TW200912209A - A flameless combustion heater - Google Patents

A flameless combustion heater Download PDF

Info

Publication number
TW200912209A
TW200912209A TW097127546A TW97127546A TW200912209A TW 200912209 A TW200912209 A TW 200912209A TW 097127546 A TW097127546 A TW 097127546A TW 97127546 A TW97127546 A TW 97127546A TW 200912209 A TW200912209 A TW 200912209A
Authority
TW
Taiwan
Prior art keywords
conduit
fuel
heater
opening
oxidation
Prior art date
Application number
TW097127546A
Other languages
Chinese (zh)
Inventor
Peter Veenstra
Abdul Wahid Munshi
Karl Gregory Anderson
Original Assignee
Shell Int Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Int Research filed Critical Shell Int Research
Publication of TW200912209A publication Critical patent/TW200912209A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/66Preheating the combustion air or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99001Cold flame combustion or flameless oxidation processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Gas Burners (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

A flameless combustion heater is described, that comprises an oxidation conduit and a fuel conduit positioned within the oxidation conduit to form an oxidation zone having an inlet and an outlet, said fuel conduit having a plurality of openings that provide fluid communication from within the fuel conduit to the oxidation conduit wherein the longitudinal axis of at least one opening forms an oblique angle with the inner surface of the oxidation conduit. A method for providing heat to a process conduit is described, that comprises providing an oxidation conduit; providing a fuel conduit having a plurality of openings that provide fluid communication from within the fuel conduit to the oxidation conduit wherein the longitudinal axis of at least one opening forms an oblique angle with the inner surface of the oxidation conduit; providing a process conduit in a heat exchange relationship with the oxidation conduit; introducing fuel into the fuel conduit; introducing an oxidant into the oxidation conduit; and introducing the fuel into the oxidation conduit through the plurality of openings such that flameless combustion occurs in the oxidation conduit.

Description

200912209 九、發明說明: 【發明所屬之技術領域】 此發明係關於一種無焰燃燒加熱器及一種用於向—製程 提供熱之方法。 【先前技術】 在U.S. 7,025,940中描述無焰燃燒加熱器。該專利描述一 種利用無焰燃燒之製程加熱器’其藉由將一燃料及燃燒空 氣預加熱至一面於該混合物之自燃溫度之溫度來達成。該 燃料通過-燃料氣體導管中之複數個孔隨時間以相對小的 增量引入,此在燃料氣體導管與一氧化反應室之間提供連 通。如在該專利中所述,一製程室與該氧化反應室成熱交 換關係。 無焰燃燒加熱器可遭遇與燃料導管及開口有關的問題, 該等開口自該燃料氣體導管内至氧化反應室提供連通。習 用無焰燃燒加熱器具有具有一垂直於氧化導管U表面之 縱軸之開口。 通過該等垂直開Π之燃料具有直接撞擊於該氧化導管之 内表面上之趨向。因此,通常在該燃料導管之外部與該氧 化導管之内部之間維持—最小距離以減小該氧化導管壁上 之熱點。可增加氧化劑流動以解決此撞擊趨向之問題,但 導致諸如過多的壓力降等缺點。此外,退出該等垂直開口 之燃料可能不與氧化劑良好的混合。此不完全混合可立即 在開口下游發生。 由無焰燃燒所提供之熱通常在一定程度上沿相同的徑向 133111.doc 200912209 定向且直接在開口下游集中。此可 之構造材料,從而引起往往會使燃料及氧化 膨脹。另外,此導致將由該加埶 Β 之… 句加熱。 …、'進仃加熱之材料之不均 【發明内容】 本發明提供一種包括一氧化 U等s及—具有複數個 燃料導管之無焰燃燒加熱器, —s 4開口自該燃料導管内至200912209 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD This invention relates to a flameless combustion heater and a method for providing heat to a process. [Prior Art] A flameless combustion heater is described in U.S. Patent 7,025,940. This patent describes a process heater utilizing flameless combustion which is accomplished by preheating a fuel and combustion air to a temperature at the autoignition temperature of the mixture. The fuel is introduced through a plurality of holes in the fuel gas conduit in relatively small increments over time, which provides communication between the fuel gas conduit and the oxidation reaction chamber. As described in that patent, a process chamber is in thermal exchange relationship with the oxidation reaction chamber. Flameless combustion heaters can encounter problems associated with fuel conduits and openings that provide communication from within the fuel gas conduit to the oxidation reaction chamber. A conventional flameless combustion heater has an opening having a longitudinal axis that is perpendicular to the surface of the oxidation conduit U. The fuel passing through the vertically open has a tendency to directly impinge on the inner surface of the oxidation conduit. Thus, a minimum distance is typically maintained between the exterior of the fuel conduit and the interior of the oxidation conduit to reduce hot spots on the wall of the oxidation conduit. The oxidant flow can be increased to address this impact tendency, but causes disadvantages such as excessive pressure drop. In addition, the fuel exiting the vertical openings may not be well mixed with the oxidant. This incomplete mixing can occur immediately downstream of the opening. The heat provided by the flameless combustion is generally oriented to some extent along the same radial direction 133111.doc 200912209 and concentrated directly downstream of the opening. This can be used to construct materials that cause the fuel and oxidation to expand. In addition, this causes the sentence to be heated by the sentence. The invention provides a flameless combustion heater comprising a oxidized U or the like and having a plurality of fuel conduits, wherein the opening of the s 4 is from the fuel conduit to

該氧化導管提供流體連通,其中 .^ ^ 头中至;一個開口之縱軸與該 乳化導官之内表面形成一斜角。 本發明進一步提供一稀用# 種㈣向—製程導管提供熱之方 法,其包括:提供一氧化導管.摆 s,楗供一具有複數個開口之 =導管’該等開口自該燃料導管内至該氧化導管提供流 連通’纟中至少-個開口之縱軸與該氧化導管之内表面 形^斜角;提供—與該氧化導管成-熱交換關係之製程 導官;將燃料引人至該燃料導f中;冑_氧化劑引入至該 虱化導管中;及通過該複數個開口將該燃料引入至該 導管中。 【實施方式】 处本發明提供一用於直接轉移由燃料之無焰燃燒所釋放熱 能之無焰燃燒加熱11 °該加熱器具有許多可能的用途及應 用包3加熱地下形成物及加熱製程流。該無焰燃燒加熱 态尤其用於與實施吸熱反應(例如,烷基芳族化合物之脫 氫及蒸汽f烷重整)之製程結合。本發明提供一在燃料導 B中具有至少一個開口之無焰燃燒加熱器,該至少一個開 133111.doc 200912209 口與氧化導管之内表面形成一斜角。成角度之開口減小與 氧化導管之内表面上之燃料撞擊相關聯之問題並改良燃料 及氧化劑在氧化導管中之混合。 一加熱器中之無焰燃燒可藉由如下方式達成:充分預加 熱一氧化劑流及一燃料流,以便在該兩個流組合時,該混 合物之溫度超過該混合物之自燃溫度,但該混合物之溫度 小於一在如U.S. 7,025,940中所述藉由混合速率對混合由進 行限制時將導致氧化之溫度,該專利以引用方式併入本文 中。該混合物之自燃溫度相依於燃料及氧化劑之類型及燃 料/氧化劑比率。一無焰燃燒加熱器中使用之混合物之自 燃溫度可在自85〇r至1400X:範圍中。若在該加熱器中採 用一氧化觸媒’則該自燃溫度可減小,乃因此類型之觸媒 有效地降低該混合物之自燃溫度。 燃料導管以一提供一期望之熱釋放之方式提供進入一氧 化導管中之燃料引入之經控制之速率。熱釋放部分地由開 口的位置及數目確定,該等開口可經修整以用於每一加熱 器應用。熱釋放可在該加熱器之長度上方恆定,或其可在 該加熱器之長度上方減少或增加。 由於不存在與一燃料之無焰燃燒相關聯之可見火焰,故 無焰燃燒反應在一比在習用明火加熱器中所觀察到的溫度 低的溫度下發生。由於觀察到的較低溫度,及直接加熱之 效率,故可使用較低成本材料設計該加熱器,從而導致減 小之資本支出。 無焰燃燒加熱器具有兩個主要元件:一氧化導管及一燃 133111.doc 200912209 劑之入口 f,::可係一管子或管’其具有-用於氧化 :用於氧化產物之出口及一在該入口與出口之 氮。=路,。適宜之氧化劑包含空氣、氧氣及氧化亞 料見人二至减導官甲之氧化劑可經預加熱,以便在與燃 二時’混合物處於一高於該混合物之自燃溫度之溫 X。該二化劑可在該無焰燃燒加熱器外部加熱。另一選擇 為,該乳化劑可藉由與該加熱器内部之流中之任一者進行 熱交換而在該加熱器内部經加熱。該氧化導管可具有自約 至約2G叫内徑。⑼,氧化劑導管可視加熱器需 衣而大於或小於此範圍。 燃料導管將燃料傳輸至加熱器中並將其引入至氧化導管 中。該燃料導管可係一管子或管,其具有一燃料之入口I 提供自該燃料導管内至氧化導管之流體連通之複數個開 口。該燃料導管可位於氧化導管内並由其環繞。燃料通過 該專開口並進入氧化導管中,在此其與氧化劑混合並導致 無焰燃燒。燃料導管可具有自約1 cm至約10 cm,較佳自 約1.5 cm至約5 cm之内徑。然而,端視設計,燃料導管可 具有大於10 cm或小於1啦之直徑。 燃料導官中開口之幾何形狀、定向及位置可經設計以克 服由於加熱器系統之流體及混合動力學而引起之問題。該 等開口可經鑽入或切入至燃料導管之壁中。燃料導管之壁 通吊具有自約0.25 cm至約2.5 cm之厚度。該等開口可具有 圓形 '橢圓形、矩彬、s ” 另幵> 狀或甚至不規則形狀之截 面。該等開口較佳具有圓形截面。 133111.doc -10- 200912209 該等開口可具有自約〇侧em2至約2 em2,較佳 〇.〇3 cm2至約0.2 cm2之截面積。該等開口之大小係由進二 至氧化導管中之燃料引入之期望速率來決定,但太小的門 口會導致堵塞。該等開口可沿燃料導管定位,沿軸向方二 離開任一其他開口一自lcmll00cm之距離。該等開口較 向間隔開自15c—m。該等開口可沿燃料 導:之長度以不同的定向沿其相應的徑向平面定位 2s ’該等開口之^位可沿燃料導管之長度沿徑向平面交 替180度’或其可交替】2 度或90度。因此,該等開口在燃 "疋位可使得其在徑向平面中之定向沿燃料導管 之長度與其定向交替隔開3〇度至18〇度。該等開口之押向 定向較佳沿燃料導管之長度以自6〇度至12〇度交替。 在一個實施例中,除開 k 斜開之外亦可使用一燒結板來自燃 S氧化區域提供流體連通’且一燒結板中之開口可 具有一大約為10-100微米之直徑。 ::熱器之長度之不同的開口通常具有相同的截面積。 在替代實施例中,開口之哉而接 積可不同以提供期望之熱釋 敌。另外,沿燃料導管之開口夕„ + γ 間之間隔可不同以提供期 望之熱釋放。該等開口通常且有 、书-有相同的形狀。在替代實施 例中,開口可具有不同的形狀。 k等開纟自具有'縱軸’該縱軸由在該開口之每一端 處連接截面之中心之绩反― 之線界疋。該燃料導管亦具有一縱軸, 該縱軸由連接料管之截面之中心之線界定。 如在本文中使用之術語銳角係界定為一在0與90度之間 133Ill.doc 200912209 之角度。如在本文中使用之術語鈍角係界定為一在9〇與 1 80度之間之角度。如在本文中使用之術語斜角係界定為 一為銳角或鈍角之角度。 該無焰燃燒加熱器可另外包括一攜載一製程流體之製程 導管,其中該製程導管與該氧化導管成熱交換關係。在該 加熱器t包含一製程導管允許一製程流之直接加熱。該製 程導管可視情況用於實施一化學反應。該製程導管可含有 觸媒以促進該化學反應。此加熱器對實施吸熱反應尤其有 益’乃因熱係在該反應期間直接添加至該製程。舉例而 δ,此加熱益可併入至脫氫反應器中以直接加熱乙苯至苯 乙烯之脫氫反應。 該無焰燃燒加熱器可視情況包括一氧化劑導管。該氧化 劑導管具有-用於氧化劑之入口及一用於經預加熱之氧化 狀出口 ’該出e與氧化導管之人口㈣連通1氧化劑 導管與氧化導f積/或製程導管成—熱交換關係,其提供 直接熱以將氧化劑預加熱至一足夠的溫度,以便在與燃料 在氧化導管中混合時,該混合物處於或高於自燃溫度。 一預加熱II可用於在氧化劑進人該加熱器之前對其進行 預加熱。-預加熱器可係提供熱之任—裝置或方法。該預 …器可(例如)係一習用熱交換器或一無焰燃燒加埶哭。 將相對於此申請案中中所呈現之圖進一步描述該無㈣ 燒加熱器之較佳實施例。 ‘' 圖1-3描緣具有在下女中磁& > %為銳角開口之無焰燃燒加熱 器之實施例。圖1描緣-無焰燃燒加熱器⑽,其具有—由 133111.doc -12· 200912209 燃料導管(12)形成之燃料區域⑴)及一由氧化導管叫 之氧化區域(13)。此類型之加熱器稱為—管雙加熱器 此實施例中,燃料導管(12)係一圓柱形 β 八六啕一用於 ‘然料之入口(24)及複數個開口(2〇)。該等開口之縱轴⑵)與 氧化導f⑽之内表面形成銳角(34)。氧化導管(14)係一圍 '繞燃料導管(12)同心定位之圓柱形管,燃料導管⑽具有 一用於經預加熱之氧化劑之人口(26)及—用於燃燒產物之 丨口(3G)。在替代實施例中’氧化劑可在(3G)處引入,且 ㉟燒產物可在在(26)處退出該加熱器,此提供燃料與氧化 齊!之反向机動。燃料與氧化劑之反向流動可較同向流動提 供燃料與氧化劑之更好的混合。該等流動之方向可經改變 以適於具體加熱器應用之期望之混合及熱釋纟。在運作期 1燃料、、’二由入口(24)進入燃料區域(1 1)並接著在其通過 成角度之開口(20)之後在氧化區域(13)中與經預加熱之氧 化劑混合。開口(20)沿與燃料入口(24)相對之方向成角 度。 ί, 在自燃料導管(12)之燃料入口(24)量測時,該等開口使 知開口之縱軸與氧化導管之内表面形成一小於九十度之 角度。該等開口在下文中稱為銳角開口。-開口之縱軸較 佳與氧化導管之内表面形成一自二十至八十度之角度,更 佺自一十至七十五度且最佳自五十至七十度。 圖1&係沿線Α·Α提取之圖1之一截面圖。此圖描繪其中一 開口之縱軸與燃料導管之縱軸相交之一個實施例。 圖1 b係沿線Β-Β提取之圖1之一截面圖。此圖描繪其中一 I331II.doc •13· 200912209 開口之縱軸離開燃料導管之縱軸一距離(40)以便該等軸不 相交之另一實施例。該等開口在下文中稱為銳角正切開 Ο 〇 一加熱器可具有一如圖la中所描繪之截面圖(銳角開口) 或一如圖lb中所描繪之截面圖(銳角正切開口)。在替代實 施例中,一加熱器可具有銳角開口及銳角正切開口之一組 合且圖la及圖lb之截面圖將代表相同的加熱器在該加熱器 之不同點處之截面圖。 —銳角開口成角度以使退出該開口之燃料係沿與燃料導 管入口相對的方向指向。銳角開口導致較低峰值溫度,此 減小對加熱器材料之危險並允許將在加熱器構造使用較不 吓貝的材料。此外,銳角開口允許燃料導管與氧化導管之 間的距離將減小’從而導致一較小加熱器及減小之資本支 出。 銳角正切開口沿徑向方向提供更均勻之熱釋放。使用銳 ^正2開口亦提供更均勻之加熱曲線及燃料與氧化劑之經 良此合。使用銳角正切開口亦允許該無焰燃燒加熱器將 * >比具有典型垂直開口之無焰燃燒加熱器高的燃料/ 空氣比率下運作。纟需要較少空氣時,氧化導管可較小, 因此減小資本支出。 圖、2插緣—無焰燃燒加熱器(10),其具有-燃料導管 I氧化導管(14)及—製程導管(16)。此類型之加熱器 2中、+广官子加熱器且可用於-製程流體之直接加熱。圖 斤“繪之三管子加熱器類似於圖1,且燃料導管及氧化 133lllTdoc -14- 200912209 導管相同。然而,在圄7由 —製程區域(15)係由製程導管 其具有,- )用於-經加熱之製程流之出口 (28)。另一選擇為,該盥 & 出製鋥婁其、;(28)處進入並於(32)處退 ^ ^供―與氧化導管流動同向的製程流動。 圖⑽沿線Μ提取之圖2之一截面圖。圖2a描繪盆中開 口之縱軸與燃料導管之縱軸相每 (未顯示)一開口,其中一門口 > “包例。另一實施例 、 汗之縱軸離開燃料導管之縱軸 一距離以便該等軸不相交。 圖3描繪一無焰燃燒加熱器(⑽),其具有-燃料導管 〇叫、—氧化導管⑽)、_製程導管⑽)及—氧化劑導 管(106)。燃料區域(111)係 圓柱形官或管子之燃料 導官(102)形成,沿該管具有成角度之開口⑽)。氧化區 域=3)係由氧化導管(1〇4)形成,氧化導管⑽)係圓柱形 开且赤該燃枓導皆同心。製程區域⑴7)係由製程導管⑽) 二且其可係一圓柱形管或一殼及管子熱交換器之殼 側。氧化劑區域⑴5)係由氧化料管⑽)形成,氧化劑 ㈣0〇6)係圓柱形且與該氧化導管同心。在運作期間,姆 料於入口⑴0)處進入燃料導管並於成角度之開口⑽處 退出該燃料導管。成角度之開口 (叫沿遠離燃料入口 (no)之方向成角度。氧化劑於氧化劑入口⑴句處進入氧 化劑導管並於氧化導管入口 (12〇)處退出該氧化劑導管 化劑在氧化劑區域⑴5)中進行預加熱。該經預加熱之氧化 劑與來自開口(126)之燃料混合且燃燒產物於氧化導管出口 133111.doc 15- 200912209 處退出該加熱器。一製程流可於(u (1⑻處退出或其可於(118)處進入且可於⑴6入且於 此實施例在某些方面不同於圖⑴中所示之 化劑在加熱器内部進行預加熱,乃因其被 彳氧The oxidizing conduit provides fluid communication wherein the head is in the middle; the longitudinal axis of an opening forms an oblique angle with the inner surface of the emulsification guide. The invention further provides a method for providing heat to a (four)-to-process conduit, comprising: providing an oxidation conduit, a squirrel, and a conduit having a plurality of openings, the openings from the fuel conduit to The oxidizing conduit provides a longitudinal axis of at least one opening in the flow communicating with the inner surface of the oxidizing conduit; providing a process guide in a heat exchange relationship with the oxidizing conduit; introducing the fuel to the In the fuel guide f; a helium oxidant is introduced into the vaporization conduit; and the fuel is introduced into the conduit through the plurality of openings. [Embodiment] The present invention provides a flameless combustion heating for direct transfer of heat released by flameless combustion of fuel. The heater has many possible uses and the application package 3 heats the subterranean formation and the heated process stream. The flameless combustion heating state is particularly useful in conjunction with processes for performing endothermic reactions (e.g., dehydrogenation of alkyl aromatics and vapor reforming of vapors). The present invention provides a flameless combustion heater having at least one opening in a fuel guide B, the at least one opening 133111.doc 200912209 forming an oblique angle with the inner surface of the oxidation conduit. The angled opening reduces the problems associated with fuel strikes on the inner surface of the oxidation conduit and improves the mixing of the fuel and oxidant in the oxidation conduit. The flameless combustion in a heater can be achieved by sufficiently preheating an oxidant stream and a fuel stream such that when the two streams are combined, the temperature of the mixture exceeds the autoignition temperature of the mixture, but the mixture The temperature is less than a temperature which will result in oxidation when the mixing is limited by the mixing rate as described in US 7,025,940, which is incorporated herein by reference. The autoignition temperature of the mixture is dependent on the type of fuel and oxidant and the fuel to oxidant ratio. The autoignition temperature of a mixture used in a flameless combustion heater can range from 85 Torr to 1400X:. If an oxidation catalyst is used in the heater, the autoignition temperature can be reduced, so that the type of catalyst effectively reduces the autoignition temperature of the mixture. The fuel conduit provides a controlled rate of fuel introduction into the oxidation conduit in a manner that provides a desired heat release. The heat release is determined in part by the location and number of openings that can be trimmed for each heater application. The heat release can be constant over the length of the heater, or it can be reduced or increased over the length of the heater. Since there is no visible flame associated with the flameless combustion of a fuel, the flameless combustion reaction occurs at a temperature lower than that observed in conventional open flame heaters. Due to the observed lower temperatures and the efficiency of direct heating, the heater can be designed using lower cost materials, resulting in reduced capital expenditures. The flameless combustion heater has two main components: an oxidation conduit and an inlet ff of 133111.doc 200912209.:: can be a tube or tube 'which has - for oxidation: for the export of oxidation products and one Nitrogen at the inlet and outlet. = Road,. Suitable oxidizing agents comprising air, oxygen and oxidizing agents can be preheated so that the mixture is at a temperature X above the autoignition temperature of the mixture. The dicerizing agent can be heated outside of the flameless combustion heater. Alternatively, the emulsifier can be heated inside the heater by heat exchange with any of the internal streams of the heater. The oxidizing conduit can have an internal diameter of from about 2 to about 2G. (9) The oxidant conduit may be larger or smaller than this range depending on the heater requirements. The fuel conduit transfers fuel to the heater and introduces it into the oxidation conduit. The fuel conduit can be a tube or tube having a fuel inlet I providing a plurality of openings from fluid communication within the fuel conduit to the oxidation conduit. The fuel conduit can be located within and surrounded by the oxidation conduit. Fuel passes through the dedicated opening and into the oxidation conduit where it mixes with the oxidant and causes flameless combustion. The fuel conduit may have an inner diameter of from about 1 cm to about 10 cm, preferably from about 1.5 cm to about 5 cm. However, in a rear view design, the fuel conduit can have a diameter greater than 10 cm or less than one. The geometry, orientation and location of the openings in the fuel pilot can be designed to overcome problems caused by the fluid and mixing dynamics of the heater system. The openings can be drilled or cut into the wall of the fuel conduit. The wall of the fuel conduit has a thickness of from about 0.25 cm to about 2.5 cm. The openings may have a circular 'elliptical shape, a rectangular shape, a s', or a cross section of an irregular shape. The openings preferably have a circular cross section. 133111.doc -10- 200912209 The openings may be Having a cross-sectional area from about 〇2 to about 2 em2, preferably from about 3 cm 2 to about 0.2 cm 2 . The size of the openings is determined by the desired rate of introduction of fuel into the oxidation conduit, but too Small openings can cause blockages. These openings can be positioned along the fuel conduit, leaving any other opening in the axial direction from a distance of lcmll00cm. The openings are spaced apart from 15c-m. The openings can be along the fuel The lengths of the guides are positioned in their respective radial planes in different orientations for 2 s. The positions of the openings may alternate 180 degrees along the radial plane along the length of the fuel conduit or may alternate between 2 or 90 degrees. The openings may be such that their orientation in the radial plane alternates between their lengths and their orientations by 3 to 18 degrees along the length of the fuel conduit. The orientation of the openings is preferably along the fuel conduit. The length alternates from 6 to 12 degrees. In one embodiment, a sintered plate may be used to provide fluid communication from the oxidized S-oxidation zone in addition to the k-slope, and the opening in a sintered plate may have a diameter of from about 10 to about 100 microns. Openings of different lengths generally have the same cross-sectional area. In alternative embodiments, the openings may be different to provide the desired thermal release. Additionally, the spacing between the openings of the fuel conduits may be different. To provide the desired heat release. These openings are usually and have the same shape. In alternative embodiments, the openings can have different shapes. k is open from the "longitudinal axis" and the longitudinal axis is connected to the center of the cross section at each end of the opening. The fuel conduit also has a longitudinal axis defined by a line connecting the centers of the sections of the tube. The term acute angle as used herein is defined as an angle between 0 and 90 degrees 133Ill.doc 200912209. The term obtuse angle as used herein is defined as an angle between 9 1 and 1 80 degrees. The term bevel angle as used herein is defined as an angle that is an acute or obtuse angle. The flameless combustion heater can additionally include a process conduit carrying a process fluid, wherein the process conduit is in heat exchange relationship with the oxidation conduit. The heater t contains a process conduit to allow direct heating of a process stream. The process conduit can be used to carry out a chemical reaction as appropriate. The process conduit can contain a catalyst to promote the chemical reaction. This heater is particularly beneficial for performing an endothermic reaction. The heat is added directly to the process during the reaction. By way of example, δ, this heating benefit can be incorporated into the dehydrogenation reactor to directly heat the dehydrogenation of ethylbenzene to styrene. The flameless combustion heater can optionally include an oxidant conduit. The oxidant conduit has - an inlet for the oxidant and a oxidized outlet for preheating - the e is connected to the population of the oxidizing conduit (4), and the oxidant conduit is in heat exchange relationship with the oxidizing derivative or the process conduit, It provides direct heat to preheat the oxidant to a sufficient temperature to be at or above the autoignition temperature when mixed with the fuel in the oxidizing conduit. A preheat II can be used to preheat the oxidant before it enters the heater. - The pre-heater can be a device or method that provides heat. The pre-processor can be, for example, a conventional heat exchanger or a flameless combustion plus cry. A preferred embodiment of the (four) firing heater will be further described with respect to the figures presented in this application. ′' Figure 1-3 depicts an embodiment of a flameless combustion heater having a magnetic opening &> % in the lower female. Figure 1 depicts a flameless combustion heater (10) having a fuel zone (1) formed by a fuel conduit (12) of 133111.doc -12. 200912209 and an oxidation zone (13) by an oxidation conduit. This type of heater is referred to as a tube double heater. In this embodiment, the fuel conduit (12) is a cylindrical beta hexagram used for the inlet (24) and the plurality of openings (2). The longitudinal axis (2) of the openings forms an acute angle (34) with the inner surface of the oxidation guide f(10). The oxidation conduit (14) is a cylindrical tube concentrically positioned about the fuel conduit (12). The fuel conduit (10) has a population (26) for preheated oxidant and a mouthpiece for combustion products (3G). ). In an alternate embodiment the 'oxidant can be introduced at (3G) and the 35 burned product can exit the heater at (26), which provides reverse maneuvering of the fuel and oxidation! The reverse flow of fuel and oxidant provides better mixing of fuel and oxidant than co-flow. The direction of the flow can be varied to suit the desired mixing and pyrolysis of the particular heater application. During the operational period 1 fuel, the second enters the fuel zone (11) from the inlet (24) and then mixes with the preheated oxidant in the oxidized zone (13) after it passes through the angled opening (20). The opening (20) is angled in a direction opposite the fuel inlet (24). In the measurement of the fuel inlet (24) of the fuel conduit (12), the openings cause the longitudinal axis of the opening to form an angle of less than ninety degrees with the inner surface of the oxidation conduit. These openings are hereinafter referred to as acute angle openings. Preferably, the longitudinal axis of the opening forms an angle of from twenty to eighty degrees from the inner surface of the oxidizing conduit, more preferably from ten to seventy-five degrees and most preferably from fifty to seventy degrees. Figure 1 & is a cross-sectional view of Figure 1 taken along line Α·Α. This figure depicts an embodiment in which the longitudinal axis of one of the openings intersects the longitudinal axis of the fuel conduit. Figure 1b is a cross-sectional view of Figure 1 taken along line Β-Β. This figure depicts another embodiment in which one of the I331II.doc •13·200912209 openings has a longitudinal axis that is a distance (40) from the longitudinal axis of the fuel conduit such that the axes do not intersect. These openings are hereinafter referred to as acute tangential cuts. A heater may have a cross-sectional view (an acute angle opening) as depicted in FIG. 1a or a cross-sectional view (an acute tangential opening) as depicted in FIG. In an alternate embodiment, a heater may have a combination of an acute angle opening and an acute tangential opening and the cross-sectional views of Figures 1a and 1b will represent cross-sectional views of the same heater at different points of the heater. - The acute angle opening is angled such that the fuel line exiting the opening is directed in a direction opposite the fuel conduit inlet. An acute angle opening results in a lower peak temperature, which reduces the risk to the heater material and allows the material to be used in the heater construction to be less scary. In addition, the acute angle opening allows the distance between the fuel conduit and the oxidation conduit to be reduced', resulting in a smaller heater and reduced capital expenditure. An acute tangential opening provides a more uniform heat release in the radial direction. The use of a sharp positive opening also provides a more uniform heating profile and a good balance of fuel and oxidant. The use of an acute tangential opening also allows the flameless combustion heater to operate * > at a higher fuel/air ratio than a flameless combustion heater having a typical vertical opening. When less air is needed, the oxidation conduit can be smaller, thus reducing capital expenditures. Fig. 2 is a flameless combustion heater (10) having a fuel conduit I oxidation conduit (14) and a process conduit (16). This type of heater 2, + Guangguanzi heater can be used for direct heating of the process fluid. Figure 3: The three-tube heater is similar to Figure 1, and the fuel conduit and the oxidized 133l11Tdoc-14-200912209 conduit are the same. However, the 圄7-process area (15) is made up of the process conduit, which has -) - the outlet of the heated process stream (28). Alternatively, the 盥& is produced, (28) is entered and (32) is retracted for the same direction as the oxidation conduit Figure (10) is a cross-sectional view of Figure 2 taken along line 。. Figure 2a depicts an opening (not shown) for the longitudinal axis of the opening in the basin and the longitudinal axis of the fuel conduit, one of which is > In another embodiment, the longitudinal axis of the sweat exits the longitudinal axis of the fuel conduit a distance such that the equiaxions do not intersect. Figure 3 depicts a flameless combustion heater ((10)) having a - fuel conduit squeak, - an oxidation conduit (10), a process conduit (10), and an oxidant conduit (106). The fuel zone (111) is formed by a cylindrical pilot or tube fuel pilot (102) having an angled opening (10) along the tube. The oxidation zone = 3) is formed by an oxidation conduit (1〇4), and the oxidation conduit (10) is cylindrically open and concentric. The process zone (1) 7) is made up of a process conduit (10)) and it can be attached to a cylindrical tube or a shell and a shell side of a tube heat exchanger. The oxidant zone (1) 5) is formed by an oxidizing tube (10)) which is cylindrical and concentric with the oxidizing conduit. During operation, the fuel enters the fuel conduit at inlet (1) 0) and exits the fuel conduit at the angled opening (10). An angled opening (called an angle away from the fuel inlet (no). The oxidant enters the oxidant conduit at the oxidant inlet (1) and exits the oxidant conduit at the oxidant conduit inlet (12〇) in the oxidant region (1) 5) Preheating is performed. The preheated oxidant is mixed with fuel from the opening (126) and the combustion products exit the heater at the oxidation conduit outlet 133111.doc 15-200912209. A process stream may exit at (u (1) (8) or it may enter at (118) and may be at (1) 6 and the embodiment is different in some respects from the agent shown in Figure (1). Heating because of its oxygenation

管及製程導管成熱交換關係之氧化劑導管中:氧化導 可在被引入至氧化劑導管中之前進行預加熱二 氧化劑及氧化導管之-部分成熱交換關係。該等不同二實 ㈣為設計加熱器應用提供更多的自由以滿足製程的要求 並併入設計特徵以自無焰燃燒之燃燒產物重新獲得額外的 圖3&係沿線A-A提取之圖3之一截面圖。此圖描繪其中— 開口之縱軸與燃料導管之縱軸相交之—實施例 例(未圖示)包括一開口’其中一開口之縱軸距燃料導管: 縱軸一段距離,以致該等軸不相交。 圖心6描♦具有在下文中稱為鈍角開口之無焰燃燒加執 益之實施例。圖4描繪—類似於圖所描繚之雙管無焰姆 燒加熱器之無焰燃燒加熱器⑽,雖然開口係沿一不同方 向成角度。成角度之開口 (20)係沿朝向燃料導管入口之方 向成角度。 當自燃料導管之入口端量測時,該等開口係使得一開口 之縱軸與氧化導管之内表面形成大於九十度之角度。該等 開口在下文中稱為鈍角開π。—開σ之縱軸較佳與氧化導 管之内表面形成自100。至160。之角度,更佳自1〇5。至145〇 且最佳自1 10°至130。。 13311I.doc -16 - 200912209 一開口之縱軸可與燃料導管之縱軸相交,如圖钝中所描 繪。在替代實施例中’-開口之縱轴可距燃料導管之縱轴 一段距離(40),以致該等軸不相交 此等開口在下文中稱為鈍角正切開 與銳角正切開口類似的益處。 ,如圖4b中所描繪,且 口。鈍角正切開口提供The oxidant conduit in which the tube and the process conduit are in heat exchange relationship: the oxidizing conductor may be preheated to a portion of the oxidant and the oxidizing conduit in a heat exchange relationship prior to being introduced into the oxidant conduit. These two different realities (4) provide more freedom for designing heater applications to meet process requirements and incorporate design features to re-acquire additional from the flameless combustion products. Figure 3 & Sectional view. This figure depicts where the longitudinal axis of the opening intersects the longitudinal axis of the fuel conduit - an embodiment (not shown) includes an opening 'the longitudinal axis of one of the openings is a distance from the longitudinal axis of the fuel conduit such that the axis is not intersect. Figure 6 depicts an embodiment having a flameless combustion plus benefit hereinafter referred to as an obtuse opening. Figure 4 depicts a flameless combustion heater (10) similar to the double tube flameless heater described in the figures, although the openings are angled in a different direction. The angled opening (20) is angled in a direction toward the fuel conduit inlet. The openings are such that the longitudinal axis of an opening forms an angle greater than ninety degrees with the inner surface of the oxidizing conduit when measured from the inlet end of the fuel conduit. These openings are hereinafter referred to as obtuse angles π. The longitudinal axis of the opening σ is preferably formed from 100 from the inner surface of the oxidizing tube. To 160. The angle is better than 1〇5. Up to 145 且 and best from 1 10° to 130. . 13311I.doc -16 - 200912209 The longitudinal axis of an opening intersects the longitudinal axis of the fuel conduit, as depicted in the blunt figure. In an alternate embodiment, the longitudinal axis of the opening may be a distance (40) from the longitudinal axis of the fuel conduit such that the equiaxed lines do not intersect. These openings are hereinafter referred to as obtuse tangential openings and have similar benefits as acute tangential openings. , as depicted in Figure 4b, and mouth. Obtuse angle tangential opening

鈍角開口通常導致增加之燃料流動端流及氧化導管中與 氧化劑之混合,從而改良無焰燃燒反應。另外,鈍角開口' 提供銳角開口提供的許多相同的益處,例如,允許燃料導 管與氧化導管之間的距離將減小,從而導致一較小的加埶 器及減小之資本支出。 ”' 圖5描繪一類似於圖2中所描繪之三管子無焰燃燒加熱器 之無焰燃燒加熱器(1G)。然;而’圖5描繪如上所述之加熱器 中之鈍角開口。圖5以系沿線A_A提取之圖5之一截面圖。 圖6描繪一類似於圖3中所描繪之四管子無焰燃燒加熱器 之無焰燃燒加熱器(1〇0)。然而’圖6描繪該加熱器中之鈍 角開口。圖6a係沿線A_A提取之圖6之一截面圖。 圖7 9描繪在下文中稱為正切開口之無焰燃燒加熱器之 實施例。圖7描繪-類似於圖!中所描繪之雙管無焰燃燒加 熱益之無焰燃燒加熱器(1〇),雖然開口係沿不同的方向成 角度。正切開口 20不沿燃料導管入口或出口之方向成角 度。圖7a係沿線α·α提取之圖7之一截面圖。 该等正切開口使得一開口之縱軸離開燃料導管之縱軸一 距離(40) ’以便該等轴不相交。該開口之縱軸與燃料導管 之縱軸之間的距離可大於該燃料導管之内半徑之四分之 133111.doc -17- 200912209 一,較佳大於該燃料導管之内 料導管之内半徑之四分之三。 半徑之一半且更佳大於該燃 口沿徑向方向提供更 正切開口類似於銳角及鈍角正切開 均勻之熱釋放。 圖8描繪一類似於圖2中所描繪之三管子無焰燃燒加熱器 之無焰燃燒加熱器(10)。然而,圖8描繪如上所述之加熱器 中之正切開口。圖心係沿線A_A提取之圖8之一截面圖An obtuse opening typically results in increased fuel flow end flow and mixing with the oxidant in the oxidation conduit to improve the flameless combustion reaction. In addition, the obtuse opening provides many of the same benefits provided by the acute opening, for example, allowing the distance between the fuel conduit and the oxidizing conduit to be reduced, resulting in a smaller damper and reduced capital expenditure. Figure 5 depicts a flameless combustion heater (1G) similar to the three-tube flameless combustion heater depicted in Figure 2. While Figure 5 depicts the obtuse opening in the heater as described above. 5 is a cross-sectional view of Figure 5 taken along line A_A. Figure 6 depicts a flameless combustion heater (1〇0) similar to the four-tube flameless combustion heater depicted in Figure 3. However, Figure 6 depicts An obtuse opening in the heater. Figure 6a is a cross-sectional view of Figure 6 taken along line A_A. Figure 7 9 depicts an embodiment of a flameless combustion heater, hereinafter referred to as a tangential opening. Figure 7 depicts - similar to the figure! The dual-tube flameless combustion heating heater is described as a flameless combustion heater (1 inch), although the openings are angled in different directions. The tangential opening 20 is not angled in the direction of the fuel conduit inlet or outlet. Figure 7a A cross-sectional view of Figure 7 taken along line α·α. The tangential openings are such that the longitudinal axis of an opening is at a distance (40) from the longitudinal axis of the fuel conduit such that the equiaxions do not intersect. The longitudinal axis of the opening is associated with the fuel conduit The distance between the longitudinal axes may be greater than the inner radius of the fuel conduit 133111.doc -17- 200912209 A, preferably greater than three-quarters of the inner radius of the inner conduit of the fuel conduit. One-half the radius and more preferably greater than the vent provides a more tangent opening in the radial direction Uniform heat release at the acute and obtuse angles. Figure 8 depicts a flameless combustion heater (10) similar to the three tube flameless combustion heater depicted in Figure 2. However, Figure 8 depicts the heating as described above. Tangential opening in the device. Figure 1 is a cross-sectional view of Figure 8 taken along line A_A

圖9描緣一類似於圖3中所描繪之四管子無焰燃燒加熱器 之無焰燃燒加熱器(100)。然而,圖9描繪該加熱器中之正 切開口。圖9a係沿線A-A提取之圖9之一截面圖。 該無焰燃燒加熱器可端視該加熱器之特定組態及該加熱 器應用在多種條件下運作。在u.s· 5,255,742及u s 7,025,940中描述各種實例及條件,該等專利以引用方式併 入本文中。 圖10描繪在一乙苯脫氫單元中使用一無焰燃燒加熱器。 一含有流及乙苯之製程給料經由導管(202)餵入脫氫反應器 (204)。脫氫反應器(204)含有一適宜之脫氫觸媒,其可係 一基於氧化鐵之觸媒,並提供用於使該製程給料與該脫氫 觸媒接觸之構件。一脫氫反應器流出物通過導管(2〇6)自脫 氫反應器(204)排出並通過其製程流體入口(21〇)引入至無 焰燃燒加熱器(208)中。 由於脫氫反應係一吸熱反應’因此脫氫反應器流出物將 具有一比到達脫氫反應器(2〇4)乏製程給料之溫度低的溫 度。無焰燃燒加熱器(208)用於在脫氫反應器流出物被引入 133111.doc -18 · 200912209 至第一級脫虱反應器(212)之前對其進行加熱。該將加熱之 製程流體將自無焰燃燒加熱器(2〇8)通過其排放出口(2丨4) 及導官(216)被引入作為一給料進入第二級脫氫反應器 (2 12)中。一脫氫反應器流出物通過導管(2丨8)自第二級反 應器(2 12)排出。脫氫製程可藉助多於兩個反應器實施在 此情形下,一無焰燃燒加熱器可置於每一額外反應器前 面。 燃料通過導管(220)且通過燃料入口(222)引入至無焰燃 燒加熱器(208)。氧化劑通過導管(224)且通過氧化劑入口 (226)引入至加熱器(2〇8)中。燃燒產物通過導管(228)自無 焰燃燒加熱器(2〇8)排出。 在此實施例中顯示一預加熱器(23〇)用於在氧化劑進入 加熱器(208)中之前對其進行預加熱。此係該加熱器系統之 一可選部分。 藉助所描述之開口位置及幾何形狀之細節之任一變更, 本文中所描述之無焰燃燒加熱器可用於任一應用中。 【圖式簡單說明】 圖1描繪一具有銳角開口之雙管無焰燃燒加熱器。 圖1 a描繪圖1之加熱器之一截面圖。 圖lb描繪圖1之加熱器之一截面圖。 圖2描繪一具有銳角開口之三管子無_燒加熱器。 圖2a描繪圖2之加熱器之一截面圖。 圖3描繪一具有銳角開口之四管子無焰燃燒加熱器。 圖3a描繪圖3之加熱器之一截面圖。 133111.doc -19- 200912209 圖4描繪一具有鈍角開口之雙管無焰燃燒加熱器。 圖4 a描繪圖4之加熱器之一截面圖。 圖4b描續·圖4之加熱器之一截面圖。 圖5描繪一具有鈍角開口之三管子無焰燃燒加熱器。 圖5 a描繪圖5之加熱器之一截面圖。 圖6描繪一具有純角開口之四管子無媳燃燒加熱器。 圖6a描繪圖6之加熱器之一截面圖。 圖7描繪一具有正切開口之雙管無焰燃燒加熱器。 圖7a描繪圖7之加熱器之一截面圖。 圖8描繪一具有正切開口之三管子無焰燃燒加熱器。 圖8a描繪圖8之加熱器之一截面圖。 圖9描繪一具有正切開口之四管子無焰燃燒加熱器。 圖9a描繪圖9之加熱器之一截面圖。 圖10描繪在一乙苯脫氫製程中使用一無焰燃燒加熱器之 一實施例。 【主要元件符號說明】 10 無焰燃燒加熱器 12 燃料導管 13 氧化區域 14 氧化導管 11 燃料區域 20 開〇 22 開口之縱軸 24 用於燃料之入口 133111.doc • 20- 200912209 26 用於經預加熱之氧化劑之入口 30 用於燃燒產物之出口 34 銳角 40 距離 28 用於一經加熱之製程流之出口 16 製程導管 32 用於一製程流之入口 15 製程區域 100 無焰燃燒加熱器 110 入口 102 燃料導管 112 氧化導管出口 114 氧化劑入口 111 燃料區域 104 氧化導管 106 氧化劑導管 126 成角度之開口 113 氧化區域 115 氧化劑區域 108 製程導管 117 製程區域 120 氧化導管入口 220 導管 224 導管 133111.doc •21 · 預加熱器 導管 脫氫反應器 導管 燃料入口 氧化劑入口 製程流體入口 導管 無焰燃燒加熱器 排放出口 第二級脫氫反應器 導管 導管 -22-Figure 9 depicts a flameless combustion heater (100) similar to the four tube flameless combustion heater depicted in Figure 3. However, Figure 9 depicts the tangential opening in the heater. Figure 9a is a cross-sectional view of Figure 9 taken along line A-A. The flameless combustion heater can be viewed in a particular configuration of the heater and the heater application operates under a variety of conditions. Various examples and conditions are described in U.S. Patent Nos. 5,255,742 and U.S. Pat. Figure 10 depicts the use of a flameless combustion heater in an ethylbenzene dehydrogenation unit. A process feed containing stream and ethylbenzene is fed to the dehydrogenation reactor (204) via conduit (202). The dehydrogenation reactor (204) contains a suitable dehydrogenation catalyst which can be an iron oxide based catalyst and provides means for contacting the process feedstock with the dehydrogenation catalyst. A dehydrogenation reactor effluent is withdrawn from the dehydrogenation reactor (204) through a conduit (2〇6) and introduced into the flameless combustion heater (208) through its process fluid inlet (21〇). Since the dehydrogenation reaction is an endothermic reaction', the dehydrogenation reactor effluent will have a lower temperature than the temperature at which the feed to the dehydrogenation reactor (2?4) is reached. A flameless combustion heater (208) is used to heat the dehydrogenation reactor effluent before it is introduced into 133111.doc -18 · 200912209 to the first stage dehalation reactor (212). The heated process fluid will be introduced from the flameless combustion heater (2〇8) through its discharge outlet (2丨4) and the pilot (216) as a feed to the second stage dehydrogenation reactor (2 12) in. A dehydrogenation reactor effluent is withdrawn from the second stage reactor (2 12) through a conduit (2丨8). The dehydrogenation process can be carried out with more than two reactors. In this case, a flameless combustion heater can be placed in front of each additional reactor. Fuel is introduced through conduit (220) and through a fuel inlet (222) to a flameless combustion heater (208). The oxidant is introduced into the heater (2〇8) through the conduit (224) and through the oxidant inlet (226). The products of combustion are discharged from the flameless combustion heater (2〇8) through a conduit (228). A preheater (23〇) is shown in this embodiment for preheating the oxidant prior to entering the heater (208). This is an optional part of the heater system. The flameless combustion heater described herein can be used in any application with any of the variations in the described position and geometry of the opening. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 depicts a dual tube flameless combustion heater having an acute angle opening. Figure 1 a depicts a cross-sectional view of the heater of Figure 1. Figure lb depicts a cross-sectional view of the heater of Figure 1. Figure 2 depicts a three tube non-burning heater with an acute opening. Figure 2a depicts a cross-sectional view of the heater of Figure 2. Figure 3 depicts a four tube flameless combustion heater having an acute angle opening. Figure 3a depicts a cross-sectional view of the heater of Figure 3. 133111.doc -19- 200912209 Figure 4 depicts a dual tube flameless combustion heater with an obtuse opening. Figure 4a depicts a cross-sectional view of the heater of Figure 4. Figure 4b depicts a cross-sectional view of the heater of Figure 4. Figure 5 depicts a three-tube flameless combustion heater having an obtuse opening. Figure 5a depicts a cross-sectional view of the heater of Figure 5. Figure 6 depicts a four tube flawless combustion heater with a pure angular opening. Figure 6a depicts a cross-sectional view of the heater of Figure 6. Figure 7 depicts a dual tube flameless combustion heater having a tangential opening. Figure 7a depicts a cross-sectional view of the heater of Figure 7. Figure 8 depicts a three-tube flameless combustion heater having a tangential opening. Figure 8a depicts a cross-sectional view of the heater of Figure 8. Figure 9 depicts a four tube flameless combustion heater having a tangential opening. Figure 9a depicts a cross-sectional view of the heater of Figure 9. Figure 10 depicts an embodiment of the use of a flameless combustion heater in an ethylbenzene dehydrogenation process. [Main component symbol description] 10 Flameless combustion heater 12 Fuel conduit 13 Oxidation zone 14 Oxidation conduit 11 Fuel zone 20 Opening 22 Opening vertical axis 24 For fuel inlet 133111.doc • 20- 200912209 26 For pre-preparation Heated oxidant inlet 30 for combustion product outlet 34 acute angle 40 distance 28 for heated process flow outlet 16 process conduit 32 for a process flow inlet 15 process zone 100 flameless combustion heater 110 inlet 102 fuel Catheter 112 Oxidation conduit outlet 114 Oxidizer inlet 111 Fuel region 104 Oxidation conduit 106 Oxidant conduit 126 Angled opening 113 Oxidation zone 115 Oxidizer zone 108 Process conduit 117 Process area 120 Oxidation conduit inlet 220 Catheter 224 Conduit 133111.doc • 21 · Preheating Tube dehydrogenation reactor conduit fuel inlet oxidant inlet process fluid inlet conduit flameless combustion heater discharge outlet second stage dehydrogenation reactor conduit conduit-22-

Claims (1)

200912209 十、申請專利範圍: !·-種無焰燃燒加熱器’其包括—氧化導管及—且有複數 個開口之燃料導管,該等開口提供自該燃料導;内至咳 :::=體連通,其中至少—個開口之縱軸與該氧 化導管之内表面形成一斜角。 2·=求Γ之加熱器,其中當自該燃料導管之入口端量 面:成=一個開口之該縱轴與該氧化導管之該内表 面形成一銳角。 3·如請求们之加熱器,其中當自該燃料導管 量測時,嗲5 ,卜0B ~入口 個開口之該縱軸與 表面形成一鈍角。 等官之該内 (如請求们_3中任一項之加熱器,其中該等 分與該氧化導管之該内表面形成斜角。 4 5·如凊求項w中任一項之加熱器,其中該至少 該縱軸未與該燃料導管之縱軸相交。 〃之 6·如請求項5之加熱器,其中該開口 管之該縱轴之間的距離大於該燃料導管之=該燃料導 之一。 内半徑之四分 7’如3月求項1-6中任-項之加熱器,其中-個門 與該氧化導管之該内表面形成一第一:口之該縱柏 之該縱輪與該氧化導管之該内表面形广且另—開口 角度之第二角度。 纟㈣成―不等於該第一 8. 士 ”月求項1-7中任-項之加熱器,其中至小 圓形戴面。 V '個開口具有 133111.doc 200912209 9.如。月求項1-8中任一項之加敎5|, r^項之加熱窃其中—個開口具有大於 開D之截面積的截面積。 10·如哨求項1-9中任一項之力σ埶界, 莫# T1㊉之力…态其進-步包括-氧化劑 I,該氧化劑導管具有一氧化劑之入口及一經預加熱 =軋化劑之出口,該出口與該氧化導管之入口流體連 通。 如明求項卜1〇令任一項之加熱器, 氧化導管成熱交換關係之製程導管 ,、進步包括一與該 12.如請求項卜丨丨中任一項 其·進一步包括一與該 器 心灭巴秸一興孩 燒加熱器流體連通之預加熱器,其中該預加熱器 :將該氧化劑預加熱至一當該氧化劑與燃料在該氧化 官中現合時所處之溫度,該混合物之溫度超過該混合 物之自燃溫度。 13.如請求項11-12中任— 項之加‘,,、器,其中該氧化劑導管係 與该製程導管成熱交換關係。 14:求項^中任—項之加熱器,其中該加熱器進-步 包括一氧化觸媒。 15· 一種向-製程導管提供熱之方法,其包括: 提供一氧化導管; 一具有複數個開口之燃料導管,該等開口提供自 該燃料導管内至該氧杈供自 „ 孔化導官之饥體連通,其中至少一個 β 礼化導官之内表面形成一斜角. 提供一與該氧化導管成熱交換關係之製程導管; 將燃料引入至該燃料導管中; 133111.doc 200912209 將一氧化劑引入至該氧化導管中;及 透過該複數個開口將該燃料引入至該氧化導管中, 致在該氧化導管中發生無焰燃燒。 f \ 133111.doc200912209 X. Patent application scope: !·-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Connected, wherein at least the longitudinal axis of the opening forms an oblique angle with the inner surface of the oxidation conduit. 2) = heater of the enthalpy, wherein the longitudinal axis from the inlet end of the fuel conduit: the vertical axis of the opening forms an acute angle with the inner surface of the oxidizing conduit. 3. A heater as claimed, wherein the longitudinal axis of 嗲5, 卜0B~ entrance opening forms an obtuse angle with the surface when measured from the fuel conduit. A heater according to any one of the preceding claims, wherein the aliquot forms an oblique angle with the inner surface of the oxidizing conduit. 4 5. The heater of any of the items Wherein the at least the longitudinal axis does not intersect the longitudinal axis of the fuel conduit. The heater of claim 5, wherein the distance between the longitudinal axis of the open tube is greater than the fuel conduit = the fuel guide One of the inner radius of the four-point 7', such as the heater of the item 1-6 of March, wherein the - door forms a first with the inner surface of the oxidizing conduit: The inner surface of the longitudinal wheel and the oxidizing conduit has a wide shape and a second angle of the opening angle. 纟(四)成—not equal to the heater of the first item of the first 8. To a small round face. V 'opening has 133111.doc 200912209 9. For example, the addition of any of the items 1-8 of the month 1-8, the heat of the r^ item is stolen - the opening has a greater than the opening D The cross-sectional area of the cross-sectional area. 10.·For example, the force σ埶 boundary of any one of the items 1-9 of the whistle, Mo #T1十力... The further step includes the oxidant I, The oxidant conduit has an inlet for the oxidant and an outlet for preheating = rolling agent, the outlet being in fluid communication with the inlet of the oxidizing conduit. The heater is in a heat exchange relationship as in any of the heaters of the present invention. The process conduit, the improvement includes a preheater that is in fluid communication with the heater, wherein the preheating is in accordance with any one of the claims. The oxidant is preheated to a temperature at which the oxidant and the fuel are present in the oxidizer, the temperature of the mixture exceeding the autoignition temperature of the mixture. 13. As claimed in claim 11-12 And the oxidant conduit is in heat exchange relationship with the process conduit. 14: The heater of any of the preceding claims, wherein the heater further comprises an oxidation catalyst. A method of providing heat to a process conduit, the method comprising: providing an oxidation conduit; a fuel conduit having a plurality of openings, the openings being provided from the fuel conduit to the oxo being supplied The hunger of the guide is connected, wherein at least one of the inner surfaces of the beta ritual guide forms an oblique angle. A process conduit is provided in heat exchange relationship with the oxidizing conduit; fuel is introduced into the fuel conduit; 133111.doc 200912209 Introducing an oxidant into the oxidizing conduit; and introducing the fuel into the oxidizing conduit through the plurality of openings such that flameless combustion occurs in the oxidizing conduit. f \ 133111.doc
TW097127546A 2007-07-20 2008-07-18 A flameless combustion heater TW200912209A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US95093807P 2007-07-20 2007-07-20

Publications (1)

Publication Number Publication Date
TW200912209A true TW200912209A (en) 2009-03-16

Family

ID=39865135

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097127546A TW200912209A (en) 2007-07-20 2008-07-18 A flameless combustion heater

Country Status (10)

Country Link
US (1) US20090136879A1 (en)
EP (1) EP2176588A2 (en)
JP (1) JP2010534313A (en)
KR (1) KR20100061445A (en)
CN (1) CN101815905A (en)
AR (1) AR067576A1 (en)
BR (1) BRPI0814094A2 (en)
RU (1) RU2459147C2 (en)
TW (1) TW200912209A (en)
WO (1) WO2009014980A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080005241A1 (en) * 2006-06-30 2008-01-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Usage parameters for communication content
US8539773B2 (en) * 2009-02-04 2013-09-24 General Electric Company Premixed direct injection nozzle for highly reactive fuels
EP2479616A1 (en) 2011-01-25 2012-07-25 Basf Se The use of surfactants having at least three short-chain perfluorinated groups Rf for manufacturing integrated circuits having patterns with line-space dimensions below 50 nm
JP5857502B2 (en) * 2011-07-27 2016-02-10 株式会社Ihi Combustion heater
WO2013048914A1 (en) * 2011-09-26 2013-04-04 Dk Innovations, Inc. Aphlogistic burner
JP2013249605A (en) * 2012-05-31 2013-12-12 Ihi Corp Gas-hydrate collecting system
EP2824511A1 (en) 2013-07-11 2015-01-14 Basf Se The use of surfactants having at least three short-chain perfluorinated groups in formulations for photo mask cleaning
CN107300169B (en) * 2016-04-14 2019-12-27 中国科学院大连化学物理研究所 Catalytic flameless combustion device and combustion method with extremely low pollutant emission
WO2018090383A1 (en) * 2016-11-21 2018-05-24 深圳智慧能源技术有限公司 Combustion chamber of gas turbine engine, and nozzle thereof
CN109611827B (en) * 2018-12-03 2020-08-18 宁波力芯科信息科技有限公司 Temperature self-regulating flameless combustion device
WO2021038470A1 (en) * 2019-08-26 2021-03-04 8 Rivers Capital, Llc Flame control in an oxyfuel combustion process
WO2023004073A1 (en) * 2021-07-21 2023-01-26 Modern Electron, Inc. Combustion systems including heat modules, and associated devices and methods

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1523920A (en) * 1967-05-24 1968-05-03 Zink Co John Device for mixing fluids
SU424893A1 (en) * 1970-10-01 1974-04-25 Н. Т. Колца, А. М. Семернин, В. Д. Брук , А. Е. Еринов BLIND RADIATION TROUBETS • • -r.vrs gufvarpTngVJii ^ Oovm--.! : JlJ
DE2645754A1 (en) * 1976-10-09 1978-04-13 Campos Virgilio Zurrica Burner head for heating fuel, diesel oil or gas - has two co-axial injectors, air-fuel mixing zones and venturi turbulator between zones
JPS5950013B2 (en) * 1978-08-22 1984-12-06 茂盛 大谷 Burner. Two-fluid maximum capacity burner combining units
JPS5661512A (en) * 1979-10-24 1981-05-27 Olympia Kogyo Kk Gas burner
JPS5787518A (en) * 1980-11-21 1982-06-01 Babcock Hitachi Kk Gas combustion furnace
GB8405681D0 (en) * 1984-03-05 1984-04-11 Shell Int Research Surface-combustion radiant burner
US4692306A (en) * 1986-03-24 1987-09-08 Kinetics Technology International Corporation Catalytic reaction apparatus
JPS63184322U (en) * 1987-05-15 1988-11-28
US5255742A (en) * 1992-06-12 1993-10-26 Shell Oil Company Heat injection process
US5392854A (en) * 1992-06-12 1995-02-28 Shell Oil Company Oil recovery process
US5297626A (en) * 1992-06-12 1994-03-29 Shell Oil Company Oil recovery process
US5404952A (en) * 1993-12-20 1995-04-11 Shell Oil Company Heat injection process and apparatus
US5411089A (en) * 1993-12-20 1995-05-02 Shell Oil Company Heat injection process
US5433271A (en) * 1993-12-20 1995-07-18 Shell Oil Company Heat injection process
JP3139946B2 (en) * 1995-10-04 2001-03-05 日立造船株式会社 Low NOx burner gas nozzle
DE19539246A1 (en) * 1995-10-21 1997-04-24 Asea Brown Boveri Airblast atomizer nozzle
CN1079885C (en) * 1995-12-27 2002-02-27 国际壳牌研究有限公司 Flameless combustor
US5862858A (en) * 1996-12-26 1999-01-26 Shell Oil Company Flameless combustor
AU734708B2 (en) * 1997-10-08 2001-06-21 Shell Internationale Research Maatschappij B.V. Flameless combustor process heater
US6296686B1 (en) * 1998-06-03 2001-10-02 Praxair Technology, Inc. Ceramic membrane for endothermic reactions
CA2337824C (en) * 1998-07-09 2006-01-24 Washington Group International, Inc. Radial flow reactor
US6162049A (en) * 1999-03-05 2000-12-19 Gas Research Institute Premixed ionization modulated extendable burner
JP2001050502A (en) * 1999-08-06 2001-02-23 Osaka Gas Co Ltd Radiant tube
US20030068260A1 (en) * 2001-03-05 2003-04-10 Wellington Scott Lee Integrated flameless distributed combustion/membrane steam reforming reactor and zero emissions hybrid power system
US6821501B2 (en) * 2001-03-05 2004-11-23 Shell Oil Company Integrated flameless distributed combustion/steam reforming membrane reactor for hydrogen production and use thereof in zero emissions hybrid power system
JP2003298338A (en) * 2002-04-02 2003-10-17 Fuji Xerox Co Ltd Antenna and communication device
AU2003238524A1 (en) * 2002-05-16 2003-12-02 Alstom Technology Ltd Premix burner
AU2004235350B8 (en) * 2003-04-24 2013-03-07 Shell Internationale Research Maatschappij B.V. Thermal processes for subsurface formations
WO2006099047A1 (en) * 2005-03-10 2006-09-21 Shell Internationale Research Maatschappij B.V. A multi-tube heat transfer system for the combustion of a fuel and heating of a process fluid and the use thereof
US8062027B2 (en) * 2005-08-11 2011-11-22 Elster Gmbh Industrial burner and method for operating an industrial burner

Also Published As

Publication number Publication date
RU2010106100A (en) 2011-08-27
CN101815905A (en) 2010-08-25
RU2459147C2 (en) 2012-08-20
JP2010534313A (en) 2010-11-04
KR20100061445A (en) 2010-06-07
WO2009014980A3 (en) 2010-03-04
US20090136879A1 (en) 2009-05-28
WO2009014980A2 (en) 2009-01-29
AR067576A1 (en) 2009-10-14
BRPI0814094A2 (en) 2015-02-03
EP2176588A2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
TW200912209A (en) A flameless combustion heater
US7704070B2 (en) Heat transfer system for the combustion of a fuel heating of a process fluid and a process that uses same
JP5436859B2 (en) Liquid mixing device that is inserted into or combined with the reactor
EP1856444B1 (en) Method of starting up a direct heating system for the flameless combustion of fuel and direct heating of a process fluid
KR102438787B1 (en) Methods and reactors for making one or more products
JP2004047472A (en) Method and apparatus for producing hydrogen
JP2008532749A (en) Multi-tube heat transfer system for fuel combustion and process fluid heating and uses thereof
EP1329256B1 (en) Apparatus and method for production of synthesis gas
US20080152583A1 (en) Method for Producing Nanoparticulate Solid Materials
TW200923279A (en) A flameless combustion heater
EP2176587B1 (en) A flameless combustion heater
MXPA05008772A (en) Auto thermal cracking reactor.
US7622087B2 (en) Reactor air supply system and burner configuration
TW202104801A (en) Burner