200912370 九、發明說明: 【發明所屬之技術領域】 本發明涉及投影技術,特別涉及一種投影鏡頭。 【先前技術】 當前,數位光處理(Digital Light Processing, DLP)投影 儀及採用液晶光閥(Light valve)之液晶顯示(Liquid Crystal Display,LCD)投影儀、石夕晶(Liquid Crystal on Silicon, LCoS) 投影儀已取代陰極射管(Cathode Ray Tube,CRT)投影儀成 為市場主流產品。以往’ CRT投影儀可通過電性補償 (Electrically compensation)修正投影鏡頭之像差,而 DLP, LCD及LCoS投影儀並不具備電性補償能力,因此,要求 應用於DLP, LCD或LCoS投影儀之投影鏡頭具有光學修正 像差之能力’以獲得高品質投影晝面。 另一方面,隨著半導體技術發展,DLP, LCD及LCoS 才又衫儀採用之空間光調制器(Spatial Light Modulator, SLM) ’ 包括數γ立微鏡晶片(Digital Micro-miiror Device, DMD)、液晶顯示面板(LCD panel)及矽晶晶片(LCoS chip), 在提高像素之同時’朝小型化方向發展,以此滿足消費者 對投影晝面品質之要求及便攜性之要求。對應地,投影鏡 頭需提高解析度、縮小尺寸,以配合SLM組成高投影品 質、小尺寸之投影儀。 再有,投影儀產品製造技術趨於成熟,促使產品製造 成本及產品價格降低,投影儀產品開始進入低端消費家庭 娛樂場所。為此,業界推出具有變焦功能之投影鏡頭。具 5 200912370 有變焦功能之投影鏡頭通常包括魏鏡群,通過改變鏡群 間之相對減改變投影_核_,㈣鮮同之投影 場合(不同之投影麟)。如’在”之商業場合(長投影距 離),則採用遠攝倍率(投影鏡頭採用較長有效焦距,視場角 較小),在狹小之家庭絲場合(短投影轉),雌用廣角 倍率(投f彡綱制較短纽焦距,視場驗 儘管如 此,為在各種投影場合獲得大晝幅(Large sc職),投影鏡 頭需具足夠大之視場角(wide angle)。 然而’投影鏡頭之設計存在如下矛盾:提高解析度, 意味需採肖更乡之鏡丨肖除各絲差(AbefmtiGn),投影鏡 頭全長(投影鏡頭第-個光學面到SLM表面之距離)變長。 增大視場肖’絲需魏触錢触大端(近靜端)之鏡 群(負光焦度)之有效焦距’提高負光焦度。然而,鏡群之有 效焦距較短將產生嚴重之單色像差,特別係畸變 (Distortion),投影鏡頭解析度受影響。 【發明内容】 有鑒於此,有必要提供一種高解析度、小尺寸之投影 鏡頭。 一種投影鏡頭’其從放大端到縮小端依次包括:具有 負光焦度之第-鏡群及具有正光焦度之第二鏡群。該投影 鏡頭滿足條件式: -2<F1/Fw<-1.6 ; 1.2<F2/Fw<1.4 ; vg2>56 ° 6 200912370 其中,F1及F2分別為該第一鏡群及該第二鏡群之有 效焦距,Fw為該投影鏡頭之最短有效焦距,vg2為該第二 鏡群所有正光焦度之鏡片之阿貝數平均值。 條件式:-2<F1/Fw<-1.6用於限制該第一鏡群之光焦度 (J/F1),以縮小投影鏡頭全長、獲得足夠大之視場角、控制 單色像差。條件式:12<F2/Fw<14用於限制該第二鏡^之 度,以有效平衡該第一鏡群產生之單色像差,並限制 投影鏡碩全長。條件式vg2>56用於限制橫向色差。 【實施方式】 f參閱圖1及圖2,本發明實施例之投影鏡頭100從 、,j^到縮小知(近SLM端)依次包括具有負光焦度之第一 鏡群1〇及具有正光焦度之第二鏡群20。第一鏡群10及第 、,-兄群20可移動(沿光軸)設置,如此,可通過改變第一鏡 群10與第-并被 鏡鮮20之間之相對位置,改變投影鏡頭1〇〇 1有效焦距,實現變焦功能。具體地,第一鏡群10朝放大 端移動及第—氣群遠離放大端移動’將縮短投影鏡頭 ^ 之有政焦距’反之,增長投影鏡頭100之有效焦距。 :,,,先調整第二鏡群20位置,獲得理想投影距離後, 固疋第一鏡群20 ’通過調整第一鏡群10使投影晝面變清 晰圖1之第二鏡群20位於遠放大端位置,投影鏡頭1〇〇 具有廣角倍率。圖2之第二鏡群20位於近放大端位置,投200912370 IX. Description of the Invention: [Technical Field] The present invention relates to projection technology, and more particularly to a projection lens. [Prior Art] Currently, Digital Light Processing (DLP) projectors and liquid crystal display (LCD) projectors using liquid crystal light valves (Liquid Crystal on Silicon, LCoS) The projector has replaced the cathode ray tube (CRT) projector as the mainstream product in the market. In the past, 'CRT projectors can correct the aberration of the projection lens by electrical compensation. DLP, LCD and LCoS projectors do not have electrical compensation capability. Therefore, they are required to be applied to DLP, LCD or LCoS projectors. The projection lens has the ability to optically correct aberrations' to obtain a high quality projection surface. On the other hand, with the development of semiconductor technology, DLP, LCD and LCoS have adopted the Spatial Light Modulator (SLM), including the Digital Micro-miiror Device (DMD). The liquid crystal display panel (LCD panel) and the crystallized wafer (LCoS chip) are developed in the direction of miniaturization while improving the pixel, thereby satisfying the requirements of the consumer's requirements for the quality of the projection surface and the portability. Correspondingly, the projection lens needs to be improved in resolution and downsized to match the SLM to form a projector with a high projection quality and a small size. Furthermore, projector product manufacturing technology has matured, causing product manufacturing costs and product prices to decrease, and projector products have begun to enter low-end consumer home entertainment venues. To this end, the industry has introduced a projection lens with a zoom function. 5 200912370 Projection lens with zoom function usually includes Wei Jingqun, which changes the projection _core_ by changing the relative subtraction between the mirror groups, and (4) the same projection occasion (different projection lining). For commercial occasions (long projection distance), use telephoto magnification (projecting lens with longer effective focal length, smaller field of view), in narrow family wire occasions (short projection), female wide-angle magnification (Investigating the short focal length of the f彡 system, the field of view is not the case, in order to obtain a large amplitude in various projections (Large sc job), the projection lens needs to have a large enough wide angle. There are contradictions in the design of the lens: the improvement of the resolution means that it is necessary to use the mirror of the home to eliminate the difference (AbefmtiGn), and the total length of the projection lens (the distance from the first optical surface of the projection lens to the surface of the SLM) becomes longer. The large field of view Xiao's silk needs to touch the big end (near static end) of the mirror group (negative power) of the effective focal length 'increased negative power. However, the effective focal length of the mirror group will be serious. Monochromatic aberration, especially Distortion, projection lens resolution is affected. SUMMARY OF THE INVENTION In view of this, it is necessary to provide a high resolution, small size projection lens. A projection lens 'from the amplification end to The narrowing end includes: having a first-mirror group of negative power and a second mirror group having positive power. The projection lens satisfies the conditional expression: -2<F1/Fw<-1.6;1.2<F2/Fw<1.4;vg2>56° 6 200912370 wherein F1 and F2 are the effective focal lengths of the first mirror group and the second mirror group, respectively, Fw is the shortest effective focal length of the projection lens, and vg2 is the Abbe of all positive power lenses of the second mirror group. Number average. Conditional formula: -2<F1/Fw<-1.6 is used to limit the power of the first mirror group (J/F1) to reduce the total length of the projection lens, obtain a sufficiently large field of view, control list Chromatic aberration. Conditional formula: 12 < F2 / Fw < 14 is used to limit the degree of the second mirror to effectively balance the monochromatic aberration generated by the first mirror group, and limit the total length of the projection mirror. Conditional expression vg2 > 56 is used to limit the lateral chromatic aberration. [Embodiment] f Referring to FIG. 1 and FIG. 2, the projection lens 100 of the embodiment of the present invention includes, in order from the j^ to the narrowing (near SLM end), a negative optical power. a mirror group 1〇 and a second mirror group 20 having positive power. The first mirror group 10 and the first, the brother group 20 can be moved (along the optical axis), so that After changing the relative position between the first mirror group 10 and the first and the mirror 20, the effective focal length of the projection lens 1〇〇1 is changed to realize the zoom function. Specifically, the first mirror group 10 moves toward the magnification end and the first- Moving away from the magnifying end of the gas group will shorten the focal length of the projection lens ^, and vice versa, increasing the effective focal length of the projection lens 100. :,,, first adjust the position of the second mirror group 20 to obtain the ideal projection distance, first The mirror group 20' makes the projection pupil surface clear by adjusting the first mirror group 10. The second mirror group 20 of Fig. 1 is located at the far-amplifying end position, and the projection lens 1 has a wide-angle magnification. The second mirror group 20 of FIG. 2 is located near the enlarged end position.
影鏡頭1G0具有遠攝倍率。 作為範例’本實施例之投影鏡頭100應用於DLP投影 儀。投影時’ SLM(DMD,圖未示)調制之投影訊號光自SLM 200912370 表面99投射入投影鏡頭100,依次經第二鏡群2〇及第一 鏡群10,投射於螢幕(圖未示)上便可得到投影晝面。具體 地,DLP投影儀投影時,投影鏡頭1〇〇與Slm表面99間 還設置有玻璃片98以保護SLM。 為得到高解析度、小尺寸之投影鏡頭1〇〇 ,投影鏡頭 100滿足條件式: (1) - 2<F1/Fw<-1.6 ; (2) 1.2<F2/Fw<1.4 ; (3) vg2>56。 其中,F1及F2分別為第一鏡群1〇及第二鏡群2〇之 有效焦距,Fw為投影鏡頭1〇〇之最短有效焦距,為第 一鏡群20所有正光焦度之鏡片之阿貝數平均值。 條件式⑴給出第-鏡群1G之就度(1/F1)與投影鏡頭 100之最大光焦度(1/Fw)之關係’以獲得理想之視場角,並 控制單色像差(在第一鏡群2〇修正之範圍内)qF1/Fw較大, 有利於增大視,場角及縮小投影鏡頭全長,故限定 Fl/Fw>-2。考慮到F1/Fw過小,導致第一鏡群1〇負光焦度 過大’將產生嚴重之單色像差’特別例變,為將崎變控 制在可修正之範圍内,故另限^Fl/Fw<_16。另外,若不 滿足F1/Fw>-2,將導致投影鏡頭100之後焦距(第二鏡群 2〇最後-個光學面到SLM平面之距離)不足;若不滿足 Fl/Fw<-1.6,將產生較嚴重之單色像差。 ,,給出第二鏡群2〇之光焦度(i/F2)與投影鏡頭 取大先焦度(1/FW)之關係,以有效平衡第-鏡群10 200912370 產生之單色像差,並控制投影鏡頭全長。-方面,F2/Fw 較大,利於滿足投影鏡頭縮小端(近SLM端)遠心 ㈤隱㈣成像絲(城,可在—段轉範圍内接收 到清晰投影晝面),而F2/Fw較小,利於縮短投影鏡頭全長。 ^ 一方面二為有效平衡第—鏡群1〇產生之單色像差,需限 疋F2/Fw辄圍。具體地,F2/Fw>1.2有利於控制高階像差, 而F2/Fw<1.2有利於平衡第一鏡群1〇產生之場曲,故限定 1.2<F2/Fw<1.4。 仏件式(3)P艮制第二鏡群2〇之所有正光焦度鏡片之整 體阿貝數,以控制投影鏡頭100產生橫向色差。 具體地,第一鏡群1〇從放大端到縮小端依次包括具有 正光焦度之第一鏡片;u、具有負光焦度之第二鏡片12(新 月形,近放大端為凸面)、具有負光焦度之第三鏡片13及 具有正光焦度之第四鏡片14,以合理分配第一鏡群1〇之 光焦度。 第二鏡群20從放大端到縮小端依次包括具有正光焦 度之第五鏡片21、具有正光焦度之第六鏡片22、具有負光 焦度之第七鏡片23、具有正光焦度之第八鏡片24及具有 正光焦度之第九鏡片25,以合理分配第二鏡群20之光焦 度。 更加具體地,投影鏡頭1〇〇還包括一個設置於第六鏡 月22與第七鏡片23之間之光闌97(Aperture stop),以限制 轴外光線由第七透鏡23進入第六透鏡22而產生較嚴重之 畸變及場曲。另外,光闌97使得經過第七透鏡23之光線 200912370 更加對稱’利於修正彗差(coma)。 以下結合圖3至圖26,以具體實施例進一步說明投影 .兄頭100。具體實施例中,所有鏡片均採用玻璃球面鏡片, 以降低色散及成本。 另外,約定FN。為投影鏡頭1〇〇之光圈數,2ω為投影 鏡項細之視場角,R為對應表面之曲率半徑,D為對應 表面到後一個表面(像側)之軸上距離(兩個表面截得光軸^ 長度),Fl,F2及F分別為第-鏡群10、第二鏡群2〇及投 影鏡頭之有效焦距,Nd為對應鏡片(濾'光片)對d光之折^ 率,vd為d光在對應鏡片(濾、光片)之阿貝數。 、 實施例1 實施例1之投影鏡頭勘滿足表i及表2所列之條 且 Fl=-36.8239 毫米(Millimeter,mm),F2=27 7584mm 表1 ------ 表面 —-- R (mm) D (mm) 第一鏡片放大端 表面 ~_____ 80.25 —、 3.411 第一鏡片縮小端 表面 ~ 287.724 ----— 0.17 第二鏡片放大端 表面 —— 52.611 4.564 第二鏡片縮小端 表面 ---— 15.069 ------>. 8.849 第三鏡片放大端 ---〜 -83.909 —— 1.5 44.8504 1.5156 ίοThe lens 1G0 has a telephoto magnification. As an example, the projection lens 100 of the present embodiment is applied to a DLP projector. During projection, the projection signal light modulated by SLM (DMD, not shown) is projected into the projection lens 100 from the surface 99 of the SLM 200912370, sequentially passed through the second mirror group 2 and the first mirror group 10, and projected onto the screen (not shown). You can get the projection surface on it. Specifically, when the DLP projector is projected, a glass sheet 98 is disposed between the projection lens 1 and the Slm surface 99 to protect the SLM. In order to obtain a high-resolution, small-sized projection lens, the projection lens 100 satisfies the conditional expression: (1) - 2 < F1/Fw <-1.6; (2) 1.2 < F2/Fw <1.4; (3) Vg2>56. Wherein, F1 and F2 are the effective focal lengths of the first mirror group 1〇 and the second mirror group 2〇, respectively, and Fw is the shortest effective focal length of the projection lens 1〇〇, which is the lens of all positive powers of the first mirror group 20 The average number of shells. The conditional expression (1) gives the relationship between the degree of the first mirror group 1G (1/F1) and the maximum power (1/Fw) of the projection lens 100' to obtain an ideal angle of view, and controls the monochromatic aberration ( In the range of correction of the first mirror group 2〇) qF1/Fw is large, which is advantageous for increasing the angle of view, the field angle and the reduction of the total length of the projection lens, so Fl/Fw>-2 is defined. Considering that F1/Fw is too small, the first mirror group 1 is too negative, and the serious monochromatic aberration will be generated. In order to control the saturation, it is limited to ^Fl. /Fw<_16. In addition, if F1/Fw>-2 is not satisfied, the focal length of the projection lens 100 (the distance between the second mirror group 2 and the last optical surface to the SLM plane) will be insufficient; if Fl/Fw<-1.6 is not satisfied, Produces more severe monochromatic aberrations. , giving the relationship between the power of the second mirror group 2 (i/F2) and the large power of the projection lens (1/FW) to effectively balance the monochromatic aberration generated by the first mirror group 10 200912370 And control the full length of the projection lens. - Aspect, F2/Fw is larger, which is good for satisfying the telescopic end of the projection lens (near SLM end) telecentric (5) hidden (four) imaging wire (city, can receive clear projection surface within the range of segment rotation), and F2/Fw is smaller To help shorten the length of the projection lens. ^ On the one hand, the effective balance of the monochromatic aberration generated by the first-mirror group 1 is limited to 疋F2/Fw. Specifically, F2/Fw>1.2 is advantageous for controlling higher-order aberrations, and F2/Fw<1.2 is advantageous for balancing the field curvature produced by the first mirror group 1〇, thus defining 1.2 < F2/Fw < 1.4. The integral (A) number of all of the positive power lenses of the second lens group 2〇 is used to control the projection lens 100 to produce lateral chromatic aberration. Specifically, the first mirror group 1〇 includes, in order from the enlarged end to the reduced end, a first lens having a positive power; u, a second lens 12 having a negative power (a crescent shape, a convex surface near the enlarged end), The third lens 13 having a negative power and the fourth lens 14 having a positive power are used to reasonably distribute the power of the first mirror group 1〇. The second mirror group 20 includes, in order from the enlarged end to the reduced end, a fifth lens 21 having a positive power, a sixth lens 22 having a positive power, a seventh lens 23 having a negative power, and a positive power. Eight lenses 24 and a ninth lens 25 having positive power are used to reasonably distribute the power of the second mirror group 20. More specifically, the projection lens 1A further includes an aperture stop disposed between the sixth mirror 22 and the seventh lens 23 to restrict the off-axis light from entering the sixth lens 22 by the seventh lens 23. It produces more severe distortion and field curvature. In addition, the aperture 97 makes the light passing through the seventh lens 23 200912370 more symmetrical" to facilitate correction of the coma. The projection will be further described below with reference to FIGS. 3 through 26 in a specific embodiment. In a specific embodiment, all lenses are glass spherical lenses to reduce dispersion and cost. In addition, the agreement FN. For the number of apertures of the projection lens, 2ω is the angle of view of the projection item, R is the radius of curvature of the corresponding surface, and D is the on-axis distance from the corresponding surface to the next surface (image side) (two surface cuts) The optical axis ^ length), Fl, F2 and F are the effective focal length of the first mirror group 10, the second mirror group 2〇 and the projection lens, respectively, and Nd is the corresponding lens (filter 'light sheet) to the d light. , vd is the Abbe number of the d-light in the corresponding lens (filter, light film). Example 1 The projection lens of Example 1 meets the bars listed in Tables i and 2 and Fl=-36.8239 mm (Millimeter, mm), F2=27 7584 mm Table 1 ------ Surface—R- (mm) D (mm) First lens magnification end surface ~_____ 80.25 —, 3.411 First lens reduction end surface ~ 287.724 ----- 0.17 Second lens magnification end surface - 52.611 4.564 Second lens reduction end surface - --- 15.069 ------>. 8.849 Third lens magnification end --- ~ -83.909 —— 1.5 44.8504 1.5156 ίο
1.6457 55.7884 1.6444 200912370 表面 第三鏡片縮小端 表面 24.987 4.564 - - 第四鏡片放大端 表面 25.01 3.269 56.8435 55.9987 弟四鏡片縮小端 表面 50.419 D1(參 表2) - - 第五鏡片放大端 表面 63.44 3.286 1.5186 1.6204 第五鏡片縮小端 表面 -76.309 0.17 - - 第六鏡片放大端 表面 20.649 3.413 55.7539 60.3236 第六鏡片縮小端 表面 74.946 7.751 - - 光闌表面- 無窮大 1.069 - - 第七鏡片放大端 表面 -23.785 2.57 1.7552 1.6361 第七鏡片縮小端 表面 27.534 0.758 - 嘿 第八鏡片放大端 表面 -270.785 3.711 27.5795 57.3858 第八鏡片縮小端 表面 -20.648 0.17 - - 11 200912370 第九鏡片放大端 表面 31.581 2.991 1.6672 1.5069 第九鏡片縮小端 表面 -50.572 D2(參 表2) - - 玻璃片放大端表 面 無窮大 1.05 52.6547 63.128269 玻璃片縮小端表 面 無窮大 1.85 - - SLM表面 無窮大 一 - - 表2 鏡頭狀態 F(mm) Fn〇 2ω Dl(mm) D2(mm) 廣角倍率 (圖1所示) 20.03 2.6 58.64° 12.30828 22.65 遠攝倍率 (圖2所示) 23.99 2.62 49.86° 3.872033 25.67089 實施例1之投影鏡頭100之球差特性曲線、場曲特性 曲線、畸變之特性曲線及橫向色差特性曲線分別如圖3至 圖10所示(圖3-6對應廣角倍率之投影鏡頭ι〇〇,圖7_1〇 對應遠攝倍率之投影鏡頭100)。圖3、7中,三條曲線分別 為波長為 46〇 奈米(Nanometer, nm)、550nm 及 62〇nm 之光 線經投影鏡頭100之球差特性曲線(下同)。可見,實施例i 之投影鏡頭100對可見光(40〇-70〇nm)產生之球差被控制在 -0.2mm〜0.2mm間。圖4、8中,曲線t及s為子午場曲 (Tangential field curvature)特性曲線及弧矢場曲(Sagittal 12 200912370 field curvature)特性曲線(下同)。可見,子午場曲值及弧矢 場曲值被控制在-0.15mm~0.15mm間。圖5、9中,曲線為 畸變特性曲線(下同)。可見,畸變量被控制在-5%〜5%間。 圖6、10中,兩條曲線分別為波長為460nm及620nm之光 線經投影鏡頭100之橫向色差特性曲線(下同)。可見,實施 例1之投影鏡頭100對可見光產生之橫向色差被控制在_0.2 微米(Micron,um)〜0.2um間。綜前,儘管投影鏡頭1〇〇具有 較大之視場角及較小尺寸,其產生之球差、場曲、畸變及 橫向色差卻被控制(修正)在較小之範圍内。 實施例2 實施例2之投影鏡頭100滿足表3及表4所列之條件, 且 Fl=-34.9895,F2=26.2553mm。 表3 表面 R (mm) D (mm) Nd - vd 第一鏡片放大端 表面 . 59.616 3.729 1.7443 65.9149 弟 '一鏡片縮小端 表面 193.967 0.15 - 弟二鏡片放大端 表面 50.663 1.5 44.1361 .............................. 1.5255 第二鏡片縮小端 表面 15.025 8.959 一 弟三鏡片放大端 表面 -95.706 1.5 1.5341 53.4969 13 200912370 第三鏡片縮小端 表面 25.238 5.165 - - 第四鏡片放大端 表面 24.634 3.171 1.6204 60.3236 第四鏡片縮小端 表面 46.23 D3(參 表4) - - 第五鏡片放大端 表面 60.737 3.378 1.6204 1.6204 第五鏡片縮小端 表面 -70.331 0.15 - - 第六鏡片放大端 表面 20.058 3.373 60.3236 60.3236 第六鏡片縮小端 表面 68.583 7.618 - - 光闌表面 無窮大 1.043 - - 第七鏡片放大端 表面 -23.911 2.13 1.7552 1.6332 第七鏡片縮小端 表面 26.524 0.731 - - 第八鏡片放大端 表面 -241.965 4.271 27.5795 57.8925 第八鏡片縮小端 表面 -20.977 0.15 - - 第九鏡片放大端 32.984 2.915 1.6814 1.5069 14 200912370 表面 — ------ --—η 第九鏡片縮小端 表面 -49.181 '— D4(參 表4) - - 玻璃片放大端表 面 無窮大 1.05 50.8697 63.128269 玻璃片縮小端表 面 無窮大 1.85 - - SLM表面 無窮大 ~~ 一— ---— - - 表4 鏡頭狀態 F(mm) ~~"~~—-1 Fn〇 2ω D3(mm) D4(mm) 廣角倍率 19.85 「 _ 1 2.6 59.08。 11.5163 22.65 遠攝倍率 23.78 2.62 50.02° 3.8665 25.6352 - 」 只_ 2之投影鏡頭之球差特性曲線、場曲特性 曲線、畸變之特性轉及橫向色麵性崎分別如圖n_i8 所示(圖II-I4對應廣角倍率之投影鏡頭1〇〇,圖i5_i8對 應遠攝倍率之郷鏡頭)。可見,實闕2之投影鏡頭 100對了見光產生之球差被控制在_〇.2mm〜〇.2mm間;子午 場曲值及弧矢場曲值被控制在_〇.l5mm〜〇15mm間;畸變量 被控制在-5%〜5%間;橫向色差被控制在_〇.2um〜〇.2um間。 綜前,儘管投影鏡頭1〇〇具有較大之視場角及較小尺寸, 其產生之球差、場曲、畸變及橫向色差卻被控制(修正)在較 小之範圍内。 實施例3 實施例3之投影鏡頭1〇〇滿足表5及表6所列之條件, 15 200912370 且 Fl=-35.3370mm,F2=26.1405mm。 表5 表面 R (mm) D (mm) Nd vd 第一鏡片放大端 表面 80.25 3.411 1.7440 1.6457 第一鏡片縮小端 表面 287.724 0.17 - - 第二鏡片放大端 表面 52.611 4.564 44.8504 55.7884 第二鏡片縮小端 表面 15.069 8.849 - - 第三鏡片放大端 表面 -83.909 1.5 1.5156 1.6444 第三鏡片縮小端 表面 24.987 4.564 - - 第四鏡片放大端 表面 25.01 3.269 56.8435 55.9987 第四鏡片縮小端 表面 50.419 D5(參 表6) - - 第五鏡片放大端 表面 63.44 3.286 1.5186 1.6204 第五鏡片縮小端 表面 -76.309 0.17 - - 第六鏡片放大端 20.649 3.413 55.7539 60.3236 16 200912370 表面 第六鏡片縮小端 表面 74.946 7.751 - - 光闌表面 無窮大 1.069 - - 第七鏡片放大端 表面 -23.785 2.57 1.7552 1.6361 第七鏡片縮小端 表面 27.534 0.758 - - 第八鏡片放大端 表面 -270.785 3.711 27.5795 57.3858 第八鏡片縮小端 表面 -20.648 0.17 - - 第九鏡片放大端 表面 31.581 2.991 1.6672 1.5069 第九鏡片縮小端 表面 · -50.572 D6(參 表6) - - 玻璃片放大端表 面 無窮大 1.05 52.6547 63.128269 玻璃片縮小端表 面 無窮大 1.85 - - SLM表面 無窮大 - - - 表6 鏡頭狀態 F(mm) FNo 2ω D5(mm) D6(mm) 廣角倍率 20.36 2.6 57.82。 11.21369 22.67 17 200912370 遠攝倍率 24.39 2.62 49.08° 3.715894 25.6951 ------- 實施例3之投影鏡頭loo之球差特性曲線、場曲特性 曲線、畸變之特性曲線及橫向色差特性曲線分別如圖19_26 所示(圖19-22對應廣角倍率之投影鏡頭100,圖23-26對 應遠攝倍率之投影鏡頭1〇〇)。可見,實施例3之投影鏡頭 1〇〇對可見光產生之球差被控制在-0.2mm〜0.2mm間;子午 %曲值及弧矢場曲值被控制在_〇. 15mm〜0.15mm間;畸變量 被控制在-5%〜5%間;橫向色差被控制在_0 2mn〜〇.2um間。 綜前,儘管投影鏡頭1〇〇具有較大之視場角及較小尺寸, 其產生之球差、場曲、畸變及橫向色差卻被控制(修正)在較 小之範圍内。 綜上所述,本發明確已符合發明專利要件,爰依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施方式, 舉凡熟悉本案技藝之人士’於援依本案發明精神所作之等 效修飾或變化,皆應包含於以下之申請專利範圍内。 【圖式簡單說明】 圖1為本發明實施例之投影鏡頭採用廣角倍率時之系統構 攝倍率時之系統構 圖2為本發明實施例之投影鏡頭採用遠 成不意圖。 圖3為本發明實施例1之投影鏡頭採用廣角倍率時之球差 (Spherical aberration)特性曲線圖。 圖4為本發明實施例1之投影鏡頭採用廣角倍率時之尸曲 (Field curvature)特性曲線圖。 琢 18 200912370 圖5為本發明實施例1之投影鏡頭採用廣角倍率時之崎料 特性曲線圖。 圖6為本發明實施例1之投影鏡頭採用廣角倍率時之产向 色差(Lateral chromatic aberration)特性曲線圖。 圖7為本發明實施例1之投影鏡頭採用遠攝倍率時之球差 特性曲線圖。 圖8為本發明實施例1之投影鏡頭採用遠攝倍率時之場曲 特性曲線圖。 圖9為本發明實施例1之投影鏡頭採用遠攝倍率時之畸變 特性曲線圖。 圖10為本發明實施例1之投影鏡頭採用遠攝倍率時之橫向 色差特性曲線圖。 ~ 圖11為本發明實施例2之投影鏡頭採用廣角倍率時之球差 特性曲線圖。 、' 圖12為本發明實施例2之投影鏡頭採用廣角倍 特性曲線圖。‘ σ时穷曲 圖13為本發明實施例2之投錢頭採用廣角倍 特性曲線圖。 ' 圖U為本發明實施例2之投影鏡頭採用廣角倍 色差特性曲線圖。 σ ^ 圖I5為本發明實施例2之投影_採用遠攝 特性曲線®。 圖I6為本發明實施例2之投影^貝採用遠攝 〆 特性曲線圖。 。干代㈣ 19 200912370 圖17為本發明實施例2之投影鏡頭_遠攝倍率時之 特性曲線圖。 圖I8為本發明實㈣2之縣鏡麵倍 色差特性曲線圖。 只° 圖19為本發明實施例3之投影鏡頭採用廣角倍率時之球差 特性曲線圖。 圖20為本發明實施例3之投影鏡頭採用廣角枰 特性曲線目。 圖21為本發明實施例3之投影鏡頭採用額倍率時之 特性曲線圖。 ° 圖22為本發明實施例3之投影鏡頭採用廣角倍率日士 色差特性曲線圖。 t 圖23為本發明實施例3之投影鏡頭採用遠攝倍率時之球差 特性曲線圖。 、; 圖24為本發明實施例3之投影鏡頭採用遠攝倍率時之場曲 特性曲線圖。· 圖25為本發明實施例3之投影鏡頭採用遠攝倍率時之崎變 特性曲線圖。 圖26為本發明實施例3之投影鏡頭採用遠攝倍率時之橫向 色差特性曲線圖。 【主要組件符號說明】 成像鏡頭 1〇〇 第六鏡片 22 第一鏡群 1〇 第七鏡片 23 20 200912370 第一鏡片 11 第八鏡片 24 第二鏡片 12 第九鏡片 25 第三鏡片 13 SLM表面 99 第四鏡片 14 保護玻璃 98 第二鏡群 20 光闌 97 第五鏡片 21 211.6457 55.7884 1.6444 200912370 Surface third lens reduced end surface 24.987 4.564 - - Fourth lens enlarged end surface 25.01 3.269 56.8435 55.9987 Younger four lens reduced end surface 50.419 D1 (see Table 2) - - Fifth lens enlarged end surface 63.44 3.286 1.5186 1.6204 Fifth lens reduced end surface - 76.309 0.17 - - Sixth lens enlarged end surface 20.649 3.413 55.7539 60.3236 Sixth lens reduced end surface 74.946 7.751 - - Matte surface - Infinity 1.069 - - Seventh lens enlarged end surface - 23.785 2.57 1.7552 1.6361 Seventh lens reduced end surface 27.534 0.758 - 嘿 Eighth lens enlarged end surface -270.785 3.711 27.5795 57.3858 Eighth lens reduced end surface - 20.648 0.17 - - 11 200912370 Ninth lens enlarged end surface 31.581 2.991 1.6672 1.5069 Ninth lens reduced end surface -50.572 D2 (Refer to Table 2) - - Glass sheet magnification end surface infinity 1.05 52.6547 63.128269 Glass sheet shrink end surface infinity 1.85 - - SLM surface infinity one - - Table 2 Lens state F (mm) Fn 〇 2ω Dl (mm) D2 (mm) Wide-angle magnification (shown in Figure 1) 20. 03 2.6 58.64° 12.30828 22.65 telephoto magnification (shown in Figure 2) 23.99 2.62 49.86° 3.872033 25.67089 The spherical aberration characteristic curve, field curvature characteristic curve, distortion characteristic curve and lateral chromatic aberration characteristic curve of the projection lens 100 of the embodiment 1 are respectively 3 to 10 (Fig. 3-6 corresponds to a wide-angle magnification projection lens ι, Fig. 7_1 〇 corresponds to a telephoto magnification projection lens 100). In Figures 3 and 7, the three curves are spherical aberration curves of the projection lens 100 with wavelengths of 46 〇 nm (nm), 550 nm and 62 〇 nm, respectively (the same below). It can be seen that the spherical aberration generated by the projection lens 100 of the embodiment i for visible light (40 〇 - 70 〇 nm) is controlled to be between -0.2 mm and 0.2 mm. In Figs. 4 and 8, the curves t and s are the Tangential field curvature characteristic curve and the Sagittal 12 200912370 field curvature characteristic curve (the same applies hereinafter). It can be seen that the meridional curvature value and the sagittal curvature value are controlled between -0.15 mm and 0.15 mm. In Figures 5 and 9, the curve is the distortion characteristic curve (the same below). It can be seen that the distortion variable is controlled between -5% and 5%. In Figs. 6 and 10, the two curves are transverse chromatic aberration characteristics of the light having a wavelength of 460 nm and 620 nm through the projection lens 100 (the same applies hereinafter). It can be seen that the lateral chromatic aberration generated by the projection lens 100 of Embodiment 1 for visible light is controlled to be between _0.2 micrometers (Micron, um) and 0.2 um. In general, although the projection lens 1 has a large angle of view and a small size, the spherical aberration, field curvature, distortion, and lateral chromatic aberration generated are controlled (corrected) to a small extent. Embodiment 2 The projection lens 100 of Embodiment 2 satisfies the conditions listed in Tables 3 and 4, and Fl = -34.9895 and F2 = 26.2553 mm. Table 3 Surface R (mm) D (mm) Nd - vd First lens enlarged end surface. 59.616 3.729 1.7443 65.9149 Brother 'one lens reduced end surface 193.967 0.15 - Dimensional lens enlarged end surface 50.663 1.5 44.1361 ...... ........................ 1.5255 Second lens reduced end surface 15.025 8.959 One brother three lens enlarged end surface -95.706 1.5 1.5341 53.4969 13 200912370 Third lens Reduced end surface 25.238 5.165 - - Fourth lens enlarged end surface 24.634 3.171 1.6204 60.3236 Fourth lens reduced end surface 46.23 D3 (see Table 4) - - Fifth lens enlarged end surface 60.737 3.378 1.6204 1.6204 Fifth lens reduced end surface -70.331 0.15 - - 6th lens magnification end surface 20.058 3.373 60.3236 60.3236 6th lens reduction end surface 68.583 7.618 - - aperture surface infinity 1.043 - - 7th lens magnification end surface -23.911 2.13 1.7552 1.6332 7th lens reduction end surface 26.524 0.731 - - Eighth lens magnification end surface -241.965 4.271 27.5795 57.8925 Eighth lens reduction end surface - 20.977 0.15 - - Ninth lens magnification end 32.984 2.915 1.68 14 1.5069 14 200912370 Surface — ------ --- η Ninth lens reduced end surface -49.181 '- D4 (see Table 4) - - Glass sheet magnified end surface infinity 1.05 50.8697 63.128269 Glass sheet reduced end surface infinity 1.85 - - SLM surface infinity ~~ 1 - ---- - - Table 4 Lens state F(mm) ~~"~~--1 Fn〇2ω D3(mm) D4(mm) Wide-angle magnification 19.85 " _ 1 2.6 59.08. 11.5163 22.65 Telephoto magnification 23.78 2.62 50.02° 3.8665 25.6352 - ” The spherical aberration characteristic curve, field curvature characteristic curve, distortion characteristic and lateral color surface of the projection lens of _ 2 are shown in Figure n_i8 respectively. The II-I4 corresponds to a wide-angle magnification projection lens 1〇〇, and the image i5_i8 corresponds to a telephoto magnification lens). It can be seen that the projection lens 100 of the real 2 is controlled between _〇.2mm~〇.2mm for the spherical aberration generated by the light; the meridional curvature value and the sagittal curvature value are controlled between _〇.l5mm~〇15mm. The distortion is controlled between -5% and 5%; the lateral chromatic aberration is controlled between _〇.2um~〇.2um. In general, although the projection lens 1 has a large angle of view and a small size, the spherical aberration, curvature of field, distortion, and lateral chromatic aberration generated are controlled (corrected) in a small range. Embodiment 3 The projection lens 1 of Example 3 satisfies the conditions listed in Tables 5 and 6, 15 200912370 and Fl = -35.3370 mm, and F2 = 26.1405 mm. Table 5 Surface R (mm) D (mm) Nd vd First lens enlarged end surface 80.25 3.411 1.7440 1.6457 First lens reduced end surface 287.724 0.17 - - Second lens enlarged end surface 52.611 4.564 44.8504 55.7884 Second lens reduced end surface 15.069 8.849 - - Third lens enlarged end surface - 83.909 1.5 1.5156 1.6444 Third lens reduced end surface 24.987 4.564 - - Fourth lens enlarged end surface 25.01 3.269 56.8435 55.9987 Fourth lens reduced end surface 50.419 D5 (see Table 6) - - Five-lens enlarged end surface 63.44 3.286 1.5186 1.6204 Fifth lens reduced end surface -76.309 0.17 - - Sixth lens enlarged end 20.649 3.413 55.7539 60.3236 16 200912370 Surface sixth lens reduced end surface 74.946 7.751 - - Matte surface infinity 1.069 - - Seven-lens enlarged end surface -23.785 2.57 1.7552 1.6361 Seventh lens reduced end surface 27.534 0.758 - - Eighth lens enlarged end surface -270.785 3.711 27.5795 57.3858 Eighth lens reduced end surface - 20.648 0.17 - - Ninth lens enlarged end surface 31.581 2.991 1.6672 1.5069 ninth lens Small end surface · -50.572 D6 (see Table 6) - - Glass sheet magnification end surface infinity 1.05 52.6547 63.128269 Glass sheet reduced end surface infinity 1.85 - - SLM surface infinity - - - Table 6 Lens state F (mm) FNo 2ω D5 ( Mm) D6 (mm) Wide angle magnification 20.36 2.6 57.82. 11.21369 22.67 17 200912370 Telephoto magnification 24.39 2.62 49.08° 3.715894 25.6951 ------- The spherical aberration characteristic curve, field curvature characteristic curve, distortion characteristic curve and lateral chromatic aberration characteristic curve of the projection lens loo of the embodiment 3 are respectively shown in the figure 19_26 (Figure 19-22 corresponds to the wide-angle magnification projection lens 100, Figure 23-26 corresponds to the telephoto magnification projection lens 1〇〇). It can be seen that the spherical aberration generated by the projection lens 1 of Embodiment 3 is controlled to be between -0.2 mm and 0.2 mm; the meridional % curvature value and the sagittal curvature value are controlled between _〇. 15 mm and 0.15 mm; distortion The amount is controlled between -5% and 5%; the lateral chromatic aberration is controlled between _0 2mn and 〇.2um. In general, although the projection lens 1 has a large angle of view and a small size, the spherical aberration, curvature of field, distortion, and lateral chromatic aberration generated are controlled (corrected) in a small range. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above-mentioned embodiments are merely preferred embodiments of the present invention, and equivalent modifications or variations made by those skilled in the art to the present invention are included in the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system configuration diagram of a projection lens when a projection lens adopts a wide-angle magnification according to an embodiment of the present invention. FIG. 2 is a schematic view of a projection lens according to an embodiment of the present invention. Fig. 3 is a graph showing a spherical aberration characteristic when a projection lens according to Embodiment 1 of the present invention adopts a wide angle magnification. 4 is a graph showing a field curvature characteristic when a projection lens according to Embodiment 1 of the present invention adopts a wide-angle magnification.琢 18 200912370 FIG. 5 is a graph showing the characteristics of the bark material when the projection lens of Embodiment 1 of the present invention adopts a wide angle magnification. Fig. 6 is a graph showing a characteristic of a longitudinal chromatic aberration when a projection lens according to Embodiment 1 of the present invention adopts a wide-angle magnification. Fig. 7 is a graph showing the spherical aberration characteristic when the projection lens of Embodiment 1 of the present invention adopts a telephoto magnification. Fig. 8 is a graph showing the field curvature characteristic of the projection lens according to the first embodiment of the present invention when the telephoto magnification is used. Fig. 9 is a graph showing distortion characteristics of a projection lens according to Embodiment 1 of the present invention when telephoto magnification is used. Fig. 10 is a graph showing lateral chromatic aberration characteristics when the projection lens of Embodiment 1 of the present invention adopts telephoto magnification. Fig. 11 is a graph showing the spherical aberration characteristic when the projection lens of Embodiment 2 of the present invention adopts wide-angle magnification. Fig. 12 is a graph showing a wide angle multiplication characteristic of a projection lens according to Embodiment 2 of the present invention. ‘σ 时穷曲 Figure 13 is a graph showing a wide angle multiplier characteristic of the money head of Embodiment 2 of the present invention. Fig. U is a graph showing a wide-angle chromatic aberration characteristic of the projection lens of Embodiment 2 of the present invention. σ ^ Figure I5 is a projection of the embodiment 2 of the present invention using the telephoto characteristic curve®. Figure I6 is a graph showing the telephoto 〆 characteristic of the projection of the second embodiment of the present invention. . Dry generation (4) 19 200912370 Fig. 17 is a characteristic diagram of the projection lens of the second embodiment of the present invention at the time of telephoto magnification. Fig. I8 is a graph showing the chromatic aberration characteristic of the mirror surface of the county (4) of the present invention. Fig. 19 is a graph showing the spherical aberration characteristic when the projection lens of Embodiment 3 of the present invention adopts wide-angle magnification. Fig. 20 is a view showing a wide angle 枰 characteristic curve of a projection lens according to a third embodiment of the present invention. Fig. 21 is a graph showing the characteristic curve of the projection lens according to the third embodiment of the present invention when the magnification is used. Fig. 22 is a graph showing the characteristic curve of the wide-angle magnification of the projection lens according to the third embodiment of the present invention. Fig. 23 is a graph showing the spherical aberration characteristic when the projection lens of Embodiment 3 of the present invention adopts telephoto magnification. Fig. 24 is a graph showing the field curvature characteristic when the projection lens of Embodiment 3 of the present invention adopts telephoto magnification. Fig. 25 is a graph showing the variation characteristic of the projection lens according to the third embodiment of the present invention when the telephoto magnification is used. Fig. 26 is a graph showing the lateral chromatic aberration characteristic when the projection lens of Embodiment 3 of the present invention adopts telephoto magnification. [Main component symbol description] Imaging lens 1 〇〇 Sixth lens 22 First mirror group 1 〇 Seventh lens 23 20 200912370 First lens 11 Eighth lens 24 Second lens 12 Ninth lens 25 Third lens 13 SLM surface 99 Fourth lens 14 protective glass 98 second mirror group 20 aperture 97 fifth lens 21 21