TW200912804A - Method and system for evaluating local distortions - Google Patents

Method and system for evaluating local distortions Download PDF

Info

Publication number
TW200912804A
TW200912804A TW97122169A TW97122169A TW200912804A TW 200912804 A TW200912804 A TW 200912804A TW 97122169 A TW97122169 A TW 97122169A TW 97122169 A TW97122169 A TW 97122169A TW 200912804 A TW200912804 A TW 200912804A
Authority
TW
Taiwan
Prior art keywords
layers
deformation
drilling
image information
upper layer
Prior art date
Application number
TW97122169A
Other languages
Chinese (zh)
Inventor
Rafi Amit
Original Assignee
Camtek Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Camtek Ltd filed Critical Camtek Ltd
Publication of TW200912804A publication Critical patent/TW200912804A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41921,2,3-Triazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4365Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system having sulfur as a ring hetero atom, e.g. ticlopidine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95638Inspecting patterns on the surface of objects for PCB's

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

A method for evaluating local distortions of a lower layer of a printed circuit board, the method includes: receiving image information representative of lower layer portions that are viewed through drilled holes in an upper layer; wherein the holes are drilled by a drilling system that is more accurate than a mechanical element that introduces a mechanical movement during an optical acquisition of optical image information; and determining local distortions of the lower layer in response to the image information.

Description

200912804 九、發明說明: C發明所屬之技術領域3 相關申請案 這個專利申請案主張2007年6月15日提出申請的美國 5 臨時申請案序列號第60/944,105號案的優先權。 發明領域 這個申請案是關於用以評估一印刷電路板的一下層的 局部變形之方法。 t先前技術3 10 發明背景 在印刷電路板(PCB)生產期間,原始材料(由銅層覆蓋 的電介質材料)在#刻(etching)/剝離(striping)及組合過程中 會變形。電介質層及金屬的不同結構及膨脹係數導致非線 性局部變形,及總體準線性膨脹或收縮。 15 用以量測後製(post production)PCB圖案變形的現存系 統使用顯微或X射線系統,該等顯微或X射線系統限於手動 取樣以得到可靠的及準確的量測。較先進的系統使用在 PCB層頂部上誇大(overplayed)的一合成圖案(出自CAD資 料中的原圖(Art-Work))以記錄及對齊各自的界標 20 (land-mark)點,從而產生一非線性變形圖(map)(參見 US6,581,202)。 需要準確量測(在微米級以内)該印刷圖案及電路物件 的實際位置。 【發明内容3 5 200912804 發明概要 種用以"平估印刷電路板的-下層的局部變开)的方 法,該方法包括下列步驟:接收代表透過一上層中的鑽孔 被看到的下層部分的影像資訊;其中該等孔由一鑽孔系統 5鑽出’該鑽孔系統比-機械元件準確,該機械元件會在光 學影像資訊的-光獲取中引入一機械運動;及根據該影像 資訊決定該下層的局部變形。 該方法可以包括藉由鑽孔機器鑽孔。 该方法可以包括決定預鑽孔上層變形,及根據該預鑽 10 孔上層變形鑽孔。 S亥方法可以包括接收代表該上層及該等下層部分的影 像資訊;及藉由運用影像處理,計算鑽孔之間的距離。 a玄方法可以包括對多組層體中的每一對層體重複該接 收及決定之步驟以決定每一對層體的局部變形;每一組層 15體包括理想地彼此完全相同的層體對;及根據每一對層體 的該下層的變形’使不同組層體的層體對之間匹配。 該方法可以包括以光學方式獲得該印刷電路板的該對 層體的一影像。 该方法可以包括產生代表該等變形的一變形向量及用 2〇 此變形向量更新一變形資料結構。 該方法可以包括發送一變形向量到一鑽孔系統。 該方法可以包括根據在該接收及決定之步驟的一先前 疊代中獲得的資訊,藉由鑽孔機器鑽孔。 一種用以評估一印刷電路板的一下層的局部變形的系 200912804 統,该糸統包括:用以儲存代表透過—上層中的鑽孔被看 到的下層部分的影像資訊的—記憶體單S;其令該等孔由 一鑽孔系,該鑽孔系紐—機械元件料,該機械 兀件在光學影像資訊的—光獲取中引人-機械運動;一處 理器^適於根據該影像資訊決定該下層的局部變形。 该系統可以包括該鑽孔系統。 /該處理器可適於決定預鑽孔上層變形,及其中該鑽孔 系統根據該預鑽孔上層變形鑽孔。 r 10 距離。 _該記憶體單71可儲存代表該上層及該等下層部分的影 像貝π,及錢理料藉由運用影像處料算鑽孔之間的 該系統可適於重複儲存影像資訊及為多組層體中的每 -對層體決定局部變形;其中每—組層體包括理想地彼此 完全相同的層體對;及其中該處理器根據每-對層體的該 15下層的變形使不同組層體的層體對之間匹配。 該系統可以包括一影像獲取單元,其以光學方式獲得 該印刷電路板的該對層體的一影像。 及處理器可產生代表該等變形的一變形向量及用此變 形向量更新一變形資料結構。 2〇 1 亥處理器可發送一變形向量到-鑽孔系統。 -亥處理器可發送在該接收及決定之動作的一先前疊代 中獲付的貝Dfl到鑽孔系統;其中該鑽孔系統根據該資訊鑽 至少一個孔。 #包括電腦可讀媒體的電腦程式產品,該電腦可 7 200912804 讀媒體儲存用以執行下列動作的指令:接收代表透過一上 層中的鐵孔被看到的下層部分的影像資訊;其中該等孔由 一鑽孔系統鑽出,該鑽孔系統比一機械元件準確,該機械 元件在光學影像資訊的一光獲取中引入一機械運動;及根 5據該影像資訊,決定該下層的局部變形。 該電腦程式產品可以包括用以決定預鑽孔上層變形, 及根據該預鑽孔上層變形鑽孔的指令。 該電腦程式產品可以包括用以接收代表該上層及該等 下層部分的影像資訊,及藉由運用影像處理計算鑽孔之間 1〇 的距離的指令。 該電腦程式產品可以包括用以對多組層體中的每_對 層體重複該接收及決定之動作以決定每一對層體的局部變 形的指令;每一組層體包括理想地彼此完全相同的層體 對;及用以根據每-對層體的下層變形,使不同組層體的 15層體對之間匹配的指令。 該電腦程式產品可以包括用以產生代表該等變形的一 變形向量及用此變形向量更新—變形資料結構的指令。 邊電腦程式產品可以包括用以發送一變形向量到一鑽 孔系統的指令。 該電腦程式產。口可以包括用以根據在該接收及決定之 動作的一先前疊代中獲得的資訊,藉由該鑽孔機器鑽孔的 指令。 圖式簡單說明 從以下結合附圖的詳細描述中,本發明之前述及其他 200912804 目的、特徵、及優點將變得較明顯。在圖中,不同的視圖 中相同的參考符號始終代表相同的元件,其中: 第1圖說明了一 PCB及鑽孔; 第2圖說明了一鑽孔及透過該鑽孔看到的一墊片; 5 第3圖說明了根據本發明的一實施例的一鑽孔座標系 統中多個鑽孔及透過該等鑽孔看到的墊片; 第4圖說明了在一 PCB座標系統中該PCB之多個部分的 框; 第5圖說明了根據本發明的一實施例的一鑽孔座標系 10 統中多個鑽孔及透過該等鑽孔看到的墊片以及兩個鑽孔 20(0,0)及20(N,M); 第6圖說明了根據本發明的一實施例的一局部變形向 量、一鑽孔及一墊片; 第7圖說明了根據本發明的一實施例的一局部變形圖; 15 第8圖說明了根據本發明的一實施例的一方法;及 第9圖說明了根據本發明的一實施例的一系統。 【實施方式3 較佳實施例之詳細說明 一系統、方法及電腦程式產品被提供。藉由處理透過 20 上層中的鑽孔可看到的下層部分的影像資訊,局部變形被 評估。該等局部變形可以被處理以便提供一局部移位向量 變形圖。該上層可以是一銅層,該銅層最終被蝕刻以便提 供一導電圖案。 一旦得到,該等局部變形可被用於各種用途,包括但 9 200912804 不限於.(i)將煤垃'jU m 〇 要遴罩原圖調整至外部PCB的特定尺寸; 根據目前尺寸變叙,ρ Έ } 勒杈正上層的孔的一鑽孔規劃;(iii)分析 用於部分鑽孔的下層 卜層的母一墊片(移位、方向等);及 層體互相匹配;( ()根據下層的尺寸變動,校正上層的 一該系統及方法利用在一定意義上比-檢測系統準確的 …先4定意義是指孔的準確度(例如χγ平面準 確度)優於在檢測該層體# 10 15 由—影像獲取祕引入的機 械一動的準確度。藉由使用這些系統,該變形評估可在利 用-較低準確度檢測系統獲得影像的同時受益於該鑽孔系 統的較優的準確度。 〃 被引入框間 在對該上層進行掃描等期間,以上所提及的機械運動 ^ 目此’_孔系統的準確度至少部分地補償 由s玄檢測系統引入的機械不準確性。 —局部位移可以由下層的—物件特徵㈣ure)(或一物 件特徵的-部分)相對於其期望位置的—偏差來定義。從評 估一鑽孔的位置及該下層的-物件特徵之間的空間關係, 此偏差可被估計,其中透過該觀,該下層的該物件特徵 可(或應該)被看到(或至少其一部分可被看到)。 方便地,㈣鑽孔應言亥與該下層的該等物件特徵對 齊,而鑽孔與該下層的物件特徵之間不對齊表示局部變 形。例如,該等物件特徵可以是㈣,且料鑽孔可以是 互連孔,該等互連孔之後被充滿一導電材料以提供互連介 20 200912804 方便地,專賴孔(不被作為介層使用的鑽孔)可以被鑽 要注意,用以互連鑽出的孔可被加寬以便較好地觀察 該下層。 ~ 要注意,-鑽孔的橫截面可以大於此鑽孔下方的一物 件特徵的大小、實質上等於此物件特徵的大小或小於此物 件特徵的大小。如果該鑽孔的該橫戴面大於位在此鑽孔下 方的該下層的-物件特徵的大小’則較小的局部變形能被 檢測。 10 11由評估位於不同位置的多個鑽孔及相對應的物件特 徵之間的空間關係,下層的一個或較多個部分甚至整個下 層的局部變形的一圖可被提供。 該等孔可藉由諸如但不限於鑽孔系統E s丨5 3 3 q或日立 錯射PCBLCO-1A21E之習知的鑽孔系统被鑽出,該等習知 15的鑽孔系統以大約幾微米或更小HY定位解析度(準確 度)鑽孔。。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 FIELD OF THE INVENTION This application relates to a method for evaluating local deformation of a lower layer of a printed circuit board. Prior Art 3 10 BACKGROUND OF THE INVENTION During the production of printed circuit boards (PCBs), the original material (the dielectric material covered by the copper layer) is deformed during the etching/striping and combination processes. The different structures and expansion coefficients of the dielectric layer and metal result in non-linear local deformation and overall quasi-linear expansion or contraction. 15 Existing systems for measuring post pattern PCB pattern distortion use microscopic or X-ray systems that are limited to manual sampling for reliable and accurate measurements. More advanced systems use a synthetic pattern (from Art-Work in CAD data) overlaid on top of the PCB layer to record and align their respective landmark-land points to produce a A non-linear deformation map (see US 6,581,202). The actual position of the printed pattern and circuit object needs to be accurately measured (within the micron level). SUMMARY OF THE INVENTION 3 5 200912804 Summary of the Invention A method for "evaluating a partial opening of a printed circuit board - a lower layer, the method comprising the steps of: receiving a lower portion that is seen through a borehole in an upper layer Image information; wherein the holes are drilled by a drilling system 5, the drilling system is more accurate than the mechanical component, and the mechanical component introduces a mechanical motion in the optical image information-light acquisition; and according to the image information Determine the local deformation of the lower layer. The method can include drilling a hole through a drilling machine. The method can include determining an upper layer deformation of the pre-drilled hole and drilling the upper layer according to the pre-drilled 10 hole. The S-hai method can include receiving image information representative of the upper layer and the lower layer portions; and calculating the distance between the boreholes by using image processing. The a method may include repeating the receiving and determining steps for each of the plurality of sets of layers to determine a local deformation of each pair of layers; each set of layers 15 includes layers that are ideally identical to each other Pairing; and matching the layer pairs of different sets of layers according to the deformation of the lower layer of each pair of layers. The method can include optically obtaining an image of the pair of layers of the printed circuit board. The method can include generating a deformation vector representative of the deformations and updating a deformation data structure with the deformation vector. The method can include transmitting a deformation vector to a drilling system. The method can include drilling a hole through a drilling machine based on information obtained in a previous iteration of the receiving and determining step. A system for evaluating local deformation of a lower layer of a printed circuit board, the system comprising: a memory single S for storing image information representing a lower portion of the through hole in the upper layer The hole is made up of a drilling system, the mechanical element, which is mechanically moved in the optical acquisition of optical image information; a processor is adapted to be based on the image The information determines the local deformation of the lower layer. The system can include the drilling system. The processor may be adapted to determine an upper layer deformation of the pre-drilled hole, and wherein the drilling system is drilled according to the upper layer deformation of the pre-drilled hole. r 10 distance. _ The memory unit 71 can store images representing the upper layer and the lower layer portions, and the method of calculating the data between the drill holes by using the image processing can be adapted to repeatedly store image information and for multiple groups. Each pair of layers in the layer determines local deformation; wherein each group includes layers of layers that are ideally identical to each other; and wherein the processor causes different groups according to the deformation of the 15 layers of each pair of layers The layer pairs of the layer are matched between each other. The system can include an image acquisition unit that optically obtains an image of the pair of layers of the printed circuit board. And the processor can generate a deformation vector representative of the deformations and update a deformation data structure with the deformation vector. The 2〇 1 processor can send a deformation vector to the drilling system. The Hi processor can transmit a BDF to the drilling system that was paid in a previous iteration of the receiving and determining action; wherein the drilling system drills at least one hole based on the information. a computer program product comprising a computer readable medium, the computer 7 0712804 reading media storage instructions for performing the following actions: receiving image information representative of a lower portion that is seen through an iron hole in an upper layer; wherein the holes Drilled by a drilling system that is more accurate than a mechanical component that introduces a mechanical motion in a light acquisition of optical image information; and root 5 determines local deformation of the lower layer based on the image information. The computer program product can include instructions for determining the deformation of the upper layer of the pre-drilled hole and drilling the upper layer according to the deformation of the pre-drilled hole. The computer program product can include instructions for receiving image information representative of the upper layer and the lower layer portions, and for calculating a distance of one turn between the boreholes by using image processing. The computer program product can include instructions for repeating the receiving and determining actions for each of the plurality of sets of layers to determine local deformation of each pair of layers; each set of layers includes ideally complete with each other The same layer pair; and instructions for matching between pairs of 15 layers of different sets of layers according to the deformation of the lower layer of each pair of layers. The computer program product can include instructions for generating a deformation vector representative of the deformations and updating the deformation data structure with the deformation vector. The side computer program product can include instructions for transmitting a warped vector to a drilling system. The computer program is produced. The port may include instructions for drilling a hole in the drilling machine based on information obtained in a previous iteration of the action of receiving and determining. BRIEF DESCRIPTION OF THE DRAWINGS The foregoing and other objects, features, and advantages of the present invention will become more apparent from the detailed description of the appended claims. In the figures, the same reference numerals in different views always represent the same components, wherein: Figure 1 illustrates a PCB and a borehole; Figure 2 illustrates a borehole and a gasket seen through the borehole. 5 Figure 3 illustrates a plurality of drilled holes in a bore coordinate system and a gasket seen through the boreholes in accordance with an embodiment of the present invention; Figure 4 illustrates the PCB in a PCB coordinate system a plurality of sections of the frame; FIG. 5 illustrates a plurality of boreholes in a bore coordinate system and a shim that is seen through the boreholes and two bores 20 (in accordance with an embodiment of the invention) 0, 0) and 20 (N, M); FIG. 6 illustrates a partial deformation vector, a drill hole and a spacer in accordance with an embodiment of the present invention; FIG. 7 illustrates an embodiment in accordance with the present invention A partial deformation map; 15 Figure 8 illustrates a method in accordance with an embodiment of the present invention; and Figure 9 illustrates a system in accordance with an embodiment of the present invention. [Embodiment 3] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A system, method and computer program product are provided. Local deformation is evaluated by processing the image information of the lower portion visible through the borehole in the upper 20 layers. The local deformations can be processed to provide a partial displacement vector deformation map. The upper layer can be a copper layer that is ultimately etched to provide a conductive pattern. Once obtained, these local deformations can be used for a variety of purposes, including but 9 200912804 is not limited to. (i) the adjustment of the original image of the coal rafter to the specific dimensions of the external PCB; ρ Έ } a drilling plan for the hole in the upper layer; (iii) analyzing the parent-pad (shift, direction, etc.) of the lower layer for partial drilling; and matching the layers; ( According to the dimensional change of the lower layer, a system and method for correcting the upper layer utilizes the accuracy of the detection system in a certain sense. The meaning of the first hole means that the accuracy of the hole (for example, the accuracy of the χγ plane) is superior to the detection of the layer body. # 10 15 The accuracy of the mechanical motion introduced by the image acquisition. By using these systems, the deformation assessment can benefit from the superior accuracy of the drilling system while obtaining images using the lower accuracy detection system. The degree of accuracy of the above-mentioned mechanical motion during the scanning of the upper layer during the scanning of the upper layer, etc., at least partially compensates for the mechanical inaccuracy introduced by the sin detection system. Local A lower shift may - ㈣ure object feature) (or a member thereof characteristics - Part) relative to its desired position - define the deviation. From assessing the spatial relationship between the location of a borehole and the feature of the underlying layer, the deviation can be estimated, wherein the object feature of the lower layer can (or should) be seen (or at least a portion thereof) Can be seen). Conveniently, (4) the borehole is aligned with the features of the lower layer, and the misalignment between the borehole and the feature of the lower layer indicates a local deformation. For example, the object features may be (d), and the material holes may be interconnecting holes, which are then filled with a conductive material to provide an interconnect. 20 200912804 Conveniently, the holes are not used as a via The drill holes used can be drilled to note that the holes used to interconnect the drill can be widened for better viewing of the lower layer. ~ It should be noted that the cross-section of the borehole may be larger than the size of an object feature below the borehole, substantially equal to the size of the object feature or less than the size of the object feature. If the cross-face of the bore is larger than the size of the lower-object feature below the bore, then a smaller local deformation can be detected. 10 11 A map of the local deformation of one or more portions of the lower layer or even the entire lower layer may be provided by evaluating the spatial relationship between the plurality of boreholes located at different locations and corresponding object features. The holes may be drilled by conventional drilling systems such as, but not limited to, the drilling system E s 丨 5 3 3 q or the Hitachi Mirror PCB LCO-1A21E, which are approximately a few Micron or smaller HY positioning resolution (accuracy) drilling.

出 省鑽孔系統可以根據-預定義的鑽孔圖案鑽出該等鑽 孔。該鑽孔系統也可以對預鑽孔上層變形做出回應。藉由 比較界標(也稱為目標或對齊目標)的位置與它們的期望的 20 位置’該預鑽孔上層變形可被評估。 藉由製造多對層體,然後處理這些層體(例如藉由曝光 及触刻),-PCB可被製造。每1這種層體可以包括位於 -下層上方的-上層。該上層可以包括_導電(非透通)表面 及鑽孔。該下層可以包括諸如但不限於塾片之物件特徵。 200912804 每一對層體與其他對層體可以分別地被評估,但是沒有必 要這樣。 該方法及使用—非料掃描系統來準確地 (與一鑽孔系統可以實現的_樣的準確)量測感興趣之物件 5的位置。局料移向量⑽件對祕)被轉換錢來被其他 PCB整合系統使用的變形圖。 方便地,-種方法被提供。它包括下列步驟:⑴將已 知且精密定位的界標(諸如鑽孔或其他)的—網格(gdd)放置 在物件的-上層,(11)掃描該物件以獲得一或較多個框, H)其提供該上層及該等界標的__影像;㈣利用—圖案匹配方 法定位該等界標;(iv)在每—被掃描的單位影像中相對於在 此單位影像中被發現的—界標來定位感興趣之物件 (001); (V)產生變形向量,該等變形向量是該〇〇1相對於一 單位影像中的該界標的位移向量;(vi)記錄每一變形向量及 15 產生一變形圖資料庫。 第1圖是PCB 10及多個鑽孔20的一影像。該等多個鑽孔 形成一準確的鑽孔圖案。此圖案可在考慮上層(已被鑽孔的 層體)之變形的同時被鑽出。藉由以上所提及的在目標的實 際位置及這些目標的期望位置之間的比較,這些變形可被 20評估。因此,藉由事先在該PCB上量測界標位置及計算該 PCB對期望的CAD(電腦輔助設計)資訊的比例因數該鑽孔 系統還可考慮到該P C B的比例因數(由於膨脹或收縮導致)。 苐2圖疋鑽孔(藉由虛線圓圈20說明)的_影像,透過該 鑽孔’墊片30是可看見的。墊片30及鑽孔2〇被期望是同心 12 200912804 的。第2圖的那些墊片30及鑽孔2〇不是同心的且孔2〇的中 心離塾片30的中心的偏差反映包括墊片_ —下層的 部變形。 成像系統可以是-自動光學檢測系統,其包括具有一 5攝影機、光學系統的一掃瞒器及諸如一 χ々平台(χ·γ、灿⑹ 及電腦視覺系統的-機械元件。在該影像獲取階段,該χ Υ 平台機械地移動該PCB(或一對層體)。 第3圖說明了根據本發明的一實施例的一鑽孔座標系 統中多個鑽孔20及透過該等鑽孔20看到的墊片3〇。該鑽孔 10座標系統繼承該鑽孔系統的尺寸準確度。 第5圖S兒明了根據本發明的一實施例的一鑽孔座標系 統中多個鑽孔20及透過該等鑽孔20看到的墊片30以及兩個 已定位鑽孔Cr(0,0)20(0,0)及Cr(N,M)20(N,M)。第6圖說明了 根據本發明的一實施例的局部變形向量6〇(n,m)、鑽孔 15 20(n,m)及墊片30(n,m)。第7圖說明了根據本發明的一實施 例的局部變形圖42。此圖包括多個鑽孔20、多個墊片30及 形成該圖的多個局部變形向量60。 局部變形圖42提供了關於一上層之不同位置處的局部 變形的資訊。由於該鑽孔系統的高準確度及該AOI的影像處 2〇 理能力,該等鑽孔之位置及相應地該等局部變形之位置(該 等局部變形發生的位置)高度的準確。 第4圖說明了在一PCB座標系統中一PCB之多個部分的 框50( 1,1 )-50(J,K)。這些框被排列以在一框座標系統中形成 一矩形網格。該等框能部分地重疊以防止在該PCB覆蓋範 13 200912804 圍中的間隙。此重疊在第4圖中未被顯示出。 包括一對層體的一物件被放置在AOI的X-Y平台的了頁 部且被夾緊’該對層體包括一上層(已被鑽孔的層體)及一下 層。 5 該A01系統掃描該物件並獲取多個框50(1,1)- 50(J,K)。掃描可以是快的且可包括利用一陣列CCD攝影 機、一線性CCD攝影機或多個攝影機。 方便地’每一孔被多個像素“覆蓋,,,因此容許以低於 孔直徑的解析度評估該變形。 10 使用圖案匹配演算法,在該框座標系統及該鑽孔座標 系統中,一第一鑽孔20(0,0)的位置被建立且它的中心(cd) 的位置被計算。 該框中的任一其他孔離此鑽孔2〇(〇,〇)的中心的距離且 特別是與該孔的中心的距離在此框及鑽孔座標系統内被量 15測且被轉換成物理單位(例如微米),因此一變形向量被形成 如在第6圖中所說明。 要注意,框50(0,0)-50(N,M)中的每一框可以包括一或 較多鑽孔。當這樣一種框被處理時,一第一鑽孔被發現, 且然後基於這些鑽孔之間的被期望的距離其他鑽孔可被發 20 現。 在一框内或在相鄰框中發現的每一緊接在後的鑽孔的 位置以鑽孔座標系統單位被計算(基於CAD資料尺寸及在 鑽孔校正程序中發現的該PCB比例因數)。 從現在起鑽孔及物件被圖案匹配(藉由該視覺系統)且 200912804 它們之間的距離被計算。 每一被發現的物件相對於該鑽孔位置的位移向量被記 錄在諸如圖42之一總體變形圖中。 該總體變形圖從現在起可被使用在其他機器中(例 5 如,取放、焊接、SMT等)以便準確地到達操作的位置。 根據本發明的一實施例一單一物件由多對(例如G對) 不同的層體組成。應該被用以形成R個物件的一批層體被評 估,以便找到GxR對中的每一對的變形。這些變形被量測 以後,R組對(每一組包括G對)根據該GxR對的變形被選 10 擇。換句話說,不同對的變形被互相匹配。 第8圖說明了用以評估一印刷電路板的下層的局部變 形的方法200。 方法200以決定預鑽孔上層變形的步驟210開始。藉由 在目標的實際位置及它們的期望位置之間進行比較,這些 15 預鑽孔上層變形可被決定。該預鑽孔上層變形是,在上層 中孔被鑽出以前,該上層與理想的未變形狀態的偏差。 步驟210後面是藉由鑽孔機器鑽孔的步驟220。該鑽孔 動作可以對於該預鑽孔上層變形或在方法200的後面步驟 中得到的變形資訊做出回應。例如,諸如步驟240的一變形 20 向量之資訊可被用於更新該鑽孔處理。鑽孔使被連接到該 上層的一下層的多個部分暴露。比一機械元件準確的一鑽 孔系統鑽出該等孔,該機械元件在以光學方式獲得光學影 像資訊的步驟230中引入一機械運動。 步驟220後面是以光學方式獲得影像資訊的步驟230, 15 200912804 該影像資訊代表透過上層中的鑽孔看到的下層部分。步驟 230可以包括以光學方式獲得一或較多框,特別是一或較多 略有重疊的框。步驟230也可以包括將該影像資訊的格式轉 換成一電腦可讀格式。 5 步驟230後面是根據該影像資訊決定該下層的局部變 形的步驟240。 步驟240可以包括藉由應用影像處理來計算鑽孔之間 的距離。步驟240可以包括在一框内定位一第一鑽孔及然後 藉由使用反映該等不同鑽孔之間的期望距離的距離資訊, 10 搜尋一個或其他孔。 步驟240可以包括產生代表變形的一變形向量及用該 變形向量更新一變形資料結構。 方便地,步驟240後面可以是步驟210。步驟240中產生 的該變形向量可以被發送到該鑽孔機器或者在步驟220的 15 下次疊代中被使用。 因此,該鑽孔處理可以以一疊代方式被執行,其中在 步驟210-240的某一疊代中獲得的資訊被用於更新步驟 210-240的下次疊代的鑽孔。 要注意,代表該等鑽孔的位置的資訊可以與期望的鑽 20 孔位置相比較且不匹配可以歸因於鑽孔系統誤差。 對於來自多組層體的每一對層體,步驟210-240可被重 複。每一組層體包括理想地彼此完全相同的層體對。在這 樣一重複以後,方法200可以根據每一對層體的下層的變形 來繼續使不同組層體的層體對之間匹配的步驟250。 16 200912804The exit drilling system can drill these drill holes according to a predefined drilling pattern. The drilling system also responds to the deformation of the pre-drilled upper layer. The pre-drilled upper layer deformation can be evaluated by comparing the positions of the landmarks (also referred to as targets or alignment targets) with their desired 20 positions. The -PCB can be fabricated by fabricating pairs of layers and then processing the layers (e.g., by exposure and etch). Each of such layers may include an upper layer located above the lower layer. The upper layer may include a conductive (non-transparent) surface and a bore. The lower layer may include object features such as, but not limited to, a cymbal. 200912804 Each pair of layers and other pairs of layers can be evaluated separately, but this is not necessary. The method and the use of a non-material scanning system accurately measure the position of the object of interest 5 (accurately with a drilling system). The material shift vector (10) is the same as the deformation map used by other PCB integration systems. Conveniently, a method is provided. It comprises the steps of: (1) placing a grid of known and precisely positioned landmarks (such as drilled holes or other) on the upper layer of the object, and (11) scanning the object to obtain one or more frames, H) providing the upper layer and the __ images of the landmarks; (4) locating the landmarks using the pattern matching method; (iv) identifying the landmarks in each unit image being scanned relative to the unit image being scanned To locate the object of interest (001); (V) to generate a deformation vector, which is the displacement vector of the 〇〇1 relative to the landmark in a unit image; (vi) record each deformation vector and generate 15 A deformation map database. Figure 1 is an image of the PCB 10 and a plurality of drilled holes 20. The plurality of drilled holes form an accurate drilling pattern. This pattern can be drilled while considering the deformation of the upper layer (the layer that has been drilled). These variations can be evaluated by 20 by comparison between the actual position of the target and the desired position of the targets mentioned above. Therefore, the drilling system can also take into account the scale factor of the PCB (due to expansion or contraction) by measuring the landmark position on the PCB in advance and calculating the scale factor of the PCB for the desired CAD (Computer Aided Design) information. . The _ image of the borehole (illustrated by the dashed circle 20) through which the shims 30 are visible. Shim 30 and bore 2 are expected to be concentric 12 200912804. The spacers 30 and the bores 2 of Fig. 2 are not concentric and the deviation of the center of the aperture 2 from the center of the diaphragm 30 reflects the deformation of the spacer including the spacer. The imaging system may be an automatic optical inspection system comprising a broom having a 5 camera, an optical system, and a mechanical component such as a cymbal platform (χ·γ, 灿(6), and a computer vision system). The χ 机械 platform mechanically moves the PCB (or a pair of layers). Figure 3 illustrates a plurality of bores 20 in a borehole coordinate system and through the bores 20 in accordance with an embodiment of the present invention. The shimming 3 〇. The drilling 10 coordinate system inherits the dimensional accuracy of the drilling system. FIG. 5B illustrates a plurality of bores 20 and through a borehole coordinate system in accordance with an embodiment of the present invention. The shim 30 seen by the bores 20 and the two positioned bores Cr(0,0)20(0,0) and Cr(N,M)20(N,M). Figure 6 illustrates A local deformation vector 6 〇 (n, m), a bore 15 20 (n, m), and a spacer 30 (n, m) according to an embodiment of the present invention. FIG. 7 illustrates an embodiment in accordance with an embodiment of the present invention. Local deformation map 42. This figure includes a plurality of bores 20, a plurality of spacers 30, and a plurality of local deformation vectors 60 forming the map. The local deformation map 42 provides information about an upper layer. Information on the local deformation at the same location. Due to the high accuracy of the drilling system and the 2 processing capabilities of the image of the AOI, the location of the boreholes and corresponding locations of the local deformations (the local deformations occur) Position) Highly accurate. Figure 4 illustrates the frame 50(1,1)-50(J,K) of multiple parts of a PCB in a PCB coordinate system. These frames are arranged in a frame coordinate system. A rectangular grid is formed in the frame. The frames can be partially overlapped to prevent a gap in the circumference of the PCB cover. The overlap is not shown in Fig. 4. An object including a pair of layers is placed. The page portion of the XY platform of the AOI is clamped 'the pair of layers includes an upper layer (the layer that has been drilled) and the lower layer. 5 The A01 system scans the object and obtains a plurality of frames 50 (1, 1) - 50 (J, K). Scanning can be fast and can include the use of an array of CCD cameras, a linear CCD camera or multiple cameras. Conveniently 'each hole is "covered by multiple pixels," and thus allows The deformation is evaluated at a resolution lower than the hole diameter. 10 Using a pattern matching algorithm In the frame coordinate system and the drill coordinate system, the position of a first bore 20 (0, 0) is established and the position of its center (cd) is calculated. Any other hole in the box is away from this The distance between the center of the borehole (〇, 〇) and especially the distance from the center of the bore is measured in this frame and the bore coordinate system and converted into physical units (eg micrometers), thus a deformation The vector is formed as illustrated in Figure 6. It is noted that each of the blocks 50(0,0)-50(N,M) may include one or more holes. When such a frame is processed A first borehole is found, and then other boreholes can be made based on the desired distance between the boreholes. The position of each immediately following borehole found in a frame or in an adjacent frame is calculated in units of drilled coordinate systems (based on the CAD data size and the PCB scale factor found in the borehole calibration procedure) . From now on, the holes and objects are pattern matched (by the vision system) and 200912804 the distance between them is calculated. The displacement vector of each found object relative to the drilled position is recorded in an overall deformation map such as that of Figure 42. The overall deformation map can be used in other machines from now on (e.g., pick and place, welding, SMT, etc.) to accurately reach the position of the operation. According to an embodiment of the invention, a single object is composed of a plurality of pairs (e.g., G pairs) of different layers. A number of layers that should be used to form R objects are evaluated to find the deformation of each pair of GxR pairs. After these deformations are measured, the R group pairs (each group including the G pair) are selected according to the deformation of the GxR pair. In other words, the deformations of the different pairs are matched to each other. Figure 8 illustrates a method 200 for evaluating a localized deformation of a lower layer of a printed circuit board. The method 200 begins with a step 210 of determining the deformation of the upper layer of the pre-drilled hole. These 15 pre-drilled upper layer deformations can be determined by comparing the actual position of the target and their desired position. The pre-drilled upper layer deformation is the deviation of the upper layer from the ideal undeformed state before the hole in the upper layer is drilled. Step 210 is followed by step 220 of drilling a hole through the machine. The drilling action can be responsive to deformation of the pre-drilled upper layer or deformation information obtained in a later step of method 200. For example, information such as a variant 20 vector of step 240 can be used to update the drilling process. The drilling exposes portions of the lower layer that are connected to the upper layer. The holes are drilled into a borehole system that is accurate than a mechanical component that introduces a mechanical motion in a step 230 of optically obtaining optical image information. Step 220 is followed by a step 230 of optically obtaining image information, 15 200912804. The image information represents the lower portion seen through the borehole in the upper layer. Step 230 may include optically obtaining one or more frames, particularly one or more slightly overlapping frames. Step 230 can also include converting the format of the image information into a computer readable format. Step 230 is followed by a step 240 of determining a local deformation of the lower layer based on the image information. Step 240 can include calculating the distance between the boreholes by applying image processing. Step 240 can include positioning a first bore in a frame and then searching for one or the other holes by using distance information reflecting a desired distance between the different bores. Step 240 can include generating a deformation vector representative of the deformation and updating a deformation data structure with the deformation vector. Conveniently, step 240 may be followed by step 210. The deformation vector generated in step 240 can be sent to the drilling machine or used in the next iteration of step 15 of step 220. Thus, the drilling process can be performed in an iterative manner, wherein the information obtained in a certain iteration of steps 210-240 is used to update the next iteration of drilling of steps 210-240. It is noted that information representative of the location of the boreholes can be compared to the desired position of the borehole 20 and the mismatch can be attributed to the borehole system error. For each pair of layers from multiple sets of layers, steps 210-240 can be repeated. Each set of layers includes pairs of layers that are ideally identical to one another. After such a iteration, method 200 can continue to step 250 to match the pairs of layers of different sets of layers according to the deformation of the lower layers of each pair of layers. 16 200912804

然後被檢測時,一已被 (或修改)另一層體的製造。 —實施例用以評估一印刷 檢測的層體的結構可被用於修正(或修 第9圖說明了根據本發明的— 電路板的下層的局部變形的系統3〇〇。 5 /系統300可以包括記憶體單元310及處理器320。該記憶 體早兀储存影像資訊且該處理器處理此資訊。 根據本發明的一實施例,如第9圖中所描述,系統300 也包括影像獲取系統330及機械元件340。影像獲取系統330 可以包括光學器件及一或較多攝影機。 1〇 卩上所提及的這些元件可以組成-AOI系統360。 、根據本發明的-實施例,如第9圖中所描述,系統綱 進一步包括鑽孔系統350。 °己^體單70310儲存代表透過一上層中的鑽孔被看到 的下層邛刀的影像資訊。該等孔被鑽孔系統350鑽出,該鑽 15孔系統35Gtt機獻件3辦確,該機械元件在光學影像資 ^的光獲取期間引入一機械運動。處理器320適於根據該影 像資訊決定該下層的局部變形。 方便地,處理器320適於決定預鑽孔上層變形,且鑽孔 系統350根棣該預鑽孔上層變形鑽孔。 2〇 °己匕體單元310儲存代表該上層及該等下層部分的影 像貝3孔。藉由運用影像處理,處理器320計算鑽孔之間的距 系、、.〇〇可重複地儲存影像資訊及為多組層體中的每 對層體决定局部變形;其中每一組層體包含理想地彼此 17 200912804 完全相同的層體對。根據每一對層體的下層的變形,處理 器320可使不同組層體的層體對之間匹配。 處理器320還可產生代表該等局部變形的一變形向 量。它還可用此變形向量更新一變形資料結構。該變形資 5 料結構可包括多層的局部變形。此資訊可被用於層體對之 間的匹配、處理控制等。 要注意,代表該等鑽孔的位置的資訊與期望的鑽孔位 置之比較可由處理器320或由鑽孔系統350來進行,且不匹 配可以歸因於該鑽孔系統。 10 藉由使用習知的工具、方法,及元件,本發明可被實 施。因此,這種工具、元件,及方法的細節於此不被詳細 地闡述。在前面描述中,為了提供對本發明的一完全的理 解,許多特定細節被闡述。然而,應該認識到在不憑藉被 特別地闡述的細節的情況下本發明可以被實施。 15 在本揭露中只本發明的示範性實施例及它的通用性的 幾個實例被顯示及描述。應該理解的是本發明能夠用在各 種其他組合及環境中,及在此中所表達的發明概念的範圍 内能夠被改變或修改。 t圖式簡單說明 20 第1圖說明了一 PCB及鑽孔; 第2圖說明了一鑽孔及透過該鑽孔看到的一墊片; 第3圖說明了根據本發明的一實施例的一鑽孔座標系 統中多個鑽孔及透過該等鑽孔看到的墊片; 第4圖說明了在一 P C B座標系統中該P C B之多個部分的 18 200912804 框; 第5圖說明了根據本發明的一實施例的一鑽孔座標系 統中多個鑽孔及透過該等鑽孔看到的墊片以及兩個鑽孔 20(0,0)及20(N,M); 5 第6圖說明了根據本發明的一實施例的一局部變形向 量、一鑽孔及一墊片; 第7圖說明了根據本發明的一實施例的一局部變形圖; 第8圖說明了根據本發明的一實施例的一方法;及 第9圖說明了根據本發明的一實施例的一系統。 10 【主要元件符號說明】 300…系統 310···記憶體單元 320…處理器 330…影像獲取系統 333…物件 340···機械元件 350···鑽孔系統 3 60…自動光檢測系統 10…刷電路板 20…鑽孔/孔/虛線圓圈 20(n,m)…鑽孔 30, 30(n,m)…塾片 42…局部變形圖 50(1,1) —50(N,M)…框 60, 60(n,m)…局部變形向量 200…方法 210-250…步驟 19Then when it is detected, one has been (or modified) the manufacture of another layer. - Embodiments for evaluating the structure of a printed detection layer can be used for correction (or Figure 9 illustrates a system for local deformation of the lower layer of a circuit board according to the present invention. 5 / System 300 can The memory unit 310 and the processor 320 are included. The memory stores image information as early as possible and the processor processes the information. According to an embodiment of the invention, the system 300 also includes an image acquisition system 330, as described in FIG. And a mechanical component 340. The image acquisition system 330 can include optics and one or more cameras. The components mentioned above can comprise an -AOI system 360. According to an embodiment of the invention, as shown in Figure 9. As described in the above, the system further includes a drilling system 350. The storage unit 70310 stores image information representative of the lower layer boring machine that is seen through the borehole in an upper layer. The holes are drilled by the drilling system 350. The drilling 15 hole system 35Gtt machine 3 determines that the mechanical component introduces a mechanical motion during the optical acquisition of the optical image. The processor 320 is adapted to determine the local deformation of the lower layer based on the image information. The processor 320 is adapted to determine the upper layer deformation of the pre-drilled hole, and the drilling system 350 deforms the upper layer of the pre-drilled hole. The 2匕° 匕 body unit 310 stores images representing the upper layer and the lower layer portions. By using image processing, the processor 320 calculates the distance between the boreholes, and can repeatedly store image information and determine local deformation for each pair of layers in the plurality of layers; The layered body comprises pairs of layers that are ideally identical to each other 17 200912804. Depending on the deformation of the lower layer of each pair of layers, the processor 320 can match the pairs of layers of different sets of layers. The processor 320 can also generate A deformation vector representing the local deformations. It can also be used to update a deformation data structure with the deformation vector. The deformation material structure can include multiple layers of local deformation. This information can be used for matching and processing between layer pairs. Control, etc. It is noted that the comparison of the information representative of the location of the boreholes with the desired borehole position may be made by the processor 320 or by the borehole system 350, and the mismatch may be attributed to the borehole system. by The present invention can be implemented by conventional tools, methods, and components. Accordingly, the details of such tools, components, and methods are not described in detail herein. In the foregoing description, in order to provide a complete It is understood that many specific details are set forth. However, it should be appreciated that the invention may be practiced without the specific details set forth. 15 In the present disclosure, only exemplary embodiments of the invention and its versatility A few examples are shown and described. It is to be understood that the present invention can be modified or modified within the scope of the various other combinations and environments, and the scope of the inventive concepts disclosed herein. The figure illustrates a PCB and a borehole; Figure 2 illustrates a borehole and a shim seen through the borehole; and Figure 3 illustrates a plurality of borehole coordinate systems in accordance with an embodiment of the present invention. Drilling and shims seen through the holes; Figure 4 illustrates an 18 200912804 frame of portions of the PCB in a PCB coordinate system; Figure 5 illustrates an embodiment in accordance with an embodiment of the present invention a plurality of boreholes in the bore coordinate system and the shim seen through the boreholes and two bores 20(0,0) and 20(N,M); 5 Figure 6 illustrates a A partial deformation vector, a drill hole and a spacer of the embodiment; FIG. 7 illustrates a partial deformation diagram according to an embodiment of the invention; and FIG. 8 illustrates a method according to an embodiment of the invention; And Figure 9 illustrates a system in accordance with an embodiment of the present invention. 10 [Description of main component symbols] 300...System 310···Memory unit 320...Processor 330...Image acquisition system 333...Object 340···Mechanical component 350···Drilling system 3 60...Automatic light detection system 10 ...brush circuit board 20...drilling/hole/dashed circle 20(n,m)...drilling 30, 30(n,m)...塾42...local deformationFig.50(1,1)—50(N,M )...box 60, 60(n,m)...local deformation vector 200...method 210-250...step 19

Claims (1)

200912804 十、申請專利範圍: 1. 一種用以評估一印刷電路板的一下層的局部變形的方 法,該方法包含以下步驟: 接收代表透過一上層中的鑽孔被看到的下層部分 的影像資訊;其中該等孔被一鑽孔系統鑽出,該鑽孔系 統比一機械元件準確,該機械元件在光學影像資訊的一 光獲取期間引入一機械運動; 及根據該影像資訊決定該下層的局部變形。 2. 如申請專利範圍第1項所述之方法,其包含以下步驟: 由鑽孔機器鑽孔。 3. 如申請專利範圍第1項所述之方法,其包含以下步驟: 決定預鑽孔上層變形,及根據該預鑽孔上層變形鑽孔。 4. 如申請專利範圍第1項所述之方法,其包含以下步驟: 接收代表該上層及該等下層部分的影像資訊;及藉由運 用影像處理,計算鑽孔之間的距離。 5. 如申請專利範圍第1項所述之方法,其包含以下步驟: 對來自多組層體的每一對層體重複該接收及決定之步 驟以決定每一對層體的局部變形;每一組層體包含理想 地彼此完全相同的層體對;及根據每一對層體的該下層 的變形使不同組層體的層體對之間匹配。 6. 如申請專利範圍第1項所述之方法,其包含以下步驟: 以光學方式獲得該印刷電路板的該對層體的一影像。 7. 如申請專利範圍第1項所述之方法,其包含以下步驟: 產生代表該等變形的一變形向量,及用此變形向量更新 20 200912804 一變形資料結構。 8. 如申請專職圍第1項所述之方法,其包含以下牛 發送一變形向量到一鑽孔系統。 少 9. 如申請專利範圍第1項所述之方法 根據在該接收及決定之步驟的— 資訊,由該鑽孔機器鑽孔。 ,其包含以下步驟: 先前疊代期間獲得的 10. f 一種用以評估一印刷電路板的一 統,該系統包括: 下層的局部變形的系 j用以儲存代表透過-上層中的鑽孔被看到的下層 部分的影像資訊的-記憶體單其中該等孔被—鑽子二 系統鑽出’該鑽孔純比i械元件M,該機械元件 在光學影像資訊的光獲取期間引入一機械運動; 處理器’適於根據該影像資訊決定該下層的局部 統’其包含該鑽孔系 U·如申請專利範圍第10項所述之系 統0 申π專利範圍第1G項所述之系統,其中該處理器適於 決定預鑽孔上層變形,及其中_1 ㈣根據該預鑽孔 上層變形鑽孔。 •如申明專利範圍第1G項所述之系統,其_該記憶體單元 儲存代表該上層及該等下層部分的影像資訊;及該處理 器藉由運用影像處理來計算鑽孔之間的距離。 4.如申凊專利範圍第1〇項所述之系統,其適於重複儲存影 像資说及重複為多組層體中的每一對層體決定局部變 21 200912804 形;其中每一組層體包含理想地彼此完全相同的層體 對;及其中該處理器根據每一對層體的該下層的變形使 不同組層體的層體對之間匹配。 15. 如申請專利範圍第10項所述之系統,其包含一影像獲取 單元,其以光學方式獲得該印刷電路板的該對層體的一 影像。 16. 如申請專利範圍第10項所述之系統,其中該處理器產生 代表該等變形的一變形向量,及用此變形向量更新一變 形資料結構。 17. 如申請專利範圍第10項所述之系統,其中該處理器發送 一變形向量到一鑽孔系統。 18. 如申請專利範圍第10項所述之系統,其中該處理器發送 在該接收及決定之動作的一先前疊代期間獲得的資訊 到一鑽孔系統;其中該鑽孔系統根據該資訊鑽出至少一 個孔。 19. 一種包含一電腦可讀媒體的電腦程式產品,該電腦可讀 媒體儲存用以執行下列動作的指令: 接收代表透過一上層中的鑽孔被看到的下層部分 的影像資訊;其中該等孔被一鑽孔系統鑽出,該鑽孔系 統比一機械元件準確,該機械元件在光學影像資訊的一 光獲取期間引入一機械運動; 及根據該影像資訊決定該下層的局部變形。 20. 如申請專利範圍第19項所述之電腦程式產品,其包含用 以決定預鑽孔上層變形,及根據該預鑽孔上層變形鑽孔 22 200912804 的指令。 21. 如申請專利範圍第19項所述之電腦程式產品,其包含用 以接收代表該上層及該等下層部分的影像資訊,及藉由 運用影像處理計算鑽孔之間的距離的指令。 22. 如申請專利範圍第19項所述之電腦程式產品,其包含用 以執行下列動作的指令:對來自多組層體的每一對層體 重複該接收及決定之動作以決定每一對層體的局部變 形;每一組層體包含理想地彼此完全相同的層體對;及 根據每一對層體的該下層的變形使不同組層體的層體 對之間匹配。 23. 如申請專利範圍第19項所述之電腦程式產品,其包含用 以產生代表該等變形的一變形向量及用此變形向量更 新一變形資料結構的指令。 24. 如申請專利範圍第19項所述之電腦程式產品,其包含用 以發送一變形向量至一鑽孔系統的指令。 25. 如申請專利範圍第19項所述之電腦程式產品,其包含用 以根據在該接收及決定之動作的一先前疊代期間獲得 的資訊,由該鑽孔機器鑽孔的指令。 23200912804 X. Patent Application Range: 1. A method for evaluating local deformation of a lower layer of a printed circuit board, the method comprising the steps of: receiving image information representative of a lower portion that is seen through a borehole in an upper layer Where the holes are drilled by a drilling system that is more accurate than a mechanical component that introduces a mechanical motion during a light acquisition of optical image information; and determines a portion of the lower layer based on the image information Deformation. 2. The method of claim 1, wherein the method comprises the steps of: drilling a hole by a drilling machine. 3. The method of claim 1, wherein the method comprises the steps of: determining a deformation of the upper layer of the pre-drilled hole, and drilling the upper layer according to the deformation of the pre-drilled hole. 4. The method of claim 1, comprising the steps of: receiving image information representative of the upper layer and the lower portions; and calculating a distance between the boreholes by using image processing. 5. The method of claim 1, comprising the steps of: repeating the receiving and determining steps for each pair of layers from the plurality of sets of layers to determine local deformation of each pair of layers; A set of layers includes pairs of layers that are ideally identical to one another; and pairs of pairs of layers of different sets of layers are matched according to the deformation of the lower layer of each pair of layers. 6. The method of claim 1, comprising the steps of: optically obtaining an image of the pair of layers of the printed circuit board. 7. The method of claim 1, comprising the steps of: generating a deformation vector representative of the deformations, and updating the deformation data structure with the deformation vector. 8. If applying for the method described in item 1 of the full-time division, it includes the following cattle to send a deformation vector to a drilling system. Less 9. The method described in item 1 of the patent application is drilled by the drilling machine according to the information at the step of receiving and determining. The method includes the following steps: 10. f obtained during the previous iteration. A system for evaluating a printed circuit board. The system includes: a portion of the lower layer of local deformation for storing the representative of the through hole in the upper layer. The image information of the lower part of the memory-memory list in which the holes are drilled by the drill two system 'the hole is purely i-component M, which introduces a mechanical movement during the light acquisition of the optical image information The processor is adapted to determine the local system of the lower layer according to the image information, which comprises the system of the drilling system U. The system described in claim 10 of the system of claim 10, wherein The processor is adapted to determine the deformation of the upper layer of the pre-drilled hole, and wherein the _1 (4) is drilled according to the deformation of the upper layer of the pre-drilled hole. • The system of claim 1G, wherein the memory unit stores image information representative of the upper layer and the lower portions; and the processor calculates the distance between the boreholes by using image processing. 4. The system of claim 1, wherein the system is adapted to repeatedly store image information and repeat to determine a local variation for each pair of layers in the plurality of layers; each of the layers The body comprises pairs of layers that are ideally identical to one another; and wherein the processor matches between pairs of layers of different sets of layers according to the deformation of the lower layer of each pair of layers. 15. The system of claim 10, comprising an image acquisition unit that optically obtains an image of the pair of layers of the printed circuit board. 16. The system of claim 10, wherein the processor generates a deformation vector representative of the deformations and updates a deformed data structure with the deformation vector. 17. The system of claim 10, wherein the processor sends a deformation vector to a drilling system. 18. The system of claim 10, wherein the processor transmits information obtained during a previous iteration of the receiving and determining action to a drilling system; wherein the drilling system drills according to the information Out at least one hole. 19. A computer program product comprising a computer readable medium storing instructions for performing the following actions: receiving image information representative of a lower portion that is seen through a borehole in an upper layer; The hole is drilled by a drilling system that is more accurate than a mechanical component that introduces a mechanical motion during a light acquisition of the optical image information; and determines local deformation of the lower layer based on the image information. 20. The computer program product of claim 19, comprising the instructions for determining the upper layer deformation of the pre-drilled hole and the drilling of the upper layer according to the pre-drilled hole 22 200912804. 21. The computer program product of claim 19, comprising instructions for receiving image information representative of the upper layer and the lower layer portions, and calculating a distance between the boreholes by using image processing. 22. The computer program product of claim 19, comprising instructions for performing the following actions: repeating the receiving and determining actions for each pair of layers from the plurality of sets of layers to determine each pair Local deformation of the layer; each set of layers comprises pairs of layers that are ideally identical to each other; and pairs of layers of different sets of layers are matched according to the deformation of the lower layer of each pair of layers. 23. The computer program product of claim 19, comprising instructions for generating a deformation vector representative of the deformation and updating a deformed data structure with the deformation vector. 24. The computer program product of claim 19, comprising instructions for transmitting a deformation vector to a drilling system. 25. The computer program product of claim 19, comprising instructions for drilling a hole in the drilling machine based on information obtained during a previous iteration of the receiving and determining action. twenty three
TW97122169A 2007-06-15 2008-06-13 Method and system for evaluating local distortions TW200912804A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US94410507P 2007-06-15 2007-06-15

Publications (1)

Publication Number Publication Date
TW200912804A true TW200912804A (en) 2009-03-16

Family

ID=40130292

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97122169A TW200912804A (en) 2007-06-15 2008-06-13 Method and system for evaluating local distortions

Country Status (2)

Country Link
TW (1) TW200912804A (en)
WO (1) WO2008152649A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9645097B2 (en) 2014-06-20 2017-05-09 Kla-Tencor Corporation In-line wafer edge inspection, wafer pre-alignment, and wafer cleaning
US9885671B2 (en) 2014-06-09 2018-02-06 Kla-Tencor Corporation Miniaturized imaging apparatus for wafer edge

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6205364B1 (en) * 1999-02-02 2001-03-20 Creo Ltd. Method and apparatus for registration control during processing of a workpiece particularly during producing images on substrates in preparing printed circuit boards
US6701197B2 (en) * 2000-11-08 2004-03-02 Orbotech Ltd. System and method for side to side registration in a printed circuit imager

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885671B2 (en) 2014-06-09 2018-02-06 Kla-Tencor Corporation Miniaturized imaging apparatus for wafer edge
US9645097B2 (en) 2014-06-20 2017-05-09 Kla-Tencor Corporation In-line wafer edge inspection, wafer pre-alignment, and wafer cleaning

Also Published As

Publication number Publication date
WO2008152649A3 (en) 2010-02-25
WO2008152649A2 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP4418841B2 (en) Working device and calibration method thereof
CN113240674B (en) Coplanarity detection method based on three-dimensional point cloud and two-dimensional image fusion
KR101155816B1 (en) Image processing device and image processing method for performing three dimensional measurements
JP6051301B2 (en) Overlay measuring device, overlay measuring method, and overlay measuring system
JP5270670B2 (en) 3D assembly inspection with 2D images
TWI272395B (en) System and method for confirming electrical connection defects
JP6209833B2 (en) Inspection tool, inspection method, stereo camera production method and system
KR102278879B1 (en) Measuring device, method and display device
KR102422827B1 (en) Charged particle beam system and overlay shift amount measurement method
CN106352806A (en) High-precision calibration method for stereoscopic vision three-dimensional digital image correlation measurement
JP2003522347A (en) Automatic inspection system using stereo images
JP4058421B2 (en) Vibration measuring apparatus and measuring method thereof
US7058474B2 (en) Multi-layer printed circuit board fabrication system and method
US6819789B1 (en) Scaling and registration calibration especially in printed circuit board fabrication
TWI290613B (en) Position detecting method and position detecting device and position detecting system
CN1947149B (en) Calibration system and calibration steps
KR100267809B1 (en) A method of measuring the actual space length by the imaging means, a calibration method of the optical system, and a reference gauge used for calibration of the optical system
JP4189925B2 (en) Surface displacement measuring method and surface displacement measuring apparatus
CN115540775A (en) 3D video extensometer of CCD single-phase machine
US7062354B2 (en) Multi-layer printed circuit board fabrication system and method
TW200912804A (en) Method and system for evaluating local distortions
JP2006317408A (en) Warpage checker
TWI794324B (en) Substrate inspection device, inspection position correction method, position correction information generation method, and position correction information generation system
Schild et al. Assessing the optical configuration of a structured light scanner in metrological use
JP2007033040A (en) Method and device for calibrating optical head part in three-dimensional shape measuring instrument by optical cutting method