TW200912877A - Display apparatus, driving method for display apparatus and electronic apparatus - Google Patents

Display apparatus, driving method for display apparatus and electronic apparatus Download PDF

Info

Publication number
TW200912877A
TW200912877A TW097122921A TW97122921A TW200912877A TW 200912877 A TW200912877 A TW 200912877A TW 097122921 A TW097122921 A TW 097122921A TW 97122921 A TW97122921 A TW 97122921A TW 200912877 A TW200912877 A TW 200912877A
Authority
TW
Taiwan
Prior art keywords
circuit
display device
pixel
waveform shaping
lines
Prior art date
Application number
TW097122921A
Other languages
Chinese (zh)
Other versions
TWI404023B (en
Inventor
Masumitsu Ino
Yasuhiro Ukai
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of TW200912877A publication Critical patent/TW200912877A/en
Application granted granted Critical
Publication of TWI404023B publication Critical patent/TWI404023B/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3659Control of matrices with row and column drivers using an active matrix the addressing of the pixel involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependant on signal of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Disclosed herein is a display apparatus, including, a pixel section, a plurality of scanning lines, a plurality of signal lines, and a driving circuit.

Description

200912877 九、發明說明: 【發明所屬之技術領域】 本發明係關於-種其中將作為_切換器件之^^日 體形成於-透明絕緣基板上之顯示器裝置,用於該顯示: 裝置之驅動方法以及電子裝置。 相關申請案交互參考 本發明包含與鳩年4月3()日向日本專利局_請的日本 專利申請案第JP 2_-1192G2號、·7年6月29日向日本專 利局申請的日本專利申請案第Jp 2〇〇7_173459及jp聰_ Π3偏號相關之標的,該等中請案之全部内容係 方式併入於此。 【先前技術】 一顯示器裝置(例如,其中將一液晶單元用作一顯示元 件或-電光元件之一液晶顯示器裝置)係一其中將此類像 素排列於-矩陣中而透過一液晶顯示面顯示—輸出影像之 影像顯示器裝置。 該液晶顯示器裳置以其纖細且其具有較低的功率消耗為 特徵。利用該等特徵之大多數特徵,該液晶顯示器裝置適 用於各種電子裝置,例如,個人數位助理(PDA)、可攜式 電話機、數位相機、視訊相機及個人電腦。 ^ 圖1/至1C顯示—普通液晶顯示器裝置之—範例及該液 晶顯不器裝置之閘極脈衝波形。 首先參考圖1A’所顯示的液晶顯示器裝置1包括一有效 像素區段2、一垂直驅動電路(VDRV)3及一水平驅動電路 128894.doc 200912877 (HDRV)4。 該有效像素區段2具有排列於一矩陣中之複數個像素電 路21。 該等像素電路21之每一電路包括用作一切㉟器件之一薄 膜電晶體TFT 22、-液晶單元23及一保持電容器24。該液 晶早7C 23係於其像素電極連接至該TFT 22之汲極電極或源 極電極。該保持電晶體24係於其一電極連接至該TFT。之 沒極電極。 该等像素電路21係連接至沿針對個別列之—像素陣列方 向佈線的閘極線5-1至5-m以及沿針對個別行的另一像素陣 列方向而佈線之信號線6-1至6-n。 該等像素電路212TFT 22之閘電極係以一列為一單位而 個別連接至該等閘極線5-1至5-m之相同閘極線。該等像素 電路21之源極電極或汲極電極係以一行為一單位而個別連 接至該等信號線6-1至6-n之相同信號線。 另外,在該等像素電路2 1之每一者中,該液晶單元23係 於其像素電極連接至該TFT 22之汲極電極而於其相對電極 連接至一共用線7。該保持電容器24係連接於該TFT 22的 沒極電極與該共用線7之間。 該共用線7係連接用以從一 VC〇M電路(未顯示)接收一預 定的交流電壓作為一共用電壓Vc〇m,該vc〇M電路係與一 驅動電路及類似者整合地形成於一玻璃基板上。 該等閘極線5-1至5-m係個別地藉由該垂直驅動電路3來 驅動,而該等信號線6-1至6-n係個別地藉由該水平驅動電 128894.doc 200912877 路4來驅動。 該垂直驅動電路3接收-垂直開始信號VST' 一垂直時 脈vclk及-啟用信號ENAB,並在一垂直方向上(即,在一 列之-方向上)掃描每—場週期來以_列為_單位連續選 擇連接至該等閘極線5_丨至5_m之像素電路21。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a display device in which a body of a _ switching device is formed on a transparent insulating substrate for display: a driving method of the device And electronic devices. CROSS REFERENCE TO RELATED APPLICATIONS This application contains the Japanese patent application filed with the Japanese Patent Application No. JP-A No. JP-A No. The Jp 2〇〇7_173459 and the jp Cong _ Π 3 ids are related to the subject matter, and all the contents of the request are incorporated herein. [Prior Art] A display device (for example, a liquid crystal cell in which a liquid crystal cell is used as a display element or an electro-optical device) is arranged such that such pixels are arranged in a matrix and displayed through a liquid crystal display surface. An image display device that outputs images. The liquid crystal display panel is characterized by its slimness and its low power consumption. Utilizing most of these features, the liquid crystal display device is suitable for use in a variety of electronic devices such as personal digital assistants (PDAs), portable telephones, digital cameras, video cameras, and personal computers. ^ Figures 1 to 1C show an example of a conventional liquid crystal display device and a gate pulse waveform of the liquid crystal display device. The liquid crystal display device 1 first shown with reference to Fig. 1A' includes an effective pixel section 2, a vertical drive circuit (VDRV) 3, and a horizontal drive circuit 128894.doc 200912877 (HDRV) 4. The effective pixel section 2 has a plurality of pixel circuits 21 arranged in a matrix. Each of the circuits of the pixel circuits 21 includes a thin film transistor TFT 22, a liquid crystal cell 23, and a holding capacitor 24, which are used as all 35 devices. The liquid crystal 7C 23 is connected to the drain electrode or the source electrode of the TFT 22 at its pixel electrode. The holding transistor 24 is connected to the TFT at one of its electrodes. The electrodeless electrode. The pixel circuits 21 are connected to the gate lines 5-1 to 5-m wired in the direction of the pixel array for the individual columns and the signal lines 6-1 to 6 wired in the direction of the other pixel array for the individual rows. -n. The gate electrodes of the pixel circuits 212TFT 22 are individually connected to the same gate lines of the gate lines 5-1 to 5-m in a row. The source or drain electrodes of the pixel circuits 21 are individually connected to the same signal lines of the signal lines 6-1 to 6-n in a single unit. Further, in each of the pixel circuits 2, the liquid crystal cell 23 is connected to the pixel electrode of the TFT 22 and to the common electrode 7 at its opposite electrode. The holding capacitor 24 is connected between the electrode of the TFT 22 and the common line 7. The common line 7 is connected to receive a predetermined AC voltage from a VC〇M circuit (not shown) as a common voltage Vc〇m, and the vc〇M circuit is formed integrally with a driving circuit and the like. On the glass substrate. The gate lines 5-1 to 5-m are individually driven by the vertical driving circuit 3, and the signal lines 6-1 to 6-n are individually driven by the horizontal 128894.doc 200912877 Road 4 is driven. The vertical driving circuit 3 receives a vertical start signal VST', a vertical clock vclk and an enable signal ENAB, and scans each field period in a vertical direction (i.e., in a column-direction) to _ column _ The unit continuously selects the pixel circuits 21 connected to the gate lines 5_丨 to 5_m.

特定言之,當從該垂直驅動電路3向該掃描線^施加一 掃描脈衝GP1時,選擇在該第一列中的各行中之像素,而 接著向該掃描線5-2施加另一掃描脈衝Gp2 ,選擇在該第二 列中料行中之像素。然後,以類似方式分別向料閉= 線或掃描線5-3,…,5-m連續施加閘極脈衝Gp3, ...,Gpm。 在一閘極脈衝Gp向該垂直驅動電路3之輸出級分別向該 等閘極線5-1至5-m提供閘極緩衝器卜丨至^爪。 圖1B顯示在對該閘極脈衝G p m之閉極緩衝後在該閘極緩 衝器8-m向該閘極線5_„1的輸出級處之一波形之範例。 圖1 C顯示該閘極脈衝Gpm在該閘極線5_m之一導線端子 部分處之一波形之'-範例。Specifically, when a scan pulse GP1 is applied from the vertical drive circuit 3 to the scan line, pixels in the respective rows in the first column are selected, and then another scan pulse is applied to the scan line 5-2. Gp2 , select the pixel in the row in the second column. Then, gate pulses Gp3, ..., Gpm are successively applied to the material close-up = line or scan line 5-3, ..., 5-m, respectively, in a similar manner. A gate buffer 丨 to a claw is supplied to the gate lines 5-1 to 5-m, respectively, at a gate pulse Gp to an output stage of the vertical drive circuit 3. Figure 1B shows an example of a waveform at the output stage of the gate buffer 8-m to the gate line 5_„1 after the closed-pole buffer of the gate pulse G pm. Figure 1 C shows the gate The pulse Gpm is an example of a waveform at one of the wire terminal portions of the gate line 5_m.

該水平驅動電路4接收一水平開始脈衝時脈Hst,其係從 一時脈產生器(未顯示)產生並指示水平掃描之開始以及相 位彼此相反的水平時脈Hclk(其係用作水平掃描之—參 考)。接者’該水平驅動電路4產生一取樣脈衝D 該水平驅動電路4回應於由此產生的取樣脈衝而對向其 輸入的影像資料R(紅色)、G(綠色)及B(藍色)連續取樣,並 將經取樣的影像資料作為欲寫入至該等像素電路2丨之資料 信號供應給該等信號線6-1至6-n。 128894.doc 200912877 該水平驅動電路4將該等信號線6-1至ό-η分成複數個群 、’且並包括對應於個別群組之信號驅動器41至44。The horizontal drive circuit 4 receives a horizontal start pulse clock Hst which is generated from a clock generator (not shown) and indicates the start of the horizontal scan and the horizontal clock Hclk whose phases are opposite to each other (which is used as a horizontal scan) reference). The horizontal driving circuit 4 generates a sampling pulse D. The horizontal driving circuit 4 successively responds to the sampling pulses thus generated, and the image data R (red), G (green) and B (blue) are continuously input thereto. The sampled image data is supplied to the signal lines 6-1 to 6-n as data signals to be written to the pixel circuits 2''. 128894.doc 200912877 The horizontal drive circuit 4 divides the equal signal lines 6-1 to ό-η into a plurality of groups, 'and includes the signal drivers 41 to 44 corresponding to the individual groups.

ί 儘管圖1所示液晶顯示器裝置1具有一基本組態,但已建 °義與如上所述採用此一垂直驅動電路3的閘極線驅動以及 如上所述採用此一水平驅動電路4的信號線驅動相關之諸 多技術。在日本專利案第3,276,996號(下面稱為專利文獻 1)、日本專利特許公開案第綱7_5237。號(下面稱為專利文 獻2)、曰本專利案第3,27〇,485號(下面稱為專利文獻3)、曰 本專利特々公開案第2刪_785G5號(下面稱為專利文獻4)、 日本專利特终公開案第綱5_148424號(下面稱為專利文獻 本專利特許公開案第2〇〇5_148425號(下面稱為專利 文獻6)中揭示此類技術。 【發明内容】 順便提及,從圖1所示液晶顯示器裝置1中的垂直驅動電 路3輸出之1極脈衝GP—般W在該面板的内側中之一ί Although the liquid crystal display device 1 shown in FIG. 1 has a basic configuration, the gate line driving using the vertical driving circuit 3 as described above and the signal using the horizontal driving circuit 4 as described above have been constructed. Many technologies related to line drives. Japanese Patent No. 3,276,996 (hereinafter referred to as Patent Document 1), Japanese Patent Laid-Open Publication No. 7_5237. No. (hereinafter referred to as Patent Document 2), Japanese Patent No. 3, 27, 485 (hereinafter referred to as Patent Document 3), and Japanese Patent Special Publication No. 2 _785G5 (hereinafter referred to as Patent Document) 4), such a technique is disclosed in Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. And one pulse GP output from the vertical drive circuit 3 in the liquid crystal display device 1 shown in FIG. 1 is one of the inner sides of the panel

3極佈線之電阻及寄生在該閘極佈線中的電容,即一 TFT :閑極電容及介於-像素電極與- VCOM佈線之間的電 谷’以產生阻抗。 因在該垂直驢動電路3之每一閉極佈線之終端處 μ閘極佈線距該垂直驅動電路3 極輸出波形指示因所產生的阻,…定…)的閘 致相心㈣ i的阻抗而產生之-時間常數而導 :以該垂直驅動電路3的輸出級處之輸出之波形 的疋失真,如圖lc中之一虛線所示。 該閉極脈衝之波形之失真導致在㈣極線上離該垂直驅 128894.doc 200912877 動電路3之輪出級的距離不同之位置之間一定的波 異。 因此,藉由一間極信號來以彼此相對位移的時序開啟作 為像素電晶體在該閘極線上處於不同位置之TFT 22,而纤 果使得該液晶顯示器裝置上的影像品質劣化。特定言之,° 黑色與灰色之一亮度差異出現於該水平方向上。 另外,例如,在 4〇Κ SUperHighVisi〇n(4,096xRGBx 1,〇80)的像素數目之條件下’由於水平週期汨比該 出的^叫^^咖丨別…的像素數目更短’因此圖像 品質劣化更趨嚴重。 此外,240 Hz之高框率(正規框率係6〇 Hz)將該出週期 進一步減小至四分之一’從而使得無法顯示其一影像。 在此,說明高框率。例如,一液晶顯示器裝置採用使得 用於顯示-秒鐘週期的訊框數目及訊框頻率比常用於顯示 者增加四倍從而改良移動圖像特徵之—技術^由於該液晶 顯示器裝置-般結合60Hz操作’因此高框率係24〇二曰曰 同時’專利文獻1至6中所揭示之技術具有如下所述之缺 有意使得一閘極脈衝 更長以抑制一不合需 像素電極之一方法。 極線的延遲分佈之一 專利文獻1中所揭示之技術係關於 之下降邊緣比該閘極脈衝之上升邊緣 要的電位在一電晶體關閉之際侵入一 但是,該技術不構成用以消除沿—閉 對策。 因此 該技術不適用於包括數目 過多而導致間極線之阻 128894.doc •10· 200912877 抗使得在榮幕的左與右側之陰影減小的像素或使用高框率 來顯示之一液晶顯示器裝置。 專利文獻2所揭示之技#包括在該ϋ #向上針對每— 像素實施的資料傳輸、沿控制時脈佈線(針對個別像素而 置放)在該垂直方向上之一水平掃描信號的傳輪以及針對 每一像素之一閘極脈衝信號的輸出。 依據該技術’需要用於一偏移暫存器之電源供應vD〇及 vss、-時脈信號及用於該偏移暫存m人信號線盘 -輸出信號線’且圍繞該液晶之孔徑需要用於此等線之二 空間。此構成使得該液晶的孔徑比減小之一原因。 此導致透射因數之減小及背光供應功率之增加。 另外,由於一控制時脈線與一信號線係彼此相鄰而定 位’因&發生該信號線與該控制時脈線之間的I生電容之 一不合需要電位的侵入。因此’可能發生故障。另外,由 於該時脈本身因該電容給其造成的失真而有一定延遲,因 此不會產生抑制該閘極延遲之效果。 、專,文獻3所揭示之技術使用一 pWM(脈衝波形調變作 法,藉由該方法不使用類比資料而使用數位資料作為用於 顯不之信號資料’而接收—像素之—閘極脈衝並使用一 CMOS電路之—輸出作為—像素電位之一輸出。 2是,該技術-般基本上不提供針對1極佈線的延遲 之-對策。因A,該技術不適用於包括數目過多而導致閘 阻抗使得在營幕的左與右側之陰影減小的像素或使 用同框率來顯示之一液晶顯示器裝置。 I28894.doc 200912877 在專利文獻4所揭示之顯示方法中,採取以下方式實施 使用一薄膜電晶體(TFT)之一寫入方法。 在该寫入方法中,採取一使得看起來似乎在1/24秒内實 施訊框重新寫入(專利文獻4之圖21)之方式,從一訊框影像 的左側以連續位移的時序將一訊框影像以1/24〇秒寫入或 以1/60秒寫入液晶來連續實施像素顯示。The resistance of the 3-pole wiring and the capacitance parasitic in the gate wiring, that is, a TFT: a dummy capacitor and a valley between the -pixel electrode and the -VCOM wiring to generate an impedance. Since the μ gate wiring at the end of each closed-circuit wiring of the vertical flip-flop circuit 3 is output from the vertical driving circuit 3 pole, the waveform indicates the impedance of the gate-causing phase (4) i due to the generated resistance. The resulting time constant is derived from the distortion of the waveform of the output at the output stage of the vertical drive circuit 3, as indicated by a dashed line in FIG. The distortion of the waveform of the closed-pole pulse results in a certain difference between the positions on the (four)-pole line that are different from the distance of the vertical drive of the vertical drive 128894.doc 200912877. Therefore, the TFTs 22 which are in different positions on the gate line of the pixel transistor are turned on by the timing of the relative displacement of each other by a pole signal, and the image quality deteriorates the image quality on the liquid crystal display device. In particular, the difference in brightness between black and gray appears in this horizontal direction. In addition, for example, under the condition of the number of pixels of 4〇Κ SUperHighVisi〇n (4,096xRGBx 1, 〇80), 'the horizontal period 更 is shorter than the number of pixels of the ^^^^^^ Like quality deterioration is more serious. In addition, a frame rate of 240 Hz (normal frame rate of 6 Hz) further reduces the out cycle to a quarter" so that an image cannot be displayed. Here, the high frame rate will be described. For example, a liquid crystal display device uses a frame number and a frame frequency for displaying a -second period to be four times larger than that commonly used for display to improve moving image characteristics - since the liquid crystal display device generally combines 60 Hz The operation 'therefore, the high frame rate is 24 〇. The technique disclosed in the patent documents 1 to 6 has the following method of deliberately making one gate pulse longer to suppress an undesired pixel electrode. One of the delay profiles of the polar line is disclosed in Patent Document 1 in that the falling edge has a potential greater than the rising edge of the gate pulse when the transistor is turned off. However, the technique does not constitute an elimination of the edge. - Closed countermeasures. Therefore, the technique does not apply to a liquid crystal display device that includes a large number of blocks that cause the resistance of the interpolar line 128894.doc •10·200912877 to reduce the shadow of the left and right sides of the screen or use a high frame rate to display one of the liquid crystal display devices . The technique disclosed in Patent Document 2 includes a data transmission performed for each pixel in the ϋ # upward, a transfer wheel that horizontally scans the signal in the vertical direction along the control clock wiring (placed for individual pixels), and The output of one of the gate pulse signals for each pixel. According to the technology, a power supply vD〇 and vss, a clock signal for an offset register, and a temporary storage m-person signal disk-output signal line for the offset are required and surround the aperture of the liquid crystal. Used in the space of these lines. This constitution causes a decrease in the aperture ratio of the liquid crystal. This results in a decrease in the transmission factor and an increase in the backlight supply power. Further, since a control clock line and a signal line are adjacent to each other, the potential intrusion is required because of the occurrence of an I-capacitance between the signal line and the control clock line. Therefore, a malfunction may occur. In addition, since the clock itself has a certain delay due to the distortion caused by the capacitance, the effect of suppressing the gate delay is not generated. , the technique disclosed in Document 3 uses a pWM (pulse waveform modulation method, which uses digital data as the signal data for display without using analog data) and receives the pixel-gate pulse The output of a CMOS circuit is used as one of the pixel potentials. 2 Yes, the technique basically does not provide a delay for the 1-pole wiring. Because of A, this technique is not suitable for including a large number of gates. The impedance is such that the pixels with reduced shadows on the left and right sides of the camp or the same frame rate are used to display one of the liquid crystal display devices. I28894.doc 200912877 In the display method disclosed in Patent Document 4, the use of a film is carried out in the following manner. A writing method of one of a transistor (TFT). In the writing method, a method of making a frame rewriting in 1/24 second (Fig. 21 of Patent Document 4) is taken from a message The left side of the frame image is continuously written by the frame image at a time of continuous displacement at 1/24 sec. or written at 1/60 sec.

但是,專利文獻4不對影像信號資料向一資料線驅動電 路内之輸人時序(輸人方法)作任何說明,而且不揭示用於 以240 Hz的影像訊框頻率寫入之—特定寫入系統。 在專利文獻5及6所揭示之技術中 在一像素中構建一記 憶體以便減小功率消耗 random access memory ; 路0However, Patent Document 4 does not describe the input timing (input method) of the image signal data in a data line driving circuit, and does not disclose a specific writing system for writing at a frame frequency of 240 Hz. . In the techniques disclosed in Patent Documents 5 and 6, a memory is constructed in one pixel to reduce power consumption.

’並構造 CMOS 之—SRAM(statiC 靜態隨機存取記憶體)結構之一電 但疋’該4技術係關於用 你主& , 2 川从t、愿一像素電位並將—信號 線佈線於該端之一電路,彳曰不掘_ ° 仁不揭不用以消除該閘極延遲 一電路組態》'And construct a CMOS-SRAM (statiC static random access memory) structure one electric but 疋 'The 4 technology is about using your main & 2, from a t, wish a pixel potential and - signal line One of the circuits on the end, 彳曰 掘 仁 仁 不 不 不 不 不用 不用 不用 不用 不用 不用 不用 不用 不用 不用

因此,由於出現沿該顯示琴I 丁益裳置的閘極線之一定延遲, 因此該電路無法處置—包括大 &gt; 顯示器裝置。 像素或文-而速度驅動之 因此,需要提供一種可拍j制、κ 一一Λ 制、/σ —掃描線的延遲且其中可 以一同速度驅動大量像素之 罢夕跑私士 + ”'、器裝置、用於該顯示器妒 置之驅動方法及電子裝置。 |命我 依據本發明之一具體竇竑 包括: 實施例’提供-種顯示器裝置,其 128894.doc •12- 200912877 ㈣=&amp;段’其包括複數個像素電路,透過一切換元件 將像素資料寫入至每 錢7G仵 ^ ^ ^ ^ ^ ±,. 素電路,該等像素電路係佈置成 形成包括複數個行之—矩陣; 八 :复=掃描線’其係對應於該等像素電路的行而佈置且 經組悲用以控制該等切換元件之導電; 複數個信號線,1非』 八’、子應於該等像素電路的行而佈置且 經組恶用以允許透過其傳播該像素資料;以及 像夸雷P路其、輸出&quot;&quot;掃描脈衝以使得該等 電路之切換元件變成導電至該等掃描線, 其中一波形成形電路係佈置於每一掃描線之一導線中 =組態用以實施錢掃描線中傳㈣掃描脈衝之波形成 :據本發明之另一具體實施例,提供一種用於一顯示器 =置之驅動方法,該顯示器裝置包括:一像素區段,直包 括複數個像素電路,像素資料係透過一切換元件寫入至每 一像素電路,該等像素電路係佈置成形成包括複數個行之 2陣;複數個掃插線’其係對應於該等像素電路的行而 :置且經組態用以控制該等切換元件之導電;複數個信號 線’其係對應於該等像素電路的行而体置且經組態用以允 =過其傳播該像素資料;以及一驅動電路,其經組態用 以則出-掃描脈衝來使得該等像素電路之切換元件變 電至該等掃描線,該驅動方法包括以下步驟: 在該等掃描線之每-掃描線之中間將在該掃描線 的掃描脈衝之波形成形。 播 J28894.doc •】3 - 200912877 依據本發明之另一具體實施例,提供—種用於一顯示器 褒置之驅動方法’該顯示器裝置包括:-像素區段,其包 括複數個像素電路,在每一像素電路令像素資料係透過: ^換π件m像素單元,該#像素電路係佈置成形成 i括複數個行卜矩陣;複數個掃描線,其係對應於該等 像素電路的行而佈置且經組態用以控㈣等切換元件之導 電,複數個信號線,其係對應於該等像素電路的行而佈置 且經組態用以允許透過其傳播該像素資料;以及—驅動電 路’其經組態用以輸出一掃描m衝來使得該等像素電路之 切換元件變成導電至該等掃描線,該驅動方法包括 驟: , 透過平行於該等信號線之—導線來供應—啟用信號以回 應於4啟用仏&amp;來控帝】波开)成形操作之開始;以及 ^亥等掃描線之每-掃描線之中間將在該掃描線中傳播 的掃描脈衝之波形成形。 根據本發明之另一具體實施例,提供一種電子裝置,豆 包括: t 八 一顯示器裝置,其包括: 、-像素區段’其包括複數個像素電路,像素資料係透 =切換元件寫入至每一像素電路,該等像素電路係佈置 成形成包括複數個行之一矩陣; 複數個掃描線,其係對應於該等像素電路的行而佈置 且經組態用以控制該等切換元件之導電; 複數個信號線,其係對應於該等像素電路的行而佈置 128894.doc -14- 200912877 且經組態用以允許透過其傳播該像素資料; 一驅動電路,其經組態用以輪出一掃描脈衝以使得該 等像素電路之切換元件導電至該等掃描線;以及 一波形成形電路,其係佈置於該等掃描線之每—掃描 線之-導線巾且經組態_實施在該掃料中傳播的掃描 脈衝之波形成形。 驅動裝置、用於-顯示器装置之驅動方法及電子裝置之 所以有利,係由於其可抑制該等掃描線中的延遲並可實施 受一高速度驅動的更多數目像素之顯示。 【實施方式】 下面,結合附圖所示之本發明之較佳具體實施例來詳細 說明本發明。 &lt;第一具體實施例&gt; 圖2A至2C分別係顯示依據本發明之一第一具體實施例 之一液晶顯示器裝置之—組態之—範例及—閘極脈衝波形 之範例。 首先參考圖2A,該液晶顯示器裝置1〇〇包括一有效像素 區段no、一垂直驅動電路(VDRV)12〇及一水平驅動電路 (HDRV)130 〇 閘極緩衝器140-1至14〇_m係佈置於該垂直驅動電路丨 向閘極線115-1至115-叫其係一閘極脈衝Gp之掃描線)之輸 出級。 在本發明之主動矩陣類型之液晶裝置丨〇〇中用以針對 從該垂直驅動電路丨2〇輸出之一閘極脈衝而實施波形成形 128894.doc 15 200912877 及電壓改變之波形成形電路〖504丨至15〇_lm及丨5〇_21至 150-2m係居中佈置於該等閘極線115_1至115_瓜上。 透過该等閘極線150-1至i5〇-m之每一閘極線將從該垂直 驅動電路120輸出之一閘極脈衝或在已向其施加該波形成 形及該電壓改變後的閘極脈衝供應至由一薄膜電晶體形成 之一像素切換電晶體。 下面詳細說明該等波形成形電路之組態、位置等。 該有效像素區段110具有排列於一矩陣中之複數個像素 電路111。 该等像素電路111之每一電路包括用作一切換元件之一 薄膜電晶體(TFT)112、一液晶單元113及一保持區域或儲 存電容器114。 該液晶單元113係於其像素電極連接至該TFT丨12之汲極 電極或源極電極》該保持電容器! 14係於其電極之一電極 連接至該TFT 112之没極電極。 對於該等像素電路111,該等閘極線丨丨5_丨至丨丨5_出沿針 對個別列之一像素陣列方向而延伸,而信號線丨丨^丨至&quot;心 η係沿針對個別行的像素陣列方向而佈線。 該等像素電路Hi之TFT 112係以一列為一單位於其閑電 極連接至相同的閘極線115_1至115_〇1。另外,該等像素電 路1U之TFT U2係以-行為—單位於其源極電極或汲極電 極連接至相同的信號線116_丨至丨丨6_n。 另外,該液晶單元113係於其像素電極連接至該丁FT ιΐ2 之汲極電極而於其相對電極連接至一共用線〗17。該保持 128894.doc -16- 200912877 電容器114係連接於該加112的汲極電極與該共用線… 之間。 從VCOM電路(未顯示)將一預定的交流電壓作為一共 用電壓VC〇m施加於該共用線117,該VCOM電路係與一驅 動電路及類似者整合地形成於一玻璃基板上。 。亥等閘極線11 5-1至i i 5_m係藉由該垂直驅動電路m來 驅動,而料信號線U6_H16_n係藉由該水平驅動電路 13 0來驅動。 «亥TFT 112係用以選擇一用於顯示的像素並將一顯示信 號供應給該選定像素的像素區域之一切換元件。 該TFT 112具有(例如)諸如圖3所示之一底部閘極結構或 諸如圖4所示之一頂部閘極結構。 參考圖3,在所示底部閘極結構之TFT U2A中,在(例 如)由一玻璃基板形成之一透明絕緣基板2〇1上形成覆蓋有 一閘極絕緣膜202之一閘電極203。 該閘電極203係連接至作為一掃描線之一閘極線丨丨5,而 將作為一掃描化號之一閘極脈衝從該閘極線11 5輸入該閘 電極203。回應於該掃描信號而開啟或關閉該TFT } 12A。 藉由一諸如噴濺之類的方法由(例如)鉬(M〇)或钽(Ta)之一 金屬或一合金之一膜形成該閘電極203。 忒TFT 11 2 A包括形成於該閘極絕緣膜2〇2上並經組態用 以用作—通道形成區域之一半導體膜204。該TFT 112A進 一步包括橫跨該半導體膜204而形成之一對n+型擴散層2〇5 與206。在該半導體膜2〇4上形成—層間絕緣膜2〇7,而另 128894.doc -17- 200912877 層間絕緣膜208係形成為覆蓋該透明絕緣基板2(H、閘極 絕緣臈202、n+型擴散層205及206以及層間絕緣膜2〇7。 —源極電極21 0係透過形成於該層間絕緣膜2〇8中之一接 觸孔209a連接至該n+型擴散層2〇5。同時,一汲極電極211 係透過形成於該層間絕緣膜208中之一接觸孔209b連接至 另一 n+型擴散層2〇6。 例如’藉由圖案化鋁(A1)來形成該源極電極2 1 〇及該汲 極電極211。一信號線116係連接至該源極電極21〇,而該 沒極電極2 11係透過一未顯示的連接電極連接至一像素區 域或像素電極。 現在參考圖4,顯示該頂部閘極結構之TFT 11 2B。該 TFT 112B包括形成於一透明絕緣基板221上之一半導體膜 222 ’該透明絕緣基板221係(例如)由一玻璃基板形成且經 組態用以用作一通道形成區域。該TFT 11 2B進一步包括橫 跨該半導體膜222而形成之一對n+型擴散層223與224。 一閘極絕緣膜225係以一覆蓋該半導體膜222與該等n+型 擴散層223及224之方式來形成,而一閘電極226係形成於 該閘極絕緣膜225上而與該半導體膜222相對。另外,一層 間絕緣膜227係以一覆蓋該透明絕緣基板221、閘極絕緣膜 225及閘電極226之方式來形成。 一源極電極229係透過形成於該層間絕緣膜227及該閘極 絕緣膜225中之一接觸孔228a連接至該n+型擴散層223。一 汲極電極230係透過形成於該層間絕緣膜227及該閘極絕緣 膜225中之另一接觸孔228a連接至另一n+型擴散層224。 128894.doc •18- 200912877 回過來參考圖2A,在上述液晶顯示器裝置1中,每一像 素電路111之TFT 112係由非晶矽(a_si)或多晶矽之一半導 體薄膜之一電晶體形成。 该垂直驅動電路12〇接收一垂直開始信號vST、—垂直 時脈VCK及一啟用信號ENB,並在一垂直方向上(即,在 列之一方向上)掃描每一場週期來以一列為一單位連續 選擇連接至該等閘極線115-1至115_m之像素電路lu。 特定言之,當從該垂直驅動電路12〇向該閘極線115_1提 供一掃描脈衝Gpl,則選擇在該第一列中的各行中之像 素,但當向該閘極線115-2提供另一掃描脈衝Gp2 ,選擇在 該第二列中的各行中之像素。然後,分別向該等問極線 115-3、…、115-m連續提供閘極脈衝Gp3, ,Gpm。 圖2B解說在對該閘極脈衝Gpm之閘極緩衝後該閘極脈衝 Gpm在該閘極緩衝器140-m處向該閘級線丨丨5_m的輸出級處 之一波形之範例。 圖2C解說在該閘極線⑴-就―線端子部分處該開極脈 衝Gpm之一波形之一範例。 該水平驅動電路130接收一水平開始時脈Hst,其係從一 時脈產生器(未顯示)產生並指示水平掃描之開始以及相位 彼此相反的水平時脈HCK(其構成用於水平掃描之一參 考),並產生一取樣脈衝《 &quot; 該水平驅動電路13〇回應於由此產生的取樣脈衝而對向 其輸入的影像育料R(紅色)、G(綠色)及3(藍色)連續取樣, 並將經取樣的影像資料作為欲寫入至該等像素電路21之資 128894.doc -19- 200912877 料信號供應給該等信號線1丨6_ i至丨丨6_n。 該水平驅動電路130將該等信號線116-1至116-n分成複數 個群組並包括對應於個別群組之信號驅動器13 1至13 4。 在此,說明該等波形成形電路。 在此具體實施例中,實施來自該等閘極緩衝器14〇_丨至 140-m的閘極脈衝的波形成形及電壓改變之波形成形電路 150-11至15〇-1111及150_21至15〇_2111係居中佈置於該等閘極 線115-1至115-m上,如上所述。 因此’從圖2C中一實線所示之一波形可看出,在該等閘 極線115-1至115-m遠離該等閘極緩衝器14〇_ι至i4〇-m之輸 出級的遠端部分處或終端部分處該閘極脈衝之波形係相對 於其失真而獲得改良。應注意,圖2C中一虛線所示之一波 形呈現在不插入任何波形成形電路之遠端部分或終端部分 處該閘極脈衝之波形之失真。 因此,該顯示器裝置促進採用大量像素及一高訊框頻率 之顯示。 該等波形成形電路150-1 1至150_lm及15〇·21至15〇 2111係 分別居中佈置於該等閘極線115_1至115_111之導線上以形成 波形。 另外,該等波形成形電路15(Μ1至150_lm及150_21至 1 50 2m係共同連接至用於一電源供應電壓VDD2(其係一高 電位)之一供應線160與用於另一電源供應電壓vss2(其係 一低電位)之一供應線1 61。 該等波形成形電路15(MliLl5〇_ln^15mi5〇_2m皆 128894.doc -20. 200912877 係(例如)由包括以一級聯連接來連接的兩個CM〇s緩衝器 之一電路形成(如圖5A至5C所示)。 在此第一具體實施例中,該等波形成形電路UOq丨至 1 50 1 m及1 50-21至1 50-2m係佈置於在該等像素電路in的 矩陣之座標配置中在該垂直方向上(即,在一信號線之延 伸方向上)之相同座標, 更特定言之’該等波形成形電路MO-U至l5〇_lm係分別 佈置於該信號線丨16_6與該等閘極線丨15_〗至丨15_爪的交叉位 置°亥等波形成形電路1 50-21至1 50-2m係分別佈置於該信 號線116_1〇與§亥等閘極線115-1至n5-m的交又位置。 應注意,在圖2A中,用於該高電位的電源供應電壓 VDD2之供應線160及用於該低電位的電源供應電壓vss2 之供應線1 6 1係分別顯示為一虛線及一交替的長與短虛 線,以便促進與該等閘極線及該等信號線區分及對其之瞭 解。 圖5A至SC解說其中由一CM0S緩衝器形成依據此具體實 施例之波形成形電路之一範例。特定言之,圖5八顯示一等 效電路,而圖5B顯示一特定電路,而圖5C解說在該緩衝 器的輸出側上之電容。 如圖5B所示,該等波形成形電路15〇之每一電路包括一 CMOS緩衝器或反相器BF1與以一級聯連接來連接之另一 CMOS緩衝器或反相器BF2。 該CMOS緩衝器BF1包括一 p型通道M〇s(pM〇s)電晶體 PT1與一 η型通道MOS(NMOS)電晶體NT1。 128894.doc •21 - 200912877 該PMOS電晶體PT1係於其源極連接至用於該高電位的電 源供應電壓VDD2之供應線1 60,而於其汲極連接至該 NMOS電晶體NT1之汲極。由該PMOS電晶體PT1與該 NMOS電晶體NT1之汲極之一連接點形成一節點ND1。該 NM0S電晶體NT1係於其源極連接至用於該低電位的電源 供應電壓VSS2之供應線161。 該PMOS電晶體PT1與該NMOS電晶體NT1之閘極係彼此 連接,而該輸入節點ND1係形成於該等閘極之一連接點。 該輸入節點ND1係連接至該等閘極線115(115-1至115-m)之 一對應閘極線。 該CMOS緩衝器BF2包括一 PMOS電晶體PT2與一 NMOS 電晶體NT2。 該PMOS電晶體PT2係於其源極連接至用於該高電位的供 應電壓VDD2之供應線160,而於其汲極連接至該NMOS電 晶體NT2之汲極。由該PMOS電晶體PT2與該NMOS電晶體 NT2之汲極之一連接點形成一節點ND2。該NMOS電晶體 NT2係於其源極連接至用於該低電位的電源供應電壓VSS2 之供應線1 61。 該PMOS電晶體PT2與該NMOS電晶體NT2之閘極係彼此 連接,而該等閘極之一連接點係連接至該CMOS緩衝器 BF1之節點ND1。該節點ND2係作為一輸出節點連接至該 等閘極線115(115-1至115-m)之一對應閘極線。 具有諸如上述之一組態的波形成形電路1 50輸出一閘極 脈衝GP1至GPm,該閘極脈衝係以正邏輯從該垂直驅動電 128894.doc -22- 200912877 路120的配置側(即,從圖2的左側上之輸出側)沿一對應閘 極線115(115-1至l15_m)傳播,而且此外還實施波形成形。 用於波形成形的CMOS緩衝器BF1及BF2之輸出表示該閘 極線之電容Cgate,並進一步表示包括在該像素電極或該 TFT(像素電晶體)處於一開啟狀態時所處之—狀態中的液 晶電谷Clcd與該等像素的儲存電容cs之電容。 另外,由於一 CMOS緩衝器之一級呈現相對於其一輸入 之一負邏輯輸出,以便讓該波形成形電路15〇輸出一正邏 輯輸出,因此該波形成形電路150係由該等CM〇s緩衝器 BF1與BF2之一串聯連接電路形成。 由於該波形成形電路1 50需要一輸出電源供應,因此佈 置用以供應較高側的電源供應電壓VDD2與較低側的電源 供應電壓V S S 2以開啟及關閉該像素閘極之供應線16 〇及 161 ° 用於該等供應線160與16 1之佈線係平行於該等像素信號 線而佈置。 原因在於’例如’若該等供應線16〇及16丨係在該信號線 11 6( 11 6-1至11 6-n)附近彼此平行而佈線,則可使得液晶之 孔住比之下降最小化。另外,在對用於該等電壓VDD2及 VSS2的供應線160及161呈現較低阻抗之匯流排線係連接 於有效像素區域區段110上之情況下,可使得在該水平方 向上的電源供應線之電壓降最小化。 因此’亦可使得對應於高位準之一電壓(高電壓)與對應 於低位準的另一電壓(低電壓)的變化最小化,該等電壓係 128894.doc •23· 200912877 在有效像素之水平方向上從該波形成形電路丨5〇輸出。 另外,在此第一具體實施例中,用於欲向該等波形成形 電路150及該等波形成形電路15〇供應的電壓及να〗 之供應線160及161較佳的係佈置於在該水平方向上的相同 座標。 原因在於,由於該等波形成形電路15〇在該水平方向上 的座標係固定,因此該閘極脈衝波形不會受到延遲之影 響。 〜 如上所述,依據此第一具體實施例,佈置針對從該垂直 驅動電路120輸出之一閘極脈衝而立即在該等閘極線的導 線上實施波形成形及電壓改變之波形成形電路丨5 〇_ 11至 150-lm及 150-21 至 150-2m。 因此,藉由此弟一具體實施例,可實現以下效果。 在包括4K2K的大1像素並使用一 240 Hz的高訊框頻率 之一顯示器裝置中,消除因一閘極線的延遲而在一向左與 向右方向上的陰影或者在一向左或向右方向上色度差異之 發生,而可獲得良好的圖像品質。 另外,可抑制來自該垂直驅動電路12〇的閘極脈衝GP之 波形之輸出延遲及失真之發生,並可減小位於該主動矩陣 顯示器裝置之一圖像訊框之左側或右側上的垂直驅動電路 及緩衝電路之佔據區域。因此,可將該顯示器裝置之圖像 訊框形成為在其左侧與右側部分上具有一減小的寬度。 另外’用於欲向該等波形成形電路1 50及該等波形成形 電路150供應的電壓VDD2及VSS2之供應線160及161係佈 128894.doc -24- 200912877 置於在該水平方向上的相同座標處,可抑制該閉極脈衝波 形之延遲。 &lt;第二具體實施例&gt; 明之一第二具體實施 範例及一間極脈衝波 圖6A、6B及6C分別顯示依據本發 例之一液晶顯示器裝置之一組態之一 形之範例。 首先參考圖6A,依據此第二具體實施例之液晶顯示器裝 置100A之組態類似於依據上述第一具體實施例之液晶裝置 1〇〇,但不同之處在於該等波形成形電路150之配置位置。 特疋σ之,在上述第一具體實施例之液晶裝置^⑻中, 用於欲向該等波形成形電路150及該等波形成形電路15〇供 應的電壓VDD2及VSS2之供應線16〇及161係佈置於在該水 平方向上的相同座標處。 相反’在此第二具體實施例之液晶顯示器裝置1 〇〇A中, 用於欲向該等波形成形電路丨50及該等波形成形電路15〇供 應的電壓VDD2及VSS2之供應線160及161並非佈置於在該 水平方向上的相同座標處’而係佈置成彼此相對位移一行 之一關係而與該等閘極線及該等信號線之導線成一對應關 係。 在圖6A所示範例中,該波形成形電路150-11係佈置於該 1吕號線116-3與該閘極線115-1之一交又位置附近。該波形 成升&gt; 電路1 50-1 2係佈置於該信號線11 6-4與該閘極線11 5-2 之一交叉位置附近。該波形成形電路丨5 〇_〗3係佈置於該信 號線116-5與該閘極線11 5-3之一交又位置附近。該波形成 128894.doc -25- 200912877 形電路150-14(m)係佈置於該信號線116-6與該閘極線ii5-m 之一交又位置附近。 同時,該波形成形電路150-21係佈置於該信號線116_7與 該閘極線115-1之一交又位置附近。該波形成形電路15〇_22 係佈置於該信號線116-8與該閘極線11 5-2之一交叉位置附 近。該波形成形電路150-23係佈置於該信號線116-9與該閘 極線11 5-3之一交又位置附近。該波形成形電路1 5〇_24(m) 係佈置於該彳s说線116-10與該閘極線之一交又位置 ( 附近。 在此實例中,在諸如在該水平方向上的波形成形電路 1 50之座標並非固定之一情況下,從用於該電源供應電壓 VDD2及該參考電壓VSS2的供應線160及161消除局部片面 性。因此,確保在用於該等電壓VDD2與VSS2之供應線 160及1 61之佈線佈局的影響下像素的透射因數之均勻性。 在此實例中,該顯示器裝置之亮度分佈係固定。 ( 此第二具體實施例之另一部分之組態類似於該第一具體 實施例之此組態,而亦可實現與藉由上述第一具體實施例 所實現之效果類似之效果。 &lt;第三具體實施例&gt; 圖7A、7B及7C分別顯示依據本發明之一第三具體實施 例之-液晶顯示器裝置之一組態之一範例及一閑極脈衝波 形之範例。 首先參考圖7A,依據此第三且舻會 不一八菔貫她例之液晶顯示器裝 置100Β之組態類似於依據上述第— 1乐及弟一具體實施例之液 128894.doc • 26 · 200912877 晶顯示器裝置100及100A,但不同之處在於該等波形成形 電路150之配置位置。 特定言之,在依據該等第一及第二具體實施例之液晶顯 示器裝置100及100A中’用於欲向該等波形成形電路15〇及 該等波形成形電路150供應的電壓VDD2及VSS2之供應線 1 6 0及1 61係佈置於在該水平方向上的相同座標。 或者相反’用於欲向該等波形成形電路15〇及該等波形 成形電路150的電壓VDD2及VSS2之供應線16〇及161並非 佈置於相同的座標。 相反,在依據此第三具體實施例之液晶顯示器裝置丨〇〇b 中,該等波形成形電路150-11至l50_nm係佈置於在該等閘 極線與該等信號線的幾乎所有交又位置附近之閘極線上, 或者換言4,在該等像素電路⑴之用於—閘極脈衝的輸 入部分處。Therefore, due to the certain delay along the gate line of the display, the circuit cannot be disposed of - including large &gt; display devices. Pixel or text- and speed-driven, therefore, it is necessary to provide a delay that can be used for singapore, κ-one, σ-scanning lines, and which can drive a large number of pixels at the same speed. A device, a driving method for the display device, and an electronic device. The specific sinus sinus according to one of the present invention includes: Embodiment 'Providing a display device, 128894.doc • 12- 200912877 (4) = &amp; 'It includes a plurality of pixel circuits, and the pixel data is written into a 7G 仵 ^ ^ ^ ^ ^ ±, per unit circuit by a switching element, and the pixel circuits are arranged to form a matrix including a plurality of rows; : complex = scan line 'which is arranged corresponding to the rows of the pixel circuits and is used to control the conduction of the switching elements; a plurality of signal lines, 1 non-eight', and the sub-pixel circuits Arranged and arranged to allow the pixel data to be transmitted therethrough; and like the Quarrey, output &quot;&quot; scan pulses to cause the switching elements of the circuits to become conductive to the scan lines, One wave formation The circuit is arranged in one of the wires of each scan line = configured to implement the wave formation of the (four) scan pulse in the money scan line: according to another embodiment of the present invention, a drive for a display is provided The display device includes: a pixel segment directly including a plurality of pixel circuits, the pixel data is written to each pixel circuit through a switching element, and the pixel circuits are arranged to form a plurality of rows including a plurality of rows; a plurality of sweeping lines 'corresponding to rows of the pixel circuits: configured to control conduction of the switching elements; a plurality of signal lines 'corresponding to rows of the pixel circuits And configured to allow the pixel data to be propagated therethrough; and a driver circuit configured to output a scan pulse to cause the switching elements of the pixel circuits to be electrically coupled to the scan lines, The driving method comprises the steps of: shaping a waveform of a scan pulse of the scan line between each scan line of the scan lines. Broadcasting J28894.doc • 3 - 200912877 According to another embodiment of the present invention For example, a driving method for a display device is provided. The display device includes: a pixel segment including a plurality of pixel circuits, and the pixel data system is transmitted through each pixel circuit: ^ π pieces of m pixel units The #pixel circuit is arranged to form a plurality of rows of matrixes; a plurality of scan lines arranged corresponding to the rows of the pixel circuits and configured to control the conduction of the switching elements such as (4), a plurality of a signal line disposed corresponding to the rows of the pixel circuits and configured to allow propagation of the pixel data therethrough; and a drive circuit configured to output a scan m rush to cause the pixels The switching elements of the circuit become conductive to the scan lines, the driving method comprising: stepping through a wire parallel to the signal lines - enabling the signal in response to the 4 enabling 仏 & The beginning of the operation; and the waveform of the scan pulse propagating in the scan line in the middle of each scan line of the scan line such as ^hai. According to another embodiment of the present invention, an electronic device is provided, the bean comprising: a octagonal display device, comprising: a pixel segment comprising a plurality of pixel circuits, and the pixel data is transmissive = the switching component is written to Each pixel circuit is arranged to form a matrix comprising a plurality of rows; a plurality of scan lines arranged corresponding to rows of the pixel circuits and configured to control the switching elements Conductive; a plurality of signal lines arranged corresponding to the rows of the pixel circuits 128894.doc -14-200912877 and configured to allow propagation of the pixel data therethrough; a driver circuit configured to A scan pulse is rotated to cause the switching elements of the pixel circuits to conduct to the scan lines; and a waveform shaping circuit is disposed on each of the scan lines - the scan line - and configured The waveform of the scan pulse propagating in the sweep is shaped. The driving device, the driving method for the display device, and the electronic device are advantageous because they can suppress the delay in the scanning lines and can perform display of a larger number of pixels driven by a higher speed. [Embodiment] Hereinafter, the present invention will be described in detail with reference to preferred embodiments of the invention shown in the accompanying drawings. &lt;First Embodiment&gt; Figs. 2A to 2C are diagrams showing an example of a configuration, an example, and a gate pulse waveform of a liquid crystal display device according to a first embodiment of the present invention. Referring first to FIG. 2A, the liquid crystal display device 1A includes an effective pixel section no, a vertical drive circuit (VDRV) 12A, and a horizontal drive circuit (HDRV) 130 〇 gate buffers 140-1 to 14 〇 _ The m-series are arranged in an output stage of the vertical drive circuit to the gate lines 115-1 to 115, which are called scan lines of a gate pulse Gp. In the active matrix type liquid crystal device of the present invention, waveform shaping is performed for outputting a gate pulse from the vertical driving circuit 丨2〇, and a waveform shaping circuit of voltage change is performed. Up to 15〇_lm and 丨5〇_21 to 150-2m are centrally arranged on the gate lines 115_1 to 115_ melon. Each gate line passing through the gate lines 150-1 to i5〇-m will output a gate pulse from the vertical driving circuit 120 or a gate electrode to which the waveform shaping has been applied and the voltage change has been applied thereto. The pulse is supplied to a pixel switching transistor formed by a thin film transistor. The configuration, position, and the like of the waveform shaping circuits will be described in detail below. The effective pixel section 110 has a plurality of pixel circuits 111 arranged in a matrix. Each of the circuits of the pixel circuits 111 includes a thin film transistor (TFT) 112, a liquid crystal cell 113, and a holding region or storage capacitor 114 serving as a switching element. The liquid crystal cell 113 is connected to a drain electrode or a source electrode of the TFT electrode 12 of the pixel electrode. 14 is connected to one of its electrodes and connected to the electrodeless electrode of the TFT 112. For the pixel circuits 111, the gate lines 丨丨5_丨 to 丨丨5_out extend along a direction of one of the pixel arrays of the individual columns, and the signal lines are &^丨 to &quot; The rows of individual rows are routed in the direction of the pixel array. The TFTs 112 of the pixel circuits Hi are connected in one column to their idle electrodes to the same gate lines 115_1 to 115_〇1. Further, the TFT U2 of the pixel circuits 1U is connected to the same signal line 116_丨 to 丨丨6_n in a - behavior-unit in which the source electrode or the drain electrode is connected. In addition, the liquid crystal cell 113 is connected to a drain electrode of the FT FT 2 and a counter electrode thereof to a common line 17 . The hold 128894.doc -16- 200912877 capacitor 114 is connected between the drain electrode of the add 112 and the common line .... A predetermined AC voltage is applied from the VCOM circuit (not shown) to the common line 117 as a common voltage VC〇m, which is formed integrally with a driving circuit and the like on a glass substrate. . The gate lines 11 5-1 to i i 5_m are driven by the vertical drive circuit m, and the material signal line U6_H16_n is driven by the horizontal drive circuit 130. The «Hui TFT 112 is used to select a pixel for display and supply a display signal to one of the pixel regions of the selected pixel. The TFT 112 has, for example, a bottom gate structure such as that shown in Fig. 3 or a top gate structure such as shown in Fig. 4. Referring to Fig. 3, in the TFT U2A of the bottom gate structure shown, a gate electrode 203 covered with a gate insulating film 202 is formed on, for example, a transparent insulating substrate 2'1 formed of a glass substrate. The gate electrode 203 is connected to one of the gate lines 作为5 as a scanning line, and a gate pulse as a scanning number is input from the gate line 117 to the gate electrode 203. The TFT } 12A is turned on or off in response to the scan signal. The gate electrode 203 is formed of a film such as one of molybdenum (M〇) or tantalum (Ta) metal or an alloy by a method such as sputtering. The TFT 11 2 A includes a semiconductor film 204 formed on the gate insulating film 2〇2 and configured to function as a channel forming region. The TFT 112A further includes a pair of n+ type diffusion layers 2?5 and 206 formed across the semiconductor film 204. An interlayer insulating film 2〇7 is formed on the semiconductor film 2〇4, and an interlayer insulating film 208 is formed to cover the transparent insulating substrate 2 (H, gate insulating layer 202, n+ type). The diffusion layers 205 and 206 and the interlayer insulating film 2〇7. The source electrode 210 is connected to the n+ type diffusion layer 2〇5 through a contact hole 209a formed in the interlayer insulating film 2〇8. The drain electrode 211 is connected to the other n+ type diffusion layer 2〇6 through one of the contact holes 209b formed in the interlayer insulating film 208. For example, the source electrode 2 1 is formed by patterning aluminum (A1). And the drain electrode 211. A signal line 116 is connected to the source electrode 21A, and the electrodeless electrode 211 is connected to a pixel area or a pixel electrode through a connection electrode not shown. Referring now to FIG. The TFT 11 2B of the top gate structure is shown. The TFT 112B includes a semiconductor film 222 formed on a transparent insulating substrate 221. The transparent insulating substrate 221 is formed, for example, from a glass substrate and configured for use. A channel formation region. The TFT 11 2B further includes a horizontal A pair of n+ type diffusion layers 223 and 224 are formed across the semiconductor film 222. A gate insulating film 225 is formed by covering the semiconductor film 222 and the n+ type diffusion layers 223 and 224, and a gate is formed. The electrode 226 is formed on the gate insulating film 225 opposite to the semiconductor film 222. Further, the interlayer insulating film 227 is formed by covering the transparent insulating substrate 221, the gate insulating film 225, and the gate electrode 226. A source electrode 229 is connected to the n + -type diffusion layer 223 through a contact hole 228a formed in the interlayer insulating film 227 and the gate insulating film 225. A drain electrode 230 is formed through the interlayer insulating film. 227 and the other contact hole 228a of the gate insulating film 225 are connected to another n + type diffusion layer 224. 128894.doc • 18- 200912877 Referring back to FIG. 2A, in the above liquid crystal display device 1, each pixel circuit The TFT 112 of 111 is formed by an amorphous crystal (a_si) or a transistor of one of the semiconductor films of polysilicon. The vertical driving circuit 12 receives a vertical start signal vST, a vertical clock VCK and an enable signal ENB, and In a vertical direction (i.e., in one of the columns) scanning each field period to successively select pixel circuits lu connected to the gate lines 115-1 to 115_m in units of one column. In particular, when from the vertical driving circuit 12 A scan pulse Gpl is supplied to the gate line 115_1, and pixels in the respective rows in the first column are selected, but when another scan pulse Gp2 is supplied to the gate line 115-2, the second column is selected. The pixels in each row. Then, gate pulses Gp3, Gpm are successively supplied to the interrogation lines 115-3, ..., 115-m, respectively. Fig. 2B illustrates an example of a waveform of the gate pulse Gpm at the output stage of the gate line 丨丨5_m at the gate buffer 140-m after the gate of the gate pulse Gpm is buffered. Fig. 2C illustrates an example of one of the waveforms of the open-pole pulse Gpm at the gate line (1)--the line terminal portion. The horizontal drive circuit 130 receives a horizontal start clock Hst which is generated from a clock generator (not shown) and indicates the start of the horizontal scan and the horizontal clock HCK whose phases are opposite to each other (which constitutes a reference for horizontal scanning) And generating a sampling pulse "&quot; The horizontal driving circuit 13 连续 continuously samples the image breeding R (red), G (green), and 3 (blue) input thereto in response to the sampling pulse thus generated. And sampling the image data as a signal to be written to the pixel circuits 21, 128894.doc -19-200912877, to the signal lines 1丨6_i to 丨丨6_n. The horizontal drive circuit 130 divides the signal lines 116-1 to 116-n into a plurality of groups and includes signal drivers 13 1 to 13 4 corresponding to the individual groups. Here, the waveform shaping circuits will be described. In this embodiment, the waveform shaping circuits 150-11 to 15〇-1111 and 150_21 to 15〇 of the waveform shaping and voltage change of the gate pulses from the gate buffers 14〇_丨 to 140-m are implemented. The _2111 system is centrally disposed on the gate lines 115-1 to 115-m as described above. Therefore, it can be seen from the waveform shown by a solid line in FIG. 2C that the output levels of the gate lines 115-1 to 115-m are away from the gate buffers 14〇_ι to i4〇-m. The waveform of the gate pulse at or at the distal end portion is improved relative to its distortion. It should be noted that one of the waveforms shown by a broken line in Fig. 2C exhibits distortion of the waveform of the gate pulse at the distal end portion or the terminal portion of the waveform forming circuit. Therefore, the display device facilitates display using a large number of pixels and a high frame frequency. The waveform shaping circuits 150-1 1 to 150_lm and 15 〇 21 to 15 〇 2111 are respectively disposed centrally on the wires of the gate lines 115_1 to 115_111 to form a waveform. In addition, the waveform shaping circuits 15 (Μ1 to 150_lm and 150_21 to 1 50 2m are commonly connected to one supply line 160 for one power supply voltage VDD2 (which is a high potential) and for another power supply voltage vss2 One of the supply lines 1 61 (which is a low potential). The waveform forming circuit 15 (MliLl5〇_ln^15mi5〇_2m are all 128894.doc -20. 200912877 is connected, for example, by a connection by a cascade connection One of the two CM 〇s buffer circuits is formed (as shown in Figures 5A to 5C). In the first embodiment, the waveform shaping circuits UOq 丨 to 1 50 1 m and 1 50-21 to 1 50-2m is arranged in the same coordinate in the vertical direction (i.e., in the direction in which a signal line extends) in the coordinate configuration of the matrix of the pixel circuits in, and more specifically, the waveform forming circuits MO -U to l5〇_lm are respectively arranged at the intersection of the signal line 丨16_6 and the gate lines _15_〗 to 丨15_ claws, and the waveform forming circuit 1 50-21 to 1 50-2m respectively It is disposed at the intersection of the signal lines 116_1〇 and §Hay and other gate lines 115-1 to n5-m. It should be noted that in FIG. 2A, The supply line 160 of the high-potential power supply voltage VDD2 and the supply line 161 for the low-level power supply voltage vss2 are respectively shown as a dashed line and an alternate long and short dashed line to facilitate and The gate lines and the signal lines are distinguished and understood. Figures 5A through 10 illustrate an example in which a waveform forming circuit in accordance with this embodiment is formed by a CMOS buffer. In particular, Figure 5 shows an Figure 5B shows a particular circuit, and Figure 5C illustrates the capacitance on the output side of the buffer. As shown in Figure 5B, each of the waveform shaping circuits 15 includes a CMOS buffer or counter The phase BF1 is connected to another CMOS buffer or inverter BF2 connected in a first-order connection. The CMOS buffer BF1 includes a p-type channel M〇s (pM〇s) transistor PT1 and an n-channel MOS ( NMOS) transistor NT1. 128894.doc • 21 - 200912877 The PMOS transistor PT1 is connected to the supply line 1 60 whose source is connected to the power supply voltage VDD2 for the high potential, and is connected to the NMOS at its drain The drain of the transistor NT1. By the PMOS transistor PT1 and A connection point of one of the drains of the NMOS transistor NT1 forms a node ND1. The NMOS transistor NT1 is connected to a supply line 161 whose source is connected to the power supply voltage VSS2 for the low potential. The PMOS transistor PT1 and the The gates of the NMOS transistor NT1 are connected to each other, and the input node ND1 is formed at one of the connection points of the gates. The input node ND1 is coupled to a corresponding gate line of the gate lines 115 (115-1 to 115-m). The CMOS buffer BF2 includes a PMOS transistor PT2 and an NMOS transistor NT2. The PMOS transistor PT2 is connected to the supply line 160 whose source is connected to the supply voltage VDD2 for the high potential, and its drain is connected to the drain of the NMOS transistor NT2. A node ND2 is formed by a connection point of the PMOS transistor PT2 and one of the drains of the NMOS transistor NT2. The NMOS transistor NT2 is connected to a supply line 1 61 whose source is connected to the power supply voltage VSS2 for the low potential. The PMOS transistor PT2 and the gate of the NMOS transistor NT2 are connected to each other, and one of the gate connection points is connected to the node ND1 of the CMOS buffer BF1. The node ND2 is connected as an output node to one of the gate lines 115 (115-1 to 115-m) corresponding to the gate line. A waveform shaping circuit 150 having a configuration such as one of the above outputs a gate pulse GP1 to GPM that is positively logically from the configuration side of the vertical drive circuit 128894.doc -22-200912877 path 120 (ie, Propagating along a corresponding gate line 115 (115-1 to l15_m) from the output side on the left side of Fig. 2, and further waveform shaping is also performed. The outputs of the CMOS buffers BF1 and BF2 for waveform shaping represent the capacitance Cgate of the gate line, and further indicate that the pixel electrode or the TFT (pixel transistor) is in an open state The capacitance of the liquid crystal Clcd and the storage capacitor cs of the pixels. In addition, since one of the CMOS buffers presents a negative logic output relative to one of its inputs to allow the waveform shaping circuit 15 to output a positive logic output, the waveform shaping circuit 150 is comprised of the CM 〇 s buffers. A circuit in which one of BF1 and BF2 is connected in series is formed. Since the waveform shaping circuit 150 requires an output power supply, the power supply voltage VDD2 for supplying the higher side and the power supply voltage VSS 2 of the lower side are arranged to turn on and off the supply line 16 of the pixel gate. 161 ° The wiring for the supply lines 160 and 16 is arranged parallel to the pixel signal lines. The reason is that, for example, if the supply lines 16〇 and 16丨 are wired in parallel with each other in the vicinity of the signal line 11 6 (11 6-1 to 11 6-n), the hole-to-drain ratio of the liquid crystal can be minimized. Chemical. In addition, in the case where a bus bar line exhibiting a lower impedance to the supply lines 160 and 161 for the voltages VDD2 and VSS2 is connected to the effective pixel region section 110, the power supply in the horizontal direction can be made. The voltage drop across the line is minimized. Therefore, 'the voltage corresponding to one of the high level (high voltage) and the other voltage (low voltage) corresponding to the low level can also be minimized, and the voltage is 128894.doc • 23· 200912877 at the effective pixel level The direction is output from the waveform shaping circuit 丨5〇. In addition, in the first embodiment, the supply lines 160 and 161 for the voltage and να supplied to the waveform shaping circuit 150 and the waveform shaping circuit 15A are preferably arranged at the level. The same coordinates in the direction. The reason is that since the coordinates of the waveform shaping circuit 15 该 in the horizontal direction are fixed, the gate pulse waveform is not affected by the delay. ~ As described above, according to the first embodiment, a waveform shaping circuit 丨5 for performing waveform shaping and voltage change on the wires of the gate lines for outputting one gate pulse from the vertical driving circuit 120 is arranged. 〇_ 11 to 150-lm and 150-21 to 150-2m. Therefore, with the specific embodiment of the present invention, the following effects can be achieved. In a display device including a large 1 pixel of 4K2K and using a high frame frequency of 240 Hz, the shadow in the left and right directions or the left or right direction due to the delay of one gate line is eliminated. A good difference in chroma quality results in good image quality. In addition, the output delay and distortion of the waveform of the gate pulse GP from the vertical driving circuit 12A can be suppressed, and the vertical driving on the left or right side of the image frame of one of the active matrix display devices can be reduced. The occupied area of the circuit and the buffer circuit. Thus, the image frame of the display device can be formed to have a reduced width on its left and right side portions. Further, the supply lines 160 and 161 for the voltages VDD2 and VSS2 to be supplied to the waveform shaping circuits 150 and the waveform shaping circuits 150 are placed in the same horizontal direction as 128894.doc -24-200912877 At the coordinates, the delay of the closed-pole pulse waveform can be suppressed. &lt;Second Embodiment&gt; One of the Second Embodiments and a Pole Pulse Wave Figure 6A, 6B, and 6C respectively show an example of a configuration of one of the liquid crystal display devices according to the present invention. Referring first to FIG. 6A, the configuration of the liquid crystal display device 100A according to this second embodiment is similar to that of the liquid crystal device according to the first embodiment described above, but differs in the arrangement position of the waveform shaping circuits 150. . In the liquid crystal device (8) of the first embodiment, the supply lines 16 and 161 for the voltages VDD2 and VSS2 to be supplied to the waveform forming circuit 150 and the waveform forming circuit 15A are provided. The system is arranged at the same coordinates in the horizontal direction. In contrast, in the liquid crystal display device 1A of the second embodiment, the supply lines 160 and 161 for the voltages VDD2 and VSS2 to be supplied to the waveform shaping circuit 50 and the waveform shaping circuits 15A. They are not disposed at the same coordinates in the horizontal direction and are arranged to be displaced relative to one another in a one-way relationship with the wires of the gate lines and the signal lines. In the example shown in Fig. 6A, the waveform shaping circuit 150-11 is disposed adjacent to a position where the one of the gate line 116-3 and the gate line 115-1 overlap. The waveform liters &gt; circuit 1 50-1 2 is arranged near the intersection of the signal line 11 6-4 and the gate line 11 5-2. The waveform shaping circuit 丨5 〇 _ _ 3 is arranged near the intersection of the signal line 116-5 and the gate line 11 5-3. The wave formation 128894.doc -25- 200912877 shaped circuit 150-14(m) is disposed adjacent to the intersection of the signal line 116-6 and the gate line ii5-m. At the same time, the waveform shaping circuit 150-21 is disposed near the intersection of the signal line 116_7 and the gate line 115-1. The waveform shaping circuit 15 〇 22 is disposed near the intersection of the signal line 116-8 and the gate line 11 5-2. The waveform shaping circuit 150-23 is disposed near the intersection of the signal line 116-9 and the gate line 11 5-3. The waveform shaping circuit 1 5〇_24(m) is disposed at a position (near) of the 彳s saying line 116-10 and one of the gate lines. In this example, a waveform such as in the horizontal direction When the coordinates of the shaping circuit 150 are not fixed, the partial one-sidedness is eliminated from the supply lines 160 and 161 for the power supply voltage VDD2 and the reference voltage VSS2. Therefore, the supply for the voltages VDD2 and VSS2 is ensured. The uniformity of the transmission factor of the pixels under the influence of the wiring layout of lines 160 and 161. In this example, the brightness distribution of the display device is fixed. (The configuration of another part of this second embodiment is similar to the first This configuration of a specific embodiment can also achieve effects similar to those achieved by the first embodiment described above. <Third embodiment> Figs. 7A, 7B and 7C respectively show according to the present invention. An example of one of the configurations of one of the liquid crystal display devices and an example of a dummy pulse waveform is shown in the third embodiment. Referring first to FIG. 7A, according to the third embodiment, the liquid crystal display of the example will be different. Device 100 The state is similar to the liquid 128894.doc • 26 · 200912877 crystal display devices 100 and 100A according to the above-described first embodiment, but differs in the arrangement position of the waveform forming circuits 150. In particular, In the liquid crystal display devices 100 and 100A according to the first and second embodiments, the supply lines 16 for the voltages VDD2 and VSS2 to be supplied to the waveform shaping circuits 15 and the waveform shaping circuits 150 are provided. 0 and 1 are arranged in the same coordinate in the horizontal direction. Alternatively, the supply lines 16 and 161 for the voltages VDD2 and VSS2 to be applied to the waveform forming circuit 15 and the waveform forming circuit 150 are not In the liquid crystal display device 丨〇〇b according to the third embodiment, the waveform forming circuits 150-11 to 150_nm are disposed on the gate lines and the signal lines. Almost all of the gate lines near the intersection and, or in other words 4, at the input portion of the pixel circuit (1) for the gate pulse.

若該波形成形電路15G係以此方式針對每—像素電路⑴ 而佈置於該㈣極線的導線上,由可以允許複數個像素電 路111存在於不同的波形成形電路之間以使得不會在其中 發生閘極脈衝的波形延遲之任何分散。 換言之,在複數個像素電路存在於—波形成形電路盘另 -波形成形電路之間的情況下,消除寄生電容之不均勾 :’而確保該等波形成形電路之像素閘極之均勾的負載電 容。因此,不會再發生閘電極條件下的延遲。 、 第此實施例之另一部分之組態類似於該等第-及 弟〜、體實施例之此組態,而亦可實現與藉由上述第一及 128894.doc •27· 200912877 第二具體實施例所實現之效果類似之效果。 &lt;第四具體實施例&gt; 。。圖8顯示依據本發明之一第四具體實施例之一液晶顯示 器裝置之一組態之一範例。 參考圖8,依據此第四具體實施例之液晶顯示器裝置 10 0 C之組態類似於依據上述第—具體實施例之液晶裝置 100 ’但與其不同之處在於其採用在一其中將影像資料以If the waveform shaping circuit 15G is disposed on the wire of the (qua) line for each pixel circuit (1) in this manner, a plurality of pixel circuits 111 may be allowed to exist between different waveform shaping circuits so as not to be in them. Any dispersion of the waveform delay of the gate pulse occurs. In other words, in the case where a plurality of pixel circuits exist between the waveform forming circuit and the waveform forming circuit, the unevenness of the parasitic capacitance is eliminated: 'and the load of the pixel gates of the waveform forming circuits is ensured. capacitance. Therefore, the delay under the gate electrode condition no longer occurs. The configuration of another part of the first embodiment is similar to the configuration of the first and the second embodiment, and can also be implemented with the second specific by the first and 128894.doc •27·200912877 The effects achieved by the embodiments are similar. &lt;Fourth embodiment&gt;. . Fig. 8 shows an example of one configuration of a liquid crystal display device according to a fourth embodiment of the present invention. Referring to Fig. 8, the configuration of the liquid crystal display device 100C according to this fourth embodiment is similar to that of the liquid crystal device 100' according to the above-described first embodiment, but differs in that it uses image data therein.

分時方式寫人至-面板的系統中亦有效之一組態。 特疋B之,而且,在如圖8所示使用—分時開關以便減 小該面板的圖像訊框之情況下,若該分時開關之分時數目 未充分滿足在一水平選擇週期内之一電性特徵及一影像特 徵則需要應用本發明。 自該 號線 透過具有複數個傳輸閘極TMG之一選擇器SEL將來 等仏號驅動窃131至134的信號SV1至SV4傳輸至信 116(116-1 至116-12)。 精由一選擇信號81及其—反相信號XS1、另一選擇信 S2及其一反相信號XS2、另一選擇信號以及其一反相^ XS3·.·來控制該等傳輪閘極(類比開關)TMG之導電狀態 該等信號係從外部供應且具有彼此互補之位準。心 在採用如上所述之此-組態之情況下,該高解析 (腦⑷及兩速度框率類型之—主動矩陣顯示器裝置可 採用一選擇器分時驅動车 _ . .. 叮巧勒糸統,該糸統減少連接端子之 並提高連接之機械可靠性。 此第四具體實施例之另—部分之組態類似於該 128894.doc -28- 200912877 實施例之此組態,而亦可實頊盘盐 貝現與藉由上述第一具體實施例 所實現之效果類似之效果。 &lt;第五具體實施例&gt; 圖9顯示依據本發明之第-具體實施例之-液晶顯示器 裝置之結構之一範例。 參考圖9,依據此第五具體實施例之液晶顯示器裝置 100D之組態類似於依據上述第二具體實施例之液晶裝置 100A ’但與其不同之處在於其採用在—其中將影像資料以 分時方式寫入至一面板的系統中亦有效之一組態。 特定言之’而且,在如圖9所示使用—分時開關以便絨 小該面板的圖像訊框之情況下,若該分時開關之分時數目 未充分滿足在一水平選擇週期内之一電性特徵及一影像特 徵則需要應用本發明。 參考圖9,透過具有複數個傳輸閘極TMG之一選擇器 SEL將來自該等信號驅動器131至134的信號svi至州傳輸 至信號線 116(116-1至 116-12)。 藉由一選擇信號81及其一反相信號XS1 '另一選擇信號 S2及其一反相信號又32、另一選擇信號“及其—反相信號 XS3…來控制該傳輸閘極(類比開關)TMG之導電狀態,該 等#號係從外部供應且具有彼此互補之位準。 在採用如上所述之此_組態之情況下,該高解析度 (UXGA)及高速度框率類型之一主動矩陣顯示器裝置可以 採用一選擇g分時驅動系统,該系統減少連接端子之數目 並提尚連接之機械可靠性。 128894.doc -29· 200912877 此第五具體實施例之另一部分之組態類似於該第二具體 實施例之此組態,而亦可實現與藉由上述第一及第二具體 實施例所實現之效果類似之效果。 &lt;第六具體實施例&gt; 圖ίο顯不依據本發明之一第六具體實施例之一液晶顯示 器裝置之一組態之一範例。 參考圖10,依據此第六具體實施例之液晶顯示器裝置 100E之组態類似於依據上述第三具體實施例之液晶裝置 100B,但與其不同之處在於其採用在一其中將影像資料以 分時方式寫入至一面板的系統中亦有效之一組態。 特疋5之,而且,在如圖丨0所示使用一分時開關以便減 小該面板的圖像訊框之情況下,若該分時開關之分時數目 未充分滿足在一水平選擇週期内之一電性特徵及一影像特 徵則需要應用本發明。 參考圖10,透過具有複數個傳輸閘極ΤΜ(3之選擇器SEL 將來自該等信號驅動器131至134的信號SV1至SV4傳輸至 信號線 116(116-1 至 116-12)。 藉由該選擇信號81及其反相信號XS1、選擇信號s2及其 反相仏號XS2、選擇信號S3及其反相信號XS3…來控制該 等傳輸閘極(類比開關)TMG之導電狀態,該等信號係從外 部供應且具有彼此互補之位準。 在採用如上所述之此一組態之情況下,該高解析度 (UXGA)及同速度框率類型之一主動矩陣顯示器裝置可以 採用一選擇器分時驅動系統,該系統減少連接端子之數目 128894.doc -30. 200912877 並提高連接之機械可靠性。 此第六具體實施例之另—部分之組態類似於該第三具體 實施例之此組態,而亦可實現與藉由上述第一至第三具體 實施例所實現之效果類似之效果。 &lt;第七具體實施例&gt; 圖11顯示依據本發明之一第七具體實施例之一液晶顯示 器裝置之一組態之一範例。 參考圖11,依據此第七具體實施例之液晶顯示器裝置 100F之組態類似於依據上述第三具體實施例之液晶顯示器 裝置100B ’但與其有以下一點差異。 特定言之’在該液晶顯示器裝置10017中,用於該電源供 應電壓V D D 2之供應線⑽與用於該電源供應電壓v s s 2之 供應線161亦係佈線於所有該等信號線丨16(1…丨至116一 與所有該等閘極線115(115_1至115_111)之間。One-time configuration is also effective in the time-sharing method of writing the person-to-panel system. In particular, in the case where the time-sharing switch is used as shown in FIG. 8 to reduce the image frame of the panel, if the number of time-sharing switches is not sufficiently satisfied within a horizontal selection period One electrical feature and one image feature require the application of the present invention. From this line, signals SV1 to SV4, which are nicknamed 131 to 134, are transmitted to the signals 116 (116-1 to 116-12) through a selector SEL having a plurality of transmission gates TMG. The fine control gate 81 and its -inverted signal XS1, another select signal S2 and an inverted signal XS2 thereof, another selection signal, and an inverted XS3.. Analog Switch) Conductive Status of TMG These signals are supplied externally and have complementary levels to each other. In the case of the configuration described above, the high-resolution (brain (4) and two-speed frame rate type-active matrix display device can use a selector to drive the car _ .. 叮巧勒糸The system reduces the connection terminal and improves the mechanical reliability of the connection. The configuration of the other part of the fourth embodiment is similar to the configuration of the embodiment of 128894.doc -28-200912877, and The effect of the effect achieved by the first embodiment described above is similar to that of the first embodiment described above. <Fifth Embodiment> FIG. 9 shows a liquid crystal display device according to a first embodiment of the present invention. An example of the structure. Referring to FIG. 9, the configuration of the liquid crystal display device 100D according to this fifth embodiment is similar to the liquid crystal device 100A' according to the second embodiment described above, but differs in that it is employed in The image data is also validly configured in one-panel system. It is specifically described as 'and, as shown in Figure 9, the time-sharing switch is used to fluff the image frame of the panel. Next, if The present invention may be applied to the number of time divisions of the time-sharing switch that does not adequately satisfy one of the electrical characteristics and an image feature in a horizontal selection period. Referring to Figure 9, one of the selectors SEL having a plurality of transmission gates TMG will come from The signals svi to states of the signal drivers 131 to 134 are transmitted to the signal lines 116 (116-1 to 116-12) by a selection signal 81 and an inverted signal XS1 'the other selection signal S2 and its opposite The phase signal, in turn 32, another selection signal "and its inverted signal XS3..." controls the conduction state of the transmission gate (analog switch) TMG, which are supplied externally and have mutually complementary levels. In the case of the configuration described above, the active matrix display device of one of the high resolution (UXGA) and high speed frame rate types can adopt a selection g time division driving system, which reduces the number of connection terminals and The mechanical reliability of the connection is provided. 128894.doc -29·200912877 The configuration of another part of the fifth embodiment is similar to the configuration of the second embodiment, and can also be implemented by the first And second The effect achieved by the embodiment is similar. <Sixth embodiment> An example of one configuration of a liquid crystal display device according to a sixth embodiment of the present invention is shown. Referring to FIG. 10, The configuration of the liquid crystal display device 100E according to this sixth embodiment is similar to that of the liquid crystal device 100B according to the third embodiment described above, but is different from that in which the image data is written in a time sharing manner thereto. One panel of the system is also effective in one configuration. In addition, in the case of using a minute switch as shown in Figure 以便0 to reduce the image frame of the panel, if the time-sharing switch The number of time divisions does not sufficiently satisfy one of the electrical characteristics and an image feature in a horizontal selection period, and the present invention needs to be applied. Referring to FIG. 10, signals SV1 to SV4 from the signal drivers 131 to 134 are transmitted to the signal lines 116 (116-1 to 116-12) through a selector SEL having a plurality of transmission gates 3. The selection signal 81 and its inverted signal XS1, the selection signal s2 and its inverted signal XS2, the selection signal S3 and its inverted signal XS3... are used to control the conduction state of the transmission gates (analog switches) TMG, such signals Is supplied externally and has complementary levels. In the case of the configuration described above, one of the high resolution (UXGA) and the same speed frame rate type active matrix display devices can employ a selector Time-division drive system, which reduces the number of connection terminals 128894.doc -30. 200912877 and improves the mechanical reliability of the connection. The configuration of the other part of this sixth embodiment is similar to that of the third embodiment. The configuration can also achieve effects similar to those achieved by the first to third embodiments described above. <Seventh embodiment> FIG. 11 shows a seventh embodiment according to the present invention. Liquid crystal display An example of one of the configurations is shown. Referring to Fig. 11, the configuration of the liquid crystal display device 100F according to the seventh embodiment is similar to the liquid crystal display device 100B' according to the third embodiment described above, but with the following differences. Specifically, in the liquid crystal display device 10017, the supply line (10) for the power supply voltage VDD 2 and the supply line 161 for the power supply voltage vss 2 are also routed to all of the signal lines (16 (1) ... 丨 to 116 and between all of the gate lines 115 (115_1 to 115_111).

若採用上述組態,則可防止—不合需要的電壓侵入相鄰 像素電路!1丨’此係發生於—閘極線與—信號線之間。因 此’可獲得良好的圖像品質。 此第七具體實施例之另—部分之組態類㈣該第三具體 實施例之此組態’而亦可脊招也站丄、 j j貫現與藉由上述第一至第三具體 實施例所實現之效果類似之效果。 應注意,儘管圖11中夫+ Y禾顯不在該第七具體實施例中該等 電壓供應線之一佈線方牵,#咕 艸涿万茱但該第七具體實施例之組態亦 可適用於其他第一、第二及第四至第六具體實施例。而 且在此實例中,可防止—不合需要的電壓侵入一相鄰像 128894.doc 200912877 素電路111,而可實現一獲得良好圖像品質之效果。 &lt;第八具體實施例&gt; 圖12A、12B及12C分別顯示依據本發明之一第八具體實 施例之一液晶顯示器裝置之一組態之一範例及一閘極脈衝 波形之範例。 首先參考圖12 A ’依據此第八具體實施例之液晶顯示器 裝置1 00G之組態類似於依據上述第一具體實施例之液晶裝 置100 ’但與其不同之處在於該等波形成形電路並非由簡 單地採用一級聯連接來連接的CMOS緩衝器而係利用一定 時CMOS電路來組態。 在此,說明一波形成形電路1 5 1。 而且’在此第八具體實施例中,實施來自該等閘極緩衝 器140-1至140-m的閘極脈衝的波形成形及電壓改變之波形 成形電路151-11至151-lm及151-21至151-2m係居中佈置於 該等閘極線11 5-1至115-m上,如上所述。 因此,從圖12C中一實線所示之一波形可看出,在該等 閘極線115-1至115-m遠離該等閘極缓衝器14〇_ι至丨利-瓜之 輸出級的运端部分處或終端部分處該閘極脈衝之波形係相 對於其失真而獲得改良。應注意,圖丨2C中一虛線所示之 一波形呈現在不插入任何波形成形電路之遠端部分或終端 部分處該閘極脈衝之波形之失真。 因此,該顯示器裝置促進採用大量像素及一高訊框頻率 之顯示。 該等波形成形電路151-11至151_11!1及151-21至151-2m分 128894.doc -32- 200912877 別係居中佈置於該等閘極線11 5-1至11 5-m之導線上以形成 波形。 另外,該等波形成形電路151-11至151-lm及151-21至 151-2111係共同連接至用於一電源供應電壓¥〇02(其係一高 電位)之一供應線160與用於另一電源供應電壓vsS2(其係 一低電位)之一供應線161。該等波形成形電路151-11至 151-lm及151-21至151 -2m皆係(例如)由包括以一級聯連接 來連接之一定時CMOS與一 CMOS缓衝器之一電路形成(如 圖13A至13C所示)。 在此第八具體實施例中,該等波形成形電路丨5丨_丨丨至 151-lm及151-21至15 l-2m係佈置於在該垂直方向上的相同 座標處。 更特定言之,該等波形成形電路151-11至151-lm係分別 佈置於該信號線116-6與該等閘極線115-1至11 5-m的交叉位 置。該等波形成形電路15 1 -2 1至1 5 1 -2m係分別佈置於該信 號線116-10與該等閘極線115-1至115-m的交又位置。 圖13A至13C解說一其中由一定時CMOS電路形成該波形 成形電路之範例作為此第八具體實施例。 特定言之,圖13A顯示一等效電路,而圖13B顯示一特 定電路,而圖13C解說在該緩衝器的輸出側上之電容。 從圖13B可看出,每一波形成形電路151包括:一定時 CMOS緩衝器或反相器BF3,其取代圖5所示該CMOS缓衝 器BF1之組態;以及另一 CMOS緩衝器或反相器BF2,其係 採用一級聯連接來連接至定時CMOS緩衝器BF3。 128894.doc -33- 200912877 除圖5所示該CMOS緩衝器BF1之組態外,該定時CMOS 緩衝器BF3還包括一 PMOS電晶體PT3及一 NMOS電晶體 NT3。 該PMOS電晶體PT3係於其源極連接至用於該高電位的電 源供應電壓VDD2之供應線1 60,而於其汲極連接至該 NMOS電晶體PT1之汲極。 同時,該NMOS電晶體NT3係於其源極連接至用於該低 電位的電源供應電壓VSS2之供應線161,而於其汲極連接 至該NMOS電晶體NT 1之源極。 將一時脈CK供應給該NMOS電晶體NT3之閘極,而將該 時脈CK之一反相或互補信號XCK供應給該PMOS電晶體 PT3之閘極。 當該時脈CK呈現該高位準時,將該PMOS電晶體PT3與 該NMOS電晶體NT3置入一開啟狀態以使得該定時CMOS電 路變成具操作性。 該等時脈CK及XCK具有作為一啟用信號之一功能,其 可控制該波形成形電路15 1之操作之開始。 該波形成形電路1 5 1之另一部分之組態類似於圖5A至5C 所示電路之組態,而因此,在此省略關於其之重疊說明以 避免冗餘。 具有此一如上所述組態之波形成形電路1 5 1輸出從垂直 驅動電路120之該配置側(即,該輸出側或在圖13 A所示之 左側)發射的閘極脈衝GP1至GPm之波形作為一正邏輯輸 出,並進一步實施波形成形。 128894.doc •34- 200912877 用於波形成形的該定時CMOS緩衝器bF3及該cM〇s緩衝 器BF 1之輸出表示該閘極線之電容Cgate,並且還表示包括 在该像素電極或該TFT(像素電晶體)處於一開啟狀態時所 處之一狀態中的液晶電容Clcd與該像素的儲存電容Cs之電 容。 另外,由於s亥定時CMOS緩衝器BF3指示相對於其一輸 入之一反相邏輯輸出,因此該波形成形電路丨5丨係由一其 中將該CMOS緩衝器BF2連接至該定時CM〇s緩衝器BF3以 便獲得一正邏輯輸出之電路形成。 由於該波形成形電路151需要用於其之一輸出電源供 應’因此置放用以供應較高側的電源供應電壓VDD2與較 低側的電源供應電壓V S S 2以開啟與關閉該像素閘極之供 應線160及161之導線。 該等導線係平行於該等像素信號導線而置放。原因在 於’例如’在其係平行於該等信號線116(116_1至116_11)且 在該等信號線附近置放之情況下,可使得該液晶之孔徑比 之下降最小化。 另外,在對用於該等電壓VDD2及VSS2的供應線16〇及 1 61呈現較低阻抗之匯流排線係連接於有效像素區域區段 110上之情況下’可使得在該水平方向上的電源供應線之 電壓降最小化。 因此,亦可使得欲在該等有效像素的水平方向上從該波 形成形電路1 5 1輸出的高電壓及低電壓之變化最小化。 當該時脈(啟用信號)CK或XCK(作為一控制信號)進入該 128894.doc -35- 200912877 CMOS緩衝器(其形成該波形成形電路1 5 1)時,該定時 CMOS緩衝器BF3於該時脈之一上升邊緣或一下降邊緣開 始其操作。 若用於該等時脈CK及XCK之供應線1 62係佈線於該顯示 器裝置之垂直方向上且係變成具操作性,則儘管發生該等 時脈CK及XCK之一定延遲或在該垂直方向上之波形失 真’但在該水平方向上該等時脈CK與XCK具有相同寄生 電容之相同歷史。因此,該延遲變成固定。 因此,沿佈置於該水平方向上之一閘極線而傳輸之一信 號王現受該等時脈控制之一延遲波形。由此產生一選擇信 號而無需一閘極選擇波形,該閘極選擇波形係以一高速度 來垂直掃描而對水平方向加以關注。 另外,同樣,在此第八具體實施例中,用於欲向該等波 形成形電路1 5 1及該等波形成形電路丨5丨供應的電壓VDD2 及VSS2之供應線160及161較佳的係佈置於在該水平方向 上的相同座標,此與該第一具體實施例中類似。 原因在於,由於該等波形成形電路151在該水平方向上 的座標係固定,因此該閘極脈衝波形不會受到延遲之影 響。 / 此第八具體實施例之另一部分之組態類似於該第一具體 實施例之此組態’而亦可實現與藉由上述第—具體實施例 所實現之效果類似之效果。此外,可以—高精確度將該延 遲保持固定。 &lt;第九具體實施例&gt; 128894.doc • 36 - 200912877 圖14A、MB及14C分別顯示依據本發明之一第九具體實 施例之一液晶顯不益裝置之一組態之 波形之範例。 範例及一閘極脈衝 參考圖14A,依據此第九具體實施例 列之液晶顯示器裝置 100H之組態類似於依據上述第一具體眘妒v , ,、驟實施例之液晶裝置 100G,但不同之處在於該等波形成形雷攸彳q ^ /叫冤路1 5 〇之配置位 特定言之,在上述第八具體實施例之液晶裝置i 〇〇g中, 用於欲向該等波形成形電路150供應的電壓vDD2&amp; VSS2 之供應線160及161、用於該等時脈CK及xcK之供應線162 及該等波形成形電路1 5 0係佈置於在該水平方向上的相同 座標處。 相反,在此第八具體實施例之液晶顯示器裝置1 〇〇G中, 用於欲向該等波形成形電路150供應的電壓VDD2及V S S 2 之供應線160及161、用於該等時脈CK及XCK之供應線162 及該等波形成形電路150並非佈置於在該水平方向上的相 同座標處’而係佈置成彼此相對位移一行之一關係而與該 等閘極線及該等信號線之導線成一對應關係。 在圖14A所示範例中’該波形成形電路1 5〇-11係佈置於 該信號線Π6-3與該閘極線115-1之一交又位置附近。該波 形成形電路150-12係佈置於該信號線116-4與該閘極線115-2之一交叉位置附近。 該波形成形電路1 50-13係佈置於該信號線11 6-5與該閘極 線115-3之一交叉位置附近。該波形成形電路150-14(m)係 128894.doc -37- 200912877 佈置於該信號線11 6-6與該閘極線11 5-m之一交又位置附 近。 同時,該波形成形電路150-21係佈置於該信號線116_7與 該閘極線115-1之一交又位置附近。該波形成形電路15〇_22 係佈置於該信號線116-8與該閘極線π5-2之一交又位置附 近。該波形成开&gt; 電路1 50-23係佈置於該信號線丨丨6_9與該閘 極線115-3之一交叉位置附近。該波形成形電路15〇_24(m) 係佈置於該信號線11 6-1 〇與該閘極線丨丨5 _m之一交又位置 附近。 在此實例中,在諸如該水平方向上的波形成形電路15〇 之座標並非固定之一情況下’從用於該電源供應電壓 VDD2及該參考電壓VSS2的供應線16〇及161消除局部片面 性。因此,確保在用於該等電壓¥£)〇2與VSS2之供應線 1 60及1 61之佈線佈局的影響下像素的透射因數之均勻性。 在此實例中,該顯示器裝置之亮度分佈係固定。If you use the above configuration, you can prevent the undesired voltage from invading the adjacent pixel circuit! 1丨' This system occurs between the gate line and the signal line. Therefore, good image quality can be obtained. The other part of the configuration of the seventh embodiment (4) the configuration of the third embodiment is also exemplified, and the first to third embodiments are The effect achieved is similar to the effect. It should be noted that although FIG. 11 is not in the wiring of one of the voltage supply lines in the seventh embodiment, the configuration of the seventh embodiment may be applied. Other first, second and fourth to sixth specific embodiments. Moreover, in this example, an undesired voltage can be prevented from intruding into an adjacent image 111, and an effect of obtaining good image quality can be achieved. &lt;Eighth Embodiment&gt; Figs. 12A, 12B and 12C respectively show an example of a configuration of a liquid crystal display device and an example of a gate pulse waveform according to an eighth embodiment of the present invention. Referring first to FIG. 12A', the configuration of the liquid crystal display device 100G according to the eighth embodiment is similar to the liquid crystal device 100' according to the first embodiment described above, but differs in that the waveform shaping circuit is not simple. The CMOS buffers connected by a cascade connection are configured with a certain time CMOS circuit. Here, a waveform shaping circuit 151 will be described. Further, in the eighth embodiment, the waveform shaping circuits 151-11 to 151-lm and 151- of the waveform shaping and voltage change of the gate pulses from the gate buffers 140-1 to 140-m are implemented. The 21 to 151-2m are centrally disposed on the gate lines 11 5-1 to 115-m as described above. Therefore, it can be seen from the waveform shown by a solid line in FIG. 12C that the gate lines 115-1 to 115-m are away from the gate buffers 14〇_ι to the output of the -利-瓜The waveform of the gate pulse at the terminal portion or the terminal portion of the stage is improved with respect to its distortion. It should be noted that a waveform shown by a broken line in Fig. 2C exhibits distortion of the waveform of the gate pulse at the distal end portion or the terminal portion of the waveform forming circuit. Therefore, the display device facilitates display using a large number of pixels and a high frame frequency. The waveform shaping circuits 151-11 to 151_11!1 and 151-21 to 151-2m are 128894.doc -32- 200912877 and are disposed centrally on the wires of the gate lines 11 5-1 to 11 5-m To form a waveform. In addition, the waveform shaping circuits 151-11 to 151-lm and 151-21 to 151-2111 are commonly connected to one supply line 160 for a power supply voltage 〇02 (which is a high potential) and used for Another power supply voltage vsS2 (which is a low potential) is supplied to line 161. The waveform shaping circuits 151-11 to 151-lm and 151-21 to 1512-2m are formed, for example, by a circuit including a timing CMOS and a CMOS buffer connected by a cascading connection (as shown in the figure). 13A to 13C). In this eighth embodiment, the waveform shaping circuits 丨5丨_丨丨 to 151-lm and 151-21 to 15 l-2m are arranged at the same coordinates in the vertical direction. More specifically, the waveform shaping circuits 151-11 to 151-lm are respectively disposed at intersections of the signal lines 116-6 and the gate lines 115-1 to 11 5-m. The waveform shaping circuits 15 1 - 2 1 to 1 5 1 - 2m are respectively disposed at the intersection of the signal line 116-10 and the gate lines 115-1 to 115-m. 13A to 13C illustrate an example in which the waveform shaping circuit is formed by a certain time CMOS circuit as this eighth embodiment. Specifically, Fig. 13A shows an equivalent circuit, and Fig. 13B shows a specific circuit, and Fig. 13C illustrates the capacitance on the output side of the buffer. As can be seen from FIG. 13B, each waveform shaping circuit 151 includes: a certain time CMOS buffer or inverter BF3, which replaces the configuration of the CMOS buffer BF1 shown in FIG. 5; and another CMOS buffer or counter Phaser BF2, which is connected to timing CMOS buffer BF3, is connected in a cascade. 128894.doc -33- 200912877 In addition to the configuration of the CMOS buffer BF1 shown in FIG. 5, the timing CMOS buffer BF3 further includes a PMOS transistor PT3 and an NMOS transistor NT3. The PMOS transistor PT3 is connected to the supply line 160 whose source is connected to the power supply voltage VDD2 for the high potential, and whose drain is connected to the drain of the NMOS transistor PT1. At the same time, the NMOS transistor NT3 is connected to the supply line 161 whose source is connected to the power supply voltage VSS2 for the low potential, and its drain is connected to the source of the NMOS transistor NT1. A clock CK is supplied to the gate of the NMOS transistor NT3, and an inverted or complementary signal XCK of the clock CK is supplied to the gate of the PMOS transistor PT3. When the clock CK assumes the high level, the PMOS transistor PT3 and the NMOS transistor NT3 are placed in an on state to make the timing CMOS circuit operational. The clocks CK and XCK have a function as an enable signal that controls the start of the operation of the waveform shaping circuit 151. The configuration of the other portion of the waveform shaping circuit 151 is similar to the configuration of the circuit shown in Figs. 5A to 5C, and therefore, overlapping descriptions thereof are omitted here to avoid redundancy. The waveform shaping circuit 151 having the configuration as described above outputs the gate pulses GP1 to Gpm emitted from the arrangement side of the vertical drive circuit 120 (i.e., the output side or the left side shown in Fig. 13A). The waveform is output as a positive logic and waveform shaping is further performed. 128894.doc • 34- 200912877 The timing CMOS buffer bF3 for waveform shaping and the output of the cM〇s buffer BF 1 represent the capacitance Cgate of the gate line, and are also indicated at the pixel electrode or the TFT ( The pixel transistor is in a state in which the liquid crystal capacitor Clcd is in a state of being in an open state and the capacitance of the storage capacitor Cs of the pixel. In addition, since the sigma timing CMOS buffer BF3 indicates an inverted logic output with respect to one of its inputs, the waveform shaping circuit 丨5 is connected to the timing CM 〇s buffer by the CMOS buffer BF2. BF3 is formed in order to obtain a positive logic output circuit. Since the waveform shaping circuit 151 is required for one of its output power supplies 'is therefore placed to supply the higher side power supply voltage VDD2 and the lower side power supply voltage VSS 2 to turn the supply of the pixel gate on and off. Wires of lines 160 and 161. The wires are placed parallel to the pixel signal wires. The reason is that, for example, in the case where it is parallel to the signal lines 116 (116_1 to 116_11) and placed in the vicinity of the signal lines, the decrease in the aperture ratio of the liquid crystal can be minimized. In addition, in the case where the bus lines for lowering the supply lines 16A and 1 61 for the voltages VDD2 and VSS2 are connected to the effective pixel region section 110, 'in the horizontal direction can be made The voltage drop of the power supply line is minimized. Therefore, variations in the high voltage and low voltage to be output from the wave forming circuit 153 in the horizontal direction of the effective pixels can also be minimized. When the clock (enable signal) CK or XCK (as a control signal) enters the 128894.doc -35-200912877 CMOS buffer (which forms the waveform shaping circuit 151), the timing CMOS buffer BF3 is One of the rising edges or a falling edge of the clock begins its operation. If the supply lines 1 62 for the clocks CK and XCK are wired in the vertical direction of the display device and become operative, a certain delay or in the vertical direction of the clocks CK and XCK occurs. The waveform distortion on the 'but in the horizontal direction, the clocks CK and XCK have the same history of the same parasitic capacitance. Therefore, the delay becomes fixed. Therefore, one of the signal signals transmitted along one of the gate lines arranged in the horizontal direction is subjected to one of the clock control delay waveforms. This produces a selection signal without the need for a gate selection waveform that is scanned vertically at a high speed to focus on the horizontal direction. Further, in the eighth embodiment, the supply lines 160 and 161 for the voltages VDD2 and VSS2 to be supplied to the waveform shaping circuits 151 and the waveform shaping circuits 丨5 较佳 are preferably preferred. The same coordinates are arranged in the horizontal direction, which is similar to that in the first embodiment. The reason is that since the coordinates of the waveform shaping circuit 151 in the horizontal direction are fixed, the gate pulse waveform is not affected by the delay. The configuration of another part of the eighth embodiment is similar to the configuration of the first embodiment, and effects similar to those achieved by the above-described first embodiment can be achieved. In addition, the delay can be kept fixed with high accuracy. &lt;Ninth Embodiment&gt; 128894.doc • 36 - 200912877 Figs. 14A, MB and 14C respectively show examples of waveforms configured by one of the liquid crystal display devices according to a ninth embodiment of the present invention. Example and a gate pulse Referring to FIG. 14A, the configuration of the liquid crystal display device 100H according to the ninth embodiment is similar to the liquid crystal device 100G according to the first specific embodiment, but different embodiments. In the liquid crystal device i 〇〇 g of the eighth embodiment, in the liquid crystal device i 〇〇 g of the eighth embodiment described above, the configuration bits for the waveform forming rake q ^ / 冤 1 1 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定The supply lines 160 and 161 of the voltage vDD2 &amp; VSS2 supplied by 150, the supply line 162 for the clocks CK and xcK, and the waveform shaping circuits 150 are arranged at the same coordinates in the horizontal direction. In contrast, in the liquid crystal display device 1 〇〇G of the eighth embodiment, the supply lines 160 and 161 for the voltages VDD2 and VSS 2 to be supplied to the waveform shaping circuits 150 are used for the clocks CK. And the XCK supply line 162 and the waveform shaping circuits 150 are not disposed at the same coordinates in the horizontal direction and are arranged to be displaced relative to one another in a row relationship with the gate lines and the signal lines The wires are in a corresponding relationship. In the example shown in Fig. 14A, the waveform shaping circuit 1 5-11 is disposed near the position where the signal line Π 6-3 and the gate line 115-1 overlap. The wave forming circuit 150-12 is disposed adjacent to an intersection of the signal line 116-4 and the gate line 115-2. The waveform shaping circuit 1 50-13 is disposed adjacent to an intersection of the signal line 1 6-5 and the gate line 115-3. The waveform shaping circuit 150-14(m) is 128894.doc -37- 200912877 arranged in the vicinity of the signal line 11 6-6 and the gate line 11 5-m. At the same time, the waveform shaping circuit 150-21 is disposed near the intersection of the signal line 116_7 and the gate line 115-1. The waveform shaping circuit 15〇_22 is disposed adjacent to the signal line 116-8 and the gate line π5-2. The wave forming on circuit 1 50-23 is arranged near the intersection of the signal line 丨丨6_9 and one of the gate lines 115-3. The waveform shaping circuit 15A_24(m) is disposed near the intersection of the signal line 11 6-1 〇 and the gate line 丨丨5_m. In this example, the partial flakes are eliminated from the supply lines 16 and 161 for the power supply voltage VDD2 and the reference voltage VSS2, for example, in the case where the coordinates of the waveform shaping circuit 15A in the horizontal direction are not fixed. Therefore, the uniformity of the transmission factor of the pixel under the influence of the wiring layout for the supply lines 1 60 and 1 61 of the voltages £2 and VSS2 is ensured. In this example, the brightness distribution of the display device is fixed.

此第九具體實施例之另一部分之組態類似於該第八具體 實施例之此組態’而亦可實現與藉由上述第__及第八諸 實施例所實現之效果類似之效果。 ^ &lt;第十具體實施例&gt; 第十具體實 一閘極脈衝 圖15A、15B及15C分別顯示依據本發明之一 施例之一液晶顯示器裝置之一組態之一範例及 波形之範例。 十具體實施例之液晶顯 同時’圖16A至16J解說依據此第 示器裝置之操作。 128894.doc -38- 200912877 特定言之’圖16A解說用於一垂直驅動電路之一時脈 VCK ;圖16B解說用於一波形成形電路之一時脈圖 16C解說該時脈CK之一反相XCK ;而圖16D解說一垂直開 始信號VST(Vst)。 圖1 6E解說一閘極脈衝GP1,其係作為針對該垂直驅動 電路120的第一列之一立即輸出;圖16F解說一閘極脈衝 GP2 ’其係作為針對該垂直驅動電路丨2〇的第二列之一立即 輸出;而圖16G解說一閘極脈衝GP3,其係作為針對該垂 直驅動電路120的第三列之一立即輸出。 圖16H解說處於該垂直驅動電路12〇之第一列之一遠端部 分的閘極脈衝GP1 ;圖161解說處於該垂直驅動電路12〇之 第二列之一遠端部分的一閘極脈衝Gp2 ;而圖16J解說處於 该垂直驅動電路120之第三列之一遠端部分的一閘極脈衝 GP3。 另外’圖16E之時間圖說該第一列之一立即 輸出脈衝;圖16F之時間圖Vgate_2_L解說該第二列之—立 即輸出脈衝;而圖16G之時間圖Vgate—3_L解說該第三列之 一立即輸出脈衝。 另外,圖16H之時間圖Vgate—丨—r解說該第一列之—遠 端脈衝;圖161之時間圖Vgate_2_Rw說該第二列之—遠端 脈衝;而圖16J之時間圖vgate_3—尺解說該第三列之—遠端 脈衝。 參考圖1 5 A ’依據此第十具體實施例之液晶顯示器裝置 1001之組態類似於依據上述第八及第九具體實施例之液曰曰 128894.doc •39· 200912877 裝置100G及100H,但不同之處在於該等波形成形電路ι51 之配置位置。 特定s之,在依據該等第八及第九具體實施例之液晶顯 示器裝置100G及100Η中’用於欲向該等波形成形電路ι51 及該等波形成形電路151供應的電壓VDD2及VSS2之供應 線1 60及1 61係佈置於在該水平方向上的相同座標處。 或者相反’用於欲向該等波形成形電路1 5丨及該等波形 成形電路151的電壓VDD2及VSS2之供應線160及161並非 % 佈置於相同的座標。 相反’在依據此第十具體實施例之液晶顯示器裝置丨〇〇1 中’該等波形成形電路1 5 1 -11至1 5 1 -nm係佈置於在該等閘 極線及該等信號線的幾乎所有交又位置附近之閘極線上, 或者換言之,在該等像素電路1丨丨之用於一閘極脈衝的輸 入部分處。 對於此第十具體實施例,一閘極脈衝係成形為一良好的 # 波形’從圖16A至16J可看出。 I ^ 另外,儘管藉由用於該等時脈CK及XCK等之供應線162 之寄生電容使得該閘極脈衝之波形失真,但由於在該水平 方向上用於該等時脈CK及XCK之所有供應線丨62皆具有一 相等的寄生電容值,因此該等時脈CK及XCK之波形之失 真係相同。 因此,由於在該水平方向上發射的閘極脈衝經過該等波 形成形電路151,因此其波形不受在該水平方向上的失真 及延遲之影響。 128894.doc -40· 200912877 以此方式,由於該波形成形電路151係以此方式針對每 一像素電路111而佈置於該等閘極線之導線上,因此,可 以允許複數個像素電路⑴存在於不同的波形成形電路之 間以使得不會在其中發生-閘極脈衝的波形延遲之任何分 散。 換口之,在複數個像素電路存在於一波形成形電路與另 -波形成形電路之間m下,消1寄生電容之不均句 性’而確保該等波形成形電路之像素閘極之均勻的負載電 容。因此,不會再發生閘電極條件下的延遲。 此第十具體實施例之另一部分之組態類似於該等第八及 第九具體實施例之此組態,而亦可實現與藉由上述第八及 第九具體實施例所實現之效果類似之效果。 &lt;第十一具體實施例&gt; 圖17顯不依據本發明之第十一具體實施例之一液晶顯示 器裝置之一組態之一範例。 參考圖17,依據此第十一具體實施例之液晶顯示器裝置 100J之組態類似於依據上述第八具體實施例之液晶顯示器 裝置100G,但與其不同之處在於其採用在一其中將影像資 料以刀時方式寫入至一面板的系統中亦有效之一組態。 4寺定+夕 ° ’而且’在如圖1 8所示使用一分時開關以便減 小^面板的圖像訊框之情況下’若該分時開關之分時數目 未充刀滿足在一水平選擇週期内之一電性特徵及一影像特 徵則需要應用本發明。 圖17中’透過具有複數個傳輸閘極TMG之選擇器SEL將 128894.doc •41 · 200912877 來自該等信號驅動器131至134的信號SV1至SV4傳輸至該 等信號線 116(116-1 至 116-12)。 藉由該選擇信號S1及其反相信號XS1、選擇信號S2及其 反相信號XS2、選擇信號S3及其反相信號XS3·.·來控制該 等傳輸閘極(類比開關)之導電狀態,該等信號係從外 部供應且具有彼此互補之位準。The configuration of another portion of the ninth embodiment is similar to the configuration of the eighth embodiment, and effects similar to those achieved by the above-described third and eighth embodiments can be achieved. &lt;Tenth embodiment&gt; Tenth concrete one gate pulse Figs. 15A, 15B and 15C respectively show an example of a configuration of a liquid crystal display device and an example of a waveform according to an embodiment of the present invention. The liquid crystal display of the ten embodiment is shown in Figs. 16A to 16J in accordance with the operation of the first display device. 128894.doc -38- 200912877 Specifically, FIG. 16A illustrates a clock VCK for one vertical drive circuit; FIG. 16B illustrates one of the waveform shaping circuits for a clock pattern 16C illustrating one of the clocks CK, XCK; 16D illustrates a vertical start signal VST (Vst). 1E illustrates a gate pulse GP1 which is immediately output as one of the first columns of the vertical drive circuit 120; FIG. 16F illustrates a gate pulse GP2' as the first for the vertical drive circuit 丨2〇 One of the two columns is output immediately; and FIG. 16G illustrates a gate pulse GP3 which is immediately output as one of the third columns for the vertical drive circuit 120. 16H illustrates a gate pulse GP1 at a distal end portion of the first column of the vertical drive circuit 12A; FIG. 161 illustrates a gate pulse Gp2 at a distal end portion of the second column of the vertical drive circuit 12A. FIG. 16J illustrates a gate pulse GP3 at a distal end portion of the third column of the vertical drive circuit 120. In addition, the time diagram of FIG. 16E indicates that one of the first columns outputs the pulse immediately; the time chart of FIG. 16F, Vgate_2_L, illustrates the second column, which immediately outputs the pulse; and the time chart of FIG. 16G, Vgate_3_L, illustrates one of the third columns. The pulse is output immediately. In addition, the time diagram Vgate_丨-r of FIG. 16H illustrates the first column—the far-end pulse; the time chart of FIG. 161, Vgate_2_Rw, says the second column—the far-end pulse; and the time chart of FIG. 16J, the vgate_3—the ruler The third column - the far end pulse. Referring to FIG. 15 A', the configuration of the liquid crystal display device 1001 according to the tenth embodiment is similar to the liquids 128894.doc • 39· 200912877 devices 100G and 100H according to the eighth and ninth embodiments described above, but The difference lies in the arrangement position of the waveform shaping circuits ι51. Specifically, in the liquid crystal display devices 100G and 100A according to the eighth and ninth embodiments, the supply of voltages VDD2 and VSS2 to be supplied to the waveform shaping circuits ι51 and the waveform shaping circuits 151 is used. Lines 1 60 and 1 61 are arranged at the same coordinates in the horizontal direction. Alternatively, the supply lines 160 and 161 for the voltages VDD2 and VSS2 to be applied to the waveform shaping circuits 15 and the waveform shaping circuits 151 are not arranged at the same coordinates. In contrast, in the liquid crystal display device 1 according to the tenth embodiment, the waveform forming circuits 1 5 1 -11 to 1 5 1 -nm are disposed on the gate lines and the signal lines. Almost all of the intersections are located on the gate line near the location, or in other words, at the input portion of the pixel circuit 1 for a gate pulse. For this tenth embodiment, a gate pulse is shaped as a good #waveform&apos; as can be seen from Figures 16A through 16J. In addition, although the waveform of the gate pulse is distorted by the parasitic capacitance of the supply line 162 for the clocks CK and XCK, etc., it is used for the clocks CK and XCK in the horizontal direction. All supply lines 62 have an equal parasitic capacitance value, so the distortion of the waveforms of the clocks CK and XCK are the same. Therefore, since the gate pulse emitted in the horizontal direction passes through the equal wave forming circuit 151, its waveform is not affected by the distortion and delay in the horizontal direction. 128894.doc -40· 200912877 In this way, since the waveform shaping circuit 151 is disposed on the wires of the gate lines for each pixel circuit 111 in this manner, a plurality of pixel circuits (1) can be allowed to exist. Any dispersion between the waveform shaping circuits so that the waveform delay of the gate pulse does not occur therein. In other words, in a plurality of pixel circuits exist between a waveform shaping circuit and another waveform shaping circuit, the parasitic capacitance of the parasitic capacitance is eliminated, and the pixel gates of the waveform shaping circuits are uniform. Load capacitance. Therefore, the delay under the gate electrode condition no longer occurs. The configuration of another part of the tenth embodiment is similar to the configuration of the eighth and ninth embodiments, and can also be implemented similarly to the effects achieved by the eighth and ninth embodiments above. The effect. &lt;Eleventh Detailed Embodiment&gt; Fig. 17 shows an example of one configuration of a liquid crystal display device according to an eleventh embodiment of the present invention. Referring to FIG. 17, the configuration of the liquid crystal display device 100J according to the eleventh embodiment is similar to the liquid crystal display device 100G according to the eighth embodiment described above, but differs in that the image data is used therein. One of the valid configurations of the knives when writing to a panel is also effective. 4 Temple set + 夕 ° 'And 'in the case of using a minute switch as shown in Figure 18 to reduce the image frame of the ^ panel, if the number of time-sharing switches is not filled with a knife One of the electrical characteristics and an image feature in the horizontal selection period requires the application of the present invention. In Fig. 17, 'the signals SV1 to SV4 from the signal drivers 131 to 134 are transmitted to the signal lines 116 (116-1 to 116) through the selector SEL having a plurality of transmission gates TMG. -12). Controlling the conduction states of the transmission gates (analog switches) by the selection signal S1 and its inverted signal XS1, the selection signal S2 and its inverted signal XS2, the selection signal S3, and the inverted signal XS3.. These signals are supplied externally and have complementary levels to each other.

在採用如上所述之此一組態之情況下,該高解析度 (UXGA)及高速度框率類型之一主動矩陣顯示器裝置可以 才木用一選擇器分時驅動系統,該系統減少連接端子之數目 並提高連接之機械可靠性。 此第十一具體實施例之另一部分之組態類似於該第八具 體實施例之此組態,而可實現與藉由上述第八具體實施例 所實現之效果類似之效果。 &lt;第十二具體實施例&gt; 一圖18顯示依據本發明之—第十二具體實施例之—液晶顯 示器裝置之一組態之一範例。 多考圖1 8 ’依據此第十二具體實施例之液晶顯示器裝置 1·之組態類似於依據上述第九具體實施例之液晶顯示器 裝置難’但與其不同之處在於其採用在—其中將影像資 料以分時方式寫人至-面板的系統中亦有效之—組態。、 特定言之,而且,在如圖18所示使用一分時開關以便減 小該面板的圖像訊框之情況下,料分時開關之分時數目 在一水平選擇週期内之一電性特徵及-影像特 徵貝j而要應用本發明。 128894.doc -42- 200912877 參考圖1 8,透過具有複數個傳輸閘極tmg之選擇器SEL 將來自該等信號驅動器U1至134的信號SV1至SV4傳輸至 信號線 116(116-1 至 116-12)。 藉由該選擇信號S1及其反相信號XS1、選擇信號S2及其 反相信號XS2、選擇信號S3及其反相信號XS3 ·..來控制該 等傳輸閘極(類比開關)TMG之導電狀態,該等信號係從外 部供應且具有彼此互補之位準。 在採用如上所述之此一組態之情況下,該高解析度 (UXGA)及咼速度框率類型之一主動矩陣顯示器裝置可以 採用一選擇器分時驅動系統,該系統減少連接端子之數目 並提高連接之機械可靠性。 此第十二具體實施例之另一部分之組態類似於該第九具 體實施例之此組態,而亦可實現與藉由上述第八及第九具 體實施例所實現之效果類似之效果。 &lt;第十三具體實施例&gt; 。圖19顯示根據本發明之一第十三具體實施例之一液晶顯 示器裝置之一組態之一範例。 參考圖19 ’依據此第十三具體實施例之液晶顯示器裝置 隱之組態類似於依據上述第十具體實施例之液晶顯示器 裝置10GI ’但與其不同之處在於其採用在—其巾將影像資 料以^時方式寫人至-面板的系統t亦有效之-組態&quot; 特定D之而且,在如圖19所示使用一分時開關以便減 J該^板的圖像sfl框之情況下,若該分時開關之分時數目 未充刀滿足在一水平選擇週期内之一電性特徵及一影像特 128894.doc -43- 200912877 徵則需要應用本發明。 參考圖19,透過具有該等複數個傳輸閘極TMG之選擇器 L將來自4等彳§號驅動器丨3丨至丨34的信號$v 1至$V4傳輸 至s亥4仏號線11 6(丨丨6_丨至丨丨6_ ι2)。 藉由該選擇信號81及其反相信號xsi、選擇信號Μ及其 反相L號XS2、選擇信號S3及其反相信號XS3…來控制該 等傳輸閘極(類比開關)TMG之導電狀態,該等信號係從外 部供應且具有彼此互補之位準。 在採用如上所述之此一組態之情況下,該高解析度 (UXGA)及高速度框率類型之一主動矩陣顯示器裝置可以 採用-選擇器分時驅動系統,該系統減少連接端子之數目 並提高連接之機械可靠性。 此第十三具體實施例之另一部分之組態類似於該第十具 體實施例之此組態,而亦可實現與藉由上述第八至第十具 體實施例所實現之效果類似之效果。 應注意,儘管未特定顯示,但該第七具體實施例中該等 電壓供應線之佈線方案亦可應用於該等第八至第十三具體 實施例。 而且,在此實例中,可防止—不合需要的電壓侵入一相 鄰像素電路。因此,可實現一可獲得良好圖像品質之 效果。 &lt;第十四具體實施例&gt; 圖20A、20B及20C分別顯示依據本發明之一第十四具體 實施例之一液晶顯示器裝置之— 組態之一範例及一閘極脈 128894.doc -44 - 200912877 衝波形之範例。 首先參考圖20A,依據此第十四具體實施例之液晶顯示 器裝置100M之組態類似於依據上述第—具體實施例之液 晶顯示器裝置1 〇〇 ’但與其有以下一點差異。 特疋δ之,在依據此第十四具體實施例之液晶顯示器裝 置100Μ中,該等波形成形電路並非由—由簡單地採取一 級聯連接來連接的CMOS緩衝形成之電路而係利用一定時 CMOS電路來組態。 在此,說明一波形成形電路152。 而且,在此第十四具體實施例中,實施來自該等閘極緩 衝器140-1至140-m的閘極脈衝的波形成形及電壓改變之波 形成形電路152-11至152-lm及152-21至152-2m係居中佈置 於該等閘極線11 5-1至11 5-m之導線上,如上所述。 因此,從圖20C中一實線所示之一波形可看出,在該等 閘極線115-1至115-m遠離該等閘極緩衝器1404至“卜瓜之 輸出級的遠端部分處或終端部分處該閘極脈衝之波形係相 對於其失真而獲得改良。應注意,圖2〇C中一虛線所示之 一波形呈現在不插入任何波形成形電路之遠端部分或終端 部分處該間極脈衝之波形之失真。 因此’該顯示器裝置促進採用大量像素及一高訊框頻率 之顯示。 該等波形成形電路152-11至152-1 m及152-21至152-2m分 別係居中佈置於該等閘極線u 5_丨至丨丨5_mi線上以形成波 形。 128894.doc •45- 200912877 另外,該等波形成形電路152_ι 1至及152_21至 152-2m係共同連接至用於電源供應電壓ν〇〇2(其係高電 位)之供應線1 60與用於電源供應電壓vsS2(其係低電位)之 供應線1 6 1。 5亥專波形成升&gt; 電路152-11至152-lm及152-21至152-2m皆 係(例如)由包括以一級聯連接來連接之一 CM〇s組態的一 NAND閘極與一CM0S緩衝器之一電路形成(如圖21A至21€ 所示)。 在此第十四具體實施例中,該等波形成形電路152_丨丨至 1 52-1 m及152-21至152-2m係佈置於在該垂直方向上的相同 座標處。 更特定言之,該等波形成形電路152_u至152_lm係分別 佈置於該信號線116-6與該等閘極線丨丨^丨至丨丨弘爪的交叉位 置。該專波形成形電路152-21至152-2m係分別佈置於該信 號線11 6-1 0與该等閘極線11 5-1至11 5-m的交又位置。 圖21A至21C解說其中由一 CMOS組態之一定時CM〇s電 路形成依據此第十四具體實施例之波形成形電路之一範 例。 特定言之,圖21A顯示一等效電路,而圖21B顯示一特 疋電路,而圖21C解說在該緩衝器的輸出側上之電容。 如圖21B所示,每一波形成形電路152包括一 CM〇s組態 之NAND電路11以及採取一級聯連接來連接至該nand 電路1 1之一 CMOS緩衝器或反相器BF11。 一 CMOS組悲之NAND電路π包括一對PM〇s電晶體pT11 128894.doc -46- 200912877 及PT12與一對NMOS電晶體NT11及NT12。 該等PMOS電晶體PT11及PT12係於其源極連接至用於該 高電位的電源供應電壓VDD2之一供應線160。該等PMOS 電晶體PT11及PT12係於其汲極連接至該NMOS電晶體NT 11 之汲極,而一節點ND11係由該等汲極之一連接點形成。 該NMOS電晶體NT11係於其源極連接至該NMOS電晶體 NT12之汲極,而該NMOS電晶體NT12係於其源極連接至 用於該低電位的參考電壓VSS2之一供應線161。 ( 該PMOS電晶體PT12與該NMOS電晶體NT12係於其閘極 彼此連接,而一節點ND1係由該等閘極之一連接點形成且 連接至該等閘極線115(115-1至15-m)之一對應閘極線。 另夕卜,該PMOS電晶體PT12與該NMOS電晶體NT1 2係於 其閘極連接至用於該啟用信號ENB之一供應線。 該CMOS緩衝器BF11包括一 PMOS電晶體PT13與一 NMOS電晶體NT13。 該PMOS電晶體PT13係於其源極連接至用於該高電位的 ( 電源供應電壓VDD2之供應線1 60,而於其汲極連接至該 NMOS電晶體NT13之汲極。一節點ND12係由該等汲極之 一連接點形成。 該NMOS電晶體NT13係於其源極連接至用於該低電位的 電源供應電壓VSS2之供應線161。 該PMOS電晶體PT13與該NMOS電晶體NT13係於其閘極 彼此連接,而該等閘極之一連接點係連接至一 CMOS組態 的NAND電路11之節點ND11。該節點ND12係作為一輸出 128894.doc -47· 200912877 節點連接至該等閘極線115⑴5_uU5_m)之—對應問極 線。 具有此一如上所述組態之波形成形電路152輸出從垂直 驅動電路m之該配置側(即’該輪出側或在圖2〇a所示之 左側)發射的閘極脈衝(}1&gt;1至(}1&gt;„1之波形作為一正邏輯輸 出’並進一步實施波形成形。 ,用於波形成形的一 CM0S組態的NAND電路iia該cm〇s 緩衝盗BF 11之輸出表示該閘極線之電容,並且還表 ^包括在該像素電極或該TFT(像素電晶體)處於一開啟狀 態時所處之-狀態中的液晶電容cled與該像素的儲存電容 Cs之電容。 另外,由於一 CMOS組態的NAND電路丨丨指示一相對於 向其之一輸入的反相邏輯輸出,因此該波形成形電路M2 係由一其中將該CMOS緩衝器BF11串聯連接至該NAND電 路11以便獲得一正邏輯輸出之電路形成。 由於該波形成形電路152需要用於其之一輸出電源供 應因此置放用以供應較高側的電源供應電壓vDd2與較 低側的電源供應電壓v s s 2以開啟及關閉該像素閘極之供 應線160及161之導線。 該等導線係平行於該等像素信號導線而置放。原因在 於’例如’在其係平行於該等信號線161(116-1至116-n)且 在該等信號線附近置放之情況下,可使得該液晶之孔徑比 之下降最小化。 另外’在對用於該等電壓VDD2及VSS2的供應線160及 128894.doc -48- 200912877 16丨呈現較低阻抗之匯流排線係連接於有效像素區域區段 110上之情況下,可使得在該水平方向上的電源供應線之 電壓降最小化。 因此,亦可使得欲在該等有效像素的水平方向上從該波 形成形電路15 2輸出的尚電壓及低電壓之變化最小化。 當將該啟用信號ENB輸入至一 CM〇s組態的NAND電路 11(其形成該波形成形電路152)時,一 CM〇S組態 電路11於該啟用信號或時脈ENB之一上升邊緣或一下降邊 緣開始其操作。 若用於該啟用信號E N B之一供應線〖6 3係佈線於該顯示 器裝置之垂直方向上且係變成具操作性,則儘管發生在該 垂直方向上該啟用信號ENB之一定延遲或波形之失真,但 該啟用信號ENB具有相同寄生電容之相同歷史。因此,該 延遲變成固定。 因此,沿佈置於該水平方向上之一閘極線而傳輸之一信 號呈現X s亥等時脈控制之一延遲波形。由此產生一選擇俨 號而無需一閘極選擇波形,該閘極選擇波形係以一高速度 來垂直掃描而並不對水平方向加以關注。 另外,同樣,在此第十四具體實施例中,用於欲向該等 波形成形電路1 52及該等波形成形電路! 52供應的電壓 VDD2及VSS2之供應線160及161較佳的係佈置於在該水平 方向上的相同座標,此與該第一及第八具體實施例中類 似。 原因在於,由於該等波形成形電路152在該水平方向上 128894.doc -49- 200912877 的座標係固定,因此該閘極脈衝波形不會受到延遲之影 響。 此第十四具體實施例之另一部分之組態類似於該第一具 體實施例之此組態,而亦可實現與藉由上述第一具體實施 例所實現之效果類似之效果。此外,可以一高精確度將該 延遲保持固定。 &lt;第十五具體實施例&gt; 圖22A、22B及22C分別顯示依據本發明之一第十五具體 ' 實施例之一液晶顯示益裝置之一組態之一範例及一閘極脈 衝波形之範例。 參考圖22A ,依據此第十五具體實施例之液晶顯示器裝 置1 00N之組怨類似於依據上述第十四具體實施例之液晶裝 置100M ’但不同之處在於該等波形成形電路152之配置位 置。 特定言之,在上述第十具體實施例之液晶裝置1 〇〇M 中,用於欲向該等波形成形電路152供應的電壓VDD2及 VSS2之供應線160及161、用於該啟用信號enb之供應線 163及該等波形成形電路152係佈置於在該水平方向上的相 同座標處。 相反,在此第十五具體實施例之液晶顯示器裝置i 〇〇N 中,用於欲向該等波形成形電路152供應的電壓VDD2及 VSS2之供應線160及161、用於該啟用信號ENB之供應線 163及該等波形成形電路152並非佈置於在該水平方向上的 相同座標處,而係佈置成彼此相對位移一行之一關係而與 128894.doc •50- 200912877 該等閘極線及該等信號線之導線成一對應關係β 在圖22Α所示範例中,該波形成形電路丨係佈置於 該信號線116-3與該閘極線u 5_丨之一交又位置附近。該波 形成形電路152-12係佈置於該信號線ι16_4與該閘極線115-2之一交叉位置附近。該波形成形電路152_13係佈置於該 信號線116-5與該閘極線u5_3之一交叉位置附近。該波形 成形電路152-14(m)係佈置於該信號線116_6與該閘極線 11 5-m之一交叉位置附近。 同時’該波形成形電路152-21係佈置於該信號線116-7與 該閘極線115-1之一交又位置附近。該波形成形電路152_22 係佈置於該信號線116-8與該閘極線115-2之一交又位置附 近。該波开&gt; 成形電路1 52-23係佈置於該信號線116-9與該閘 極線115-3之一交叉位置附近。該波形成形電路152_24(m) 係佈置於該彳§號線11 6-1 〇與該閘極線11 5_4m之一交又位置 附近。 在此實例中,在諸如該水平方向上的波形成形電路1 52 之座標並非固定之一情況下’從用於該電源供應電壓 VDD2及該參考電壓VSS2的供應線160及161之導線消除局 部片面性。因此,確保在用於該等電壓VDD2與VSS2之供 應線160及161之佈線佈局的影響下像素的透射因數之均勻 性。 在此實例中,該顯示器裝置之亮度分佈係固定。 此第十五具體實施例之另一部分之組態類似於該第十四 具體實施例之此組態,而亦可實現與藉由上述第一及第十 128894.doc •51 · 200912877 四具體實施例所實現之效果類似之效果。 &lt;第十六具體實施例&gt; 據本發明之一第十六具體 組恕之一範例及一閘極脈 圖23A、23B及23C分別顯示依 實施例之一液晶顯示器裝置之— 衝波形之範例。 同時,圖24A至24J解說依據此第+丄 佩G弟十〆、具體實施例之液晶 顯示器裝置之操作。 特定言之,@24A解說-垂直開始信號或開始脈衝vst (Vst);圖24B解說用於一垂直驅動電路之一垂直時脈 VCK;而圖24(:解說用於—波形成形電路之—啟用信號 ENB。 圖24D解說一閘極脈衝Gpi,其係作為針對該垂直驅動 電路120的第一列之一立即輸出;圖24E解說—閘極脈衝 GP2,其係作為針對該垂直驅動電路12〇的第二列之一立即 輸出;而圖24F解說一閘極脈衝Gp3,其係作為針對該垂 直驅動電路120的第三列之一立即輸出。 圖24G解說處於該垂直驅動電路丨2〇之第一列之一遠端部 分的閘極脈衝GP1 ;圖24H解說處於該垂直驅動電路12〇之 第二列之一遠端部分的一閘極脈衝GP2 ;而圖241解說處於 该垂直驅動電路12〇之第三列之一遠端部分的一閘極脈衝 GP3。 另外’圖24D之時間圖Vgatej+L解說該第一列之一立即 輸出脈衝;圖24E之時間圖Vgate_2_L解說該第二列之一立 即輸出脈衝;而圖24F之時間圖Vgate_3_L解說該第三列之 128894.doc •52- 200912877 一立即輸出脈衝。 另外24G之時間圖解說該第一列之一遠 端脈衝;圖細之時間圖、dR解說該第二列之一遠端 脈衝;而圖241之時間圖Vgate人轉說該第三列之一遠端 脈衝。 圖25八解說該垂直開始信號或開始脈衝^丁^叫;而圖 25B解說用於一垂直驅動電路之垂直時脈vck。 圖25C解吼處於該第一級之針對一波形成形電路的啟用 L25D解說作為針對該垂直驅動電路12〇的第一 列之立即輸出的閘極脈衝GP1 ;而圖25E解說在該垂直 驅動電路120之該第一列之一遠端部分處的問極脈衝Gp】。 圖25F解說處於—中間級之針對—波形成形電路的啟用 佗號ENB,圖25G解說作為一針對該垂直驅動電路12〇之一 中間列的立即輸出之一閘極脈衝GpM ;而圖25H解說在該 中間列中該垂直驅動電路12〇之一遠端部分處的閘極脈衝 GPM 〇 圖251解說處於最後級之針對一波形成形電路的啟用信 號ENB,圖25 J解說作為針對該垂直驅動電路丨2〇的最後列 之一立即輸出的一閘極脈衝GPF ;而圖25K解說在該最後 列中該垂直驅動電路120之一遠端部分處的閘極脈衝 GPF。 另外,圖25D之時間圖Vgatej—L說該第一列之一立即輸 出脈衝,而圖25E之時間圖vgate—i_r解說該第一列之一遠 端脈衝。 128894.doc -53- 200912877 圖25G之時間圖Vgate_M_L解說該中間列之一立即輸出 脈衝’而圖25H之時間圖vgate_M_R解說該中間列之一遠 端脈衝。 圖25J之時間圖Vgate_F_L解說該最後列之一立即輸出脈 衝’而圖25K之時間圖Vgate_F_R解說該最後列之一遠端 脈衝。 fIn the case of adopting such a configuration as described above, one of the high-resolution (UXGA) and high-speed frame rate type active matrix display devices can use a selector time-division driving system, which reduces connection terminals. The number and the mechanical reliability of the connection. The configuration of another portion of the eleventh embodiment is similar to the configuration of the eighth embodiment, and effects similar to those achieved by the eighth embodiment described above can be achieved. &lt;Twelfth Embodiment&gt; Fig. 18 shows an example of one configuration of a liquid crystal display device according to a twelfth embodiment of the present invention. The configuration of the liquid crystal display device 1 according to the twelfth embodiment is similar to the liquid crystal display device according to the ninth embodiment described above, but differs in that it is employed in The image data is also available in a time-sharing manner in the system of the person-panel. Specifically, and in the case where a time-division switch is used as shown in FIG. 18 to reduce the image frame of the panel, the number of time division switches is one of the electrical periods in a horizontal selection period. The present invention is applied to features and image features. 128894.doc -42- 200912877 Referring to FIG. 1, signals SV1 to SV4 from the signal drivers U1 to 134 are transmitted to the signal lines 116 (116-1 to 116-) through a selector SEL having a plurality of transmission gates tmg. 12). Controlling the conduction state of the transmission gates (analog switches) TMG by the selection signal S1 and its inverted signal XS1, the selection signal S2 and its inverted signal XS2, the selection signal S3 and its inverted signal XS3 ·.. These signals are supplied externally and have complementary levels to each other. In the case of adopting such a configuration as described above, the active matrix display device of one of the high resolution (UXGA) and the frame rate type can employ a selector time-division driving system, which reduces the number of connection terminals And improve the mechanical reliability of the connection. The configuration of another portion of the twelfth embodiment is similar to the configuration of the ninth embodiment, and effects similar to those achieved by the eighth and ninth embodiments described above can be achieved. &lt;Thirteenth embodiment&gt;. Fig. 19 is a view showing an example of a configuration of a liquid crystal display device according to a thirteenth embodiment of the present invention. Referring to FIG. 19, the configuration of the liquid crystal display device according to the thirteenth embodiment is similar to that of the liquid crystal display device 10GI according to the tenth embodiment described above, but differs in that it is used in the image data of the towel. The system that writes the person-to-panel in the ^ hour mode is also effective - configuration &quot; specific D and, in the case of using a minute switch as shown in Fig. 19 in order to reduce the image sfl of the board If the number of time divisions of the time-sharing switch is not filled to satisfy one of the electrical characteristics in a horizontal selection period and an image is 128894.doc-43-200912877, the invention needs to be applied. Referring to FIG. 19, the signals $v1 to $V4 from the 4th 驱动§ drive 丨3丨 to 丨34 are transmitted to the shai 4 线 line 11 6 through the selector L having the plurality of transmission gates TMG. (丨丨6_丨至丨丨6_ ι2). Controlling the conduction state of the transmission gates (analog switches) TMG by the selection signal 81 and its inverted signal xsi, the selection signal Μ and its inverted L-number XS2, the selection signal S3, and its inverted signal XS3... These signals are supplied externally and have complementary levels to each other. In the case of the configuration as described above, the active matrix display device of the high resolution (UXGA) and high speed frame rate type can employ a -selector time division driving system, which reduces the number of connection terminals And improve the mechanical reliability of the connection. The configuration of another portion of the thirteenth embodiment is similar to the configuration of the tenth embodiment, and effects similar to those achieved by the eighth to tenth embodiments described above can be achieved. It should be noted that, although not specifically shown, the wiring scheme of the voltage supply lines in the seventh embodiment can be applied to the eighth to thirteenth embodiments. Moreover, in this example, it is possible to prevent an undesired voltage from intruding into an adjacent pixel circuit. Therefore, an effect of obtaining good image quality can be achieved. &lt;Fourteenth Embodiment&gt; Figs. 20A, 20B and 20C respectively show an example of a configuration of a liquid crystal display device according to a fourteenth embodiment of the present invention and a gate pulse 128894.doc - 44 - 200912877 Example of a waveform. Referring first to Fig. 20A, the configuration of the liquid crystal display device 100M according to this fourteenth embodiment is similar to the liquid crystal display device 1 〇〇 ' according to the above-described first embodiment but having the following difference. In the liquid crystal display device 100 according to the fourteenth embodiment, the waveform shaping circuits are not made of a CMOS buffer formed by simply adopting a cascade connection to utilize a certain time CMOS. The circuit is configured. Here, a waveform shaping circuit 152 will be described. Further, in the fourteenth embodiment, the waveform shaping circuits 152-11 to 152-lm and 152 for waveform shaping and voltage change of the gate pulses from the gate buffers 140-1 to 140-m are implemented. The -21 to 152-2m are centrally disposed on the wires of the gate lines 11 5-1 to 11 5-m as described above. Therefore, as can be seen from one of the waveforms shown by a solid line in FIG. 20C, the gate lines 115-1 to 115-m are away from the gate buffers 1404 to the distal end portion of the output stage of the papaya. The waveform of the gate pulse at the terminal or terminal portion is improved with respect to its distortion. It should be noted that one of the waveforms shown by a broken line in Fig. 2C appears in the distal portion or the terminal portion where no waveform shaping circuit is inserted. Distortion of the waveform of the pole pulse between the electrodes. Therefore, the display device facilitates display using a large number of pixels and a high frame frequency. The waveform shaping circuits 152-11 to 152-1 m and 152-21 to 152-2m respectively The system is arranged centrally on the gate lines u 5_丨 to 丨丨5_mi to form a waveform. 128894.doc •45- 200912877 In addition, the waveform shaping circuits 152_ι 1 to 152_21 to 152-2m are commonly connected to each other. A supply line 1 60 for a power supply voltage ν 〇〇 2 (which is a high potential) and a supply line 1 6 1 for a power supply voltage vsS2 (which is a low potential). 5 Hai special wave formation liters &gt; Circuit 152- 11 to 152-lm and 152-21 to 152-2m are, for example, connected by a level A NAND gate configured to connect one of the CM〇s is formed with one of the CMOS oscillators (as shown in Figures 21A through 21). In the fourteenth embodiment, the waveform shaping circuit 152 _丨丨 to 1 52-1 m and 152-21 to 152-2m are arranged at the same coordinates in the vertical direction. More specifically, the waveform shaping circuits 152_u to 152_lm are respectively arranged on the signal line 116-6 intersects with the gate lines 丨丨^丨 to 丨丨Hong claws. The waveform shaping circuits 152-21 to 152-2m are respectively disposed on the signal lines 11 6-1 0 and the gates The intersection of the pole lines 11 5-1 to 11 5-m. Figures 21A to 21C illustrate an example in which a CM〇s circuit is formed by a CMOS configuration, and an example of a waveform shaping circuit according to the fourteenth embodiment is formed. In particular, Figure 21A shows an equivalent circuit, while Figure 21B shows a special circuit, and Figure 21C illustrates the capacitance on the output side of the buffer. As shown in Figure 21B, each waveform shaping circuit 152 includes a CMOS circuit 11 configured by CM〇s and connected to a CMOS buffer of the nand circuit 1 1 or a cascade connection Phase BF11. A CMOS group of NAND circuits π includes a pair of PM〇s transistors pT11 128894.doc -46- 200912877 and PT12 and a pair of NMOS transistors NT11 and NT12. The PMOS transistors PT11 and PT12 are connected to Its source is connected to one of the supply lines 160 for the high potential power supply voltage VDD2. The PMOS transistors PT11 and PT12 are connected to their drains connected to the drain of the NMOS transistor NT 11, and a node ND11 is formed by one of the connection points of the drains. The NMOS transistor NT11 is connected to a drain whose source is connected to the NMOS transistor NT12, and the NMOS transistor NT12 is connected to a source thereof to a supply line 161 for a reference voltage VSS2 for the low potential. (The PMOS transistor PT12 and the NMOS transistor NT12 are connected to each other at their gates, and a node ND1 is formed by one of the gate connection points and is connected to the gate lines 115 (115-1 to 15) One of the -m) corresponds to the gate line. In addition, the PMOS transistor PT12 and the NMOS transistor NT1 2 are connected at their gates to a supply line for the enable signal ENB. The CMOS buffer BF11 includes a PMOS transistor PT13 and an NMOS transistor NT13. The PMOS transistor PT13 is connected at its source to the supply line 1 60 for the high potential (power supply voltage VDD2, and its drain is connected to the NMOS A drain of the transistor NT13. A node ND12 is formed by one of the connection points of the drains. The NMOS transistor NT13 is connected to a supply line 161 whose source is connected to the power supply voltage VSS2 for the low potential. The PMOS transistor PT13 and the NMOS transistor NT13 are connected to each other at their gates, and one of the gates is connected to a node ND11 of a CMOS-configured NAND circuit 11. The node ND12 serves as an output 128894. .doc -47· 200912877 The node is connected to the gate line 115(1)5_uU5_m) - Corresponding to the polarity line. The waveform shaping circuit 152 having the configuration as described above outputs a gate emitted from the arrangement side of the vertical drive circuit m (i.e., 'the wheel side or the left side shown in FIG. 2Aa). Pulse (}1&gt;1 to (}1&gt; „1 waveform as a positive logic output' and further implementation of waveform shaping. A CMOS circuit configuration for waveform shaping ii circuit iia the cm〇s buffer thief BF 11 The output indicates the capacitance of the gate line, and further includes a capacitance of the liquid crystal capacitor cled in the state in which the pixel electrode or the TFT (pixel transistor) is in an on state and the storage capacitor Cs of the pixel In addition, since a CMOS-configured NAND circuit 丨丨 indicates an inverted logic output with respect to one of the inputs, the waveform shaping circuit M2 is connected to the NAND circuit by connecting the CMOS buffer BF11 in series. 11. In order to obtain a positive logic output circuit formation, since the waveform shaping circuit 152 is required for one of its output power supplies, it is placed to supply the higher side power supply voltage vDd2 and the lower side power supply voltage vs. s 2 is used to turn on and off the wires of the supply lines 160 and 161 of the pixel gate. The wires are placed parallel to the pixel signal wires because 'for example' is parallel to the signal lines 161 ( In the case where 116-1 to 116-n) are placed in the vicinity of the signal lines, the decrease in the aperture ratio of the liquid crystal can be minimized. In addition, in the case where the bus lines for the supply voltages 160 and 128894.doc -48-200912877 16 for the voltages VDD2 and VSS2 present a lower impedance are connected to the effective pixel region section 110, The voltage drop of the power supply line in the horizontal direction is minimized. Therefore, variations in the voltages to be applied and the low voltages to be output from the wave forming circuit 15 2 in the horizontal direction of the effective pixels can also be minimized. When the enable signal ENB is input to a NAND circuit 11 configured by the CM〇s, which forms the waveform shaping circuit 152, a CM〇S configuration circuit 11 rises to the edge of the enable signal or the clock ENB or A falling edge begins its operation. If a supply line for the enable signal ENB is wired in the vertical direction of the display device and becomes operative, a certain delay or waveform distortion of the enable signal ENB occurs in the vertical direction. , but the enable signal ENB has the same history of the same parasitic capacitance. Therefore, the delay becomes fixed. Therefore, one of the signals transmitted along one of the gate lines arranged in the horizontal direction exhibits a delay waveform of one of the clocks of X s. This produces a selection apostrophe without the need for a gate select waveform that is scanned vertically at a high speed without focusing on the horizontal direction. Further, similarly, in the fourteenth embodiment, it is used for the waveform shaping circuit 152 and the waveform shaping circuits! The supply voltages 160 and 161 of the voltages VDD2 and VSS2 supplied by 52 are preferably arranged in the same coordinates in the horizontal direction, which is similar to that in the first and eighth embodiments. The reason is that since the coordinates of the waveform shaping circuit 152 in the horizontal direction 128894.doc -49 - 200912877 are fixed, the gate pulse waveform is not affected by the delay. The configuration of another portion of the fourteenth embodiment is similar to the configuration of the first specific embodiment, and effects similar to those achieved by the first embodiment described above can be achieved. In addition, the delay can be kept fixed with a high degree of accuracy. &lt;Fifteenth Embodiment&gt; Figs. 22A, 22B, and 22C respectively show an example of one configuration of a liquid crystal display device and a gate pulse waveform according to a fifteenth embodiment of the present invention. example. Referring to FIG. 22A, the liquid crystal display device 100N according to the fifteenth embodiment is similar to the liquid crystal device 100M' according to the fourteenth embodiment described above, but differs in the arrangement position of the waveform shaping circuits 152. . Specifically, in the liquid crystal device 1 〇〇M of the above-described tenth embodiment, the supply lines 160 and 161 for the voltages VDD2 and VSS2 to be supplied to the waveform shaping circuits 152 are used for the enable signal enb. The supply line 163 and the waveform shaping circuits 152 are arranged at the same coordinates in the horizontal direction. In contrast, in the liquid crystal display device i 〇〇 N of the fifteenth embodiment, the supply lines 160 and 161 for the voltages VDD2 and VSS2 to be supplied to the waveform shaping circuits 152 are used for the enable signal ENB. The supply line 163 and the waveform shaping circuits 152 are not disposed at the same coordinates in the horizontal direction, but are arranged to be displaced relative to one another in a row relationship with 128894.doc • 50- 200912877 and the gate lines and The wires of the equal signal lines are in a corresponding relationship β. In the example shown in FIG. 22A, the waveform shaping circuit is disposed near the position where the signal line 116-3 intersects with the gate line u 5_丨. The wave forming circuit 152-12 is disposed near the intersection of the signal line ι16_4 and the gate line 115-2. The waveform shaping circuit 152_13 is disposed near the intersection of the signal line 116-5 and one of the gate lines u5_3. The waveform shaping circuit 152-14(m) is disposed near the intersection of the signal line 116_6 and one of the gate lines 11 5-m. At the same time, the waveform shaping circuit 152-21 is disposed near the intersection of the signal line 116-7 and the gate line 115-1. The waveform shaping circuit 152_22 is disposed adjacent to a position of the signal line 116-8 and the gate line 115-2. The wave opening &gt; forming circuit 1 52-23 is disposed near the intersection of the signal line 116-9 and one of the gate lines 115-3. The waveform shaping circuit 152_24(m) is disposed near the intersection of the 彳§ line 11 6-1 〇 and the gate line 11 5_4m. In this example, the local one-sidedness is eliminated from the wires of the supply lines 160 and 161 for the power supply voltage VDD2 and the reference voltage VSS2, such as in the case where the coordinates of the waveform shaping circuit 1 52 in the horizontal direction are not fixed. . Therefore, the uniformity of the transmission factor of the pixels under the influence of the wiring layout of the supply lines 160 and 161 for the voltages VDD2 and VSS2 is ensured. In this example, the brightness distribution of the display device is fixed. The configuration of another part of the fifteenth embodiment is similar to the configuration of the fourteenth embodiment, and can also be implemented with the above first and tenth 128894.doc • 51 · 200912877 The effect achieved by the example is similar. &lt;Sixteenth embodiment&gt; According to one of the sixteenth embodiment of the present invention and one of the gate patterns 23A, 23B and 23C, respectively, the waveform of the liquid crystal display device according to the embodiment is shown example. Meanwhile, Figs. 24A to 24J illustrate the operation of the liquid crystal display device of the specific embodiment in accordance with the present invention. Specifically, @24A commentary - vertical start signal or start pulse vst (Vst); Figure 24B illustrates a vertical clock VCK for a vertical drive circuit; and Figure 24 (: explanation for - waveform shaping circuit - enabled Signal ENB. Figure 24D illustrates a gate pulse Gpi that is immediately output as one of the first columns of the vertical drive circuit 120; Figure 24E illustrates a gate pulse GP2 as a target for the vertical drive circuit 12 One of the second columns is output immediately; and Fig. 24F illustrates a gate pulse Gp3 which is immediately output as one of the third columns for the vertical drive circuit 120. Figure 24G illustrates the first of the vertical drive circuits 丨2〇 The gate pulse GP1 of one of the distal portions of the column; FIG. 24H illustrates a gate pulse GP2 at a distal end portion of the second column of the vertical drive circuit 12A; and FIG. 241 illustrates the vertical drive circuit 12 A gate pulse GP3 of the remote portion of the third column. In addition, the time diagram Vgatej+L of Fig. 24D illustrates that one of the first columns immediately outputs a pulse; the time chart of Fig. 24E Vgate_2_L illustrates one of the second columns immediately Output pulse; and Figure 24F The time diagram Vgate_3_L illustrates the third column of 128894.doc •52- 200912877 an immediate output pulse. The other 24G time illustrates one of the first column of the far-end pulse; the detailed time chart, dR explain the second column A far-end pulse; and the time diagram of Figure 241, Vgate, turns to one of the third column of the far-end pulse. Figure 25 illustrates the vertical start signal or the start pulse, and Figure 25B illustrates a vertical drive. The vertical clock vck of the circuit. Figure 25C illustrates the enable L25D representation for a waveform shaping circuit in the first stage as the gate pulse GP1 for the immediate output of the first column of the vertical drive circuit 12A; The interrogation pulse Gp at the distal end portion of the first column of the vertical drive circuit 120 is illustrated. Fig. 25F illustrates the activation apostrophe ENB at the intermediate stage for the waveform shaping circuit, and FIG. 25G is illustrated as a One of the vertical driving circuits 12 is immediately outputting one of the gate pulses GpM; and FIG. 25H illustrates the gate pulse GPM at the distal end of the vertical driving circuit 12 in the middle column. At the most The level of the enable signal ENB for a waveform shaping circuit, FIG. 25J illustrates a gate pulse GPF that is immediately output as one of the last columns of the vertical drive circuit ;2〇; and FIG. 25K illustrates the vertical in the last column. The gate pulse GPF at the distal end portion of one of the driving circuits 120. In addition, the time chart Vgatej-L of Fig. 25D states that one of the first columns immediately outputs a pulse, and the time chart vgate_i_r of Fig. 25E illustrates the first column. One of the far-end pulses. 128894.doc -53- 200912877 The time diagram of Figure 25G, Vgate_M_L, illustrates that one of the middle columns immediately outputs a pulse ' while the time chart vgate_M_R of Figure 25H illustrates one of the far-end pulses of the middle column. The time diagram Vgate_F_L of Fig. 25J illustrates that one of the last columns immediately outputs a pulse&apos; and the time chart Vgate_F_R of Fig. 25K illustrates one of the far-end pulses of the last column. f

參考圖23 A ’依據此第十六具體實施例之液晶顯示器裝 置1000之組態類似於依據上述第十四及第十五具體實施例 之液晶顯示器裝置100M及1 00N,但不同之處在於該等波 形成形電路1 52之配置位置。 特定言之,在依據該等第十四及第十五具體實施例之液 晶顯示器裝置1 00M及100N中,用於欲向該等波形成形電 路152及該等波形成形電路152供應的電壓VDD2及VSS2之 供應線1 60及1 61係佈置於在該水平方向上的相同座標處。 或者相反,用於欲向該等波形成形電路152及該等波形 成形電路丨52的電壓VDD2及VSS2之供應線16〇及i6i並非 佈置於相同的座標。 相反,在依據此第十六具體實施例之液晶顯示器裴置 1〇〇〇中,該等波形成形電路152七至152侧係佈置於㈣ 等閘極線及該等信號線的幾乎所有交又位置附近之閉極線 上,或者換言t,在該等像素電路lu之用於—閘極脈衝 的輸入部分處。 打 對於此第十六具體實施例,—閘極脈衝係成形為— 的波形,從圖24A至24J可看出。 又好 128894.doc 200912877 另外,儘管藉由該等供應線163之寄生電容等使得該啟 用信號ENB之波形失真,但由於在該水平方向上用㈣啟 用信號ENB之所有供應線163具有一相等的寄生電容值, 因此該啟用信號ENB之波形失真相同。 因此,由於在該水平方向上發射的閘極脈衝經過該等波 形成形電路152,因此其波形不受在該水平方向上的失真 及延遲之影響。 、 ^此方式,由於該波形成形電路152係以此方式針對在 該等閘極線的導線上之每一像素電路】丨丨而佈置,因此, 可以允許複數個像素電路⑴存在於不同的波形成形電路 之間以使得不會在其中發生一閘極脈衝的波形延遲之任何 分散。 換言之,在才复數個料電路存在於一波形成形電路與另 一波形成形電路之間的情況下,消除寄生電容之不均勻 :’而確保該等波形成形電路之像素閘極之均勻的負载電 谷口此,不會再發生閘電極條件下的延遲。 匕第十以具體實施例之另一部分之組態類似於該等第十 四及第十五具體實施例之此組態,而亦可實現與藉由上述 第^十四及第十五具體實施例所實現之效果類似之效果。 &lt;第十七具體實施例&gt; 圖26顯示依據本發明 示器裝置之一組態之— 之一第十七具體實施例之一液 範例。Referring to FIG. 23A, the configuration of the liquid crystal display device 1000 according to the sixteenth embodiment is similar to the liquid crystal display devices 100M and 100N according to the fourteenth and fifteenth embodiments described above, but differs in that The position of the waveform shaping circuit 1 52 is arranged. Specifically, in the liquid crystal display devices 100M and 100N according to the fourteenth and fifteenth embodiments, the voltages VDD2 to be supplied to the waveform shaping circuits 152 and the waveform shaping circuits 152 and The supply lines 1 60 and 1 61 of VSS 2 are arranged at the same coordinates in the horizontal direction. Alternatively, the supply lines 16A and i6i for the voltages VDD2 and VSS2 to be applied to the waveform shaping circuit 152 and the waveform shaping circuit 52 are not arranged at the same coordinates. In contrast, in the liquid crystal display device according to the sixteenth embodiment, the waveform forming circuits 152 from the seventh to the 152 sides are arranged on the (four) gate lines and almost all of the signal lines. The closed-pole line near the position, or in other words t, is at the input portion of the pixel circuit lu for the gate pulse. For the sixteenth embodiment, the waveform of the gate pulse is formed as - as can be seen from Figs. 24A to 24J. Further, 128894.doc 200912877 In addition, although the waveform of the enable signal ENB is distorted by the parasitic capacitance or the like of the supply lines 163, since all the supply lines 163 with the (four) enable signal ENB in the horizontal direction have an equal The parasitic capacitance value, so the waveform distortion of the enable signal ENB is the same. Therefore, since the gate pulse emitted in the horizontal direction passes through the equal wave forming circuit 152, its waveform is not affected by the distortion and delay in the horizontal direction. In this way, since the waveform shaping circuit 152 is arranged in this way for each pixel circuit on the wires of the gate lines, it is possible to allow a plurality of pixel circuits (1) to exist in different waveforms. Any dispersion between the shaping circuits such that the waveform delay of a gate pulse does not occur therein. In other words, in the case where a plurality of material circuits exist between a waveform shaping circuit and another waveform shaping circuit, the unevenness of the parasitic capacitance is eliminated: 'and the uniform load of the pixel gates of the waveform shaping circuits is ensured. In the case of Taniguchi, there is no longer a delay in the condition of the gate electrode. The configuration of the other part of the tenth embodiment is similar to the configuration of the fourteenth and fifteenth embodiments, and can also be implemented by the above fourteenth and fifteenth embodiments. The effect achieved by the example is similar. &lt;Seventeenth Embodiment&gt; Fig. 26 shows a liquid example of a seventeenth embodiment of one of the configurations of the apparatus according to the present invention.

-考圖26,依據此第十七具體實施例 ,'-穴肢員他們υί文晶顯不益瑕置 、且忍類似於依據上述第十四具體實施例之液晶裝置 128894.doc -55- 200912877 100M,但與其不同之處在於其採用在一其中將影像資料 以分吩方式寫入至一面板的系統中亦有效之一組態。 特疋5之,而且,在如圖26所示使用一分時開關以便減 小°亥面板的圖像訊框之情況下,若該分時開關之分時數目 未充分滿足纟一水平選擇週期内&lt;一電性特徵及一影像特 徵則需要應用本發明。 圖26中,透過具有複數個傳輸閘極TMQ之選擇器將 來自忒等#號驅動器131至134的信號SV1至SV4傳輸至該 等信號線 1 16(116-1 至 116-12)。 藉由該選擇信號81及其反相信號XS1、選擇信號及其 反相信號XS2、選擇信號83及其反相信號XS3…來控制該 等傳輸閑極(類比開關)TMG之導電狀態,該等信號係從外 部供應且具有彼此互補之位準。 在私用如上所述之此_組態之情況下,該高解析度 (UXGA)及回速度框率類型之一主動矩陣顯示器裝置可以 採用-選擇器分時驅動系統,㈣統減少連接端子之數目 並提高連接之機械可靠性。 此第十四具體實施例之另一部分之組態類似於該第十五 具體實施例之此組態,而亦可實現與藉由上述第十四具體 實施例所實現之效果類似之效果。 &lt;第十八具體實施例&gt; 圖27顯示依據本發明之-第十八具體實施例之-液晶顯 示器裝置之一組態之_範例。 參考圖27 ’依據此第十八具體實施例之液晶顯示器裝置 128894.doc * 56 - 200912877 l〇〇Q之組態類似於依據上述第十五具體實施例之液 器裝置⑽N,但與其不同之處在於其採用在_1 資料以分時方式寫人至-面板的系統中亦有效之_組^像 特定言之,而且’在如圖27所示使用—分時開關以:減 小該面板的圖像訊框之情況下1該分時開關之分時數目 未充分滿足在一水平選擇週期内之一電性特徵及一影像 徵則需要應用本發明。 、- Figure 26, according to this seventeenth embodiment, '-the acupoints are 不 文 文 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 类似于 类似于 类似于200912877 100M, but the difference is that it is also effective in one of the systems in which the image data is written to a panel. In addition, in the case where a time-division switch is used as shown in FIG. 26 to reduce the image frame of the panel, if the number of time-sharing switches is not sufficiently satisfied, the horizontal selection period is not satisfied. The inner &lt;one electrical feature and one image feature need to apply the invention. In Fig. 26, signals SV1 to SV4 from the ## drivers #131 to 134 are transmitted to the signal lines 1 16 (116-1 to 116-12) through a selector having a plurality of transmission gates TMQ. Controlling the conduction state of the transmission idle (analog switch) TMG by the selection signal 81 and its inverted signal XS1, the selection signal and its inverted signal XS2, the selection signal 83 and its inverted signal XS3... The signals are supplied externally and have complementary levels to each other. In the case of private use of the above-mentioned configuration, the active matrix display device of the high resolution (UXGA) and the return velocity frame rate type can adopt the -selector time-division driving system, and (4) reduce the connection terminal. The number and the mechanical reliability of the connection. The configuration of another portion of the fourteenth embodiment is similar to the configuration of the fifteenth embodiment, and effects similar to those achieved by the fourteenth embodiment described above can be achieved. &lt;Eighteenth Embodiment&gt; Fig. 27 shows an example of a configuration of a liquid crystal display device according to an eighteenth embodiment of the present invention. Referring to FIG. 27, the liquid crystal display device 128894.doc* 56 - 200912877 according to the eighteenth embodiment is configured similarly to the liquid device (10) N according to the above fifteenth embodiment, but is different therefrom. The reason is that it is also effective in the system that writes the person-to-panel in the time-sharing manner, and 'uses the time-sharing switch as shown in Figure 27 to: reduce the panel In the case of an image frame, the number of time divisions of the time-sharing switch does not sufficiently satisfy one of the electrical characteristics and an image sign in a horizontal selection period. ,

參考圖27,透過具有該等複數個傳輸閘極tmg之選擇器 SEL將來自該等信號驅動器131至134的信號SVi至SV4傳輪 至該等信號線116(116-1至116-12)。 藉由該選擇信號81及其反相信號XS1、選擇信號s2及其 反相仏號XS2、選擇信號S3及其反相信號XS3…來控制該 等傳輸閘極(類比開關)TMG之導電狀態,該等信號係從外 部供應且具有彼此互補之位準。 在採用如上所述之此一組態之情況下,該高解析度 (UXGA)及南速度框率類型之一主動矩陣顯示器裝置可以 才木用一選擇器分時驅動系統,該系統減少連接端子之數目 並提高連接之機械可靠性。 此第十八具體實施例之另一部分之組態類似於該第十五 、體實知例之此組態,而亦可實現與藉由上述第十四及第 十五具體實施例所實現之效果類似之效果。 &lt;第十九具體實施例&gt; 圖2 8顯示依據本發明之一第十九具體實施例之一液晶顯 示器裝置之—組態之一範例。 128894.doc •57- 200912877 參考圖2 8,依據此第十九具體實施例之液晶顯示器裝置 i〇〇R之組態類似於依據上述第十六具體實施例之液晶顯示 器裝置1000,但與其不同之處在於其採用在一其中將影像 資料以分時方式寫入至一面板的系統中亦有效之一組態。 特定言之,而且,在如圖28所示使用—分時開關以便減 小該面板的圖像訊框之情況下,若該分時開關之分時數目 未充分滿足在一水平選擇週期内之一電性特徵及一影像特 徵則需要應用本發明。 參考圖28,透過具有該等複數個傳輸閘極TMG之選擇器 SEL將來自遠等信號驅動器131至134的信號svi至sv4傳輸 至該荨信號線116(116-1至116-12)。 藉由該選擇信號s 1及其反相信號xs丨、選擇信號S2及其 反相k號XS2、選擇信號S3及其反相信號XS3 ...來控制該 等傳輸閘極(類比開關)TMG之導電狀態,該等信號係從外 部供應且具有彼此互補之位準。 在採用如上所述之此一組態之情況下,該高解析度 (UXGA)及高速度框率類型之一主動矩陣顯示器裝置可以 採用一選擇器分時驅動系統,該系統減少連接端子之數目 並提高連接之機械可靠性。 此第十九具體實施例之另一部分之組態類似於該第十六 具體實施例之此組態,而亦可實現與藉由上述第十四至第 十六具體實施例所實現之效果類似之效果。 &lt;第二十具體實施例&gt; 圖29A、29B及29C分別顯示依據本發明之一第二十具體 128894.doc -58- 200912877 實施例之-液晶顯示器裝置之-組態之一範例及一問極脈 衝波形之範例。 抑首先參考圖29A,依冑此第二十具體實施例之液晶顯示 器裝置100S之組態類似於依據上述第十六具體實施例之液 晶裝置1 〇〇〇,但與其有以下一點差異。 特定言之,在依據此第二十具體實施例之液晶顯示器裝 置100S中,用於該電源供應電壓¥〇〇2之供應線丨6〇與用於 ρ該電源供應電壓VSS2之供應線161亦係佈線於所有該等信 ' 號線丨16016·1至116_m)與所有該等閘極線115(115-1至115_ m)之間。 ^採用上述組態,貝T防止一不合需要的電壓侵入相鄰 #素電路1 1 1 ’此係發生於—問極線與—信號線之間。因 此’可獲得良好的圖像品質。 此第一十具體實施例之另一部分之組態類似於該第十具 體實施例之此組態,而亦可實現與藉由上述第十四及第十 《 六具體實施例所實現之效果類似之效果。 應注意,儘管圖29A中未顯示在該第二十具體實施例中 該=電壓供應線之一佈線方案,但該第二十具體實施例之 組悲亦可適用於其他第十四、第十五及第十七至第十九具 體實施例。而且,在此實例中,可防止-不合需要的電壓 侵入一相鄰像素電路111,而可實現一可獲得良好圖像品 質之效果。 上面說明在本發明之第-至第二十具體實施例中在一等 效電路上的波形成形電路15〇、i5i及152之一配置位置、 128894.doc •59· 200912877 一組態、一電源供應線方案。 下面’說明在—裝置上該等波形成形電路15G、151及 152之一配置位置。 在此具體實施例中,在該透射型之一液晶顯示器裝置 中,基本上將該等波形成形電路15〇、151及152佈置成略 低於一黑色濾色片遮罩。 同時,在該反射型或該透射與反射型之—液晶顯示器裝 置中,該等波形成形電路150、151及152係佈置於一反射 區域内。 圖30A及3 0B顯示該透射型之一液晶顯示器裝置。 參考圖30A及3 0B,所示之透射型液晶顯示器裝置3〇〇包 括諸如上面參考圖3所述之一底部閘極類型TFT,且經組態 使得一液晶層330夾在一 TFT基板3 10與一相對基板32〇之 間。 如圖30A所示’該TFT基板310包括一玻璃基板311、形 成於該玻璃基板311上之一平坦化膜312、形成於該平坦化 膜312上之一透明電極313及形成於該透明電極313上之一 定向膜314。 該相對基板3 2 0包括一玻璃基板3 21、形成於該玻璃基板 321上之一光阻擋區域322及形成於該光阻擋區域322上之 一定向膜323。 應注意’在圖30B中,與圖3所示者相同的元件係以相同 的參考數字來表示。另外,由於上文說明該TFT之結構本 身,因此在此省略關於其之重疊說明以避免冗餘。 128894.doc -60- 200912877 圖31顯示其中採用上面參考圖5A至5C所說明的波形成 形電路之透射型液晶顯示器裝置之一像素電路之一第一範 例。 如圖31所示,該波形成形電路150之組件ρτι、pT2、 NT 1及ΝΤ2與佈線係佈置為略低於由一黑色濾色片遮罩形 成之光阻擋區域322。 在此$IL例中,將以正邏輯輸入之一閘極脈衝GP在其穿 過該等緩衝器BF 1及BF2後以正邏輯施加於該像素電路1 i i 之TFT 112之閘極。 由於該波形成形電路150係由一多晶矽TFT(薄膜電晶體) 形成’因此來自背光之光受該波形成形電路15〇之阻擋, 而此構成該像素之透射因數之下降之一原因。 因此,在一特定像素之情況下可能發生一定的亮度分 散,該特定像素包括由一 TFT(薄膜電晶體)形成的波形成 形電路150與用於該波形成形電路15〇的電壓及VSS2 之電源供應線160及1 61。 口此’由一黑色渡色片遮罩(其係用以減小該等像素之 間的亮度分散)形成之光阻擋區域322係放置於該電路上以 藉此固定該透射因數來抑制該亮度分散。 圖32顯示其中採用上面參考圖5A至5C所說明的波形成 幵y電路之透射型液晶顯示器裝置之一像素電路之一第二範 例。 該第二範例類似於圖31所示之第一範例,但與其不同之 處在於其藉由該緩衝器BF1將以負邏輯輸入之一閘極脈衝 128894.doc -61 - 200912877 GP之位準反轉而使得以正邏輯將該閘極脈衝〇15施加於該 像素電路111之TFT 112之閘極。接著,透過該緩衝器bf2 以負邏輯輸出該閘極脈衝GP。 因此,該像素電路111係定位於該緩衝器BF1的輸出與該 緩衝器BF2的輸入之間。 圖33顯示其中採用上面參考圖从至5(:所說明的波形成 形電路之透射型液晶顯示器裝置之一像素電路之_第三範 例0 ( 該第三範例類似於圖3 1所示之第一範例,但與其不同之 處在於其經組態用以防止一不合需要的電壓從—信號線 116及一閘極線115侵入。 特定言之,在此第三範例中,該信號線丨丨6及該閘極線 115係夾在用於該電源供應電壓VDD2的供應線16〇與用於 該參考電壓VSS2的供應線161之間,以便防止一不合需要 的電壓從該信號線116及該閘極線115侵入。 圖34顯示其中採用上面參考圖5A至5C所說明的波形成 形電路之透射型液晶顯示器裝置之一像素電路之一第四範 例。 該第四範例類似於圖3 2所示之第二範例,但與其不同之 處在於其經組態用以防止一不合需要的電壓從一信號線 116及一閘極線H5侵入。 特定言之,在此第三範例中,該信號線116及該閘極線 11 5係夾在用於該電源供應電壓VDD2的供應線160與用於 該參考電壓VSS2的供應線161之間,以便防止一不合需要 128894.doc -62- 200912877 的電壓從該信號線116及該閘極線115侵入。 A,,’、貝不一透射與反射型液晶顯示器裝置之—像素 :成开而ΓΒ顯示其中採用上面參考圖从至5(:所說明的波 形成形電路之透射與反射型液晶顯示器裝置之像素 一第一範例。 f i先參考圖35Α ’所示之透射與反射型液晶顯示器裝置 4〇〇包括一透明絕緣基板40丨與一薄膜電晶體(tft)4〇°2 :— 像素區域403等(其係形成於該透明絕緣基板4〇1上)。 該透射與反射型液晶顯示器裝置4〇〇進一步包括與該透 明絕緣基板40丨、TFT 402及像素區域4〇3成一相對關係而 佈置之一透明絕緣基板404 ^該透射與反射型液晶顯示器 裝置400進一步包括一保護層4〇5、一濾色片4〇5&amp;、一相對 電極406及一液晶層407(其係形成於該透明絕緣絕緣基板 404上)。該液晶層407係夾在該像素區域4〇3與該相對電極 406之間。 此類像素區域403係佈置於一矩陣中,而用以向該等 402供應一閘極脈衝GP的閘極線11 5與用以向該等TFT 4〇2 供應一顯示信號的信號線116係以彼此相對成一垂直交又 關係而提供於個別像素區域403周圍,從而形成該像素區 段。 另外,皆由一金屬導線形成的保持電容器佈線(下面稱 為CS線)係提供於該透明絕緣基板401及TFT 402側上,以 使其平行於該等閘極線11 5而延伸。該等CS線配合該等像 素電極以形成保持電容器CS且係連接至該等相對電極 128894.doc -63 - 200912877 406 ° 另外,欲用於反射型顯示器之一反射區域人與欲用於透 射型顯示器之一透射區域提供於每一像素區域4〇3中。 該透明絕緣基板401係由一透明材料(例如,玻璃)形 成。該等TFT 402、一擴散層408及一平坦化層4〇9係形成 於該透明絕緣基板401上。特定言之’該擴散層4〇8係形成 於s亥TFT 402上而在其之間插入一絕緣膜,而該平坦化層 409係形成於該擴散層408上。另外,一透明電極41〇及一 反射電極411係形成於該平坦化層4〇9上。該反射電極411 形成具有上述反射區域A與透射區域b之像素區域403。 現在參考圖35B,該波形成形電路15〇之組件ρτι、 PT2、NT 1及NT2與佈線係佈置於該反射區域a中。 由於如上所述該波形成形電路150係由一多晶矽TFT(薄 膜電晶體)形成,因此來自背光之光受該波形成形電路15 〇 之阻播,而此構成該像素之透射因數之下降之一原因。 就此方面可使用一方法,在此方法中存在一不像反射液 晶一樣讓該背光之光從其中穿過的物件,該波形成形電路 1 5 0係有利地佈置成略低於該反射液晶之反射區域。 藉由該波形成形電路15 0之配置,用以形成用於該等波 形成形電路150的CMOS之TFT佈局之自由度與該透射型之 此自由度相比明顯增加。因此,由於可增加電源供應線 (例如,該些用於該電源供應電壓VDD2及該參考電壓VSS2 之電源供應線)之寬度,因此因電源供應線電阻造成之一 CMOS輸出的延遲變得不太可能發生。 128894.doc • 64 - 200912877 圖3 6A顯示一反射型液晶顯示器裝置之一像素電路而 圖35B顯示其中採用上面參考圖5八至%所說明的波形成形 電路之反射型液晶顯示器裝置之像素電路之一第一範例, 該反射型液晶顯示器裝置之像素電路之裝置結構類似於 邊透射及反射型液晶顯示器裝置,不同之處在於其不具有 該透射區域B。因此,在此省略關於該裝置結構之重疊說 明以避免冗餘。 而且,在此實例中,該波形成形電路1S〇之組件PT1、 PT2、NT1及NT2與佈線係佈置於該反射區域a中,如圖 3 6 B所示。 圖37顯示其中採用上面參考圖5八至5(:所說明的波形成 形電路之一透射與反射型液晶顯示器裝置之一像素電路之 一第二範例。 該第二範例類似於圖35Α及35B所示之第一範例,但與 其不同之處在於其經組態用以防止一不合需要的電壓從該 信號線116及該閘極線115侵入。 特定言之,在此範例中,該信號線116及該閘極線115係 夾在用於該電源供應電壓VDD2的供應線160與用於該參考 電壓VSS2的供應線161之間,以便防止一不合需要的電壓 從該信號線11 6及該閘極線丨丨5侵入。 圖38顯示其中採用上面參考圖5八至5(:所說明的波形成 形電路之反射型液晶顯示器裝置之一像素電路之—第二範 例0 該第二範例類似於圖36所示之第一範例,但與其不同之 128894.doc -65- 200912877 處在於其經組態用以防止一不合需要的電壓從一信號線 116及一閘極線11 5侵入。 特定言之’在此第二範例中,該信號線11 6及該閘極線 115係夾在用於該電源供應電壓VDD2的供應線160與用於 該參考電壓VSS2的供應線1 61之間,以便防止一不合需要 的電壓從該信號線116及該閘極線115侵入。 圖39顯示其中採用上面參考圖πA至13C所說明的波形 成形電路之透射型液晶顯示器裝置之一像素電路之一第一 範例。 如圖39所示,該波形成形電路151之組件ρτΐ、PT2、 PT3、NT1、NT2及NT3與佈線係佈置為略低於由一黑色濾 色片遮罩形成之光阻擋區域322。 在此範例中,將以正邏輯輸入之一閘極脈衝Gp在其穿 過該等緩衝器B F 3及B F 2後以正邏輯施加於該像素電路111 之TFT 112之閘極。 由於該波形成形電路1 5 1係由一多晶矽TFT(薄膜電晶體) 形成’因此來自背光之光受該波形成形電路1 5丨之阻擋, 而此構成該像素之透射因數之下降之—原因。 因此’在一特定像素之情況下可能發生一亮度分散,該 特疋像素包括由一 TFT(薄膜電晶體)形成的波形成形電路 151與用於該波形成形電路151的電壓vdD2及VSS2之電源 供應線160及160。 因此,由一黑色濾色片遮罩(其係用以減小該等像素之 間的冗度分散)形成之光阻擋區域322係放置於該電路上以 128894.doc -66- 200912877 藉此固定該透射因數來抑制該亮度分散。 圖40顯示其中採用上面參考圖至说所說明的波形 成形電路之透射型液晶顯示器裳置之一像素電路之一第二 範例。 該第二範例類似於圖39所示之第一㈣,但與其不同之 處在於其藉由該緩衝器BF3將以負邏輯輸入之一閘極脈衝 GP之位準反轉而使得以正邏輯將該閘極脈衝施加於該 像素電路⑴之TFT 112之閑極。接著,透過該緩衝器腿 (以負邏輯輸出該閘極脈衝GP。 因此,該像素電路111係定位於該缓衝器BF3的輸出與該 緩衝器BF11的輸入之間。 圖41顯示其中採用上面參考圖13A至13C所說明的波形 成形電路之透射型液晶顯示器裝置之一像素電路之一第三 範例。 該第三範例類似於圖39所示之第一範例,但與其不同之 處在於其經組態用以防止一不合需要的電壓從一信號線 116及一閘極線115侵入。 特定言之’在此第三範例中,該信號線116及該間極線 115係夹在用於該電源供應電壓VDD2的供應線ι60與用於 該參考電壓VSS2的供應線161之間,以便防止一不合需要 的電壓從該信號線116及該閘極線115侵入。 圖42顯示其中採用上面參考圖13A至13C所說明的波形 成形電路之透射型液晶顯示器裝置之一像素電路之一第四 範例。 128894.doc -67- 200912877 該第四範例類似於圖40所示之第二範例,但與其不同之 處在於其經組態用以防止一不合需要的電壓從一信號線 116及一閘極線115侵入。 特定言之,在此第四範例中,該信號線116及該閘極線 115係夾在用於該電源供應電壓VDD2的供應線160與用於 該參考電壓VSS2的供應線161之間,以便防止一不合需要 的電壓從該信號線11 6及該閘極線11 5侵入。 圖43顯示其中採用上面參考圖13 A至13C所說明的波形 成形電路之透射與反射型液晶顯示器裝置之一像素電路之 一第一範例。 現在參考圖43,該波形成形電路151之組件PT1、PT2、 PT3、NT1、NT2及NT3與佈線係佈置於該反射區域a中。 由於如上所述該波形成形電路1 5 1係由一多晶矽TFT(薄 膜電晶體)形成,因此來自背光之光受該波形成形電路151 之阻擔,而此構造該像素之透射因數之下降之一原因。 就此方面可使用一方法,在此方法中存在一不象反射液 晶一樣讓該背光之光從其中穿過的物件,該波形成形電路 1 5 1係有利地佈置成略低於該反射液晶之反射區域。 藉由該波形成形電路1 5 1之配置,用以形成用於該等波 形成形電路151的CMOS之TFT佈局之自由度與該透射型之 此自由度相比明顯增加。因此’由於可增加電源供應線 (例如,該些用於該電源供應電壓VDD2及該參考電壓VSS2 之電源供應線)之寬度,因此因電源供應線電阻造成之— CM〇S輸出的延遲變得不太可能發生。 128894.doc -68- 200912877 圖44顯示其中採用上面參考圖13 a至13C所說明的波形 成形電路之反射型液晶顯示器裝置之一像素電路之一第一 範例。 參考圖44 ’同樣在所示配置中,該波形成形電路1 5丨之 組件PT1、PT2、PT3、NT1 ' NT2及NT3與佈線係佈置於該 反射區域A中。 圖45顯示其中採用上面參考圖13A至13C所說明的波形 成形電路之透射與反射型液晶顯示器裝置之一像素電路之 一第二範例。 該第二範例類似於圖43所示之第一範例,但與其不同之 處在於其經組態用以防止一不合需要的電壓從該信號線 116及該閘極線115侵入。 特定言之,在此範例中,該信號線116及該閘極線115係 夾在用於該電源供應電壓VDD2的供應線160與用於該參考 電壓VSS2的供應線161之間,以便防止一不需要的電壓從 該信號線116及該閘極線1 i 5侵入。 圖46顯示其中採用上面參考圖13 a至nc所說明的波形 成形電路之反射型液晶顯示器裝置之一像素電路之一第二 範例。 該第二範例類似於圖44所示之第一範例,但與其不同之 處在於其經組態用以防止一不合需要的電壓從一信號線 11 6及一閘極線115侵入。 特疋言之’在此第:範例中,該信號線丨16及該閑極線 Π5係爽在用於該電源供應電壓乂〇〇2的供應線16〇與用於 128894.doc • 69 - 200912877 該參考電壓VSS2的供應線161之間,以便防止一不合需要 的電壓從該信號線116及該閘極線115侵入。 圖47顯示其中採用上面參考圖21A至21C所說明的波形 成形電路之透射型液晶顯示器裝置之一像素電路之一第一 範例。 如圖47所示,該波形成形電路152之組件PT1、PT2、 PT3、NT1、NT2及NT3與佈線係佈置為略低於由一黑色遽 色片遮罩形成之光阻擋區域322。 在此範例中,將以正邏輯輸入之一閘極脈衝Gp在其穿 過該專緩衝态BF1及BF2後以正邏輯施加於該像素電路m 之TFT 112之閘極。 由於該波形成形電路1 52係由一多晶矽TFT(薄膜電晶體) 形成’因此來自背光之光受該波形成形電路1 52之阻擒, 而此構造該像素之透射因數之下降之一原因。 因此’在一特定像素之情況下可能發生一亮度分散該 特定像素包括由一 TFT(薄膜電晶體)形成的波形成形電路 152與用於該波形成形電路152的電壓νϋ〇2及VSS2之電源 供應線160及160。 因此,由一黑色濾色片遮罩(其係用以減小該等像素之 間的亮度分散)形成之光阻擋區域322係放置於該電路上以 藉此固定該透射因數來抑制該亮度分散。 圖48顯示其中採用上面參考圖21 a至21c所說明的波形 成形電路之透射型液晶顯示器裝置之一像素電路之一第二 範例。 128894.doc •70· 200912877 s亥第二範例類似於圖4 7所示之第一範例,但與其不同之 處在於其藉由該NAND電路11將以負邏輯輸入之一閘極脈 衝GP之位準反轉而使得以正邏輯將該閘極脈衝gP施加於 該像素電路111之TFT 112之閘極。接著,透過該緩衝器 BF 11以負邏輯輸出該閘極脈衝gp。 因此,該像素電路111係定位於該NAND電路11的輸出與 該緩衝器BF11的輸入之間。 圖49顯示其中採用上面參考圖2丨八至2 1C所說明的波形 成形電路之透射型液晶顯示器裝置之一像素電路之一第三 範例。 該第二範例類似於圖4 7所示之第一範例,但與其不同之 處在於其經組態用以防止一不合需要的電壓從一信號線 116及一閘極線1丨5侵入。 特定言之,在此第三範例中,該信號線丨丨6及該閘極線 Π5係夾在用於該電源供應電壓VDD2的供應線160與用於 該參考電壓VSS2的供應線161之間,以便防止一不合需要 的電壓從該信號線116及該閘極線π 5侵入。 圖50顯示其中採用上面參考圖21 a至21C所說明的波形 成开&gt; 電路之透射型液晶顯示器裝置之一像素電路之一第四 範例。 該第四範例類似於圖48所示之第二範例,但與其不同之 處在於其經組態用以防止—不合需要的電壓從一信號線 116及一閘極線115侵入。 特定言之,在此第四範例中,該信號線116及該閘極線 128894.doc •71 · 200912877 115係夾在用於該電源供應電壓¥〇1)2的供應線16〇與用於 該參考電壓VSS2的供應線161之間,以便防止一不合需要 的電壓從該信號線116及該閘極線丨丨5侵入。 圖51顯示其中採用上面參考圖21A至21C所說明的波形 成形電路之透射與反射型液晶顯示器裝置之一像素電路之 一第一範例。 現在參考圖51,該波形成形電路152之組件pTu、 ΡΤ12、ΡΤ13、ΝΤΙ1、ΝΤ12及ΝΤ13與佈線係佈置於該反射 ( 區域Α中。 由於該波形成形電路1 52係由一多晶矽TFT(薄膜電晶體) 形成,因此來自背光之光受該波形成形電路1 52之阻擋, 而此構成該像素之透射因數之下降之一原因。 就此方面可使用一方法’在此方法中存在一不象反射液 晶—樣讓該背光之光從其中穿過的物件,該波形成形電路 1 52係有利地佈置成略低於該反射液晶之反射區域。 藉由該波形成形電路152之配置,用以形成用於該等波Referring to Figure 27, signals SVi through SV4 from the signal drivers 131 through 134 are passed through the selectors SEL having the plurality of transmission gates tmg to the signal lines 116 (116-1 through 116-12). Controlling the conduction state of the transmission gates (analog switches) TMG by the selection signal 81 and its inverted signal XS1, the selection signal s2 and its inverted signal XS2, the selection signal S3 and its inverted signal XS3... These signals are supplied externally and have complementary levels to each other. In the case of adopting such a configuration as described above, one of the high-resolution (UXGA) and south speed frame rate types of active matrix display devices can use a selector time-division driving system, which reduces connection terminals. The number and the mechanical reliability of the connection. The configuration of another part of the eighteenth embodiment is similar to the configuration of the fifteenth embodiment, and can also be implemented by the fourteenth and fifteenth embodiments. The effect is similar. &lt;Nineteenth Detailed Embodiment&gt; Fig. 28 shows an example of a configuration of a liquid crystal display device according to a nineteenth embodiment of the present invention. 128894.doc • 57- 200912877 Referring to FIG. 2, the configuration of the liquid crystal display device i〇〇R according to the nineteenth embodiment is similar to the liquid crystal display device 1000 according to the sixteenth embodiment described above, but different therefrom The point is that it is also effectively configured in a system in which image data is written to a panel in a time sharing manner. Specifically, in addition, when the time-sharing switch is used as shown in FIG. 28 to reduce the image frame of the panel, if the number of time-sharing switches is not sufficiently satisfied within a horizontal selection period An electrical feature and an image feature require the application of the present invention. Referring to Fig. 28, signals svi to sv4 from the far-end signal drivers 131 to 134 are transmitted to the chirp signal lines 116 (116-1 to 116-12) through the selector SEL having the plurality of transmission gates TMG. The transmission gates (analog switches) TMG are controlled by the selection signal s 1 and its inverted signal xs 丨, the selection signal S2 and its inverted k-number XS2, the selection signal S3 and its inverted signal XS3 ... In the conductive state, the signals are supplied from the outside and have mutually complementary levels. In the case of adopting such a configuration as described above, one of the high-resolution (UXGA) and high-speed frame rate type active matrix display devices can employ a selector time-division driving system, which reduces the number of connection terminals And improve the mechanical reliability of the connection. The configuration of another part of the nineteenth embodiment is similar to the configuration of the sixteenth embodiment, and can also be implemented similarly to the effects achieved by the fourteenth to sixteenth embodiments described above. The effect. &lt;Twenth Detailed Embodiment&gt; Figs. 29A, 29B and 29C respectively show an example of a configuration of a liquid crystal display device according to an embodiment of the twentieth specific 128894.doc-58-200912877 of the present invention. An example of a pulse waveform. Referring first to Fig. 29A, the configuration of the liquid crystal display device 100S according to the twentieth embodiment is similar to the liquid crystal device 1 according to the sixteenth embodiment described above, but with the following differences. Specifically, in the liquid crystal display device 100S according to the twentieth embodiment, the supply line 丨6〇 for the power supply voltage 〇〇2 and the supply line 161 for ρ the power supply voltage VSS2 are also The wiring is routed between all of the signal 'slots 丨 16016·1 to 116_m) and all of the gate lines 115 (115-1 to 115_m). ^ With the above configuration, the Bayer T prevents an undesired voltage from intruding into the adjacent #素电路1 1 1 '. This occurs between the interrogating line and the signal line. Therefore, good image quality can be obtained. The configuration of another part of the twentieth embodiment is similar to the configuration of the tenth embodiment, and can also be implemented similarly to the effects achieved by the fourteenth and tenth embodiments. The effect. It should be noted that although one of the wiring schemes of the voltage supply line in the twentieth embodiment is not shown in FIG. 29A, the group sorrow of the twentieth embodiment may also be applied to other fourteenth and tenth Five and seventeenth to nineteenth embodiments. Moreover, in this example, it is possible to prevent an undesired voltage from intruding into an adjacent pixel circuit 111, and an effect of obtaining a good image quality can be achieved. The configuration of one of the waveform shaping circuits 15A, i5i, and 152 on an equivalent circuit in the first to the twentieth embodiments of the present invention, 128894.doc • 59·200912877, a configuration, a power supply Supply line plan. The following describes the arrangement positions of one of the waveform shaping circuits 15G, 151 and 152 on the device. In this embodiment, in the transmissive liquid crystal display device, the waveform forming circuits 15A, 151, and 152 are substantially arranged to be slightly lower than a black color filter mask. Meanwhile, in the reflective type or the transmissive and reflective type liquid crystal display device, the waveform forming circuits 150, 151 and 152 are arranged in a reflective region. 30A and 30B show the transmission type one liquid crystal display device. Referring to Figures 30A and 30B, the transmissive liquid crystal display device 3 shown includes a bottom gate type TFT such as described above with reference to Figure 3, and is configured such that a liquid crystal layer 330 is sandwiched between a TFT substrate 3 10 Between an opposing substrate 32〇. As shown in FIG. 30A, the TFT substrate 310 includes a glass substrate 311, a planarization film 312 formed on the glass substrate 311, a transparent electrode 313 formed on the planarization film 312, and a transparent electrode 313 formed thereon. One of the upper alignment films 314. The opposite substrate 320 includes a glass substrate 31, a light blocking region 322 formed on the glass substrate 321, and an alignment film 323 formed on the light blocking region 322. It should be noted that in Fig. 30B, the same elements as those shown in Fig. 3 are denoted by the same reference numerals. In addition, since the structure of the TFT itself is explained above, the overlapping description thereof is omitted here to avoid redundancy. 128894.doc -60- 200912877 Fig. 31 shows a first example of one of the pixel circuits of the transmissive liquid crystal display device in which the wave forming circuit described above with reference to Figs. 5A to 5C is employed. As shown in Fig. 31, the components ρτι, pT2, NT 1 and ΝΤ2 of the waveform shaping circuit 150 and the wiring system are arranged slightly lower than the light blocking region 322 formed by a black color filter mask. In this $IL example, a gate pulse GP, which is input with a positive logic, is positively applied to the gate of the TFT 112 of the pixel circuit 1 i i after it has passed through the buffers BF 1 and BF2. Since the waveform shaping circuit 150 is formed of a polycrystalline germanium TFT (thin film transistor), light from the backlight is blocked by the waveform shaping circuit 15 and this constitutes one of the reasons for the decrease in the transmission factor of the pixel. Therefore, a certain luminance dispersion may occur in the case of a specific pixel including a waveform shaping circuit 150 formed of a TFT (Thin Film Transistor) and a power supply for the voltage of the waveform shaping circuit 15A and VSS2. Lines 160 and 1 61. a light blocking region 322 formed by a black color patch mask (which is used to reduce the dispersion of luminance between the pixels) is placed on the circuit to thereby fix the brightness by fixing the transmission factor dispersion. Fig. 32 shows a second example of one of the pixel circuits of the transmissive liquid crystal display device in which the wave forming 幵y circuit explained above with reference to Figs. 5A to 5C is employed. The second example is similar to the first example shown in FIG. 31, but differs in that it is used by the buffer BF1 to input a threshold pulse of one of the gate pulses 128894.doc -61 - 200912877 GP. In turn, the gate pulse 〇15 is applied to the gate of the TFT 112 of the pixel circuit 111 in a positive logic. Then, the gate pulse GP is outputted in negative logic through the buffer bf2. Therefore, the pixel circuit 111 is positioned between the output of the buffer BF1 and the input of the buffer BF2. Figure 33 shows a third example 0 in which the pixel circuit of one of the transmissive liquid crystal display devices of the waveform shaping circuit described above is employed (the third example is similar to the first one shown in Fig. 31) An example, but differs in that it is configured to prevent an undesirable voltage from intruding from the signal line 116 and a gate line 115. In particular, in this third example, the signal line 丨丨6 And the gate line 115 is sandwiched between the supply line 16A for the power supply voltage VDD2 and the supply line 161 for the reference voltage VSS2 to prevent an undesired voltage from the signal line 116 and the gate The epipolar line 115 intrudes. Fig. 34 shows a fourth example of one of the pixel circuits of the transmissive liquid crystal display device in which the waveform shaping circuit described above with reference to Figs. 5A to 5C is employed. This fourth example is similar to that shown in Fig. 32. The second example, but differs in that it is configured to prevent an undesirable voltage from intruding from a signal line 116 and a gate line H5. In particular, in this third example, the signal line 116 And the gate line 11 5 Between the supply line 160 for the power supply voltage VDD2 and the supply line 161 for the reference voltage VSS2, in order to prevent a voltage of 128894.doc-62-200912877 from being undesired from the signal line 116 and the gate Line 115 intrudes. A,, ', and the different types of transmissive and reflective liquid crystal display devices - pixels: open and ΓΒ display using the above referenced figure from 5 to: (the transmission and reflection type liquid crystal of the waveform forming circuit described) A first example of a pixel of a display device. First, the transmissive and reflective liquid crystal display device 4 shown in FIG. 35A includes a transparent insulating substrate 40 and a thin film transistor (tft) 4 〇 2 : pixel a region 403 or the like (which is formed on the transparent insulating substrate 4?). The transmissive and reflective liquid crystal display device 4 further includes a relative relationship with the transparent insulating substrate 40, the TFT 402, and the pixel region 4? The transparent and reflective liquid crystal display device 400 further includes a protective layer 4〇5, a color filter 4〇5&, an opposite electrode 406 and a liquid crystal layer 407 (which Formed on the transparent insulating insulating substrate 404. The liquid crystal layer 407 is sandwiched between the pixel region 4〇3 and the opposite electrode 406. Such pixel regions 403 are arranged in a matrix for use in a gate line 11 5 for supplying a gate pulse GP and a signal line 116 for supplying a display signal to the TFTs 4 〇 2 are provided in a perpendicular relationship with each other to be provided around the individual pixel regions 403, thereby The pixel segment is formed. Further, a holding capacitor wiring (hereinafter referred to as a CS line) formed of a metal wire is provided on the transparent insulating substrate 401 and the TFT 402 side so as to be parallel to the gate lines 11 5 and extended. The CS lines are matched to the pixel electrodes to form a holding capacitor CS and are connected to the opposite electrodes 128894.doc -63 - 200912877 406 °. In addition, one of the reflective displays is intended for use in a reflective area. A transmission area of one of the displays is provided in each of the pixel areas 4〇3. The transparent insulating substrate 401 is formed of a transparent material (e.g., glass). The TFT 402, a diffusion layer 408, and a planarization layer 4 are formed on the transparent insulating substrate 401. Specifically, the diffusion layer 4 is formed on the TFT 402 with an insulating film interposed therebetween, and the planarization layer 409 is formed on the diffusion layer 408. Further, a transparent electrode 41 and a reflective electrode 411 are formed on the planarization layer 4〇9. The reflective electrode 411 forms a pixel region 403 having the above-described reflective region A and transmissive region b. Referring now to Fig. 35B, the components ρτι, PT2, NT 1 and NT2 of the waveform shaping circuit 15 are arranged in the reflection area a with the wiring system. Since the waveform shaping circuit 150 is formed of a polysilicon TFT (thin film transistor) as described above, light from the backlight is blocked by the waveform shaping circuit 15 and this constitutes a cause of a decrease in the transmission factor of the pixel. . In this regard, a method may be used in which there is an object that does not pass light of the backlight from the reflective liquid crystal, the waveform shaping circuit 150 is advantageously arranged to be slightly lower than the reflection of the reflective liquid crystal. region. With the configuration of the waveform shaping circuit 150, the degree of freedom in forming the TFT layout of the CMOS for the wave forming circuit 150 is significantly increased as compared with the degree of freedom of the transmission type. Therefore, since the width of the power supply line (for example, the power supply lines for the power supply voltage VDD2 and the reference voltage VSS2) can be increased, the delay of one of the CMOS outputs due to the power supply line resistance becomes less May occur. 128894.doc • 64 - 200912877 FIG. 3A shows a pixel circuit of a reflective liquid crystal display device and FIG. 35B shows a pixel circuit of a reflective liquid crystal display device in which the waveform forming circuit described above with reference to FIGS. 5 to 8 is used. In a first example, the device structure of the pixel circuit of the reflective liquid crystal display device is similar to that of the transmissive and reflective liquid crystal display device, except that it does not have the transmissive region B. Therefore, overlapping descriptions of the device structure are omitted here to avoid redundancy. Moreover, in this example, the components PT1, PT2, NT1, and NT2 of the waveform shaping circuit 1S are arranged in the reflection area a as shown in Fig. 36B. Figure 37 shows a second example in which one of the pixel circuits of one of the transmissive and reflective liquid crystal display devices of the waveform shaping circuit described above is employed with reference to Figures 5 to 5 (this illustrated example is similar to Figures 35A and 35B). The first example is shown, but differs in that it is configured to prevent an undesirable voltage from intruding from the signal line 116 and the gate line 115. In particular, in this example, the signal line 116 And the gate line 115 is sandwiched between the supply line 160 for the power supply voltage VDD2 and the supply line 161 for the reference voltage VSS2 to prevent an undesired voltage from the signal line 11 and the gate Figure 38 shows a pixel circuit in which one of the reflective liquid crystal display devices of the waveform shaping circuit described above is used as the second example 0. The second example is similar to the figure. The first example shown at 36, but different therefrom, 128894.doc-65-200912877 is configured to prevent an undesirable voltage from intruding from a signal line 116 and a gate line 11 5 . 'In this second fan In the example, the signal line 161 and the gate line 115 are sandwiched between the supply line 160 for the power supply voltage VDD2 and the supply line 161 for the reference voltage VSS2 to prevent an undesired voltage. Invading from the signal line 116 and the gate line 115. Fig. 39 shows a first example of one of the pixel circuits of the transmissive liquid crystal display device in which the waveform shaping circuit described above with reference to Figs. πA to 13C is employed. It is shown that the components ρτΐ, PT2, PT3, NT1, NT2 and NT3 of the waveform shaping circuit 151 and the wiring system are arranged slightly lower than the light blocking region 322 formed by a black color filter mask. In this example, One of the positive logic inputs, the gate pulse Gp, is positively applied to the gate of the TFT 112 of the pixel circuit 111 after it passes through the buffers BF 3 and BF 2. Since the waveform shaping circuit 1 5 1 is composed of one A polycrystalline germanium TFT (thin film transistor) is formed so that light from the backlight is blocked by the waveform shaping circuit, and this constitutes a decrease in the transmission factor of the pixel. Therefore, 'may occur in the case of a specific pixel. One brightness Dispersing, the characteristic pixel includes a waveform shaping circuit 151 formed of a TFT (Thin Film Transistor) and power supply lines 160 and 160 for voltages vdD2 and VSS2 of the waveform shaping circuit 151. Therefore, a black color filter is used. A light blocking region 322 formed by the mask (which is used to reduce the redundancy dispersion between the pixels) is placed on the circuit to fix the brightness dispersion by fixing the transmission factor by 128894.doc -66-200912877 Fig. 40 shows a second example of one of the pixel circuits in which the transmissive liquid crystal display of the waveform shaping circuit described above with reference to the drawings is illustrated. This second example is similar to the first (four) shown in FIG. 39, but differs in that it is inverted by the buffer BF3 with the level of one of the gate pulses GP of the negative logic input. The gate pulse is applied to the idle electrode of the TFT 112 of the pixel circuit (1). Then, through the buffer leg (the gate pulse GP is outputted with a negative logic. Therefore, the pixel circuit 111 is positioned between the output of the buffer BF3 and the input of the buffer BF11. Figure 41 shows the above A third example of one of the pixel circuits of the transmissive liquid crystal display device of the waveform shaping circuit illustrated in FIGS. 13A to 13C. This third example is similar to the first example shown in FIG. 39, but differs in that it is The configuration is configured to prevent an undesired voltage from intruding from a signal line 116 and a gate line 115. In particular, in the third example, the signal line 116 and the inter-pole line 115 are clipped for use in the A supply line ι60 of the power supply voltage VDD2 is interposed between the supply line 161 for the reference voltage VSS2 to prevent an undesired voltage from intruding from the signal line 116 and the gate line 115. Fig. 42 shows the above reference drawing A fourth example of one of the pixel circuits of the transmissive liquid crystal display device of the waveform shaping circuit illustrated in 13A to 13C. 128894.doc -67- 200912877 This fourth example is similar to the second example shown in FIG. The difference is that it is configured to prevent an undesirable voltage from intruding from a signal line 116 and a gate line 115. In particular, in this fourth example, the signal line 116 and the gate line 115 is sandwiched between the supply line 160 for the power supply voltage VDD2 and the supply line 161 for the reference voltage VSS2 to prevent an undesired voltage from intruding from the signal line 11 6 and the gate line 11 5 Figure 43 shows a first example of one of the pixel circuits of the transmissive and reflective liquid crystal display device in which the waveform shaping circuit described above with reference to Figures 13A to 13C is employed. Referring now to Figure 43, the component PT1 of the waveform shaping circuit 151 , PT2, PT3, NT1, NT2, and NT3 are arranged in the reflective region a. Since the waveform shaping circuit 115 is formed of a polysilicon TFT (thin film transistor) as described above, light from the backlight is affected by The waveform shaping circuit 151 resists, and this constitutes one of the reasons for the decrease in the transmission factor of the pixel. In this respect, a method can be used in which there is a light that is not like the reflective liquid crystal. In the object passing therethrough, the waveform shaping circuit 115 is advantageously arranged to be slightly lower than the reflective area of the reflective liquid crystal. The configuration of the waveform shaping circuit 115 is used to form the waveform shaping circuit. The degree of freedom of the CMOS TFT layout of 151 is significantly increased as compared with the degree of freedom of the transmissive type. Therefore, 'the power supply line can be increased (for example, the power supply for the power supply voltage VDD2 and the reference voltage VSS2) The width of the line), therefore due to the power supply line resistance - the delay of the CM 〇 S output becomes less likely to occur. 128894.doc -68- 200912877 Fig. 44 shows a first example of one of the pixel circuits of the reflective liquid crystal display device in which the waveform shaping circuit described above with reference to Figs. 13a to 13C is employed. Referring to Fig. 44', also in the illustrated configuration, the components PT1, PT2, PT3, NT1 'NT2 and NT3 of the waveform shaping circuit 1 and the wiring system are arranged in the reflection area A. Fig. 45 shows a second example of a pixel circuit of a transmissive and reflective liquid crystal display device in which the waveform shaping circuit described above with reference to Figs. 13A to 13C is employed. This second example is similar to the first example shown in Figure 43, but differs in that it is configured to prevent an undesirable voltage from intruding from the signal line 116 and the gate line 115. Specifically, in this example, the signal line 116 and the gate line 115 are sandwiched between the supply line 160 for the power supply voltage VDD2 and the supply line 161 for the reference voltage VSS2 to prevent one. Unwanted voltages intrude from the signal line 116 and the gate line 1 i 5 . Fig. 46 shows a second example of one of the pixel circuits of the reflective liquid crystal display device in which the waveform forming circuit explained above with reference to Figs. 13a to nc is employed. This second example is similar to the first example shown in Figure 44, but differs in that it is configured to prevent an undesirable voltage from intruding from a signal line 116 and a gate line 115. In particular, in this example: the signal line 丨16 and the idle line Π5 are cool in the supply line 16 for the power supply voltage 乂〇〇2 and are used for 128894.doc • 69 - 200912877 The reference voltage VSS2 is between supply lines 161 to prevent an undesirable voltage from intruding from the signal line 116 and the gate line 115. Fig. 47 shows a first example of one of the pixel circuits of the transmissive liquid crystal display device in which the waveform shaping circuit explained above with reference to Figs. 21A to 21C is employed. As shown in Fig. 47, the components PT1, PT2, PT3, NT1, NT2, and NT3 of the waveform shaping circuit 152 and the wiring system are arranged to be slightly lower than the light blocking region 322 formed by a black enamel mask. In this example, a gate pulse Gp, which is input with a positive logic, is positively applied to the gate of the TFT 112 of the pixel circuit m after it has passed through the dedicated buffer states BF1 and BF2. Since the waveform shaping circuit 1 52 is formed of a polycrystalline TFT (thin film transistor), light from the backlight is blocked by the waveform shaping circuit 1 52, and this causes one of the decrease in the transmission factor of the pixel. Therefore, a luminance dispersion may occur in the case of a specific pixel, and the specific pixel includes a waveform shaping circuit 152 formed of a TFT (Thin Film Transistor) and a power supply of voltages ν 2 and VSS 2 for the waveform shaping circuit 152. Lines 160 and 160. Therefore, a light blocking region 322 formed by a black color filter mask (which is used to reduce luminance dispersion between the pixels) is placed on the circuit to thereby fix the transmission factor to suppress the luminance dispersion. . Fig. 48 shows a second example of one of the pixel circuits of the transmissive liquid crystal display device in which the waveform forming circuit explained above with reference to Figs. 21a to 21c is employed. 128894.doc •70·200912877 The second example is similar to the first example shown in Figure 47, but is different from that by the NAND circuit 11 to input a gate pulse GP with a negative logic. The quasi-inversion causes the gate pulse gP to be applied to the gate of the TFT 112 of the pixel circuit 111 in positive logic. Then, the gate pulse gp is outputted in negative logic through the buffer BF11. Therefore, the pixel circuit 111 is positioned between the output of the NAND circuit 11 and the input of the buffer BF11. Fig. 49 shows a third example of one of the pixel circuits of the transmissive liquid crystal display device in which the waveform forming circuit explained above with reference to Figs. 2 to 2 1C is employed. This second example is similar to the first example shown in Figure 47, but differs in that it is configured to prevent an undesirable voltage from intruding from a signal line 116 and a gate line 1丨5. Specifically, in this third example, the signal line 丨丨6 and the gate line Π5 are sandwiched between the supply line 160 for the power supply voltage VDD2 and the supply line 161 for the reference voltage VSS2. In order to prevent an undesired voltage from intruding from the signal line 116 and the gate line π 5 . Fig. 50 shows a fourth example of one of the pixel circuits of the transmissive liquid crystal display device in which the waveform is turned on and the circuit described above with reference to Figs. 21a to 21C. This fourth example is similar to the second example shown in Figure 48, but differs in that it is configured to prevent undesired voltages from invading from a signal line 116 and a gate line 115. Specifically, in this fourth example, the signal line 116 and the gate line 128894.doc • 71 · 200912877 115 are clamped to the supply line 16〇 for the power supply voltage ¥〇1) 2 and used for The reference voltage VSS2 is between the supply lines 161 to prevent an undesired voltage from intruding from the signal line 116 and the gate line 丨丨5. Fig. 51 shows a first example of a pixel circuit of a transmissive and reflective liquid crystal display device in which the waveform shaping circuit explained above with reference to Figs. 21A to 21C is employed. Referring now to Fig. 51, the components pTu, ΡΤ12, ΡΤ13, ΝΤΙ1, ΝΤ12, and ΝΤ13 of the waveform shaping circuit 152 and the wiring system are disposed in the reflection (region Α. Since the waveform shaping circuit 152 is composed of a polysilicon TFT (thin film) The crystal is formed so that the light from the backlight is blocked by the waveform shaping circuit 152, and this constitutes one of the reasons for the decrease in the transmission factor of the pixel. In this respect, a method can be used, in which a liquid crystal is not reflected. The object forming the light from which the backlight passes, the waveform shaping circuit 152 being advantageously arranged slightly below the reflective area of the reflective liquid crystal. The configuration of the waveform shaping circuit 152 is used to form The waves

C 形成形電路152的CMOS之TFT佈局之自由度與該透射型之 此自由度相比明顯增加。因此,由於可增加電源供應線 (例如,該些用於該電源供應電壓及該參考電壓VSS2之電 源供應線)之寬度,因此因電源供應線電阻造成之一 CMOS 輸出的延遲變得不太可能發生。 圖52顯示其中採用上面參考圖21A至21C所說明的波形 成形電路之反射型液晶顯示器裝置之一像素電路之一第一 範例。 128894.d〇c -72- 200912877 參考圖52,同樣在所示配置中,該波形成形電路152之 組件PT11、PT12、PT13、NT11、NT12 及 NT13及佈線係佈 置於該反射區域A中。 圖53顯示其中採用上面參考圖21A至21C所說明的波形 成形電路之透射與反射型液晶顯示器裝置之一像素電路之 一第二範例。 該第一範例類似於圖5 1所示之第一範例’但與其不同之 處在於其經組態用以防止一不合需要的電壓從該信號線 116及該閘極線115侵入。 特定言之’在此範例中,該信號線11 6及該閘極線丨丨5係 夾在用於該電源供應電壓VDD2的供應線160與用於該參考 電壓VSS2的供應線161之間,以便防止一不合需要的電壓 從該信號線11 6及該閘極線115侵入。 圖54顯示其中採用上面參考圖21 a至21C所說明的波形 成形電路之透射型液晶顯示器裝置之一像素電路之一第二 範例。 該第二範例類似於圖52所示之第一範例,但與其不同之 處在於其經組態用以防止一不合需要的電壓從一信號線 116及一閘極線115侵入。 特定言之,在此第二範例中,該信號線丨丨6及該閘極線 115係夾在用於該電源供應電壓vdD2的供應線160與用於 該參考電壓VSS2的供應線161之間,以便防止—不合需要 的電壓從該信號線11 6及該閘極線n 5侵入。 依據上述具體實施例之主動矩陣液晶顯示器裝置所表示 128894.doc •73- 200912877 之主動矩陣顯示器裝置係用作一用於OA(Office ^ ,辦公自動化)裝置(例如個人電腦及文字處理 為電視接收器等)之顯示器裝置。本發明之顯示器裝置 可Si作用於任何其他電子裝置(例如一可攜式電視機或 PDA)之一顯不區段,針對此類電子裝置的裝置微型化 及縮小化正在進展中。 特定言之,依據本發明之顯示器裝置可應用於圖“A至 55 G作為範例而顯示的此類各種電子裝置。 特定言之,該顯示器裝置可適用作用於在各個領域中的 電子裝置之一顯$器裝置,言亥4電子裝置將向言亥t子裝置 輸^之-影像信號或在該等電子裝置中產生之—影像信號 顯丁為〜像’例如,一數位相機、一筆記型個人電腦、 一可攜式電話機、一視訊相機等。 下面,說明應用本發明之顯示器裝置之—電子裝置的特 定範例。 圖55A顯示應用本發明之一電視接收器之一範例。參考 圖55A,該電視接收器500包括由-前部面板501、一玻璃 遽色片502等組成之一影像顯示螢幕區段3〇3。依據本發明 之顯示器裝置可用作該影像顯示螢幕區段5〇3。 圖55B及55C顯示應用本發明之—數位相機之一範例。 參考圖55B及55C,該數位相機51〇包括-影像拾取透鏡 511、-閃光發光區段512、_顯示區段513、一控制開關 514等。依據本發明之顯示器裝置可用作該顯示區段513。 圖55D顯示應用本發明之一視訊相機一範例。參考圖 I28894.doc -74· 200912877 55D,該視訊相機520包括:一主體區段52ι ; 一透鏡522, 其係提供於該主體區段521之正向面上,用以拾取一影像 拾取物件之一影像;一開始/停止開關⑵,其係用以進行 操作以開始或停止影像拾取;—顯示區段524 ;等等。依 據本發明之顯示器裝置可用作該顯示區段524。 圖55E及55F顯示應用本發明之一可攜式終端機裝置之一 範例。參考圖55E及55F,該可攜式終端機裝置53〇包括一 上部側外殼53 1 連接區段533、The degree of freedom of the TFT layout of the CMOS forming circuit 152 is significantly increased as compared with the degree of freedom of the transmission type. Therefore, since the width of the power supply line (for example, the power supply lines for the power supply voltage and the reference voltage VSS2) can be increased, the delay of one of the CMOS outputs due to the power supply line resistance becomes less likely occur. Fig. 52 shows a first example of one of the pixel circuits of the reflective liquid crystal display device in which the waveform forming circuit explained above with reference to Figs. 21A to 21C is employed. 128894.d〇c - 72- 200912877 Referring to FIG. 52, also in the illustrated configuration, the components PT11, PT12, PT13, NT11, NT12, and NT13 of the waveform shaping circuit 152 and the wiring system are disposed in the reflective area A. Fig. 53 shows a second example of a pixel circuit of a transmissive and reflective liquid crystal display device in which the waveform shaping circuit explained above with reference to Figs. 21A to 21C is employed. This first example is similar to the first example shown in Figure 51 but differs in that it is configured to prevent an undesirable voltage from intruding from the signal line 116 and the gate line 115. Specifically, in this example, the signal line 11 6 and the gate line 丨丨 5 are sandwiched between the supply line 160 for the power supply voltage VDD2 and the supply line 161 for the reference voltage VSS2. In order to prevent an undesired voltage from intruding from the signal line 161 and the gate line 115. Fig. 54 shows a second example of one of the pixel circuits of the transmissive liquid crystal display device in which the waveform shaping circuit explained above with reference to Figs. 21a to 21C is employed. This second example is similar to the first example shown in Figure 52, but differs in that it is configured to prevent an undesirable voltage from intruding from a signal line 116 and a gate line 115. Specifically, in this second example, the signal line 丨丨6 and the gate line 115 are sandwiched between the supply line 160 for the power supply voltage vdD2 and the supply line 161 for the reference voltage VSS2. In order to prevent - an undesired voltage from entering from the signal line 11 6 and the gate line n 5 . The active matrix display device of 128894.doc • 73- 200912877 is used as an OA (Office ^, office automation) device (for example, personal computer and word processing for television reception) according to the active matrix liquid crystal display device of the above specific embodiment. Display device, etc.). The display device of the present invention can act on one of the display segments of any other electronic device (e.g., a portable television or PDA), and miniaturization and downsizing of devices for such electronic devices is progressing. In particular, the display device according to the present invention can be applied to such various electronic devices as shown by way of example in FIGS. A to 55 G. In particular, the display device can be applied to one of electronic devices in various fields. The display device, the Yanhai 4 electronic device will output the image signal to the Yanhai t sub-device or the image signal generated in the electronic device as ~ image, for example, a digital camera, a notebook A personal computer, a portable telephone, a video camera, etc. Next, a specific example of an electronic device to which the display device of the present invention is applied will be described. Fig. 55A shows an example of a television receiver to which the present invention is applied. Referring to Fig. 55A, The television receiver 500 includes an image display screen section 〇3 composed of a front panel 501, a glass enamel 502, etc. The display device according to the present invention can be used as the image display screen section 5〇3. Figures 55B and 55C show an example of a digital camera to which the present invention is applied. Referring to Figures 55B and 55C, the digital camera 51 includes an image pickup lens 511, a flash illumination section 512, and a display. Section 513, a control switch 514, etc. A display device in accordance with the present invention can be used as the display section 513. Figure 55D shows an example of a video camera to which the present invention is applied. Referring to Figure I28894.doc -74.200912877 55D, The video camera 520 includes: a main body section 52 ι ; a lens 522 is provided on the front side of the main body section 521 for picking up an image of an image pickup object; a start/stop switch (2) Used to start or stop image pickup; display section 524; etc. A display device according to the present invention can be used as the display section 524. Figures 55E and 55F show a portable terminal to which the present invention is applied. An example of a device. Referring to Figures 55E and 55F, the portable terminal device 53A includes an upper side housing 53 1 connecting section 533,

、一下部側外殼532、以一絞鏈為形式之一 顯示區段534、一子顯示區段、一圖 像燈536、一相機537等 依據本發明之顯示器裝置可用作 該顯示區段534或該子顯示區段53 5。 圖55G顯示應林發明之—筆記型個人電腦之—範例。 參考圖55G,該筆記型個人電腦54〇包括—主體541、用以 進行操作以輸人-字符或類似者之_鍵盤542、用以顯示 〜像之顯不區段543等。依據本發明之顯示器裝置可 用作該顯示區段5 4 3。 應注意,在上述具體實施例中,本發明係應用於該主動 矩陣類型之-液晶顯示器裝置。但是,本發明不限於此, 而可同樣應用於其他主動矩陣類型顯示器裝置,例如 致發光(EL)顯示器裝置,其中使用一裝置作為每—像素之 一電光元件。 μ 熟習此項技術者應明白,可根據設計要求及其他因素來 進灯各種修改、組合、子組合及變更’只要其在隨申吐 專利範圍或其等效内容之範嘴内。 128894.doc -75- 200912877 【圖式簡單說明】 圖ΙΑ、1B及1C分別係顯示一普通液晶顯示器裝置之一 、、且I*、之範例及閘極脈衝波形之一範例的一電路圖及波形 圖; 圖2A、2B及2C分別係顯示依據本發明之一第一具體實 施例之一液晶顯示器裝置之一組態之一範例及一閑極脈衝 波形之範例的一電路圖及波形圖;a lower side housing 532, a display section 534, a sub display section, an image light 536, a camera 537, and the like in the form of a hinge can be used as the display section 534 according to the present invention. Or the sub display section 53 5 . Figure 55G shows an example of Yinglin's invention of a notebook computer. Referring to Fig. 55G, the notebook type personal computer 54 includes a main body 541, a keyboard 542 for operating to input a human-character or the like, a display portion 543 for displaying an image, and the like. A display device according to the present invention can be used as the display section 543. It should be noted that in the above specific embodiments, the present invention is applied to the liquid crystal display device of the active matrix type. However, the present invention is not limited thereto, and can be equally applied to other active matrix type display devices such as an electroluminescence (EL) display device in which a device is used as an electro-optic element per pixel. μ Those skilled in the art should understand that various modifications, combinations, sub-combinations and alterations may be made in accordance with design requirements and other factors as long as they are within the scope of the patent application or its equivalent. 128894.doc -75- 200912877 [Simple diagram of the diagram] Figure ΙΑ, 1B and 1C respectively show a circuit diagram and waveform of one of the ordinary liquid crystal display devices, and an example of I*, an example and a gate pulse waveform. 2A, 2B and 2C are respectively a circuit diagram and a waveform diagram showing an example of one configuration of a liquid crystal display device and an example of a dummy pulse waveform according to a first embodiment of the present invention;

圖3係顯不一底部閘極結構之一 tft的一示意性斷面 圖; 圖4係顯示一頂部閘極結構之一 τρτ的一示意性斷面 圖; 圖5A、5B及5C係顯示在圖2A所示液晶顯示器裝置中之 -波形成形電路之一範例的電路圖,纟中該波形成形電路 係由一 CMOS緩衝器形成; 圖6A、6B及6(:係顯示仂诚士於 .'項丁依據本發明之一第二具體實施例 之一液晶顯示器裝置之—绍能—_ _ ^ 組態之一範例及閘極脈衝波形之 圖式; 圖7A、7B及7C分別係骷-从… 保顯不依據本發明之一第三具體實 施例之一液晶顯示器裝詈一 t 、、-且恕之一範例及一閘極脈衝 波形之範例的一電路圖及波形圖; 圖8係顯示依據本發明 乃疋—第四具體實施例之一液晶顯 示器裝置之一組態之—範例 礼扪的—電路圖; 圖9、1 〇及1 1分別伤龆- 員不依據本發明之第五、第六及第 七具體實施例之液晶顯示器 々 。裝置之一組態之一範例的電路 128894.doc * 76 - 200912877 圖; 圖12A、12B及12C分別係顯示依據本發明之一第八具體 實施例之一液晶顯示器裝置之一組態之一範例及一閘極脈 衝波形之範例的一電路圖及波形圖; 圖13A、13B及13C係顯示圖12A所示液晶顯示器裝置之 一波形成形電路之圖式’其中該波形成形電路係由一定時 CMOS電路形成; 圖MA、MB及MC分別係顯示依據本發明之一第九具體 實施例之一液晶顯示器裝置之一組態之一範例及一閘極脈 衝波形之範例的一電路圖及波形圖; 圖15A、15B及15C分別係顯示依據本發明之一第十具體 實施例之一液晶顯示器裝置之一組態之一範例及—閘極脈 衝波形之範例的一電路圖及波形圖; 圖1 6A至1 6J係解說圖1 5 A所示液晶顯示器裝置之操作的 時序圖; 圖1 7、1 8及19分別係顯示依據本發明之第十一至十一具 體實施例之一液晶顯示器裝置之組態之一範例的電路圖; 圖20A、20B及20C分別係顯示依據本發明之一第十四具 體實施例之一液晶顯示器裝置之一組態之一範例及—閑極 脈衝波形之範例的一電路圖及波形圖; 圖21A、21B及21C係顯示圖20A所示液晶顯示器裝置之 一波形成形電路的電路圖,其中該波形成形電路係由—包 括一 CMOS組態之一 NAND電路的定時(:河〇8電路形成. 圖22A、22B及22C分別係顯示依據本發明一 乂 弟十五具 I28894.doc -77· 200912877 體實施例之一液晶顯示器裝置之一組態之一 β ^ ^ ι&amp;例及一閘極 脈衝波形之範例的一電路圖及波形圖; 圖23Α、23Β及23C分別係顯示依據本發明之一第十丄具 體實施例之一液晶顯示器裝置之一组能夕 —,, 、心 &lt; —靶例及一閘極 脈衝波形之範例的一電路圖及波形圖; 圖24Α至241係解說圖23Α所示液晶顯示器裝置之操作的 時序圖; 圖25Α至25Κ係解說圖23Α所示液晶顯示器裝置之不同操 作的時序圖; 圖26、27及28分別係顯示依據本發明之第十七、第十、 及第十九具體實施例之液晶顯示器裝置之一組態之—範例 的電路圖; 圖29Α、29Β及29C分別係顯示依據本發明之一第二十具 體實施例之一液晶顯示器裝置之一組態之一範例及一閘極 脈衝波形之範例的一電路圖及波形圖; 圖30Α及30Β係一透射型液晶顯示器裝置之斷面圖; 圖31、32、33及34係顯示一透射型液晶顯示器裝置之— 像素電路之第一、第二、第三及第四範例的平面圖,其中 採用圖5 Α所示之波形成形電路; 圖35A及35B分別係-透射及反射型液晶顯示器裝置之 —像素電路的一斷面圖及顯示該透射及反射型之一像素電 路之一第一範例的一平面圖,其中採用圖5 A所示之波形成 形電路; 圖3 6A及3 6B分別係—反射及反射型液晶顯示器裴置之 128894.doc -78- 200912877 :像素電路的-斷面圊錢示該反射型之—像素電路之一 第一祀例的—平面圖’其中採用圖5A所示之波形成形電 路; 圖37係顯不该透射及反射型液晶顯示器裝置之像素電路 之一第一轭例的一平面圖,其中採用圖5所示之波形成形 電路; 圖3 8係顯示該反射型液晶顯示器裝置之像素電路之一第 範例的平面圖,其中採用圖5所示之波形成形電路; 圖39、40、41及42係顯示一透射型液晶顯示器裝置之一 像素電路之第一、第二、第三及第四範例的平面圖,其中 採用圖13所示之波形成形電路; 圖43係顯示該透射及反射型液晶顯示器裝置之一像素電 路之一第一範例的一平面圖,其中採用圖丨3所示之波形成 形電路; 圖44係顯示該透射型液晶顯示器裝置之一像素電路之一 第一範例的一平面圖,其中採用圖13所示之波形成形電 路; 圖45係顯示該透射及反射型液晶顯示器裝置之一像素電 路之一第二範例的一平面圖’其中採用圖13所示之波形成 形電路; 圖46係顯示該反射型液晶顯示器裝置之一像素電路之一 第二範例的一平面圖,其中採用圖13所示之波形成形電 路; 圖47、48、49及50係顯示一透射型液晶顯示器裝置之像 128894.doc •79· 200912877 素電路之第一、第二、第三及第四範例的平面圖,其中採 用圖2 1所示之波形成形電路; 圖51係顯示該透射及反射型液晶顯示器裝置之—像素電 路之一第—範例的一平面圖,其中採用圖以所示之波形成 形電路; 圖5 2係顯示5亥反射型液晶顯示器裝置之一像素電路之一 第一範例的一平面圖,其中採用圖21所示之波形成形電 路;Figure 3 is a schematic cross-sectional view showing one of the bottom gate structures tft; Figure 4 is a schematic cross-sectional view showing one of the top gate structures τρτ; Figures 5A, 5B and 5C are shown in 2A is a circuit diagram of an example of a waveform shaping circuit in the liquid crystal display device shown in FIG. 2A, wherein the waveform shaping circuit is formed by a CMOS buffer; FIGS. 6A, 6B and 6 (: shows the 仂 于 于. According to a second embodiment of the present invention, one of the examples of the liquid crystal display device, the Schain-_ _ ^ configuration, and the pattern of the gate pulse waveform; FIGS. 7A, 7B, and 7C are respectively... A circuit diagram and a waveform diagram of an example of a liquid crystal display device according to a third embodiment of the present invention, which is an example of a gate pulse waveform; FIG. 8 is a diagram showing The invention is a configuration of one of the liquid crystal display devices of the fourth embodiment - a circuit diagram of the example ceremony; FIG. 9, 1 and 1 respectively, a flaw - the fifth and sixth according to the present invention And the liquid crystal display of the seventh embodiment. One of the devices is configured An exemplary circuit 128894.doc * 76 - 200912877 FIG. 12A, 12B and 12C respectively show an example of one configuration of a liquid crystal display device and a gate pulse waveform according to an eighth embodiment of the present invention. FIG. 13A, FIG. 13B and FIG. 13C are diagrams showing a waveform shaping circuit of a liquid crystal display device shown in FIG. 12A, wherein the waveform shaping circuit is formed by a CMOS circuit; FIG. And MC respectively show a circuit diagram and a waveform diagram of an example of one configuration of a liquid crystal display device and an example of a gate pulse waveform according to a ninth embodiment of the present invention; FIGS. 15A, 15B and 15C are respectively An example of a configuration of a liquid crystal display device according to a tenth embodiment of the present invention and a circuit diagram and a waveform diagram of an example of a gate pulse waveform are shown; FIG. 1 is a diagram of a 6A to 16J system diagram. A timing chart showing the operation of the liquid crystal display device; FIGS. 1, 7, and 19 are respectively showing one of the configurations of the liquid crystal display device according to the eleventh to eleventh embodiments of the present invention. 20A, 20B, and 20C are respectively an example of a configuration of a liquid crystal display device according to a fourteenth embodiment of the present invention, and a circuit diagram and a waveform diagram of an example of a idle pulse waveform. 21A, 21B and 21C are circuit diagrams showing a waveform shaping circuit of a liquid crystal display device shown in FIG. 20A, wherein the waveform shaping circuit is formed by a timing of a NAND circuit including a CMOS configuration (: 〇8 circuit formation) 22A, 22B and 22C respectively show one of the configuration of one of the liquid crystal display devices of one of the fifteenth embodiment of the invention, i. A circuit diagram and a waveform diagram of an example of a pulse waveform; FIGS. 23A, 23B and 23C respectively show a group of liquid crystal display devices according to a tenth embodiment of the present invention, which can be used as a target. A circuit diagram and a waveform diagram of an example of a gate pulse waveform; FIGS. 24A to 241 are timing diagrams illustrating the operation of the liquid crystal display device shown in FIG. 23A; FIGS. 25A to 25B are diagrams showing FIG. Timing diagrams of different operations of the liquid crystal display device; FIGS. 26, 27 and 28 are circuit diagrams showing an example of a configuration of one of the liquid crystal display devices according to the seventeenth, tenth, and nineteenth embodiments of the present invention, respectively. 29A, 29B, and 29C are respectively a circuit diagram and a waveform diagram showing an example of one configuration of a liquid crystal display device and an example of a gate pulse waveform according to a twentieth embodiment of the present invention; And a cross-sectional view of a transmissive liquid crystal display device; and FIGS. 31, 32, 33 and 34 are plan views showing first, second, third and fourth examples of a pixel type circuit of a transmissive liquid crystal display device, The waveform forming circuit shown in FIG. 5 is used; FIG. 35A and FIG. 35B are respectively a cross-sectional view of the pixel circuit of the transmissive and reflective liquid crystal display device and one of the pixel circuits of the transmissive and reflective type. A plan view of the example in which the waveform shaping circuit shown in FIG. 5A is used; FIG. 3 6A and 3 6B are respectively a reflection and reflection type liquid crystal display device 128894.doc -78- 200912877: pixel The cross-section of the road shows the reflection type - one of the pixel circuits - the plan view of the first example - which uses the waveform shaping circuit shown in FIG. 5A; FIG. 37 shows the transmission and reflection type liquid crystal display device a plan view of a first yoke of one of the pixel circuits, wherein the waveform forming circuit shown in FIG. 5 is used; FIG. 38 is a plan view showing a first example of a pixel circuit of the reflective liquid crystal display device, wherein FIG. 5 is used. Figs. 39, 40, 41 and 42 are plan views showing first, second, third and fourth examples of a pixel circuit of a transmissive liquid crystal display device, wherein the waveform shown in Fig. 13 is used. FIG. 43 is a plan view showing a first example of one of the pixel circuits of the transmissive and reflective liquid crystal display device, wherein the waveform forming circuit shown in FIG. 3 is used; FIG. 44 is a view showing the transmissive liquid crystal display device. A plan view of a first example of a pixel circuit in which the waveform shaping circuit shown in FIG. 13 is employed; FIG. 45 shows one of the transmissive and reflective liquid crystal display devices. A plan view of a second example of a prime circuit in which the waveform shaping circuit shown in FIG. 13 is employed; FIG. 46 is a plan view showing a second example of one of the pixel circuits of the reflective liquid crystal display device, wherein FIG. 13 is used. The waveform forming circuit is shown; Figures 47, 48, 49 and 50 are plan views showing the first, second, third and fourth examples of the image of a transmissive liquid crystal display device, 128894.doc • 79·200912877, wherein A waveform forming circuit shown in FIG. 21 is used; FIG. 51 is a plan view showing an example of a pixel circuit of the transmissive and reflective liquid crystal display device, wherein the waveform is used to form a circuit; FIG. A plan view showing a first example of one of the pixel circuits of a 5 Hz reflective liquid crystal display device, wherein the waveform shaping circuit shown in FIG. 21 is used;

圖5 3係顯示該透射及反射型液晶顯示器裝置之一像素電 路之一第二範例的一平面圖,其中採用圖2丨所示之波形成 形電路; 圖54係顯示該反射型液晶顯示器裝置之一像素電路之一 弟一蛇例的一·平面圖’其中採用圖21所示之波形成形電 路; 圖55A至55G係顯示應用依據本發明之顯示器裝置的一 電子裝置之若干範例之不意圖。 【主要元件符號說明】 1 液晶顯示器裝置 2 有效像素區段 3 4 5-1至5-m 垂直驅動電路(VDRV) 水平驅動電路(HDRV) 閘極線 6-1至6-n 信號線 7 共用線 128894.doc -80- 200912877 8-1 至 8-m 閘極 緩 衝 器 11 NAND' 电1 洛 21 像素 電 路 22 薄膜 電 晶 體 TFT 23 液晶 單 元 24 保持 電 容 器 41 至 44 信號 驅 動 器 100 液晶 顯 示 器 裝 置 100A 液晶 顯 示 器 裝 置 100B 液晶 顯 示 器 裝 置 100C 液晶 顯 示 器 裝 置 100D 液晶 顯 示 器 裝 置 100E 液晶 顯 示 器 裝 置 100F 液晶 顯 示 器 裝 置 100G 液晶 顯 示 器 裝 置 100H 液晶 顯 示 器 裝 置 1001 液晶 顯 示 器 裝 置 100J 液晶 顯 示 器 裝 置 100K 液晶 顯 示 器 裝 置 100L 液晶 顯 示 器 裝 置 100M 液晶 顯 示 器 裝 置 100N 液晶 顯 示 器 裝 置 1000 液晶 顯 示 器 裝 置 100P 液晶 顯 示 器 裝 置 128894.doc - 81 - 200912877Figure 5 is a plan view showing a second example of one of the pixel circuits of the transmissive and reflective liquid crystal display device, wherein the waveform forming circuit shown in Figure 2A is used; Figure 54 is a view showing one of the reflective liquid crystal display devices. One of the pixel circuits is a plan view of a snake case in which the waveform shaping circuit shown in Fig. 21 is employed; Figs. 55A to 55G are diagrams showing a few examples of an electronic device to which the display device according to the present invention is applied. [Main component symbol description] 1 LCD device 2 Effective pixel section 3 4 5-1 to 5-m Vertical drive circuit (VDRV) Horizontal drive circuit (HDRV) Gate line 6-1 to 6-n Signal line 7 shared Line 128894.doc -80- 200912877 8-1 to 8-m Gate Buffer 11 NAND' Electric 1 Lou 21 Pixel Circuit 22 Thin Film Transistor TFT 23 Liquid Crystal Cell 24 Holding Capacitor 41 to 44 Signal Driver 100 Liquid Crystal Display Device 100A LCD Display device 100B liquid crystal display device 100C liquid crystal display device 100D liquid crystal display device 100E liquid crystal display device 100F liquid crystal display device 100G liquid crystal display device 100H liquid crystal display device 1001 liquid crystal display device 100J liquid crystal display device 100K liquid crystal display device 100L liquid crystal display device 100M liquid crystal display device 100N liquid crystal display device 1000 liquid crystal display device 100P liquid crystal display device 128894.doc - 81 - 200912877

100Q100Q

100R100R

100S 110 111 112100S 110 111 112

112A112A

112B 113 114 115 115(115-1 至 115 -m) 116(116-1 至116-n) 117 120 130 131 至134 131 至134 140-1至140-m 150 150-1至150-m 150-11 至 150-lm 150-21 至 150-2m 151(151-11 至 151-lm 液晶顯示器裝置 液晶顯示器裝置 液晶顯示器裝置 有效像素區段 像素電路 薄膜電晶體(TFT)112B 113 114 115 115 (115-1 to 115-m) 116 (116-1 to 116-n) 117 120 130 131 to 134 131 to 134 140-1 to 140-m 150 150-1 to 150-m 150- 11 to 150-lm 150-21 to 150-2m 151 (151-11 to 151-lm liquid crystal display device liquid crystal display device liquid crystal display device effective pixel segment pixel circuit thin film transistor (TFT)

TFTTFT

TFT 液晶單元 保持區域或儲存電容器 閘極線 閘極線 信號線 共用線 垂直驅動電路(VDRV) 水平驅動電路(HDRV) 信號驅動器 信號驅動器 閘極緩衝器 波形成形電路 閘極線 波形成形電路 波形成形電路 波形成形電路 128894.doc -82- 200912877TFT liquid crystal cell holding area or storage capacitor gate line gate line signal line common line vertical drive circuit (VDRV) horizontal drive circuit (HDRV) signal driver signal driver gate buffer waveform shaping circuit gate line waveform shaping circuit waveform shaping circuit Waveform shaping circuit 128894.doc -82- 200912877

及 151-21 至 151-2m) 152 波形成形電路 160 供應線 161 供應線 162 供應線 163 供應線 201 透明絕緣基板 202 閘極絕緣膜 203 閘電極 204 半導體膜 205 n+型擴散層 206 n+型擴散層 207 層間絕緣膜 208 層間絕緣膜 209a 接觸孔 209b 接觸孔 210 源極電極 211 汲極電極 221 透明絕緣基板 222 半導體膜 223與224 n+型擴散層 225 閘極絕緣膜 226 閘電極 227 層間絕緣膜 128894.doc -83 - 200912877 228a 接觸孔 229 源極電極 230 汲極電極 300 透射型液晶顯示器裝置 310 TFT基板 311 玻璃基板 312 平坦化膜 313 透明電極 314 定向膜 320 相對基板 321 玻璃基板 322 光阻擋區域 323 定向膜 400 透射與反射型液晶顯示器裝置 401 透明絕緣基板 402 薄膜電晶體(TFT) 403 像素區域 404 透明絕緣基板 405 保護層 405a 淚色片 406 相對電極 407 液晶層 408 擴散層 409 平坦化層 128894.doc -84- 200912877 410 透明電極 411 反射電極 500 電視接收器 501 前部面板 502 玻璃濾色片 503 影像顯示螢幕區段 510 數位相機 511 影像拾取透鏡 512 閃光發光區段 513 顯不區段 514 控制開關 520 視訊相機 521 主體區段 522 透鏡 523 開始/停止開關 524 顯不區段 530 可攜式終端機裝置 53 1 上部側外殼 532 下部側外殼 533 以一絞鏈為形式之一連接區段 534 顯不區段 535 子顯不區段 536 圖像燈 537 相機 128894.doc -85- 200912877 540 筆記型個人電腦 541 主體 542 鍵盤 543 顯示區段 A 反射區域 B 透射區域 BF1 CMOS緩衝器或反相器 BF2 CMOS緩衝器或反相器 BF3 定時CMOS緩衝器 BF11 CMOS緩衝器或反相器 ENAB 啟用信號 ND1 節點 ND2 節點 ND11 節點 ND12 節點 NT1 η型通道MOS(NMOS)電晶體 NT2 NMOS電晶體 NT3 NMOS電晶體 NT11 及 NT12 NMOS電晶體 NT13 NMOS電晶體 PT1 p型通道MOS(PMOS)電晶體 PT2 PMOS電晶體 PT3 PMOS電晶體 PT11及PT12 PMOS電晶體 128894.doc -86- 200912877 PT13 PMOS電晶體 SI 選擇信號 S2 選擇信號 S3 選擇信號 SEL 選擇器 SV1 至 SV4 信號 TMG 傳輸閘極 VST (Vst) 垂直開始信號 XS1 反相信號 XS2 反相信號 XS3 反相信號 128894.doc -87-And 151-21 to 151-2m) 152 Waveform forming circuit 160 Supply line 161 Supply line 162 Supply line 163 Supply line 201 Transparent insulating substrate 202 Gate insulating film 203 Gate electrode 204 Semiconductor film 205 n+ type diffusion layer 206 n+ type diffusion layer 207 interlayer insulating film 208 interlayer insulating film 209a contact hole 209b contact hole 210 source electrode 211 drain electrode 221 transparent insulating substrate 222 semiconductor film 223 and 224 n+ type diffusion layer 225 gate insulating film 226 gate electrode 227 interlayer insulating film 128894. Doc -83 - 200912877 228a contact hole 229 source electrode 230 drain electrode 300 transmissive liquid crystal display device 310 TFT substrate 311 glass substrate 312 planarization film 313 transparent electrode 314 orientation film 320 opposite substrate 321 glass substrate 322 light blocking region 323 orientation Film 400 Transmissive and Reflective Liquid Crystal Display Device 401 Transparent Insulating Substrate 402 Thin Film Transistor (TFT) 403 Pixel Area 404 Transparent Insulating Substrate 405 Protective Layer 405a Diagonal Sheet 406 Counter Electrode 407 Liquid Crystal Layer 408 Diffusion Layer 409 Planarization Layer 128894.doc -84- 200912877 410 Electrode 411 Reflective electrode 500 TV receiver 501 Front panel 502 Glass filter 503 Image display screen section 510 Digital camera 511 Image pickup lens 512 Flash illumination section 513 Display section 514 Control switch 520 Video camera 521 Body section 522 Lens 523 Start/Stop Switch 524 Display Section 530 Portable Terminal Unit 53 1 Upper Side Housing 532 Lower Side Housing 533 is connected in one of the hinges. Section 534 is displayed in section 535. Segment 536 Image Light 537 Camera 128894.doc -85- 200912877 540 Notebook PC 541 Body 542 Keyboard 543 Display Section A Reflecting Area B Transmissive Area BF1 CMOS Buffer or Inverter BF2 CMOS Buffer or Inverter BF3 Timing CMOS Buffer BF11 CMOS Buffer or Inverter ENAB Enable Signal ND1 Node ND2 Node ND11 Node ND12 Node NT1 n-Channel MOS (NMOS) Transistor NT2 NMOS Transistor NT3 NMOS Transistor NT11 and NT12 NMOS Transistor NT13 NMOS Crystal PT1 p-channel MOS (PMOS) transistor PT2 PMOS transistor PT3 PMOS transistor PT11 and PT12 PMOS transistor 128894.doc -86- 200912877 PT13 PMOS transistor SI selection signal S2 selection signal S3 selection signal SEL selector SV1 to SV4 signal TMG transmission gate VST (Vst) vertical start signal XS1 inverted signal XS2 reverse Phase signal XS3 inverted signal 128894.doc -87-

Claims (1)

200912877 十、申請專利範圍: 1. 一種顯示器裝置,其包含: 電路,透過一切換元 ,該等像素電路係佈 一像素區段,其包括複數個像素 件將像素資料寫入至每一像素電路 置成形成包括複數個行之一矩陣; 複數個掃描線,其係對應於該 寸1豕畜冤路的該等行而 佈置且經組悲用以控制該等切換元件之導電;200912877 X. Patent Application Range: 1. A display device comprising: a circuit, through a switching element, the pixel circuit is a pixel segment comprising a plurality of pixel devices for writing pixel data to each pixel circuit Forming a matrix comprising a plurality of rows; a plurality of scan lines arranged corresponding to the rows of the inch of the animal path and configured to control the conduction of the switching elements; 複數個信號線,其係對應於該等 ,,^ n x寻像素電路的該等行而 佈置且經組態用以允許透過其傳播該像素資料;以及 輸出—掃描脈衝以使得該 等像素電路之該等切換元件變成導電至該等掃描線, 其中-波形成形電路係佈置於該等掃描線之每一掃描 線之一導線中且經組態用實 4 霄施在該知描線中傳播的該 等柃描脈衝之波形成形。 厶如滑求項1之 ’、&quot;八&quot;人黾路Y系以 使”在該等像素電路之該矩陣之座標配置中在兮等广號 線的該延伸方向上定位於該相同座標之—方式:置= 等掃描線之對應掃描線之該等導線之中間。 3·如請求項!之顯示器裝置,其中該等波形成形電路係以 使其在該等像素電路之該矩陣之座標配置中在 線的該延伸方向上定位於互不㈣的座標之1式^ 於·•亥等掃描線之對應掃描線之該等導線之中間。 4· 項1之顯示器裝置,其中該等波形成形電路係以 /、疋位於該等像素電路的輪人級上之―方式佈置於該 J2S894.doc 200912877 等掃描線之該等導線之中間。 5·如請求項1之顯示器裝置,其進一步包含: —基板’其具有一光阻擋區域,該波形成形電路係佈 置於該光阻擋區域中。 6_如叫求項1之顯示器裝置,其中該顯示器裝置係一反射 型或一透射與反射型之一液晶顯示器裝置,而該波形成 電路係佈置於§玄液晶顯示器裝置之一反射區域中。 7.如請求項丨之顯示器裝置,其進一步包含·_ _電源供應線,其係連接至該波形成形電路並平行於 該等信號線而延伸。 8·如請求項7之顯示器裝置,兑φ兮带、β糾處&amp;〆&amp; 共甲該電源供應線係佈置於 該等信號線之每一信號線盥兮楚这w &amp; 孔深興該#知描線之一相鄰掃描線 9·如請求項1之顯示器裝置 干该波形成形電路係田一 互補金氧半導體電路形成a plurality of signal lines corresponding to the lines of the pixel-seeking pixel circuit and configured to allow propagation of the pixel data therethrough; and output-scanning pulses to cause the pixel circuits to The switching elements become conductive to the scan lines, wherein the waveform shaping circuit is disposed in one of the scan lines of the scan lines and configured to propagate in the trace Wait for the waveform shaping of the pulse. For example, the ',' and 'eight' lines of the sliding item 1 are such that "the same coordinate is positioned in the extending direction of the wide-number line in the coordinate configuration of the matrix of the pixel circuits. - the mode: set = the middle of the corresponding scan lines of the scan lines. 3. The display device of claim 1 wherein the waveform shaping circuits are such that they are at the coordinates of the matrix of the pixel circuits In the extending direction of the line in the configuration, it is positioned in the middle of the wires of the corresponding scan lines of the scanning lines of the type of coordinates of the coordinates of the coordinates of the coordinates of the first and second lines. The circuit is disposed in the middle of the wires of the scanning line of J2S894.doc 200912877 in the manner of /, 疋 located at the wheel level of the pixel circuits. 5. The display device of claim 1, further comprising: a substrate having a light blocking region, the waveform shaping circuit being disposed in the light blocking region. The display device of claim 1, wherein the display device is one of a reflective type or a transmissive and reflective type liquid crystal a display device, wherein the wave forming circuit is disposed in a reflective region of the CMOS liquid crystal display device. 7. The display device as claimed in claim 1, further comprising a power supply line connected to the waveform shaping circuit And extending parallel to the signal lines. 8. The display device of claim 7, the φ 兮 band, the β 纠 & amp amp amp 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该线盥兮楚的w &amp;孔深兴 The #知描线one adjacent scanning line 9·The display device of claim 1 is dry 以-邏輯形成一輸出信號。對於向其之-輸入信號而 10.如請求们之顯示器裝置,其進一步包人· 複數個信號驅動器,其係個別對應:該 及,複數個選擇器開關,其 該等信號線的對應信號線之門曰、该以號驅動器與 並供應該影像資料。 間’且經組態用以分時選擇 11. 如請求項1之顯示器裝 控制該波形成形電路以 一步包含: 置,其中可回 開始其操作, 應於一啟用信號來 而該顯示器裝置進 128894.doc 200912877 一供應線之一導線’該供應線係用於該啟用信號且平 行於該等信號線而形成,該波形成形電路相對於向其之 一輸入信號以正邏輯形成一輸出信號。 12. 如請求項11之顯示器裝置,其中該波形成形電路包括— CMOS組態之一NAND電路,可回應於該啟用信號而控制 該NAND電路以開始其操作。 13. —種用於一顯示器裝置之驅動方法,該顯示器裝置包 括.一像素區段,其包括複數個像素電路,像素資料係 透過一切換元件寫入至每一像素電路,該等像素電路係 佈置成形成包括複數個行之一矩陣;複數個掃描線,其 係對應於該等像素電路的該等行而佈置且經組態用以控 制該等切換元件之導電;複數個信號線,其係對應於該 等像素電路的該等行而佈置且經組態用以允許透過其傳 播:像素資料;以及一驅動電路,其經組態用以輸:― 掃描脈衝來使得該等像素電路之該等切換元件變成導電 至》玄等掃4田線,該驅動方法包含以下步驟: 在5亥等掃描線之每—掃描線之中間將在該掃描線中傳 :的該掃描脈衝之該波形成形。 14. :種:於-顯示器裝置之驅動方法,該顯示器裝置包 :去*像素區段’其包括複數個像素電路,在該複數個 “路之每—像素電路中像素資料係透過—切換元件 素單元,該㈣素電路係佈置絲成包括複 電路矩陣;複數個掃描線,其係對應於該等像素 行而佈置且經組態用以控制該等切換元件之 I28894.doc 200912877 導電,複數個信號線,其係對應於該等像素電路的該等 行而佈置且經組態用以允許透過其傳播該像素資料;Λ以 及一驅動m經組態用以輸出一掃描脈衝來使得該 等像素電路之該等切換元件變成導電至該等掃描線,該 驅動方法包含以下步驟: 透過平行於該等信號線之一導線來供應一啟用信號以 回應於該啟用#號來控制波形成形操作之開始丨以及 在該等掃描線之每-掃描線之中間將在該掃描線中傳 播的該掃描脈衝之該波形成形。 15. —種電子裝置,其包含: 一顯示器裝置,其包括: —像素區段,其包括複數個像素電路,透過一切換 元件將像素資料寫入至每一像素電路,該等像素電路係 佈置成形成包括複數個行之一矩陣; ,、An output signal is formed by - logic. For the input signal to it - 10. For the display device of the requester, it further includes a plurality of signal drivers, which are individually corresponding to: the sum, the plurality of selector switches, the corresponding signal lines of the signal lines The threshold, the number driver and the image data are supplied. Inter-' and configured for time-sharing selection 11. The display device of claim 1 controls the waveform shaping circuit to include: a step in which the operation can be resumed, and the display device is placed in 128894 .doc 200912877 One of the supply lines of the supply line is formed for the enable signal and parallel to the signal lines, the waveform shaping circuit forming an output signal with positive logic with respect to one of the input signals. 12. The display device of claim 11, wherein the waveform shaping circuit comprises a CMOS circuit, one of the CMOS configurations, responsive to the enable signal to control the NAND circuit to begin its operation. 13. A driving method for a display device, the display device comprising: a pixel segment comprising a plurality of pixel circuits, the pixel data being written to each pixel circuit through a switching element, the pixel circuits Arranging to form a matrix comprising a plurality of rows; a plurality of scan lines arranged corresponding to the rows of the pixel circuits and configured to control conduction of the switching elements; a plurality of signal lines, Arranging corresponding to the rows of the pixel circuits and configured to allow propagation therethrough: pixel data; and a driver circuit configured to: - scan pulses to cause the pixel circuits to The switching elements are electrically conductive to the 玄4, and the driving method comprises the following steps: the waveform of the scanning pulse transmitted in the scanning line in the middle of each scanning line of 5 Hz or the like Forming. 14. A method for driving a display device, the display device package: a *pixel segment comprising a plurality of pixel circuits, wherein each of the plurality of "path-pixel circuits" is transmissive-switching components a unit, the (four) circuit is arranged to include a complex circuit matrix; a plurality of scan lines are arranged corresponding to the pixel rows and configured to control the switching elements of the I28894.doc 200912877 conductive, plural Signal lines, which are arranged corresponding to the rows of the pixel circuits, are configured to allow propagation of the pixel data therethrough; and a drive m configured to output a scan pulse to enable such The switching elements of the pixel circuit become conductive to the scan lines, the driving method comprising the steps of: supplying an enable signal through a wire parallel to one of the signal lines to control the waveform forming operation in response to the enable # number Starting the 丨 and shaping the waveform of the scan pulse propagating in the scan line between each scan line of the scan lines. 15. An electronic device, The method comprises: a display device comprising: a pixel segment comprising a plurality of pixel circuits, the pixel data being written to each pixel circuit through a switching element, the pixel circuits being arranged to form a plurality of rows a matrix; , 複數個掃描線,其㈣應於料像素電路的該等行 而佈置且經組態用以控制該等切換元件之導電; 複數個信號線, 而佈置且經組態用以 其係對應於該等像素電路的該等行 允許透過其傳播該像素資料; _ 丨叫# 评T田脈衝以使^ 該等像素電路之該等切換元件變成導電至該等: 以及 球, 一波形成形電路,其係佈置於該等掃描線之每 描線之-導線中且經組態用以實施在該掃描線中 該掃描脈衝之波形成形。 128894.doc 200912877 I6.如請求項〗5之電子裝置,其中可回應於一啟用信號來控 制該波形成形電路以開始其操作,而該顯示器裝置進一 步包括與該等信號線平行而形成之—用於該啟用信號的 供應線之一導線,該冰形+ 信號以正料料_輸计=轉相料μ之一輸入 I28894.doca plurality of scan lines, (4) arranged in the rows of the pixel circuits and configured to control the conduction of the switching elements; a plurality of signal lines arranged and configured to correspond to the The rows of the pixel circuits allow the pixel data to be propagated therethrough; _ 丨 # # 评 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Arranged in the wires of each of the scan lines and configured to effect waveform shaping of the scan pulses in the scan lines. The electronic device of claim 5, wherein the waveform shaping circuit is controlled to start its operation in response to an enable signal, and the display device further comprises a parallel with the signal lines - One of the wires of the signal-providing supply line, the ice-shaped + signal is input as one of the positive material_transfer=transfer material μ I28894.doc
TW097122921A 2007-06-29 2008-06-19 Display apparatus, driving method for display apparatus and electronic apparatus TWI404023B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007173460 2007-06-29
JP2007173459 2007-06-29
JP2008119202A JP5301201B2 (en) 2007-06-29 2008-04-30 Display device, driving method thereof, and electronic apparatus

Publications (2)

Publication Number Publication Date
TW200912877A true TW200912877A (en) 2009-03-16
TWI404023B TWI404023B (en) 2013-08-01

Family

ID=40402265

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097122921A TWI404023B (en) 2007-06-29 2008-06-19 Display apparatus, driving method for display apparatus and electronic apparatus

Country Status (4)

Country Link
JP (1) JP5301201B2 (en)
KR (1) KR101532655B1 (en)
CN (1) CN101334950B (en)
TW (1) TWI404023B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587243B (en) * 2009-04-08 2017-06-11 半導體能源研究所股份有限公司 Method for driving semiconductor device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100884450B1 (en) * 2007-11-08 2009-02-19 삼성모바일디스플레이주식회사 Organic light emitting display device
KR101097316B1 (en) 2009-10-12 2011-12-23 삼성모바일디스플레이주식회사 organic light emitting device
JP2012185339A (en) * 2011-03-07 2012-09-27 Jvc Kenwood Corp Liquid crystal display element
KR101549291B1 (en) * 2012-10-25 2015-09-02 엘지디스플레이 주식회사 Display device
CN103456353A (en) * 2013-09-04 2013-12-18 东南大学 Drive circuit used for SRAM (Static Random Access Memory) subthreshold address decoder
CN106461994A (en) * 2014-04-28 2017-02-22 夏普株式会社 Sensor-equipped display device
TWI643013B (en) * 2017-03-29 2018-12-01 友達光電股份有限公司 Display

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396261A (en) * 1993-03-01 1995-03-07 Wah-Iii Technology Corporation Polysilicon gate bus with interspersed buffers for driving a row of pixels in an active matrix liquid crystal display
JPH08234703A (en) * 1995-02-28 1996-09-13 Sony Corp Display device
TW556013B (en) * 1998-01-30 2003-10-01 Seiko Epson Corp Electro-optical apparatus, method of producing the same and electronic apparatus
TWI254898B (en) * 2003-10-02 2006-05-11 Pioneer Corp Display apparatus with active matrix display panel and method for driving same
KR100827261B1 (en) * 2005-08-24 2008-05-07 세이코 엡슨 가부시키가이샤 Electro-optical device and electronic apparatus including the same
JP4793121B2 (en) * 2005-08-24 2011-10-12 セイコーエプソン株式会社 Electro-optical device and electronic apparatus including the same
JP4984731B2 (en) * 2006-08-09 2012-07-25 セイコーエプソン株式会社 Matrix type electro-optical device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587243B (en) * 2009-04-08 2017-06-11 半導體能源研究所股份有限公司 Method for driving semiconductor device
US9978320B2 (en) 2009-04-08 2018-05-22 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor device
US10657910B2 (en) 2009-04-08 2020-05-19 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor device
US11030966B2 (en) 2009-04-08 2021-06-08 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor device
US11450291B2 (en) 2009-04-08 2022-09-20 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor device
US11670251B2 (en) 2009-04-08 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor device

Also Published As

Publication number Publication date
CN101334950A (en) 2008-12-31
KR20090004614A (en) 2009-01-12
JP5301201B2 (en) 2013-09-25
TWI404023B (en) 2013-08-01
JP2009031752A (en) 2009-02-12
CN101334950B (en) 2010-09-29
KR101532655B1 (en) 2015-06-30

Similar Documents

Publication Publication Date Title
US9460677B2 (en) Display apparatus, driving method for display apparatus and electronic apparatus
KR101160839B1 (en) Liquid crystal display
TW200912877A (en) Display apparatus, driving method for display apparatus and electronic apparatus
US8810495B2 (en) Display device having a pixel circuit, method for driving display device, and electronic apparatus including display device
US8797371B2 (en) Method for driving field sequential liquid crystal display device
US20140015866A1 (en) Display device and electronic apparatus
US6897841B2 (en) Liquid crystal display device and electronic apparatus comprising it
US10459263B2 (en) Display panel and borderless type display including the same
US10621904B2 (en) Pixel circuit and method for driving the same, display panel and display device
US9336727B2 (en) Driving method of display device
US20140003571A1 (en) Shift register circuit, electro-optical device and electronic apparatus
JP3791208B2 (en) Electro-optical device drive circuit
KR20090080470A (en) Thin film transistor liquid crystal display
JP2013097052A (en) Electrooptical device and display device
CN111610676B (en) Display panel, driving method thereof and display device
KR20010020935A (en) Display device and drive method thereof
US10832608B2 (en) Pixel circuit, method for driving method, display panel, and display device
KR20070077896A (en) Thin film transistor array panel and liquid crystal display
US9007284B2 (en) Liquid crystal display element, liquid crystal display device, and display method employed in liquid crystal display element
KR20090004518A (en) Display device, driving method of the same and electronic equipment incorporating the same
JP2007094262A (en) Electro-optical apparatus and electronic equipment
KR102180088B1 (en) Display panel and display apparatus having them
US9024860B2 (en) Scanner, electro-optical panel, electro-optical display device and electronic apparatus
US10573670B2 (en) Array substrate, method for fabricating the same, display device and method for driving display device
US10714031B2 (en) Display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees