA layer)。 請參見圖2,該可撓曲太陽能電池10包括一個基板 11,該基板11具有第一表面110及第二表面101。該基板 11之第一表面110上依次形成有第一電極層12,半導體結 構層13,及與第一電極層12極性相反之第二電極層14。 於本實施例中,該基板11係可撓曲之鋁鎂合金箔 (Al-Mg alloy foil),該基板之厚度大約為1 Ομιη至1 ΟΟμπι。 該基板11之材料還可係铭(Α1),鎂(Mg),不錄鋼片(stainless steel sheet),或聚合物薄板(polymer sheet)等可撓曲之材料。 該第一電極層12形成於該基板11之第一表面110上。 該第一電極層12之材料可係銀(Ag)、銅(Cu)、或紹(A1)等 金屬,亦可為铭銅合金(Al-Cu alloy),銅鉬合金(Cu-Mo alloy) 等合金材料。該第一電極層之厚度大約為0.1 μηι至10μιη。 該第一電極層 12可採用藏射(sputtering)或者沈積 (depositing)之方法形成,優選採用直流磁控濺射法(DC magnetron sputtering)形成 ° 該半導體結構層13可為三層結構,其包括一 P型半導 體層131、一 N型半導體層133、以及位於P型半導體層 131與N型半導體層133之間之P-N結層132。 該P型半導體層131之材料可為P型非晶矽(P type 7 200915584 amorphous silicon,簡稱P-a-Si)材料,特別係P型含氫非晶 石夕(P type amorphous silicon with hydrogen,簡稱 P-a-Si:H) 材料。當然,該P型半導體層之材料亦可為III-V族化合物 或II-VI族化合物,特別係摻雜鋁(A1)、鉀(Ga)、銦(In)之半 導體材料,如氮化鋁鉀(AlGaN)或鋁砷化鎵(AlGaAs)。該P 型半導體層131可通過化學氣相沈積法(Chemical Vapor Deposition, CVD)形成於第一電極層12上,於本實施例中, 優選採用等離子輔助化學氣相沈積法(Plasma Enhanced CVD,PECVD),當然根據不同之材料亦可選擇其他CVD 方法。 優選之,該P型半導體層131之材料為P型非晶矽材 料。非晶矽材料對光之吸收性比結晶矽材料強約500倍, 所以於對光子吸收量要求相同之情況下,非晶矽材料製成 之半導體層之厚度遠小於結晶矽材料製成之半導體層之厚 度。且非晶矽材料對基板材質之要求更低。所以採用非晶 矽材料不僅可節省大量之材料,亦使得製作大面積之太陽 能電池成為可能(結晶矽太陽能電池之面積受限於矽晶圓之 尺寸)。 該P-N結層132之材料可為結合性較好之III-V族化合 物或I -III-VI族化合物,如蹄化锅(CdTe)、銅钢石西(CuInSe2) 等材料。亦可為銅銦鎵硒(CuIni_xGaSe2,CIGS)。該P-N結 層132用於將光子轉換成電子-孔穴對並形成勢壘電場。該 P-N結層132可通過化學氣相沈積法,濺射法等方法形成於 該P型半導體層131上,優選採用直流磁控濺射法或交流 8 200915584 機射直控法(AC magnetron sputtering)形成。 a曰 type 該N型半導體層133之材料可為N型非 amorphous silicon,簡稱 N-a-Si)材料,特別係 n 型含氫非 晶石夕(N type amorphous silicon with hydrogen,簡稱 n 材料。當然,該N型半導體層133之材料亦可為m /‘扣 v無化 合物或II-VI族化合物,特別係摻雜氮(N)、磷 v }岬(As) 之半導體材料,如氮化鉀(GaN)或磷化銦鎵(InGap)。# 型半導體層133優選採用CVD方法形成於該& Λ ''•a 132 上。 可理解,該半導體結構層13亦可為兩層結構,社 ^ 兩兩層 磊晶結構由一 P型半導體層131和一 N型半導體層13 e '^組 成。 該第二電極層14形成於N型半導體層133上,其包& 一透明導電層141及一與該透明導電層141電接觸之金^ 導電層142。 該透明導電層141形成於N型半導體層133上,其與 N型半導體層133形成歐姆接觸(ohmic contact)。該透明導 電層133之材料為透明之金屬氧化物或金屬摻雜氧化物, 如銦錫氧化物(Indium Tin Oxides,ITO)、氧化鋅(ZnO)、氧 化錫(Sn02)、銦摻雜一氧化錫(SnO:In)、錫摻雜三氧化二鎵 (Ga2〇3:Sn)、錫摻雜銀麵氧化物(AgIn〇2:Sn)、銦錫氧化物 (In203:Sn)、鋅摻雜三氧化二銦(In2Q3:Zn)、銻摻雜二氧化錫 (Sn02:Sb)、或鋁摻雜氧化鋅(ΖηΟ:Α1)等。透明導電層141 之光吸收係數小,可讓更多太陽光通過。可理解,亦可於 9 200915584 •透明導電層141進一步形成一層增透膜來提高太陽光之利 •用率。該透明導電層141可採用濺射、低壓化學氣相沈積 法或高壓化學氣相沈積法形成。 該金屬導電層242形成(例如沈積)於透明導電層141之200915584 IX. Description of the Invention: [Technical Field] The present invention relates to a solar cell module, and more particularly to a solar cell module which can be changed in shape. [Prior Art] The solar cell mainly employs a photoelectric conversion principle, and its structure mainly includes a substrate and a P-type semiconductor material layer and an N-type semiconductor material layer which are disposed on the substrate. Photoelectric conversion refers to the process by which solar radiant energy photons are converted into electrical energy by semiconductor materials (see "Grown junction GaAs solar cell", Shen, CC; Pearson, GL; Proceedings of the IEEE, Volume 64, Issue 3, March 1976 Page (s): 384-385). When sunlight hits the semiconductor, a portion of it is reflected off the surface and the remainder is absorbed or transmitted by the semiconductor. Some of the absorbed light becomes heat, and other photons collide with the valence electrons that make up the semiconductor, producing electron-hole pairs. Light energy is converted into electrical energy in the form of electron-hole pairs, and a barrier electric field is formed on both sides of the P-type and N-type interfaces, driving electrons to the N region and holes to the P region, thereby causing excess N region. The electrons have excess holes in the P region, and a photo-generated electric field opposite to the electric field of the barrier is formed in the vicinity of the P-N junction. In addition to offsetting the barrier electric field, one portion of the photo-generated electric field also causes the P-type layer to be positively charged, the N-type layer to be negatively charged, and a thin layer between the N-region and the P-region to produce a so-called photovoltaic electromotive force. If the metal leads are soldered to the P-type layer and the N-type layer respectively, and the load is turned on, current flows through the external circuit. In this way, a battery assembly is formed, which is connected in series and in parallel to generate a certain voltage and current, and the output power is 200915584. In recent years, solar cells have been widely used in aviation, industry, and gas fields. How to apply solar cells to daily life to solve problems such as energy shortage and environmental pollution has become a hot issue. Among them, solar energy construction: combining solar cells with building materials, making the future large-scale buildings or family houses self-sufficient in power, is the future-big development direction, and Germany, the United States and other countries have proposed photovoltaic roof plans. However, in general, the substrate of a solar cell is made of a material such as single crystal germanium, multi-stroke or a glass, and most of the solar cells using these materials as a substrate can receive the radiation of the sun in a fixed direction, which is more Light shots can be wasted because they cannot be received by solar cells. SUMMARY OF THE INVENTION In order to provide a solar cell module that can change shape, a solar cell module includes a flexible surface solar cell, and the flexible solar cell includes a solar cell for receiving solar radiation energy. The face' and the flute opposite the first surface are on the surface of the younger brother. a shape memory full layer is attached to the second surface, so that the flexo% energy battery changes with the shape of the shape memory alloy layer, relative to the prior art, The solar cell module provided by the invention can change the shape of the solar cell by the intensity of (4), so that more solar light energy can be collected and the photoelectric conversion efficiency can be improved. [Embodiment] Referring to the drawings, a first embodiment of the present invention provides a solar cell module 200915584, which includes a flexible solar cell 10. The flexible solar cell 10 includes a first surface 100 for receiving solar radiant energy and a second surface 101 opposite the first surface 100. A shape memory alloys layer 15 (SMA layer) is formed on the second surface 101. Referring to FIG. 2, the flexible solar cell 10 includes a substrate 11, and the substrate 11 has a first surface 110 and a second surface 101. A first electrode layer 12, a semiconductor structure layer 13, and a second electrode layer 14 having a polarity opposite to that of the first electrode layer 12 are sequentially formed on the first surface 110 of the substrate 11. In the embodiment, the substrate 11 is a flexible aluminum-alloy foil (Al-Mg alloy foil) having a thickness of about 1 Ομιη to 1 ΟΟμπι. The material of the substrate 11 may also be a flexible material such as a metal (Mg), a stainless steel sheet, or a polymer sheet. The first electrode layer 12 is formed on the first surface 110 of the substrate 11. The material of the first electrode layer 12 may be a metal such as silver (Ag), copper (Cu), or a (A1), or may be an Al-Cu alloy or a Cu-Mo alloy. Alloy materials. The first electrode layer has a thickness of about 0.1 μm to 10 μm. The first electrode layer 12 may be formed by sputtering or deposition, preferably by DC magnetron sputtering. The semiconductor structure layer 13 may have a three-layer structure including A P-type semiconductor layer 131, an N-type semiconductor layer 133, and a PN junction layer 132 between the P-type semiconductor layer 131 and the N-type semiconductor layer 133. The material of the P-type semiconductor layer 131 may be a P-type amorphous silicon (P-Si) material, in particular, a P-type amorphous silicon with hydrogen (P-type) -Si:H) Material. Of course, the material of the P-type semiconductor layer may also be a III-V compound or a II-VI compound, especially a semiconductor material doped with aluminum (A1), potassium (Ga), or indium (In), such as aluminum nitride. Potassium (AlGaN) or aluminum gallium arsenide (AlGaAs). The P-type semiconductor layer 131 can be formed on the first electrode layer 12 by chemical vapor deposition (CVD). In this embodiment, plasma enhanced CVD (PECVD) is preferably used. ), of course, other CVD methods can be selected depending on the material. Preferably, the material of the P-type semiconductor layer 131 is a P-type amorphous tantalum material. The amorphous germanium material absorbs light about 500 times stronger than the crystalline germanium material. Therefore, the thickness of the semiconductor layer made of the amorphous germanium material is much smaller than that of the crystalline germanium material when the photon absorption amount is the same. The thickness of the layer. And the amorphous germanium material has lower requirements on the substrate material. Therefore, the use of an amorphous germanium material not only saves a large amount of material, but also makes it possible to produce a large-area solar cell (the area of the crystalline solar cell is limited by the size of the germanium wafer). The material of the P-N junction layer 132 may be a combination of a better group III-V compound or an I-III-VI compound such as a hoofed pot (CdTe) or a copper ingot (CuInSe2). It can also be copper indium gallium selenide (CuIni_xGaSe2, CIGS). The P-N junction layer 132 is used to convert photons into electron-hole pairs and form a barrier electric field. The PN junction layer 132 may be formed on the P-type semiconductor layer 131 by a chemical vapor deposition method, a sputtering method, or the like, preferably by DC magnetron sputtering or AC 8 200915584 AC magnetron sputtering. form. The material of the N-type semiconductor layer 133 may be an N-type non-amorphous silicon (Na-Si) material, in particular, an N-type amorphous silicon with hydrogen (n material). The material of the N-type semiconductor layer 133 may also be m / ' buckle v compound-free or II-VI compound, especially a semiconductor material doped with nitrogen (N), phosphorus v } 岬 (As), such as potassium nitride ( GaN) or indium gallium phosphide (InGap). The #-type semiconductor layer 133 is preferably formed on the & Λ ''•a 132 by a CVD method. It can be understood that the semiconductor structural layer 13 can also be a two-layer structure. The two-layer epitaxial structure is composed of a P-type semiconductor layer 131 and an N-type semiconductor layer 13 e '. The second electrode layer 14 is formed on the N-type semiconductor layer 133, and includes a transparent conductive layer 141 and A gold conductive layer 142 in electrical contact with the transparent conductive layer 141. The transparent conductive layer 141 is formed on the N-type semiconductor layer 133, which forms an ohmic contact with the N-type semiconductor layer 133. The transparent conductive layer 133 The material is a transparent metal oxide or a metal doped oxide such as indium tin (Indium Tin Oxides, ITO), zinc oxide (ZnO), tin oxide (Sn02), indium doped tin oxide (SnO:In), tin-doped gallium trioxide (Ga2〇3:Sn), tin-doped Hetero Silver Surface Oxide (AgIn〇2:Sn), Indium Tin Oxide (In203:Sn), Zinc Doped Indium Oxide (In2Q3:Zn), Antimony Doped Tin Oxide (Sn02:Sb), or Aluminum Doped with zinc oxide (ΖηΟ: Α1), etc. The transparent conductive layer 141 has a small light absorption coefficient, which allows more sunlight to pass through. It can be understood that the transparent conductive layer 141 further forms an anti-reflection film to improve The transparent conductive layer 141 can be formed by sputtering, low pressure chemical vapor deposition or high pressure chemical vapor deposition. The metal conductive layer 242 is formed (for example, deposited) on the transparent conductive layer 141.

屬導電層142通常係由非透光之金屬或金屬合金材料製成。 θ該形狀記憶體合金層15通過黏膠等方式緊密貼附於該 太陽此電池ίο基板n之第二表面1〇1。該形狀記憶體合金 層15之材料可為具有單程形狀記憶效應之形狀記憶體合金 材料’、亦可為具有雙程形狀記憶效應之形狀記憶體合金材 I 或者一有王程形狀§己憶效應之形狀記憶體合金材料。 合金(如Cu-Zn-Al合金 Cu-Al-Be 合金、Cu-Al- 合金、Cu-ΑΙ-Τρ.么A楚 該形狀記憶體合金材料可選自Ti_Ni合金,銅基形狀記憶體 d e 至、Cu-Zn-Ca 合金、Cu-Al-Ni 合金、 Cu-Al-Be 合金、Cu-Al-Mu 合金、Cu-Zn-Si -金 Fe Pd 合金、Fe-Cr-Ni 合金、Fe-Ni-C 合金、Fe-Mn 合金、Fe-33Ni_10c〇_4Ti 合金、Fe_32Mn 6si 合金、The conductive layer 142 is typically made of a non-transmissive metal or metal alloy material. θ The shape memory alloy layer 15 is closely adhered to the second surface 1〇1 of the substrate λ of the solar cell by means of glue or the like. The material of the shape memory alloy layer 15 may be a shape memory alloy material having a one-way shape memory effect, or a shape memory alloy material I having a two-way shape memory effect or a king-shaped shape § recall effect Shape memory alloy material. Alloy (such as Cu-Zn-Al alloy Cu-Al-Be alloy, Cu-Al- alloy, Cu-Al- alloy, Cu-ΑΙ-Τρ. A A. The shape memory alloy material may be selected from Ti_Ni alloy, copper-based shape memory de to , Cu-Zn-Ca alloy, Cu-Al-Ni alloy, Cu-Al-Be alloy, Cu-Al-Mu alloy, Cu-Zn-Si-gold Fe Pd alloy, Fe-Cr-Ni alloy, Fe-Ni -C alloy, Fe-Mn alloy, Fe-33Ni_10c〇_4Ti alloy, Fe_32Mn 6si alloy,

5、’、u-A1_Te合金等)’或鐵基形狀記憶體合金(如Fe_pt 於貼附形狀記憶體合金層15卩前首先要對該形狀記憶 體σ孟層15進行訓練使其進行一定之塑性變形,這樣當對 幵/狀。己隐體合金層15力口熱到一定溫度日夺,該形狀記憶體合 金層15會發生馬式體相變又恢復到原來形狀(母相)。可採 用通電加熱亦可採用熱傳導之方式對該形狀記憶體合金廣 200915584 熱二於本實施例中,該形狀記憶體合金層15係單層, ./、早之馬式體相變情況。由於該太陽能電池丄 曲’故’當該形狀記憶體合金廣15發生 : 電池亦會隨之發生相同之形變。 野乂太^ 本實施例巾,形狀記憶體合金層15之 態之形狀記憶體合全姑社a ^ 、擇早日日 材料不恶之形狀記憶體合金 材枓不而要對該形狀記憶體合金層進 熱控制該形狀記憶铲入厶s κ々说a从果通過通电加 :能電池10之形狀“。σ 伸縮即可改變該太陽 件2請匕本發明第二實施例提供-種太陽能電池組5, ', u-A1_Te alloy, etc.' or iron-based shape memory alloy (such as Fe_pt before attaching the shape memory alloy layer 15 首先 first to train the shape memory σ 蒙 layer 15 to make a certain Plastic deformation, so that when the 隐/ shape. The body of the hidden alloy layer 15 is heated to a certain temperature, the shape memory alloy layer 15 will undergo a horse-like phase transformation and return to the original shape (parent phase). The electric shape heating alloy can also be heat-transferred to the shape memory alloy in the present embodiment. The shape memory alloy layer 15 is a single layer, ./, early horse body phase transformation. The solar cell is distorted 'when' when the shape memory alloy 15 occurs: the battery will also undergo the same deformation. The wild 乂 too ^ This embodiment of the towel, the shape memory alloy layer 15 state of the shape memory Gushe a ^, choose the shape of the early day material is not evil shape memory alloy material 枓 not to the shape memory alloy layer into the heat control the shape memory shovel into the 厶 s 々 々 say a from the fruit through the power plus: energy battery 10 shape ". σ expansion is Please change the sun dagger element 2 a second embodiment of the present invention provides - kind of solar cell

:二=電池組件2包括-可撓曲太陽能電池20。 該可挽曲太陽能雷、% A 面200,以及盘該第ζ括㈣㈣太陽輕射能之第—表 二表…形成ί:表面:〇喝之第二表面㈣: Two = battery assembly 2 includes - a flexible solar cell 20. The flexible solar radiation, the % A surface 200, and the disk of the fourth (four) (four) solar light energy - the second table ... form ί: surface: the second surface of the drink (four)

Alloys layer,SMAla ^狀°己\體合金層 25(Shape MemoIT —奋,g yer)。該太陽能電池組件2之結構與第 L. 細例中之太陽能電池缸件1之έ士棋1 士 | 在於該形狀記情體人今届:) °構基本相同’其區別 體合金材料形;1層25係由多層不同類型之形狀記憶 堆疊而成。间媒乂狀5己憶體合金薄膜層250,251,252 要^ ^,,於貼附形狀記憶體合金層25之前,首先 要對不同之形狀記憶體合 同形狀記憶體合金材料且右^膜層刀別進灯訓練。由於不 將該形狀記憶體合❹25 :之馬氏體相變點’因此當 合金層25亦會呈現二加熱到不同溫度’該形狀記憶體 隨之呈現不同之形狀。m這樣太陽能電池2 〇亦會 丰月細例中,以三層結構之形狀記 11 200915584 .億體合金層為例’當然,該形狀記憶體合金層25亦可為1 他多層結構’層數越多,該形狀記憶體合金層25所能呈現 之形狀就越多。 請參閱圖4,本發明第三實施例提供一種太陽能電騎 件3 ’該太陽能電池組件3包括-可撓曲太陽能電池30、: 該可挽曲太陽能電池30包括用於接收太陽輻射能之第—表 面300’以及與該第一表自3〇〇相對之第二表面逝。該第 :表面300上設置有光輻射探測器31,該第二表面301上 形成有-形狀記憶體合金層35。該太陽能電池組件3進— 电連接至該光輻射探測器31,該閉環控制電路32 :端奶電連接至該形狀記憶體合金層35。該閉環控制= 射探測器31探測到之光強控制該形狀記 =體&孟層35發生形變,從而使得太陽能電池%發生形 'SL ° V 該光輻射探測11 31可為絲式絲射探心,光雷1 2輻射探測器’或光Μ式光輻射探測器。本實施例中優ς 射f測器,可將光輻射直接轉換成電流或電 金探測回應%間短,靈敏度高。 於本實施财,該形狀記憶體合金層35為# 其材料優選為具雙㈣狀記憶效應之形狀記^合 1冓 t具雙程形狀記憶效應之形狀記憶體合金材料經過—定 、:理和訓練後’於隨後之加熱和冷卻中,既能 古π 狀態母相之形狀,又對低溫狀態之形狀(馬氏體)具有H二 12 200915584Alloys layer, SMAla ^ ° ° \ body alloy layer 25 (Shape MemoIT - Fen, g yer). The structure of the solar cell module 2 and the solar cell cylinder member 1 of the L. exemplified in the first example are in the shape of the character: this is basically the same as the 'the difference in the shape of the alloy material; The 1 layer 25 series is composed of a plurality of layers of different types of shape memories. Before the shape memory alloy layer 25 is attached, the shape memory alloy alloy material and the right film layer knife are first applied to the shape memory alloy layer 25 before attaching the shape memory alloy layer 25 to the shape memory alloy layer 25. Don't enter the light training. Since the shape memory is not combined with the martensite transformation point of the 25: so that the alloy layer 25 is also heated to a different temperature, the shape memory then assumes a different shape. m such a solar cell 2 〇 〇 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 The more the shape memory alloy layer 25 can exhibit, the more it will be. Referring to FIG. 4, a third embodiment of the present invention provides a solar electric riding device 3'. The solar battery module 3 includes a flexible solar cell 30. The buckling solar cell 30 includes a solar radiant energy. a surface 300' and a second surface opposite the third surface from the first table. The surface 300 is provided with a light radiation detector 31 on which a shape memory alloy layer 35 is formed. The solar cell module 3 is electrically connected to the optical radiation detector 31, and the closed loop control circuit 32 is electrically connected to the shape memory alloy layer 35. The closed-loop control = the intensity detected by the detector 31 controls the shape of the body & the layer 35 is deformed, so that the solar cell % is shaped 'SL ° V. The optical radiation detector 11 31 can be a silk wire Quest, Light Ray 1 2 Radiation Detector' or Optical Radiation Detector. In this embodiment, the radiation detector is used to directly convert the optical radiation into a current or an electric power. The detection response is short between % and high in sensitivity. In the present implementation, the shape memory alloy layer 35 is #. The material is preferably a shape having a double (qua) shape memory effect. The shape memory alloy material having a two-way shape memory effect is subjected to a predetermined And after training, in the subsequent heating and cooling, the shape of the mother phase of the ancient π state, and the shape of the low temperature state (martensite) have H 2 12 200915584

該閉環控制電路32包括一個比較單元 〜p該比較單元320用於比較該光輻 =這種具雙程形狀記憶效應之形狀記憶體合金材料可保The closed loop control circuit 32 includes a comparison unit 〜p. The comparison unit 320 is for comparing the optical radiation. The shape memory alloy material having the two-way shape memory effect can be protected.

32〇」-…干一。 射探測器31探測之太陽輻射強度1與某—特定強度之大 小,該特定強度10存儲於該比較單元32〇中。該記憶 體合金層35被訓練具有母相和馬式體兩種形狀。通過㈣ 對形狀記憶體合金層35 1加熱溫度來改變形狀記憶體合金 層35之形狀。當比較單元32〇判斷出光輻射探測器^探 測到太陽輻射強度Ϊ小於某-肢強度Ig時,形狀記憶體 合金層35保持於馬氏體;當比較單元32〇判斷出光輻射探 測器31探測到之太陽輻射強度I大於某一特定強度L時, 該比較單元320輸出一個控制訊號至該控制單元321,該控 制單元321根據該訊號供給形狀記憶體合金層35 一定之電 流強度,使該形狀記憶體合金層35達到並超過其馬氏體相 變點之溫度,於此情況下,形狀記憶體合金層35恢復到母 相之形狀;當比較單元320判斷出光輻射探測器31探測到 之太陽輻射強度I再一次小於某一特定強度1〇時,該控制 卓元321減小供給形狀記憶體合金層35之電路強度,使該 形狀記憶體合金層35之受熱溫度減小到其馬氏體相 變點《盖 度以下,這樣該形狀記憶體合金層35又呈現馬氏體形狀。 該特定強度1〇之選擇可根據當地之日照週期和日照強度進 13 200915584 。假如某地區夏天一天24小時内…鐘 至為(ΑΜ 1〇:〇〇-ΡΜ 16:00)之日照強度都比較強,且 10二16點之日照強度相差不多,那麼可選取這兩個時刻 Μ探測到之絲射強度“特定強度。由於 10點至16點這個時間段太陽之輻射較強 ::能電池30之間之夹角較小,太陽能電池二上 平展之形狀就會接收較多之太陽韓射能; 曰照強度都比較弱,太陽妒雷w m外中 」场月匕電池30就需要適當之彎曲才能 為白^ 能,太陽能電池3G之軸可為球面亦可 :: 面,可根據該太陽能電池本身之大小以及當地之 最多太陽輕射能之形^末8十具出太陽能電池能夠接收 請^^5’本發明第四實施例提供—種太陽能電池組 件4,该太陽能電池纟且件4 & __ ,, t 电也、、且件4包括一可撓曲太陽能電池40。 "可撓曲太陽能電池4〇包括用於接收太陽輕射能之第 面_,以及與該第—表自_相對之第二表面他。 :表面400上設置有光輻射探測器41,該第二表面J上 形成有-形狀記憶體合金層45。該太陽能電池組件4進一 步包括-個閉環控制電路42,該閉環控制電路^之輸 422電連接至該光輻射探測器41,該閉環控制電路c之輸 :端423電連接至該形狀記憶體合金層45。該閉環控^ ^ 42根㈣絲射探卿41 _到之光強控制該形狀記 憶體合金層45發生形變’從而使得太陽能電池4〇發生步 變。該太陽能電池組件4之結構與第三實施例中之讀能 200915584 電池組件3之結構基本相同,其區別在於該形狀記憶體合 金層45係由多層不同類型之形狀記憶體合金材料形成之形 狀記憶體合金薄膜層450,451 ’ 452堆疊而成。於貼附形 :大記憶體合金層45之前,首先要對不同之形狀記憶體合金 薄膜分別進行訓練。由於不同形狀記憶體合金材料具有不 同之馬氏體相變點,因此當將該形狀記憶體合金層45加熱 】不同之/m度,該开> 狀記憶體合金層45亦會呈現不同之形 狀,這樣太陽能電池4〇亦會隨之呈現不同之形狀。 該閉壤控制電路42包括-個比較單元42〇及一個控制 ^元421,該閉環控制電路具有複數輸出端似,該複數輸出 端423分別電連接至該複數形狀記憶體合金薄膜層彻, 451,452。該比較單元420用於比較該光輻射探測器42探 測之太陽_射強度ϊ與若干個特定強度n之大小,該 若干個特定強度^ l2.._存儲於該比較單元彻中。食第三 實施财同,本實施财針對不料㈣設定若干個特定 ^:每兩個相鄰之特W射強度段對應―個形狀記憶體 合金薄膜層450,451,> 拓 2對應之馬氏體相變溫度。當比 ,樣判斷出光輕射探測器41探測到太陽輕射強度! "於某相鄰兩個特定強度〗盥 號至該控制單元421,該抑制單_ 4 、 剧一固控制訊 „ 制早几421根據該訊號供給形狀 吕己fe肽合金層45 —定之雷户竑谇 电伽·強度,使該形狀記憶體合金層 45達到並超過該強度段所對應之馬氏體相變點之溫度,於 此清況下’形狀§己憶體合金芦45 φ斜瞎 薄膜層會恢復到其母相之種。之形狀記憶體合金 《开/狀酼者太陽輻射強度I之改 15 200915584 =控制單元42!供給形狀記憶體合金層45之電流強度亦 “生改變,這樣形狀記憶體合金層45會呈現不同之形狀。 據太^於Μ技術,本發明提供之太陽能電池組件可根 之輕射強度控制太陽能電池之形狀,使其能夠接 收更夕之太陽輻射能,提高光電轉換效率。 限二:tr實靖之可撓曲太陽能電池不僅僅 丨良於只靶例中所提供之結構和材料,尸 之太陽能電池都剌於本發明。、’…撓性質 建旱::解:提供之太陽能電池組件不僅可應用於 域’运可廣泛應用於航天器’海上運輪工具,交通 提出述’本發明確已符合發明專利之要件,遂依法 徒出專利申清。惟, 式,自不Λ, 7 士 述者僅為本發明之較佳實施方 自不月b以此限制本案之申缚直r岡 技藝之人士援依本發明之精神所作二佟::熟悉本案 應涵蓋於以下申請專利範圍内申。斤作之4效修飾或變化,皆 【圖式簡單說明】 意圖圖i係本發明第一實施例之太陽能電池組件之結構示 能電池組件中可撓曲太陽能電池 圖2係圖1所示太陽 之結構示意圖。 意圖 圖3係本發實施狀太陽能電池組件之結構示 圖4係本發明第三實韻之太陽能電池組件之結構示 16 200915584 意圖。 圖5係本發明第四實施例之太陽能電池組件之結構示 意圖。 【主要組件符號說明】 太陽能電池組件 1,2,3,4 太陽能電池 10 , 20 , 30 , 40 基板 11 第一電極層 12 半導體結構層 13 第二電極層 14 記憶體合金層 15 , 25 , 35 , 45 光輻射探測器 31,41 閉環控制電路 32,42 第二表面 101 , 201 , 301 , 401 第一表面 110 , 200 , 300 , 400 P型半導體層 131 P-N結層 132 N型半導體層 133 透明導電層 141 金屬導電層 142 記憶體合金薄膜層 250 , 251 , 252 , 450 , 451 , 452 比較單元 320 , 420 控制單元 321 , 421 輸入端 322 , 422 17 200915584 輸出端 323 , 423 1832〇"-...one. The solar radiation intensity 1 detected by the radiation detector 31 is the magnitude of a certain intensity which is stored in the comparison unit 32A. The memory alloy layer 35 is trained to have both a mother phase and a horse body shape. The shape of the shape memory alloy layer 35 is changed by (4) heating the shape memory alloy layer 35 1 to a temperature. When the comparing unit 32 determines that the solar radiation detector detects that the solar radiation intensity Ϊ is smaller than the certain limb strength Ig, the shape memory alloy layer 35 is maintained in the martensite; when the comparing unit 32 determines that the optical radiation detector 31 detects When the solar radiation intensity I is greater than a certain intensity L, the comparison unit 320 outputs a control signal to the control unit 321, and the control unit 321 supplies a certain current intensity of the shape memory alloy layer 35 according to the signal to make the shape memory. The body alloy layer 35 reaches and exceeds the temperature of its martensite transformation point, in which case the shape memory alloy layer 35 returns to the shape of the parent phase; when the comparison unit 320 determines the solar radiation detected by the light radiation detector 31 When the intensity I is once again less than a certain intensity of 1 ,, the control element 321 reduces the circuit strength supplied to the shape memory alloy layer 35, and reduces the heating temperature of the shape memory alloy layer 35 to its martensite phase. The change point "below the cover degree, so that the shape memory alloy layer 35 exhibits a martensitic shape again. The selection of this specific intensity can be based on the local sunshine cycle and the intensity of sunshine 13 200915584. If the sunshine intensity of a certain area is within 24 hours a day in the summer... Zhong Zhiwei (ΑΜ 1〇:〇〇-ΡΜ 16:00), the intensity of sunshine is relatively strong, and the intensity of sunshine at 10:16 is similar, then these two moments can be selected.丝The detected silk intensity is “specific intensity. Since the solar radiation is strong from 10:00 to 16:00: the angle between the cells 30 is small, the shape of the solar cell will be more flat. The sun is able to shoot; the intensity of the sun is weak, and the sun is smashing. The battery 30 needs proper bending to be white. The axis of the 3G solar cell can be spherical:: According to the size of the solar cell itself and the local maximum solar light energy, the solar cell can be received. The solar cell module 4 is provided in the fourth embodiment of the present invention. And the member 4 & __ , , t is also, and the member 4 includes a flexible solar cell 40. "Flexible solar cell 4'' includes a first surface for receiving solar light energy, and a second surface opposite to the first table. The surface 400 is provided with a light radiation detector 41 on which a shape memory alloy layer 45 is formed. The solar cell module 4 further includes a closed loop control circuit 42 electrically connected to the optical radiation detector 41, and the input end 423 of the closed loop control circuit c is electrically connected to the shape memory alloy Layer 45. The closed-loop control ^ 4 42 (4) silk imaging 41 _ to the intensity of the control of the shape of the memory alloy layer 45 deformed ', thereby causing the solar cell 4 〇 step. The structure of the solar cell module 4 is substantially the same as that of the battery element 3 of the reading energy 200915584 in the third embodiment, except that the shape memory alloy layer 45 is a shape memory formed by a plurality of layers of different types of shape memory alloy materials. The body alloy film layers 450, 451 '452 are stacked. For the attachment shape: Before the large memory alloy layer 45, the different shape memory alloy films are first trained separately. Since the different shape memory alloy materials have different martensitic transformation points, when the shape memory alloy layer 45 is heated to be different / m degrees, the open > memory alloy layer 45 will also be different. The shape, so that the solar cell 4 〇 will also have different shapes. The closed-loop control circuit 42 includes a comparison unit 42A and a control unit 421. The closed-loop control circuit has a plurality of output terminals, and the plurality of output terminals 423 are electrically connected to the plurality of shape memory alloy thin film layers, respectively. , 452. The comparison unit 420 is configured to compare the magnitude of the solar radiation intensity detected by the optical radiation detector 42 with a plurality of specific intensities n, and the plurality of specific intensities ^l2.._ are stored in the comparison unit. The third implementation of the same food, the implementation of the financial plan for the unexpected (4) set a number of specific ^: each two adjacent special W-ray intensity segment corresponding to a shape memory alloy film layer 450, 451, > The phase transition temperature of the body. When the ratio is determined, the light illuminating detector 41 detects the light intensity of the sun! " 某 某 某 相邻 相邻 相邻 相邻 相邻 相邻 相邻 相邻 相邻 相邻 相邻 相邻 相邻 相邻 相邻 相邻 相邻 相邻 421 421 421 相邻 421 421 421 421 421 421 421 421 421 421 421 至 421 421 421 421 421 421 421 421 421 421 421 421 421 421 The shape of the shape memory alloy layer 45 reaches and exceeds the temperature of the martensitic transformation point corresponding to the intensity section. In this condition, the shape § the memory alloy Lu 45 φ oblique The 瞎 film layer will return to its parent phase. The shape memory alloy "Open / 酼 酼 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳Thus, the shape memory alloy layer 45 will assume a different shape. According to the technology of the solar cell, the solar cell module provided by the present invention can control the shape of the solar cell by the light intensity of the solar cell module, so that it can receive the solar radiation energy and improve the photoelectric conversion efficiency. Limit 2: trjing Jing's flexible solar cell is not only better than the structure and materials provided in the target case, and the solar cell of the corpse is in the present invention. , '...Flexible quality construction drought:: Solution: The solar cell module provided can be applied not only to the domain 'transport can be widely used in spacecraft' sea transport wheel tools, traffic is described as 'the invention has indeed met the requirements of the invention patent, 遂Patent application is cleared in accordance with the law. However, the style is self-defeating, and the 7 sects are only the preferred implementers of the present invention. The person who is limited to the application of this case is bound by the spirit of the present invention: This case should be covered in the scope of the following patent application. The four-effect modification or change of the singularity is a simplified description of the drawing. FIG. 1 is a flexible solar cell in the structure of the solar cell module according to the first embodiment of the present invention. FIG. 2 is a view showing the sun shown in FIG. Schematic diagram of the structure. 3 is a structural diagram of a solar cell module of the present embodiment. FIG. 4 is a structural diagram of a solar cell module according to a third embodiment of the present invention. Fig. 5 is a view showing the construction of a solar battery module according to a fourth embodiment of the present invention. [Main component symbol description] Solar cell module 1, 2, 3, 4 Solar cell 10, 20, 30, 40 Substrate 11 First electrode layer 12 Semiconductor structure layer 13 Second electrode layer 14 Memory alloy layer 15, 25, 35 45 optical radiation detector 31, 41 closed-loop control circuit 32, 42 second surface 101, 201, 301, 401 first surface 110, 200, 300, 400 P-type semiconductor layer 131 PN junction layer 132 N-type semiconductor layer 133 transparent Conductive layer 141 metal conductive layer 142 memory alloy thin film layer 250, 251, 252, 450, 451, 452 comparison unit 320, 420 control unit 321, 421 input end 322, 422 17 200915584 output end 323, 423 18

Claims (1)

200915584 . 十、申請專利範圍: 1. -種太陽能電池組件,包括一個可撓曲太陽能電池,該 可撓曲太陽能電池包括用於接收太陽輕射能之第一表面, 及與該第-表面相對之第二表面,其改進在於,一形狀記 :體:金層貼附於該第二表面,以使該可撓曲太陽能電池 &該形狀記憶體合金層之形狀變化而改變形狀。 2. 如申請專利範圍第!項所述之太陽能電池組件,其中, 該形狀記憶體合金層之材料係具雙程形狀記憶效應之形狀 記憶體合金材料。 3·如申請專利範圍第!項所述之太陽能電池組件,其中, 該形狀記憶體合金層係單層結構。 如申請專利範圍第3項所述之太陽能電池组件,盆中, f形狀記憶體合金層之材料係單晶態之形狀記憶體合金。 &如申請專利範圍第!項所述之太陽能電池組件,直中, ^狀記憶體合金層之材料係Ti_Ni合金,銅基形狀;憶體 I 口金’或鐵基形狀記憶體合金。 ^广申請專利範圍第1項所述之太陽能電池組件,其中, 表面上設置有光輻射探測器,該太陽能電池組件進 p括-個閉環控制電路,該閉環控制電路之輸入端電 至該光輻射㈣H,該_控制電路之輸出端電連接 測憶體合金層’該閉環控制電路根據該光輕射探 、°衣屑到之光強控制該形狀記憶體合金層發生形變。 如申μ專利|a圍第!項所述之太陽能電池組件,其中, μ H己憶體合金層由不同形狀記憶體合金材料形成之複 19 200915584 數:狀由記憶體合金薄膜層堆疊而成。 .如申請專利範圍笸7 κ 該第-表面上交置有^所述之太陽能電池組件,其中, 一步包括-個_㈣^…π太U池組件進 個輸入端及複數輸出工端環控制電路具有至少一 ^ 輸出柒,該輸入端電連接至該光炉射摄制 二该別電連接至該複數形狀記憶“金薄 分別押制^r:1電路根據該光輻射探測器探測到之光強 ,彳㈣該m數形狀記憶體合金層發生形變。 9中如申請專利範圍第6或8項所述之太陽能電池組件,其 該光軲射楝測器係光熱式光輻射探測器,光電 射探測器,或光壓式光幸昌射探測器。 " =‘如中請專利範圍第6或8項所述之太陽能電池組件, 其中,該閉環控制電路包括一個比較單元及一個控制單 ~該比較單元内存儲有至少一個太陽輻射強度參考值, 該比較單7L將該光輻射探測器探測之太陽輻射強度與該至 (少—個太陽輻射強度參考值進行比較並輸出一個控制訊號 至該控制單元,該控制單元根據該控制訊號供給該形狀記 憶體合金層相應之電流,以使該形狀記憶體合金層發生相 適應之形變。 20200915584 . X. Patent application scope: 1. A solar cell module comprising a flexible solar cell, the flexible solar cell comprising a first surface for receiving solar light energy, and opposite to the first surface The second surface is improved in that a shape: a gold layer is attached to the second surface to change the shape of the shape of the flexible solar cell & 2. If you apply for a patent scope! The solar cell module according to the invention, wherein the material of the shape memory alloy layer is a shape memory alloy material having a two-way shape memory effect. 3. If you apply for a patent scope! The solar cell module according to the invention, wherein the shape memory alloy layer is a single layer structure. The solar cell module according to claim 3, wherein the material of the f-shaped memory alloy layer is a single-crystal shape memory alloy. & such as the scope of patent application! The solar cell module according to the item, wherein the material of the memory alloy layer is a Ti_Ni alloy, a copper-based shape, a membrane type I gold or an iron-based shape memory alloy. The solar cell module of claim 1, wherein the surface is provided with an optical radiation detector, and the solar cell module includes a closed loop control circuit, and the input end of the closed loop control circuit is electrically connected to the light Radiation (4)H, the output end of the _ control circuit is electrically connected to the memory alloy layer. The closed-loop control circuit controls the deformation of the shape memory alloy layer according to the light light ray and the light intensity of the swarf. Such as Shen μ patent | a Wai! The solar cell module according to the invention, wherein the μH memory alloy layer is formed of different shape memory alloy materials, and is formed by stacking memory alloy film layers. If the patent application scope 笸7 κ is disposed on the first surface, the solar cell module is disposed, wherein one step includes - _ (four) ^... π too U pool component into an input terminal and a plurality of output terminal loop control The circuit has at least one output 电 electrically connected to the illuminating unit 2, the other is electrically connected to the plurality of shape memories, and the light is detected by the optical radiation detector. The solar cell module according to claim 6 or 8, wherein the photodetector is a photothermal radiation detector, photoelectric A solar cell module according to the invention of claim 6 or claim 8, wherein the closed-loop control circuit includes a comparison unit and a control unit. The comparison unit stores at least one solar radiation intensity reference value, and the comparison unit 7L compares the solar radiation intensity detected by the optical radiation detector with the (less-solar radiation intensity reference value and outputs a control) Signal to the control unit, the control unit is referred to the corresponding current memory alloy layer in accordance with the control signal supplied to this shape, so that the occurrence of a shape memory alloy layer adapted to the deformation body. 20
TW96136325A 2007-09-28 2007-09-28 Solar cell module TWI407572B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96136325A TWI407572B (en) 2007-09-28 2007-09-28 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96136325A TWI407572B (en) 2007-09-28 2007-09-28 Solar cell module

Publications (2)

Publication Number Publication Date
TW200915584A true TW200915584A (en) 2009-04-01
TWI407572B TWI407572B (en) 2013-09-01

Family

ID=44725773

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96136325A TWI407572B (en) 2007-09-28 2007-09-28 Solar cell module

Country Status (1)

Country Link
TW (1) TWI407572B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427810B (en) * 2009-08-25 2014-02-21 Creating Nano Technologies Inc Solar cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6772479B2 (en) * 2001-06-21 2004-08-10 The Aerospace Corporation Conductive shape memory metal deployment latch hinge
US7692091B2 (en) * 2005-09-27 2010-04-06 Karim Altaii Shape memory alloy motor as incorporated into solar tracking mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427810B (en) * 2009-08-25 2014-02-21 Creating Nano Technologies Inc Solar cell

Also Published As

Publication number Publication date
TWI407572B (en) 2013-09-01

Similar Documents

Publication Publication Date Title
Huen et al. Advances in hybrid solar photovoltaic and thermoelectric generators
CN101388417B (en) Solar cell component
Schneikart et al. Efficiency limitations of thermally evaporated thin-film SnS solar cells
Miller et al. Optimization of hybrid photoelectrodes for solar water-splitting
US20100206352A1 (en) Low-concentration flat profile photovoltaic modules
US10211353B2 (en) Aligned bifacial solar modules
CN110024137A (en) Photovoltaic device with transparent tunnel knot
Ali et al. Study of ultra-thin CdTe/CdS heterostructure solar cell purveying open-circuit voltage∼ 1.2 V
Hossain Design and simulation of double-heterojunction solar cells based on Si and GaAs wafers
KR101497955B1 (en) Light transmitting back contact and solar cell using the same, and methods of manufacturing them
US20130112236A1 (en) Photovoltaic microstructure and photovoltaic device implementing same
CN101355109A (en) Solar battery component and manufacturing equipment thereof
KR101523246B1 (en) Double buffer comprising ZnS and solar cell using the same, and a method of manufacturing them
US20100307561A1 (en) Doped metal contact
CN101363267A (en) Solar roof and solar house
CN102628161A (en) Method for making semiconducting film and photovoltaic device
CN210723052U (en) Double-sided double-system film photovoltaic module
TW200915584A (en) Solar cell module
US20130112243A1 (en) Photovoltaic microstructure and photovoltaic device implementing same
CN110808299A (en) Flexible high-absorption rate thin film solar cell
Romeo et al. Development of high efficiency flexible CdTe solar cells
CN103606584A (en) Heterojunction solar battery composed of amorphous silicon/crystalline silicon/beta-FeSi2
KR101906473B1 (en) Bezel type hybrid solar cell module and manufacturing method thereof
Massiot Design and fabrication of nanostructures for light-trapping in ultra-thin solar cells
CN101931015A (en) Solar cell with transparent electrode and manufacturing method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees