TW200909792A - Process for determining viscous, elastic, plastic, and adhesive (VEPA) properties of materials using AFM-based or conventional nano-indentation - Google Patents

Process for determining viscous, elastic, plastic, and adhesive (VEPA) properties of materials using AFM-based or conventional nano-indentation Download PDF

Info

Publication number
TW200909792A
TW200909792A TW097125665A TW97125665A TW200909792A TW 200909792 A TW200909792 A TW 200909792A TW 097125665 A TW097125665 A TW 097125665A TW 97125665 A TW97125665 A TW 97125665A TW 200909792 A TW200909792 A TW 200909792A
Authority
TW
Taiwan
Prior art keywords
load
penetration depth
tip
indenter
load rate
Prior art date
Application number
TW097125665A
Other languages
Chinese (zh)
Inventor
Valeriy V Ginzburg
Gregory Frederick Meyers
Hamed Lakrout
Robert K Mcintyre
Original Assignee
Dow Global Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies Inc filed Critical Dow Global Technologies Inc
Publication of TW200909792A publication Critical patent/TW200909792A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/36DC mode
    • G01Q60/366Nanoindenters, i.e. wherein the indenting force is measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0076Hardness, compressibility or resistance to crushing
    • G01N2203/0078Hardness, compressibility or resistance to crushing using indentation
    • G01N2203/0082Indentation characteristics measured during load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0092Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials
    • G01N2203/0094Visco-elasticity

Landscapes

  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

A process is described for determining elastic modulus, plastic yield strain, and viscosity of a material, and the work of adhesion between the material and an indenter tip, using Atomic Force Microscopy-based or conventional nanoindentation. Specifically, the process includes a measurement method whereby a sequence of load-unload quasistatic indentations are performed in the vicinity of each chosen point on a sample. The loading-unloading curves are analyzed using a specific modeling algorithm to calculate multiple mechanical properties of the sample.

Description

200909792 九、發明說明: 【發明所屬之技術領域】 本發明係關於利用原子力顯微鏡(AFM )及/或奈米壓 痕儀測定材料性質之方法;詳言之,本發明係關於同時測 定材料之黏滯性、彈性、塑性及黏著性性質之裝置、系統 及方法’其包含測试方案及相關資料分析模型。 本研究由國家標準與科技研究院(National Institute of Standards and Technology ) NIST-ATP Grant 588 70NANB4H3055支持,因此美國政府在本發明中具有某迪 權利。 【先前技術】 奈米級材料,具有以奈米(<1〇〇 _)計之結構的材 料,基於超小結構之獨特優點,提供革命性能力及效能。 然而,直至在奈米層級上理解結構與物理性質之間的關 係,才可完全實現對該等奈米材料之期望。 已使用原子力顯微鏡(AFM)及奈米壓痕儀,藉由將 負載力施加於探針尖端以便在材料表面形成壓痕,且接著 自尖端釋放(卸載)力來測定材料之機械性質。因此,藉 由對採針尖_端進行負載及知哉 ^ 丁貝載及卸載,可獲得負㈣壓痕儀位移 之關係曲線’該曲線允許測定所測試材料之塑性(持久性) 與彈性(回彈性)變形性質兩者。 奈米壓痕法與AFM方法之X门 直引至探針尖β^万法之不冋之處在於前者使用垂 直引至探針“上之力將探針尖端垂直引至基板中,而 200909792 AFM使用經由基本上略傾斜之懸臂來將力引至尖端及樣品 上而使尖端垂直引入。然而,各塵痕方法皆可用於本發明 之系統及方法中。 目前’利用奈米壓痕法或基於Afm之奈米壓痕法的 現有方法僅評估機械性質之各種子集纟(例如,彈塑性材 料模型之#性模數及硬度,或線性點彈性材料模型之彈性 模數及黏滯性)。存在該等限制係因為目前之方法常常包 含在負載或卸載程序中藉由消除塑性(與時間無關)或黏 滯性(料間有關)組份來簡化所得負載-位移資料之分析。 為兀全表徵聚合物及聚合物複合材料,瞭解彈性 滞性及塑性特徵為重要的。在複合材料之狀況下,常常需 要在奈米層級上解析彼等性質。因此,需要開發一種同時 :疋:滞性、彈性及塑性性質(例如,彈性模冑、屈服應 =、與頻率成函數關係之綜合模數組份、及尖端_樣品黏著 :)之=法。定量的奈米機械測定乃提供適於處理特定應 之:疋應力之工程材料(亦即,材料設計)@工具及資 ;斗,從而將極大地加速材料發現及發展。 【發明内容】 $發明藉由提供-種允許經由將多次奈米壓痕法之結 點::且根據非線性法擬合所得資料組,同時測定材料之 之=性及塑性性質的测試程序,來解決現有方法中 捃^ 於自收集的測試程序之資料 取所欲材料性質資訊的相關分析模型。 200909792 在’匕、樣中,本發明提供一種經由壓痕法來測定樣品 性質之方法,其包含:選擇將執行壓痕之樣品區域;使用 壓痕儀尖端和使用至少兩個位置、負載速率及穿透深度將 樣品壓痕;自各壓痕獲得負載.位移關係;及使用負載-位 移關係來測定樣品之至少兩種物理性質。 在另一態樣中,本發明提供一種系統,其包含:一壓 痕儀尖端’其用於將樣品星痕;一控制器,其用於控制壓 痕儀尖端對樣品之麼痕且藉此獲得複數個負載位移關係, 其中該複數個負載-位移關係代表多個樣品位置、多個負載 速率及多”透深度;及—資❹㈣統,其用於基於複 數個負載·位移關係測定樣品之至少兩種物理性質。 ::明能夠在同一測試程序内測定材料之彈性、黏滞 性、塑性及黏著性參數。本發明之方法允許在比傳統「整 多之層級上解析機械性質(例如,基於· 約二厂\100 之解析度,且傳統奈米塵痕法具有 約1000 nm之解析度)。 【實施方式】 在第一態樣中,本發明提供—絲 如,經由AFM咬太乎壓r车、: 由壓痕測試(例 Μ 一戈不未壓痕法)來測定 其包含以下步驟: 貝之方法 (1 )選擇將執行壓痕之樣品區域,· ⑻用壓痕儀尖端在所選區域内、 以一個以上負載祙座芬 個以上位置、 革及一個以上穿透深度將樣品屢痕,及 200909792 自各壓痕獲得負載-位移關係;及 (in)使用負載邊移關係來測定樣品之至少兩種物理 性質, 該方法在下文稱為方法A。 在第-態樣之第-具體實例中,本發明提供方法A之 方法,其中(Π )包含以下步驟: 一位置處、以第一負200909792 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a method for determining the properties of materials by atomic force microscopy (AFM) and/or a nanoindenter; in particular, the present invention relates to the simultaneous determination of the viscosity of materials. Devices, systems, and methods for the properties of hysteresis, elasticity, plasticity, and adhesions, which include test protocols and related data analysis models. This study was supported by the National Institute of Standards and Technology NIST-ATP Grant 588 70NANB4H3055, so the US government has certain rights in the present invention. [Prior Art] Nano-grade materials, which have a structure based on nanometer (<1〇〇 _), provide revolutionary capabilities and performance based on the unique advantages of ultra-small structures. However, until the relationship between structure and physical properties is understood at the nanometer level, the expectations of such nanomaterials can be fully realized. Atomic force microscopy (AFM) and nanoindenters have been used to determine the mechanical properties of materials by applying a load force to the tip of the probe to create an indentation on the surface of the material and then releasing (unloading) the force from the tip. Therefore, by loading and unloading the tip of the needle tip, the relationship between the displacement of the negative (four) indenter can be obtained. This curve allows the determination of the plasticity (persistence) and elasticity (rebound) of the tested material. Both of the deformation properties. The N-indentation method and the X-gate of the AFM method are directly introduced to the probe tip β ^ Wan method. The former uses the vertical force to the probe "the force of the probe to vertically lead the probe tip into the substrate, and 200909792 The AFM uses a substantially slightly inclined cantilever to direct force to the tip and the sample to introduce the tip vertically. However, each of the dust marks methods can be used in the systems and methods of the present invention. Currently, 'in nanoindentation or The current method based on the Afm nanoindentation method only evaluates various subsets of mechanical properties (for example, the modulus and hardness of the elastoplastic material model, or the elastic modulus and viscosity of the linear point elastic material model). The existence of such limitations is due to the fact that current methods often involve the analysis of load-displacement data by eliminating plasticity (time-independent) or viscous (interstitial-related) components in the load or unloading procedure. Fully characterizing polymers and polymer composites, it is important to understand the elastic hysteresis and plasticity characteristics. In the case of composite materials, it is often necessary to analyze their properties at the nanometer level. Therefore, development is required. At the same time: 疋: stagnation, elasticity and plastic properties (for example, elastic modulus, yield should =, the overall modulus of the array as a function of frequency, and the tip _ sample adhesion:) = quantitative nanometer The mechanical measurement provides engineering materials (ie, material design) @tools and capitals that are suitable for the treatment of specific stresses, which will greatly accelerate the discovery and development of materials. [Invention] The invention is provided by - The prior art method is allowed to be solved by a test procedure in which a plurality of nanoindentation methods are used: and the obtained data set is fitted according to a nonlinear method, and the material is tested for the sex and plastic properties. The data from the collected test program takes the relevant analytical model of the material property information. 200909792 In the '匕, sample, the present invention provides a method for determining the properties of a sample via an indentation method, comprising: selecting to perform an indentation Sample area; use the indenter tip and use at least two locations, load rate and penetration depth to indent the sample; obtain load-displacement relationships from each indentation; and use load-displacement relationships Determining at least two physical properties of the sample. In another aspect, the invention provides a system comprising: an indenter tip 'for starring a sample; a controller for controlling the indenter a tip-to-sample trace and thereby obtaining a plurality of load-displacement relationships, wherein the plurality of load-displacement relationships represent a plurality of sample locations, a plurality of load rates, and a plurality of penetration depths; and - a resource (four) system for A plurality of load-displacement relationships determine at least two physical properties of the sample. :: It is possible to determine the elastic, viscous, plastic and adhesive parameters of the material within the same test procedure. The method of the present invention allows for the resolution of mechanical properties over a conventional "overall level" (e.g., based on a resolution of about two plants\100, and the conventional nanodust method has a resolution of about 1000 nm). In the first aspect, the present invention provides a wire such as a bite that is too much to be pressed by an AFM, and is determined by an indentation test (eg, a method of not indentation) comprising the following steps: (1) Select the sample area where the indentation will be performed, (8) use the indenter tip to select the sample in the selected area, more than one load, more than one position, and one or more penetration depths, and 200909792 The indentation obtains a load-displacement relationship; and (in) uses a load edge shift relationship to determine at least two physical properties of the sample, which method is hereinafter referred to as Method A. In the first-specific example of the first aspect, the present invention The method of method A is provided, wherein (Π) comprises the following steps: at a position, with a first negative

用壓痕儀尖端在所選區域内之第一 載速率及第一穿透深度將楳兄厭滅描 用壓痕儀尖端在所選區域内之第二位置處、Using the first load rate and the first penetration depth of the indenter tip in the selected area, the tip of the indenter is at the second position in the selected area,

係,其中 第一負載速率與第二負載速率不相同及 分析自第-負載速率與第二負載速率中之較大者獲得 之負載-位移關係,以測定材料之至少一種性質; 該方法在下文稱為方法B。And wherein the first load rate is different from the second load rate and the load-displacement relationship obtained from the greater of the first load rate and the second load rate is analyzed to determine at least one property of the material; Called Method B.

之負載-位移關係執行分析。The load-displacement relationship performs the analysis.

方法’其中(ii)包含以下步驟: a)用壓痕儀尖端在所選區域内之第一位置處、以第 負載速率及第一 一位置處、以第 移關係; 穿透深度將樣品壓痕以獲得第一負載·位 9 200909792 少一種 (b )分析第一負載_位移關係以測定材 性質;及 (c)用塵痕儀尖端在所選區域内之第二位置處、以第 二負載速率及第二穿透深度將樣品壓痕以獲得第二負 移關係,其中 第一負載速率大於第二負載速率, 該方法在下文稱為方法B-1。Method [wherein (ii) comprises the steps of: a) using an indenter tip at a first location in the selected region, at a first load rate and at a first location, in a first shift relationship; penetration depth to indent the sample Obtaining a first load bit 9 200909792 less one (b) analyzing a first load_displacement relationship to determine material properties; and (c) using a tip of the grime gauge at a second location within the selected region at a second load rate And the second penetration depth indents the sample to obtain a second negative shift relationship, wherein the first load rate is greater than the second load rate, the method is hereinafter referred to as Method B-1.

本發明提供方法A 在第一態樣之一替代具體實例中 之方法’其中(Π)包含以下步驟: (a) 用壓痕儀尖端在所選區域内之第—位置處、以第 -負載速率及第-穿透深度將樣品壓痕以獲得第一 移關係; ' (b) 用壓痕儀尖端在所選區域内之第二位置處、以第 二負載速率及第二穿透深度將樣品壓痕以獲得第二負載-位 移關係,其中 第一負載速率大於第二負載速率,及 (〇分析第一負載·位移關係以測定材料之至少一 性質; 該方法在下文稱為方法B-2。 在第-態樣之-替代具體實财,本發明提供方法A 之方法,其中(ii)包含以下步驟: (a)用壓痕儀尖端在所選區域内之第一位置處、以第 -負載速率及第-穿透深度將樣品壓痕以獲得第― 移關係; ' 200909792 (b)用壓痕儀尖端在所選區域内之第二位置處、以第 二負載速率及第二穿透深度將樣品壓痕以獲得第二負載_位 移關係,其中 第二負載速率大於第一負載速率,及 (c )分析第二負載-位移關係以測定材料之至少一種 性質; 該方法在下文稱為方法B-3。 在第一態樣之另一具體實例中,本發明提供方法B、 B-1、B-2或B-3之方法,其中(η )進一步包含以下步驟·· (d)將第二負載-位移關係之遲滯性(hysteresis)與第 一預定值相比較。 該方法在下文稱為方法C。 在第一態樣之另一具體實例中,本發明提供方法^之 方法,其中(ii)進一步包含: (e)用壓痕儀尖端在所選區域内之第三位置處、以第 二負載速率及第三穿透深度將樣品壓痕以獲得第三負載-位 移關係,其中 第三負載速率大於第二負載速率;且 第三穿透深度大於第一與第二穿透深度兩者, 該方法在下文稱為方法D。 在第一態樣之另一具體實例中,本發明提供方法d之 方法,其中當第二負載_位移關係之遲滯性小於或等於第一 預定值日寺’則+再進行Μ,該方法在下文稱為方法e。 本發明提供方法D之 在第一態樣之另一具體實例中 200909792 方法,其中當第-咨# , 時,則⑻進:步、包:,移關係之遲滞性大於第-預定值 (〇將第三負載_位據關& 值相 戰位移關係之遲滯性與第二預 比較, 該方法在下文稱為方法F。 在第一態樣之另一呈栌音仓 具體貫例中,本發明提供方法 方法,其中當第三負載I 之 '戟位移關係之遲滯性小於 預定值時,則(ϋ)進一步包含: 、弟一 (g)用壓痕儀尖端在所選 响仕所、區域内之第四位置處、以笛 四負載速率及第四穿透深产將搞σ °壓痕以獲得第四負載_位 移關係,其中 第四負載速率大於第二負載速率且小於第一 載速率;且 —負 第四穿透深度大於第一及第二穿透深度且小_ 透深度, 二穿 該方法在下文稱為方法G。 在第一悲樣之另一具體實例令,本發明提供方法卩 方法’其中當第三負載-位移關係之遲滯性 之 八a乐一預定佶 枯,則(ii )進一步包含: 值 (g)用壓痕儀尖端在所選區域内之第四位置處、、 四負載速率及第四穿透深度將樣品堡痕以獲得第四 移關係,其中 、裁、位 第四負载速率小於第一及第三負載速率; 且 12 200909792 第四穿透深度大於第一與第二穿透深度兩者; 及 (h)用壓痕儀尖端在所選區域内之第五位置處、以第 五負載速率及第五穿透深度將樣品壓痕以獲得第五負載_位 移關係,其中 第五負載速率大於第二及第四負載速率且小於第一及 第三負載速率;且 第五穿透深度大於第一及第二穿透深度且小於第三及 第四穿透深度, 其中(g )及(h )可以任何次序執行;該方法在下文 稱為方法Η。在一較佳具體實例中’ (g )係在(h )之前 執行。 在方法C-H之一較佳具體實例中,第—及第二預定值 (亦即,對於最大可允許遲滯性)獨立地小於或等於〇_〗〇。 在方法A-Η及B-1〜B-3之一較佳具體實例中,第一及 第二穿透深度各自獨立地為約〇.〇1至01倍於壓痕儀尖端 半,第一負載速率為約1 nm/s至100,〇〇〇 nm/s,JL第二 負裁速率為約0.1 nm/s至1〇,〇〇〇 nm/s。 在方法D-Η之一較佳具體實例中,其中第三穿透深度 為約0.5至1.0倍於壓痕儀尖端半徑,且第三負載速率為 約 1 nm/s 至 100,000 nm/s。 在方法G之一較佳具體實例中,第四穿透深度為約〇 2 至0.5倍於壓痕儀尖端半徑,且第四負栽速率為約nm/s 至 3〇,〇〇〇 nm/s 〇 13 200909792 在方法Η之一較佳具體實例中,第四穿透深度為約〇.5 至1.〇倍於壓痕儀尖端半徑,第四負載速率為約^ nm/s 至10,000 nm/s,第五穿透深度為約〇2至〇 5倍於壓痕儀 尖端半徑,且第五負載速率為約〇.3nm/s至3〇,〇〇〇nm/s。 在方法A-Η及B-1〜B-3之一更佳具體實例中,第一及 第二穿透深度各自獨立地為約G G1至Q1倍於壓痕儀尖端 半徑,第一及第三負載速率獨立地為約i nm/s至1〇〇,〇〇〇 nm/s ’第一負載速率為約〇1 nm/s至i〇,〇〇〇 ,且第三 穿透深度為約0.5至1.〇倍於壓痕儀尖端半徑。 在方法G之一更佳具體實例中,第一及第二穿透深度 各自獨立地為約Ο.ίΗ至〇」倍於壓痕儀尖端半徑第一及 第二負載速率獨立地為約i nm/s至1〇〇,〇〇〇 ,第二負 載速率為約0.1 nm/s至 10,000 nm/s,第三穿透深度為約0.5 至l.OL於壓痕儀尖端半徑,第四穿透深度為約0.2至Ο」 倍於壓痕儀尖端半徑,且第四負載速率為約〇·3 η—至 30,〇〇〇 nm/s 〇 在方法Η之一更佳具體實例中,第一及第二穿透深度 各自獨立地為約〇〇1 s Λ1 μ ·〇ι至ο·ι倍於壓痕儀尖端半徑,第一及 第三負載速率獨立地兔的, 地為約1 nm/s至100,000 nm/s,第二及 第四負載速率獨立地兔έΛ>Λ1 Ώ 馮約 0.1 nm/s 至 10,000 nm/s,第三及 第四穿透深度獨立& π , — 也為約0.5至ι·〇倍於壓痕儀尖端半徑, 第五穿透深度為約s 0·2至0·5倍於壓痕儀尖端半徑,且第 五負載速率為約〇.3則s至30,_nm/s。 ,所測 車乂佳地’在任何先前具體實例之(丨丨)(b )中 14 200909792 定材料之至少一種物理性質為減折模 壓痕儀尖端之間的黏著功(^)。、 〃及/或樣品與 尺佳地,在f彳丨·、 / 了定材料之至少一種物理性質為減折二b) 樣。Π與壓痕儀尖端之間的黏著功(γ)。 ,)及 甚至更佳地,所測定材料之 ΜM r ρ V 一種物理性質為減扭 輪數⑷及樣品與愿痕儀尖端之間的黏著功⑺,2 將負載(ρ) %製為h3/2 r在丨l 且虽 ^ r臬為h (例如,方程式3,貝下令、 數時,減折模數(五)及Μ σ命麻 )之函 ㈣數⑷及樣-與磨痕儀尖端之間的黏著功 (y)係分別由(π) f a、夕6 , ()之負載-位移關係之斜率 距決定。 町千汉y截 在-較佳具體實例中,本發明提供任何先前具體實例 之方法,其中第一位置與第二位置相同。 在-較佳具體實例中,本發明提供任何先前具體實例 之方法,其中樣品經壓痕之區域内之各位置與任何其他壓 痕位置相隔至少5倍於最高穿透深度之中心_中心距離。 在方法A-Η及B-1〜B-3之一更佳具體實例中,當使用 AFM尖端時,則第一及第二穿透深度各自獨立地為約$ 至10 nm ’第一負載速率為約1 nm/s至1〇〇,〇〇〇 nm/s,且 第二負載速率為約〇·1 nm/s至1〇,〇〇〇 nm/s。 在方法D-Η之一較佳具體實例中,當使用afM尖端 日寸,則弟二牙透深度為約60 nm至100 nm,且第三負載速 率為約 1 nm/s 至 1〇〇,〇〇〇 nm/s。 在方法G之一較佳具體實例中,當使用afjv[尖端時, 則第四穿透深度為約20 ηιη至40 nm,且第四負載速率為 15 200909792 約 〇·3 nm/s 至 30,〇〇〇 nm/s。 在方法Η之一較佳具體實例中,當使用AFM尖端時, 則第四穿透深度為約60 nm至I 00 nm,第四負載速率為約 0.1 nm/s至1〇,〇〇〇 nm/s ,且第五穿透深度為約2〇 nm至 nm ’且第五負載速率為約〇 3 nm/s至3〇,〇〇〇 nm/s。 在方法A-Η及B-1〜B-3之一更佳具體實例中,當使用 AFM尖端時,則第一及第二穿透深度各自獨立地為約5打仿 至10 nm,第一及第三負載速率獨立地為約1 nm/s至 ιοο,οοο ws,第二負載速率為約 01 nm/s 至 1〇 〇〇〇 nm/s, 且第三穿透深度為約60 nrn至100 nm。 在方法G之一更佳具體實例中,當使用afm尖端時, 則第一及第二穿透深度各自獨立地為約5 nm至10 nm,第 -及第三負載速率獨立地為約i nm/s至⑽,_ 第 負載速率為約o.i nm/s至10,000 nm/s ’第三穿透深度為 約60⑽至100 nm,第四穿透深度為約20 nm至40 nm, 且第四負載速率為約〇.3nm/^ 3MQQnm/s。 在方法Η之-更佳具體實例中,當使用綱尖端時, 則第一及第二穿透深度各自獨立地為約5⑽至1〇·,第 一及:三:載速率獨立地為約一至1〇。,。一,第 率獨立地為約〇. 一至_。—,第 一及第四穿透,朱度獨立地 深度為約20 nm至4〇 n ⑽至1 〇〇 nm,第五穿透 ^ 30,000 nm/s〇 姐’且第五負载速率為約〇·3 nm/s 在一較佳具體實例中 本發明提供任何先前具體實例 16 200909792 之方法,其中第一及/或第三負載速率為約1 nm/s至約 1 00,000 nm/s ° 在一較佳具體實例中’本發明提供任何先前具體實例 之方法’其中第二及/或第四負載速率為約〇_丨nm/s至約 10,000 nm/s。 在一較佳具體實例中,本發明提供任何先前具體實例 之方法’其中第五負載速率為約〇.3 nm/s至約30,0〇〇 nm/s。 在一較佳具體實例中,本發明提供任何先前具體實例 之方法,其中壓痕儀尖端包含選自由以下各物組成之群之 材料:石夕、碳化石夕、氮化石夕、金剛石、藍寶石或塗有碳化 發、氮化矽、金剛石及藍寶石之矽。 在一較佳具體實例中,本發明提供任何先前具體實例 之方法,其中壓痕儀尖端為球狀或抛物線狀。 在一較佳具體實例中,本發明提供任何先前具體實例 之方法,纟中壓痕儀尖端為球狀或抛物線狀,且壓痕儀尖 端包含選自由以下各物組成之群之材料:_、碳化石夕、氮 切、金剛石、藍寶石或塗有碳切、氮切、金剛石及 在一較佳具體實例中,本發明摆 明如供任何先前具體實例 〈万法,其中壓痕儀尖端為球妝 瓦狀或拋物線狀,且具有約10 主約10,000 nm之半徑。 在一更佳具體實例中,本發明 之古、+ ^ &明楗供任何先前具體實例 <方法,其中壓痕儀尖端為球 且W狀或抛物線狀AFM尖端, 及具有約5至200 nm之半押·± 半控較佳為約20至約50 17 200909792 在一更佳具體實例中,本發明提供任何先前具體實例 之方法,其中壓痕儀尖端為球狀或抛物線狀傳統奈米壓痕 儀父知’且具有約1 〇〇至1 〇,〇〇〇 nm之半徑;半徑較佳為 100 nm 至 1〇〇〇 nrn。 在一較佳具體實例中,本發明提供任何先前具體實例 之方法,其中樣品具有至少10倍於所執行之所有壓痕之 最面穿透深度的厚度。更佳地,樣品具有至少2〇倍於所 執行之所有壓痕之最高穿透深度的厚度。 在一較佳具體實例中,本發明提供任何先前具體實例 之方法’其中至少兩種材料性質係選自由揚氏模數(Y〇ung,s modulus)、黏著功、屈服應變、黏滞性及鬆弛時間組成之 群。 在一較佳具體實例中’本發明提供任何先前具體實例 之方法,其進一步包含藉由針對各壓痕將負載資料除以最 終負載值而將自各壓痕獲得之負載-位移關係無因次化的步 驟。 在較佳具體實例中,本發明提供任何先前具體實例 之方法H經由以下變換將負載_位移關係㈣為有效應 力-應變(σ-ε )曲線: 200909792 其中户為負載,為最低負载(),办為穿透 深度’且及為壓痕儀尖端之半徑。 在較佳具體貫例中’本發明提供任何先前具體實例 之方法,其中藉由將有效應力-應變曲線擬合成特定微機械 核型(諸如,虎克(Hookean)、麥克斯韋(MaxweU ) ^ 開爾文(Kelvin)模型),獲得減折模數、揚氏模數、鬏 弛時間及屈服強度。 在一較佳具體實例中,本發明提供任何先前具體實例 之方法’其中在(iii)中,所得負載_位移關 性模型擬合成模型, 虫非線The present invention provides a method of method A in place of one of the first aspects, wherein (Π) comprises the following steps: (a) using the indenter tip at a first position in the selected region at a first load rate And the first penetration depth indents the sample to obtain a first displacement relationship; ' (b) pressing the sample at a second position in the selected region with the indenter tip at a second load rate and a second penetration depth The trace obtains a second load-displacement relationship, wherein the first load rate is greater than the second load rate, and (〇 analyzing the first load-displacement relationship to determine at least one property of the material; the method is hereinafter referred to as Method B-2. In a first aspect - instead of a specific real money, the present invention provides a method of method A, wherein (ii) comprises the steps of: (a) using the indenter tip at a first location within the selected region, at a first load The rate and the first penetration depth will indent the sample to obtain a first-shift relationship; '200909792 (b) with the indenter tip at a second position in the selected region, at a second load rate and a second penetration depth Sample indentation to obtain a second load-displacement relationship, Wherein the second load rate is greater than the first load rate, and (c) analyzing the second load-displacement relationship to determine at least one property of the material; the method is hereinafter referred to as Method B-3. Another specific aspect of the first aspect In an embodiment, the invention provides a method of method B, B-1, B-2 or B-3, wherein (η) further comprises the following steps: (d) hysteresis of the second load-displacement relationship The first predetermined value is compared. The method is hereinafter referred to as method C. In another specific example of the first aspect, the present invention provides a method of method, wherein (ii) further comprises: (e) using an indenter The tip indents the sample at a third location in the selected region at a second load rate and a third penetration depth to obtain a third load-displacement relationship, wherein the third load rate is greater than the second load rate; and the third wear The penetration depth is greater than both the first and second penetration depths, the method is hereinafter referred to as method D. In another specific example of the first aspect, the present invention provides a method of method d, wherein the second load_displacement The hysteresis of the relationship is less than or equal to the first reservation The value of the temple is then repeated, the method is hereinafter referred to as the method e. The present invention provides a method of the method D in another specific example of the first aspect of the method of 200909792, wherein when the first -, #, then (8) In: step, package:, the hysteresis of the shift relationship is greater than the first-predetermined value (〇 the third load_bit according to the & value phase warfare displacement relationship hysteresis and the second pre-comparison, the method is hereinafter referred to as Method F. In a specific example of the first aspect of the first aspect, the present invention provides a method and method, wherein when the hysteresis of the '戟 displacement relationship of the third load I is less than a predetermined value, then (ϋ) further Including:, brother one (g) with the indenter tip in the selected ring office, the fourth position in the region, with the flute four load rate and the fourth penetration deep production will engage in σ ° indentation to obtain the fourth a load-displacement relationship, wherein the fourth load rate is greater than the second load rate and less than the first load rate; and - the negative fourth penetration depth is greater than the first and second penetration depths and the small penetration depth, the second method is Hereinafter referred to as method G. In another specific example of the first sadness, the present invention provides a method, wherein when the hysteresis of the third load-displacement relationship is predetermined, then (ii) further comprises: a value (g) Using the indenter tip at a fourth position in the selected area, the four load rate, and the fourth penetration depth to obtain a fourth shift relationship, wherein the fourth load rate is less than the first and the fourth a third load rate; and 12 200909792 a fourth penetration depth greater than both the first and second penetration depths; and (h) using the indenter tip at a fifth position within the selected region, at a fifth load rate and Five penetration depths indenting the sample to obtain a fifth load-displacement relationship, wherein the fifth load rate is greater than the second and fourth load rates and less than the first and third load rates; and the fifth penetration depth is greater than the first The second penetration depth is less than the third and fourth penetration depths, wherein (g) and (h) can be performed in any order; the method is hereinafter referred to as method Η. In a preferred embodiment, '(g) is performed before (h). In a preferred embodiment of method C-H, the first and second predetermined values (i.e., for maximum allowable hysteresis) are independently less than or equal to 〇_〗. In a preferred embodiment of the methods A-Η and B-1 to B-3, the first and second penetration depths are each independently about 〇1 to 01 times the tip of the indenter half, first The loading rate is about 1 nm/s to 100, 〇〇〇nm/s, and the JL second negative cutting rate is about 0.1 nm/s to 1 〇, 〇〇〇nm/s. In a preferred embodiment of method D-Η, wherein the third penetration depth is from about 0.5 to 1.0 times the indenter tip radius and the third loading rate is from about 1 nm/s to 100,000 nm/s. In a preferred embodiment of the method G, the fourth penetration depth is about 〇2 to 0.5 times the indenter tip radius, and the fourth negative growth rate is about nm/s to 3 〇, 〇〇〇nm/ s 〇13 200909792 In one preferred embodiment of the method, the fourth penetration depth is about 〇.5 to 1. 〇 times the indenter tip radius, and the fourth load rate is about ^ nm/s to 10,000 nm. /s, the fifth penetration depth is about 〇2 to 〇5 times the indenter tip radius, and the fifth load rate is about 〇3 nm/s to 3 〇, 〇〇〇nm/s. In a more preferred embodiment of the methods A-Η and B-1 to B-3, the first and second penetration depths are each independently from about G G1 to Q1 times the indenter tip radius, first and third The three load rates are independently from about i nm/s to 1 〇〇, and the first load rate of 〇〇〇nm/s ' is about nm1 nm/s to i〇, 〇〇〇, and the third penetration depth is about 0.5 to 1. 〇 times the radius of the indenter tip. In a more preferred embodiment of the method G, the first and second penetration depths are each independently about Ο. Η to 〇" times the indenter tip radius, the first and second loading rates are independently about i nm /s to 1〇〇, 〇〇〇, the second loading rate is about 0.1 nm/s to 10,000 nm/s, the third penetration depth is about 0.5 to 1.OL at the indenter tip radius, the fourth penetration The depth is about 0.2 to Ο" times the tip radius of the indenter, and the fourth load rate is about 〇·3 η - to 30, 〇〇〇nm / s 更 in one of the methods 更 better, in the specific example, the first And the second penetration depth is independently about 〇〇1 s μ1 μ ·〇ι to ο·ι times the indenter tip radius, the first and third load rates are independent of the rabbit, and the ground is about 1 nm/ s to 100,000 nm/s, the second and fourth load rates are independent of the rabbit έΛ> Λ1 Ώ von from about 0.1 nm/s to 10,000 nm/s, and the third and fourth penetration depths are independent & π, - also 0.5 to ι·〇 times the tip radius of the indenter, the fifth penetration depth is about s 0·2 to 0.5 times the tip radius of the indenter, and the fifth load rate is about 〇.3 s to 30 , _nm/s. The measured rut is 'in any of the previous specific examples (丨丨)(b) 14 200909792 The at least one physical property of the material is the adhesion work between the tips of the reduced-profile indenter (^). , 〃 and / or sample and ruler, at least one physical property of the material, is a reduced b). The adhesion work (γ) between the crucible and the tip of the indenter. , and even better, the material ΜM r ρ V of the measured material is a physical property of the number of torsion reduction wheels (4) and the adhesion work between the sample and the tip of the tracer (7), 2 the load (ρ) % is made into h3/ 2 r in 丨l and although ^ r臬 is h (for example, equation 3, shell order, number, reduced modulus (5) and σ σ numb) (4) number (4) and sample - with the sharpener tip The adhesion work (y) between the two is determined by the slope of the load-displacement relationship of (π) fa, eve 6, and (). The present invention provides a method of any of the preceding specific examples, wherein the first location is the same as the second location. In a preferred embodiment, the invention provides a method of any of the preceding embodiments wherein each location within the region of the indented sample is at least 5 times the center-to-center distance of the highest penetration depth from any other indentation locations. In a more preferred embodiment of one of methods A-Η and B-1 to B-3, when an AFM tip is used, the first and second penetration depths are each independently about $10 to 10 nm 'first load rate It is about 1 nm/s to 1 〇〇, 〇〇〇nm/s, and the second loading rate is about 〇·1 nm/s to 1 〇, 〇〇〇nm/s. In a preferred embodiment of the method D-Η, when the afM tip is used, the depth of the second tooth is about 60 nm to 100 nm, and the third load rate is about 1 nm/s to 1 〇〇, 〇〇〇nm/s. In a preferred embodiment of the method G, when afjv [tip] is used, the fourth penetration depth is about 20 ηιη to 40 nm, and the fourth load rate is 15 200909792 about 3 nm/s to 30, 〇〇〇nm/s. In a preferred embodiment of the method, when the AFM tip is used, the fourth penetration depth is about 60 nm to 100 nm, and the fourth loading rate is about 0.1 nm/s to 1 〇, 〇〇〇nm /s and the fifth penetration depth is about 2 〇 nm to nm ' and the fifth loading rate is about nm3 nm/s to 3 〇, 〇〇〇nm/s. In a more specific example of the methods A-Η and B-1 to B-3, when the AFM tip is used, the first and second penetration depths are each independently about 5 to 10 nm, first And the third load rate is independently from about 1 nm/s to ιοο, οοο ws, the second load rate is from about 01 nm/s to 1 〇〇〇〇nm/s, and the third penetration depth is about 60 nrn to 100 nm. In a more preferred embodiment of the method G, when the afm tip is used, the first and second penetration depths are each independently about 5 nm to 10 nm, and the first and third loading rates are independently about i nm. /s to (10), _ the first load rate is about oi nm / s to 10,000 nm / s 'the third penetration depth is about 60 (10) to 100 nm, the fourth penetration depth is about 20 nm to 40 nm, and the fourth load The rate is about 〇3 nm / ^ 3MQQnm / s. In a preferred embodiment of the method, when the tip is used, the first and second penetration depths are each independently from about 5 (10) to 1 〇·, and the first and third: carrier rates are independently from about one to one. 1〇. ,. First, the rate is independently about 〇. One to _. -, the first and fourth penetration, the degree of independence of the Zhudu is about 20 nm to 4 〇 n (10) to 1 〇〇 nm, the fifth penetration ^ 30,000 nm / s 〇 ' ' and the fifth load rate is about 〇 3 nm/s In a preferred embodiment the invention provides the method of any preceding embodiment 16 200909792, wherein the first and/or third load rate is from about 1 nm/s to about 1 00,000 nm/s ° in one In a preferred embodiment, 'the invention provides a method of any of the preceding specific examples' wherein the second and/or fourth loading rate is from about 〇_丨nm/s to about 10,000 nm/s. In a preferred embodiment, the invention provides a method of any of the previous embodiments wherein the fifth loading rate is from about 0.3 nm/s to about 30,0 〇〇 nm/s. In a preferred embodiment, the invention provides a method of any of the preceding embodiments, wherein the indenter tip comprises a material selected from the group consisting of: Shi Xi, Carbonized Stone, Nitride, Diamond, Sapphire or Coated with carbonized hair, tantalum nitride, diamond and sapphire. In a preferred embodiment, the invention provides a method of any of the preceding specific examples, wherein the indenter tip is spherical or parabolic. In a preferred embodiment, the invention provides a method of any of the preceding specific examples, wherein the indenter tip is spherical or parabolic, and the indenter tip comprises a material selected from the group consisting of: Carbonized carbide, nitrogen cut, diamond, sapphire or coated with carbon cut, nitrogen cut, diamond, and in a preferred embodiment, the present invention is as illustrated for any of the previous specific examples, wherein the indenter tip is a ball The makeup is wavy or parabolic and has a radius of about 10 main 10,000 nm. In a more preferred embodiment, the ancient, +^ & alum of the present invention is for any of the preceding specific examples <RTI ID=0.0>>>>>> The half-press of nm is preferably from about 20 to about 50. 200909792 In a more preferred embodiment, the invention provides a method of any of the preceding specific examples, wherein the indenter tip is a spherical or parabolic traditional nanometer. The indenter is known to have 'a radius of about 1 〇〇 to 1 〇, 〇〇〇 nm; the radius is preferably 100 nm to 1 〇〇〇 nrn. In a preferred embodiment, the invention provides a method of any of the preceding embodiments, wherein the sample has a thickness that is at least 10 times the penetration depth of all of the indentations performed. More preferably, the sample has a thickness that is at least 2 times the highest penetration depth of all indentations performed. In a preferred embodiment, the invention provides a method of any of the preceding specific examples wherein at least two of the material properties are selected from the group consisting of Young's modulus, adhesion work, yield strain, viscosity, and A group of relaxation time. In a preferred embodiment, the invention provides a method of any of the preceding specific examples, further comprising non-dimensioning the load-displacement relationship obtained from each indentation by dividing the load data by the final load value for each indentation. A step of. In a preferred embodiment, the present invention provides a method H of any of the previous specific examples of the load-displacement relationship (4) as an effective stress-strain (σ-ε) curve via the following transformation: 200909792 where the load is the lowest load (), The penetration depth' is the radius of the indenter tip. In a preferred embodiment, the invention provides a method of any of the preceding specific examples, wherein the effective stress-strain curve is fitted to a particular micromechanical karyotype (such as Hookean, MaxweU, Kelvin ( Kelvin) model, obtaining the reduced modulus, Young's modulus, relaxation time and yield strength. In a preferred embodiment, the invention provides a method of any of the preceding specific examples' wherein in (iii) the resulting load-displacement correlation model is fitted to a model, the pest is non-linear

ErEr

VMST 1 - exp·}VMST 1 - exp·}

STST

ΧΒ{ε)ε + [l - Xe(e)s^YΧΒ{ε)ε + [l - Xe(e)s^Y

1-expJ 其中 l + c (\ ε 1/3 4 卜D 吁 「'1 KSY y > ^^load _R- 3/2 Ο): (4/3π)(/2/Λ)3/2 ; σ = _ pmiJ/7tR2 = (p +2nyR)/nR2 . 中 〜及〜分別表示麥克斯韋及虎克元素之相對貢獻,其 从 + V" = 1 ; 及為壓痕儀尖端之 深声 kρ為所測疋之負载;Α為穿透 又,办ί為攻終穿诱深电. 五為诸^去 i/w為壓痕儀制乂之總時間; r马减折杈數;τ為# 時間;y為壓痕儀尖端與樣品之間 19 200909792 的 且 黏者功,〜為屈服應變·,且c及d為憑經驗決定之常數, 壓痕儀尖端為球HH 該方法在下文稱為方法卜 在另一較佳具體每· Λ,丄 ^ 體只例中’本發明提供方法Η之方法, 其中藉由關於7及ρ二 t而經由非線性模型最佳化將資料擬 合。 j另一較佳具體實例中,本發明提供方法Η之方法, =中=二關於 '及s而經由非線性模型最佳化將資料擬 〇八r及^藉由將所測定資料與模型之間的χ2減至最 小而最佳化。 λ碑主敢 在另-較佳具體實射,本發明提供方法^方法, 其中當(ii) ( d ) Φ -Μ m w- r )中之遲雜小於或等於預定值時 將貧料擬合成先前模型時使用。 、 在另—較佳具體實例中,本發明提供方法Hi Μ ⑴巾之❹性切或等於預 將貝料擬合成先前模型時使用〇〇。 ' 在任何先前具體實例之-較佳具體實例中 0.10。預定值較佳為0.05。 值為 在方法A-Ι及B-1〜B-3之一較伟且興,上 定各纟佳具體實财,預先測 在方法A-UB-卜B_3之—較佳具 定各負載速率。 τ頂先測 在方法A-Ι及B-Uj之—更 佳,、體實例中,預先測 20 200909792 定各穿透深度及負載速率。 系統,其包含: > 對樣品之壓痕且藉 在一第二態樣中,本發明提供一種 一壓痕儀尖端,其用於將樣品壓痕 一控制器,其用於控制壓痕儀尖端 此獲得複數個負載-位移關係,其中 該複數個負載-位移關係代表多個樣品位置、多個 速率及多個穿透深度,·及 -資料分㈣統’其基於複數個負載·位移關係而測定 樣品之至少兩種物理性質。 在第一態樣之-較佳具體實例中,控制器為原子力顯 微鏡或奈米壓痕儀。 在第二態樣之一較佳具體實例中,根據第-態樣之任 何具體實例之方法收集複數個負載_位移關係。 在第二態樣之-更佳具體實例中,#制器為原子力顯 微鏡或奈米壓痕儀’且根據第—㈣之任何具體實例之方 法收集複數個負載-位移關係。 在第二態樣之一甚至更佳具體實例中,控制器為原子 力顯微鏡,且根據第一態樣之任何具體實例之方法收集複 數個負载-位移關係。 在第二態樣之一甚至更佳具體實例中,控制器為奈米 壓痕儀,且根據第一態樣之任何具體實例之方法收集複數 個負載-位移關係。 在第二態樣之另一較佳具體實例中,壓痕儀尖端包含 選自由以下各物組成之群之材料:矽、碳化矽、氮化矽、 21 200909792 金剛石、藍寶石或塗有碳化矽、氮化矽、金剛石及藍寶石 之矽。 在第二態樣之另一較佳具體實例中,壓痕儀尖端為球 狀或抛物線狀,且具有約10至約1〇 〇〇〇11111之半徑。 在第二態樣之一更佳具體實例中,壓痕儀尖端為球狀 或拋物線狀AFM失端,且具有約5至2〇〇 nm之半徑;半 徑較佳為約20至約50 nm。 在第二態樣之-更佳具體實例中,壓痕儀尖端為球狀 或抛物線狀傳統奈米壓痕儀尖端,且具有約1〇〇至1〇,〇〇〇 nm之半彳生,半授較佳為1〇〇 至1〇〇〇 nm。 在第二態樣之另—較佳具體實例中,壓痕儀尖端包含 選自由以下各物組成之群之材料:⑦、碳切、氮化石夕、 金剛石、藍寶石或塗有碳化石夕、氮化石夕、金剛石及藍寶石 之矽’且壓痕儀尖端為球狀或抛物線狀且具有約W至約1〇 nm之半徑。 一 入Z第二態樣之另一較佳具體實例中,資料分析系統包 “知及軟體以分析所得負載·位移關係且藉此測定樣 至少兩種材料性質。 ,叩夂 狀丄第二態樣之另一較佳具體實例中,壓痕儀尖端為球 狀或拋物線狀,且資料分析包括經由以下變換 關係轉變為有效應力-應變(σ_ε)曲線之步驟:、 移 22 200909792 上 3π r 办為穿逯 具體實例 定微機械 獲得減折 其中尸為負載,為最低, 深度’且及為壓痕儀尖端之半徑。 在一較佳具體實例甲,本發明提供任何先前 之方法,其中藉由將有效應力-應變曲線擬合成特 模型(諸如,虎克、麥克斯韋或開爾文模型), 模數、揚氏模數、鬆弛時間及屈服強度。 在第二態樣之另一較佳具體實例中,壓痕儀尖端為球 狀或拋物線狀,且資料分析系統基於複數個負载-位移關係 式,藉由將負载_位移關係擬合成以下模型來測定樣品之至 少兩種物理性質,1-expJ where l + c (\ ε 1/3 4 卜D 「 "'1 KSY y > ^^load _R- 3/2 Ο): (4/3π)(/2/Λ)3/2 ; σ = _ pmiJ/7tR2 = (p +2nyR)/nR2 . The middle ~ and ~ represent the relative contributions of Maxwell and Hooke elements, respectively, from + V" = 1 ; and the deep sound kρ for the indenter tip疋 疋 负载 Α Α Α Α Α Α Α Α Α 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透 穿透y is the indenter tip and sample between 19 200909792 and the viscosity of the work, ~ is the yield strain ·, and c and d are empirically determined constants, the indenter tip is the ball HH This method is hereinafter referred to as the method In another preferred embodiment, the present invention provides a method of method, wherein the data is fitted by nonlinear model optimization with respect to 7 and ρ2t. In a preferred embodiment, the present invention provides a method of method ,, ===2 for 'and s, and via a nonlinear model to optimize the data between the data and the model Χ2 minimized and optimized The λ monument owner dares to use another method, and the present invention provides a method ^ method, wherein when the hysteresis in (ii) (d) Φ - Μ m w- r ) is less than or equal to a predetermined value, the poor material is to be In the case of synthesizing the previous model, in another preferred embodiment, the present invention provides a method for the Hi Μ (1) towel to be cut or equal to the use of 〇〇 when the bead is fitted to the previous model. ' In any of the previous examples - Preferably, the specific value is 0.10. The predetermined value is preferably 0.05. The value is one of the methods A-Ι and B-1~B-3, and the value is determined by the method. A-UB-b B_3 - preferably has a specific load rate. τ top is measured in the methods A-Ι and B-Uj - better, in the body example, pre-measured 20 200909792 to determine the penetration depth and load Rate system. The method comprising: > indentation of a sample and in a second aspect, the present invention provides an indenter tip for indenting a sample, a controller for controlling pressure The tip of the tracer obtains a plurality of load-displacement relationships, wherein the plurality of load-displacement relationships represent a plurality of sample positions, Multiple rates and multiple penetration depths, and - data sub-systems determine the at least two physical properties of the sample based on a plurality of load-displacement relationships. In the first aspect - a preferred embodiment, control The device is an atomic force microscope or a nanoindenter. In one preferred embodiment of the second aspect, a plurality of load-displacement relationships are collected according to any of the specific examples of the first aspect. In a second aspect - a more preferred embodiment, the #man is an atomic force microscopy or a nanoindenter' and a plurality of load-displacement relationships are collected according to any of the specific examples of (4). In one or even more preferred embodiment of the second aspect, the controller is an atomic force microscope and a plurality of load-displacement relationships are collected according to any of the specific examples of the first aspect. In one or even more preferred embodiment of the second aspect, the controller is a nanoindenter and a plurality of load-displacement relationships are collected according to any of the specific examples of the first aspect. In another preferred embodiment of the second aspect, the indenter tip comprises a material selected from the group consisting of: tantalum, tantalum carbide, tantalum nitride, 21 200909792 diamond, sapphire or tantalum carbide coated, Barium nitride, diamond and sapphire. In another preferred embodiment of the second aspect, the indenter tip is spherical or parabolic and has a radius of from about 10 to about 1 〇 11111. In a more preferred embodiment of the second aspect, the indenter tip is spherical or parabolic AFM missing and has a radius of about 5 to 2 Å; the radius is preferably from about 20 to about 50 nm. In a second aspect - a more preferred embodiment, the indenter tip is a spherical or parabolic conventional nanoindenter tip and has a length of about 1 to 1 〇, half of the 〇〇〇nm, Semi-administration is preferably from 1 〇〇 to 1 〇〇〇 nm. In another preferred embodiment of the second aspect, the indenter tip comprises a material selected from the group consisting of: carbon cut, nitride nitride, diamond, sapphire or coated with carbon carbide, nitrogen. Fossils, diamonds and sapphire's and the indenter tip is spherical or parabolic and has a radius of from about W to about 1 〇 nm. In another preferred embodiment of the second aspect of the Z, the data analysis system package "knows the software to analyze the resulting load-displacement relationship and thereby determines at least two material properties." In another preferred embodiment, the indenter tip is spherical or parabolic, and the data analysis includes the step of transitioning to an effective stress-strain (σ_ε) curve via the following transformation relationship: shift 22 200909792 on 3π r The micromachine is used to obtain a reduction in the specific example, wherein the corpse is the load, which is the lowest, the depth 'and the radius of the indenter tip. In a preferred embodiment A, the present invention provides any prior method by Fitting the effective stress-strain curve to a special model (such as Hooke, Maxwell, or Kelvin model), modulus, Young's modulus, relaxation time, and yield strength. In another preferred embodiment of the second aspect, The indenter tip is spherical or parabolic, and the data analysis system is based on a plurality of load-displacement relationships, and the sample is determined by fitting the load_displacement relationship to the following model. At least two physical properties,

r r r λ\ / Er 1 - exp j--1 - ^ 1 s^)j \ ^e(£)S + [! - ^e{£)£^Y 1 - exp]r r r λ\ / Er 1 - exp j--1 - ^ 1 s^)j \ ^e(£)S + [! - ^e{£)£^Y 1 - exp]

A 其中 0)=——l-_ Γ π3/2 ί ε V,3 η 4 h, UJ , ε = (4/3Ti)(h/R)3/2 ; σ = (p _ Pmin)/7cR2 = (p +2πγΚ_)/πκ2 ; vm及分別表示麥克斯韋及虎克元素之相對貢獻, 其中 + vH = 1 ; R為壓痕儀尖端之半徑;P為所測定之負載;h為穿透 深度;ht為最終穿透深度;tiQad為壓痕儀達到ht之總時間; 23 200909792 ^減折模數;τ為鬆㈣間;γ為壓痕儀尖端與樣品之間 的黏著功,S為屈服應變;且c及D為憑經驗決定之常數。 月不僅月fa夠鼻出減折模數(如可使用〇iiver_ Ρ1ΐ3ΓΓ[參見 〇llver 及 Pharr,J. Mater. Res. 7:1564 ; 〇liver 及pw,j. Mater Res 19:3 (2〇〇州或類似方法進行),且 '、句舁出票々弛時間及屈服應變。用於計算之合適演算法 在下文中給出。 熟知球狀尖端壓痕至線性彈性材料之負載_位移曲線係 由赫玆方程式(Hertz, equation )描述[參見 Sneddon,Int. J. g Sci. 3.47 (1965) ; Hertz, On the Contact of Two Elastic Solids, MacMillan (1882)]: 4 P=:Zp ¢^2/,3/2 h (1) 其中P為負載(以N為單位),及為尖端半徑(以m 為單位)’々為穿透深度(以m為單位),且尽為樣品之 減折模數,其係由下式給出:A where 0)=——l-_ Γ π3/2 ί ε V,3 η 4 h, UJ , ε = (4/3Ti)(h/R)3/2 ; σ = (p _ Pmin)/7cR2 = (p +2πγΚ_)/πκ2 ; vm and respectively represent the relative contributions of Maxwell and Hooke elements, where + vH = 1 ; R is the radius of the indenter tip; P is the measured load; h is the penetration depth; Ht is the final penetration depth; tiQad is the total time of the indenter to reach ht; 23 200909792 ^ reduced modulus; τ is loose (four); γ is the adhesion between the tip of the indenter and the sample, S is the yield strain And c and D are constants determined empirically. Not only is the month fa enough for the nose to reduce the modulus (if you can use 〇iiver_ Ρ1ΐ3ΓΓ [see 〇llver and Pharr, J. Mater. Res. 7:1564; 〇liver and pw, j. Mater Res 19:3 (2〇 Quzhou or similar methods), and ', sentence summarization slack time and yield strain. The appropriate algorithm for calculation is given below. Familiar with the load of the spherical tip indentation to the linear elastic material _ displacement curve Described by Hertz, equation [see Sneddon, Int. J. g Sci. 3.47 (1965); Hertz, On the Contact of Two Elastic Solids, MacMillan (1882)]: 4 P=:Zp ¢^2/ , 3/2 h (1) where P is the load (in N) and the tip radius (in m) '々 is the penetration depth (in m) and is the sample's reduced-fold mode Number, which is given by:

其中·£為樣品之楊氏模數(以p a為單位),曰 ',為 泊松比(p〇isson,s ratio )。 在導出方程式(1)時,壓痕儀尖端之模數遠高於樣品 24 200909792 模數。若樣品與尖端之間存在黏著,則修改赫茲方程式。 在範圍廣、淺之尖端-樣品黏著相互作用之狀況下,可使用Where £ is the Young's modulus of the sample (in p a), 曰 ', which is the Poisson's ratio (s ratio). When the equation (1) is derived, the modulus of the indenter tip is much higher than the sample 24 200909792 modulus. If there is adhesion between the sample and the tip, modify the Hertz equation. Can be used in a wide range, shallow tip-sample adhesion interaction

Derjaguin-Toporov-Muller (DMT)[參見 Maugis,J. Co//oM /价r/αα 150:243 (1992); Derjaguin 等人,J. /«ier/acia/Scz·· 53:3 14 (1975)]近似法: P = ^ErRmhvl-2nRY (3) 其中γ (以N/m為單位)為黏著功。亦已知在線性黏 彈性材料之狀況下,負載-位移特性可由以下表達式(參見 Lee 及 Rad〇k,J.办〆价c/2 27:438 (196〇))估計: 等封“醉 (4) 其中/⑴為柔量(compliance),經定義以使得… 1/Er。注意方程式(4 )在指定負載歷史(負載控制之壓 艮而非位移控制之壓痕)之狀況下適用。 右便用 ε = (4/3π)(_3/2,σ = (p _ p_)^r2 = (p W⑽㈣代換,則可寫出在一般彈性及黏彈性狀況下σ 對ε之依賴性的近似解法: :足 1-exp Ε, 1-expf--Derjaguin-Toporov-Muller (DMT) [see Maugis, J. Co//oM / price r/αα 150: 243 (1992); Derjaguin et al., J. / «ier/acia/Scz·· 53:3 14 ( 1975)] Approximate method: P = ^ErRmhvl-2nRY (3) where γ (in N/m) is the adhesion work. It is also known that in the case of a linear viscoelastic material, the load-displacement characteristic can be estimated by the following expression (see Lee and Rad〇k, J. Price: c/2 27:438 (196〇)): (4) where /(1) is compliance, defined as ... 1/Er. Note that equation (4) applies in the case of a specified load history (load control pressure rather than displacement control indentation). Right, use ε = (4/3π)(_3/2, σ = (p _ p_)^r2 = (p W(10)(4)) to write the dependence of σ on ε under general elastic and viscoelastic conditions. Approximate solution: : foot 1-exp Ε, 1-expf--

STST

+ VHS (5) 方程式(5 )係針對「最小固態模型」或「一元素普龍 25 200909792 尼級數(one-element Prony series)」之最簡單狀況所寫 (參見 Lu 荨人,Mec/?. 77从aier. 7:189 (2003)), 其中麥克斯韋元素與虎克元素並行相連,、及%表示兩元 素之相對貢獻,其中Va/ + %=1 〇 為描述塑性,可假定虎克元素變成彈性-完美塑性元 素。在該狀況下,方程式(5 )修改如下:+ VHS (5) Equation (5) is written for the simplest condition of "minimum solid state model" or "one-element Prony series" (see Lu 荨人, Mec/? 77 from aier. 7:189 (2003)), in which the Maxwell element is connected in parallel with the Hooke element, and % represents the relative contribution of the two elements, where Va/ + %=1 〇 is a description of plasticity, which can be assumed to be a Hooke element. Becomes elastic - perfect plastic element. In this case, equation (5) is modified as follows:

+ VH ^e(e)e + [l~Xe(s)e],Y+ VH ^e(e)e + [l~Xe(s)e],Y

(6) 其中Χ6(ε)描述在給定變形ε下保持彈性且未屈服之虎 克元素之部分。χβ(ε)之近似表達式係由下式給出: 1 ⑺ i+c -1 、εΥ j ^驗中,使用恆定壓痕速度mu行 壓痕。在以下關係式下,此壓痕速度與變形速率ϋ〆心 有關, ,(6) where Χ6(ε) describes the portion of the Tiger element that remains elastic and does not yield under a given deformation ε. The approximate expression of χβ(ε) is given by: 1 (7) i+c -1 , εΥ j In the test, the indentation is performed using a constant indentation velocity mu. In the following relationship, the indentation speed is related to the deformation rate,

(8) 。方程式(1) 儀之任意黏滯 -(8 )組成了 性·•彈性-塑性 常數C及j)憑經驗決定 描述使用球狀或拋物線狀壓痕 材料之負载曲線所需的方程組 定義 26 200909792 如本文中所用,讲 「空 ,,、 , ητ πσ穿透冰度」&意謂當由壓痕儀 尖端將負載施加於樣σ夹面專 (相對於自由表面)表時以端穿透至樣品中之距離 卜广::本所用,術語「負載速率」意謂當由傳統奈米 儀尖…負载時該尖端穿透樣品表面或綱懸臂 ,,..& & 大編加於樣品之與時間成函數關係 的負載以維持恆定負載速率。 如本文中所用,術語「卸載速率」意謂當減少由壓痕 端施加之負載時自樣品移除該尖端之速率;調整由尖 &施加於樣品之盘日孝鬥屮$毒 /、,4成函數關係的負載以維持恆 速率。 ,π 如本文中所用,術扭「 °。遲滯性」意謂所測定之負載與 卸载之負载-位移關係之間的面積與負载曲線下總面積(限 於負載為正之情況下的面積)的比率。 ,如本文中所用’術語「最終負載值」λ意謂當屋痕儀 尖端已達到用於量測之所要穿透深度時所測定之由該尖端 施加於樣品之負载。最終負載值對於各磨痕深度及逮率測 疋而δ為唯—的’且用以對所得資料進行無因次化。 如本文中所用,術語「最小負載值」U謂所測定 之由塵痕儀尖端施加於樣品之負載的最小值。此最小值可 為零(不黏著)或負值(存在黏著)。 術語減折模數Μ義為揚氏模數r與(/ ν0(复中ν 為泊松比)之比率’其限制條件為遷痕儀模數顯著高於樣 品模數。 永 27 200909792 如本文中所用’術語χ2意謂觀測到之資料點與如 所疋義之模型(上文)的偏差之最小平方的總和。 如本文中所用,術語「負載-位銘 移關係」意謂自用壓痕 儀大&負載及卸載樣品獲得之關俜. 關你,各負載-位移關係界定 如本文所定義之相關遲滯性。 本文中,㈣勿線狀壓痕儀尖端之半徑為經置放與樣品 接觸之壓痕儀尖端部分的曲率半徑。對於任意形狀之尖二 而言,半徑為最接近拋物線狀尖端之半徑。最接近抛物線 狀尖毅義為橫截面最接近本發明之尖端之橫截面的抛物 線狀尖端。 實施例 實施例1-有限元素分析-黏滯性-彈性-塑性模型材料之 模擬奈米塵痕法 在以下實施例中,使用套裝軟體ABAQUS/Standard(美 國羅德島Providence; 6.5-7版)產生負載-壓痕曲線。術語 黏滯性,、‘*彈性,及‘*塑性,為套裝軟體内之材料特性描 述符號。 使用有限元素分析(FEA )電腦模型軟體來模擬負載_ 壓痕曲線。對於FEA模擬,使用ABAQUS/Standard (美國 羅德島Providence; 6.5-7版)。壓痕儀尖端表示為具有半 徑R=100 nm之硬球體。經壓痕之材料模型建構為黏滯性_ 彈性-塑性半空間,其中揚氏模數E= 2.69 GPa,泊松比v= 0.3 5 ’屈服應變sy=0.05且鬆弛時間τ=50 sec。用以代表該 28 200909792 材料之元素的黏滯性-彈性·塑性模型顯示於圈2中。 模擬中使用以下假定:(a)完全平滑表面’·(㈧無 摩擦接觸;(〇均質的黏滯性_彈性_塑性半空間丨(d) 黏著較少之接觸界面。使用二維分析剛性表面建立球㈣ 痕儀模型。使用軸對稱4節點雙線性及4節點雙線性降階 積分實體元素建立半空間模型。為精確模擬接觸區域,在 I痕儀以下之小區域中使用完全積分元素之極細網格。隨 者遠離壓痕儀,網格變得較為稀疏(分四個階段);此等 區域中使用降階積分元素M吏用無限軸對稱元素建立半* 間:遠:區域模型 '約束邊界…上之節點:排除屬二 :二:Γ)*x方向上之位移。邊界條件無需強加 限兀素在無限方向上之邊緣。使用稱為「硬性 ,型之ABAQUS中之預設接觸壓力-清除率關係式」,將壓 ,艮儀與+空間之間的接觸模型建構為無摩擦接觸。 使用雙層黏塑性方法建立黏塑性材料行為的模型,該 方法使用*黏滯性選擇以及*彈性及*塑性選 : 口非線性步驟對壓痕儀參考節點施加指定位移來 :載測試循環。在各步驟令’使用*黏滯性程序以對時間 ,性的材料行為之瞬時響應進行準靜態分析。在第 移動於所要最大穿透之指定位移,以使壓痕儀向下 原始位置步中,施加零指定位移,使壓痕儀返回至其 度,h,5 nm ; ( 2) Tt = 2〇〇 sec,\ 執行五個模擬:⑴負載時間,Tt = 2sec,穿透深 nm (3 ) Tt = 20 29 200909792 sec > ht = 3〇 nm . ( 4 ) T =9 200 sec,h,6〇n .; C’、= 6〇nm;且(5) Tt = t 6〇_。產生所有五種情形之負載-穿透曲線。 =料擬合(材料之黏滯性.彈性·塑性參數的測定)如 採用情形⑴之負載曲線,將負載·位移(Μ) 私:力-應變(σ_ε),且使用Μ—“選擇 Ί距^執仃線性擬合嘯合之斜率給出減折模數 矢— (對比精確值3偏Gpa)。為測定其他兩個 (鬆他時間τ及屈服應變S),藉由將P除以Pt而將所 有五個負载曲線無因次化。接著將所有無因次負載輸入統 計分析軟體mP6.0;使用「非線性」模型特徵而藉由關 於參數τ及做最佳化來擬合無因次負載。 擬合結果顯示於圖3及4中’其顯示該模型與肌資 料彼此非常接近。擬合參數以及精確值(輸入FEA參數) 匯〜於表1中。對於減折模數,亦提供得自現有方法 (Oliver Pharr )之估算值以顯示新程序提供同等或更佳的 精確度。 材料參數 精確值 用於擬合之模租丨計笪 ΟΙ ί v^r.PVi iirr Er (Gpa) 3.066 3.1 2 07 z ( sec ) 50 55 εγ 0.05 0.049 表1減折模數、鬆弛時間及屈服應變之計算值(第三行)與精確值(第二 行)相比。為達成比較之目的’在第四行中給出減折模數之〇—啦 (OIiver-pharr法未提供另外!個材料參數之估茸值)〇 30 200909792 實施例2-PMMA奈米壓痕法 自英國 Huntingdon 的 Goodfellow Cambridge 有限公司 獲得呈薄片形式(2 mm厚)之聚甲基丙烯酸曱酯(pMMA ) (件號 ME303020 )。此 PMMA 為 Mw=l,810,〇〇〇 g/m〇1 且(8) . Equation (1) Arbitrary viscosity of the instrument - (8) constitutes the property · elastic-plastic constant C and j) empirically determines the equation definition required to use the load curve of a spherical or parabolic indentation material 26 200909792 As used herein, "empty,,,, ητ πσ penetration ice" & means that when the load is applied by the indenter tip to the sample σ facet (relative to the free surface) table, the end penetration The distance to the sample is broad:: As used herein, the term "load rate" means that the tip penetrates the surface of the sample or the cantilever when it is loaded by a conventional nanometer tip, .... &&& The load of the sample as a function of time to maintain a constant load rate. As used herein, the term "unloading rate" means the rate at which the tip is removed from the sample when the load applied by the indented end is reduced; the adjustment is applied to the sample by the tip & The load of the 4th functional relationship is maintained at a constant rate. , π As used herein, the term "°. hysteresis" means the ratio of the area between the measured load to the load-displacement relationship of the unloading and the total area under the load curve (limited to the area under which the load is positive). . As used herein, the term "final load value" λ means the load applied to the sample by the tip when the tip of the house gauge has reached the desired penetration depth for measurement. The final load value is measured for each wear scar depth and catch rate and δ is unique — and used to make the resulting data dimensionless. As used herein, the term "minimum load value" U refers to the minimum value of the load applied to the sample by the tip of the grime. This minimum can be zero (no adhesion) or negative (existing adhesion). The term reduced modulus Μ is the ratio of Young's modulus r to (/ ν0 (complex ν is Poisson's ratio)'. The constraint condition is that the modulus of the relocation tester is significantly higher than the sample modulus. Yong 27 200909792 The term 'χ2' used in the term means the sum of the least squares of the observed data points and the model as defined above (above). As used herein, the term "load-bit shift relationship" means a self-indentation indenter. The relationship between the large & load and unloading samples. Off, each load-displacement relationship defines the associated hysteresis as defined herein. In this paper, (4) the radius of the tip of the indenter is not placed in contact with the sample. The radius of curvature of the tip portion of the indenter. For any shape of the tip two, the radius is the radius closest to the parabolic tip. The closest parabolic tip is the parabola whose cross section is closest to the cross section of the tip of the present invention. Example Tips - Finite Element Analysis - Viscous - Elastic-Plastic Modeling Materials Simulated Nano Dust Marking Method In the following examples, the kit software ABAQUS/Standard (Providence, Rhode Island, USA; 6.5) was used. Version -7) produces a load-indentation curve. The terms viscosity, '*elasticity, and '*plasticity' are the material characterization symbols for the packaged soft body. Use finite element analysis (FEA) computer model software to simulate the load _ Indentation curve. For FEA simulation, use ABAQUS/Standard (Providence, Rhode Island; 6.5-7). The indenter tip is represented as a hard sphere with a radius of R = 100 nm. The indented material model is constructed as a sticky滞 _ elastic-plastic half space, where Young's modulus E = 2.69 GPa, Poisson's ratio v = 0.3 5 ' yield strain sy = 0.05 and relaxation time τ = 50 sec. Used to represent the elements of the 28 200909792 material The viscous-elasticity/plasticity model is shown in circle 2. The following assumptions are used in the simulation: (a) completely smooth surface '·((8) frictionless contact; (〇 homogeneous viscous_elastic_plastic half space 丨(d Adhesive interface with less adhesion. Use a two-dimensional analysis of rigid surfaces to create a spherical (four) tracer model. Axial symmetric 4-node bilinear and 4-node bilinear reduced-order integral solid elements are used to create a half-space model. Under the I tracer In the small area, the extremely fine mesh of the fully integrated element is used. The grid becomes sparse (in four stages) away from the indenter; in these areas, the reduced-order integral element M is used to establish the infinite axisymmetric element. Half*: Far: Regional model 'Constrained boundary... Upper node: Excludes genus 2: 2: Γ) Displacement in *x direction. Boundary conditions do not need to impose a limit on the edge of the element in the infinite direction. The use is called "hardness". The preset contact pressure-clearance relationship in the ABAQUS of the type, the contact model between the pressure, the device and the + space is constructed as a frictionless contact. A two-layer viscoplastic method is used to model the behavior of a viscoplastic material. The method uses a *viscosity selection and *elastic and *plastic selection: a non-linear step to apply a specified displacement to the indenter reference node: the test cycle. At each step, the *viscosity procedure was used to perform a quasi-static analysis of the instantaneous response to temporal, material behavior. Move at the specified displacement of the desired maximum penetration so that the indenter is moved down to the original position step, applying a zero specified displacement to return the indenter to its degree, h, 5 nm; (2) Tt = 2〇 〇sec,\ performs five simulations: (1) load time, Tt = 2 sec, penetration depth nm (3) Tt = 20 29 200909792 sec > ht = 3〇nm . ( 4 ) T =9 200 sec,h,6 〇n .; C', = 6〇nm; and (5) Tt = t 6〇_. A load-penetration curve for all five cases is generated. = material fitting (viscosity of material. Determination of elastic and plastic parameters). If the load curve of case (1) is used, load/displacement (Μ) is private: force-strain (σ_ε), and Μ-"selecting the distance ^ Suppressing the linear fit of the singularity gives the reduced modulus vector—(Comparatively accurate value 3 to Gpa). To determine the other two (loose time τ and yield strain S), by dividing P by Pt All five load curves are dimensionless. Then all dimensionless loads are input into the statistical analysis software mP6.0; the "non-linear" model features are used to fit the cause without the parameter τ and optimization. Secondary load. The results of the fitting are shown in Figures 3 and 4 'which shows that the model and the muscle material are very close to each other. The fitting parameters as well as the exact values (input FEA parameters) are summarized in Table 1. For reduced modulus, estimates from the existing method (Oliver Pharr) are also provided to show that the new program provides equal or better accuracy. The exact value of the material parameters is used to fit the model. v v^r.PVi iirr Er (Gpa) 3.066 3.1 2 07 z ( sec ) 50 55 εγ 0.05 0.049 Table 1 Reduced modulus, relaxation time and yield The calculated value of the strain (third row) is compared to the exact value (second row). For the purpose of comparison 'in the fourth line, give the reduction modulus - (OIiver-pharr method does not provide another! The estimated value of the material parameters) 〇30 200909792 Example 2 - PMMA nanoindentation A poly(meth) methacrylate (pMMA) (part number ME303020) in sheet form (2 mm thick) was obtained from Goodfellow Cambridge Ltd., Huntingdon, England. This PMMA is Mw=l,810, 〇〇〇 g/m〇1 and

Mn=261,〇〇〇 g/mol之Reps〇l YPF丙烯酸系物,如可藉由尺 寸排除層析法(使用線性聚苯乙烯校正)所測定。 樣品製備及整體拉#湔諸. 使用南速圓鑛將拉伸試樣自2 mm薄片切成2 5忖長 且0.25吋寬之棒狀物。在Instr〇n 42〇1上使用化价⑽ Bluehill軟體執行拉伸測試。使用加壓至8〇 psi之 氣夾將試樣附著。將1吋標距長之Instr〇n機械伸長計重設 為零,且在測試之前附著於試樣以量測拉伸應變。拉伸測 試係在0.05、0.5及5 mm/s下執行。 奈米壓痕法之檨品贺借 使用玉工鋸(jeweler,s saw)手工切割數片pmma薄 片。將該等片包埋於Buehler Epoxicure樹脂中且在其中固 化,且形成内部1.25吋直徑之硬化物以進行金相拋光。使 用Struers R〇top〇l且根據均在7〇 N外加力下進行以下一 系列五個研磨步驟達成拋光: i) uoo粒度Sic紙,使用DI水潤滑劑,歷時2〇 sec; ii) 2400粒度SiC紙,使用卬水满滑劑,歷時i〇sec; iii) 4000粒度sic紙,使用m水潤滑劑,歷時10sec; Tex細布中之3微米金剛石,使用金剛石 31 200909792 膏增量潤滑劑,歷時3 min ; v) Texmet布中之0.25微米金剛石,使用Lec〇金剛 石膏增量潤滑劑,歷時4 min。 在Buehler Vibromet上、在300 gm負载下使用在 LeCloth表面上之0.25 μηι金剛石、使用Leco金剛石膏增 量潤滑劑歷時2小時達成最終拋光。 奈米壓痕法-恆定應# i亲率 在裝備有DCM頭及Berkovich金剛石Accutip壓痕儀 之MTS奈米壓痕儀(田納西州〇ak Ridge的MTS Ν&η〇 Instruments)上執行奈米壓痕法實驗。由廠商用熔融二氧 化矽权正壓痕儀尖端之面積函數。使用提供壓痕材料表面 之精確偵測的連續剛性測定(CSM )方法,經由MTS Testworks軟體電腦控制該測試。將CSM參數設定為75 Hz 之頻率及1 nm之振幅。表面偵測係由調和性接觸剛性增 加高於100 N/m而引發。負載曲線之應變速率目標設定為 〇.〇5/s,且恒定卸載速率在0 7與0 8 mN/s之間。減折模 數Er及硬度Η之傳統〇liver_Pharr計算[參見〇Uver及pharr, 乂 M_U:1564 ; 〇liver 及 Pharr,乂 施⑽細 19:3 (2〇〇4)],係由Testworks軟體自動執行,其泊松比設定為 〇·35,且用於自動計算之卸載曲線部分設定為 奈米壓痕法-恒定位移速率會給 在裝備有DCM頭及Berkovich金剛石Accutip壓痕儀 之MTS DCM奈米壓痕儀上執行奈米壓痕法實驗。由廠商 炫融一氧化石夕权正壓痕儀尖端之面積函數。使用提供壓 32 200909792 痕材料表面之精確偵測的連續剛性测定(csm)方法,經 由MTS TeStworks軟體電腦控制該測試。將csm參數設定Rep 〇l YPF acrylic acid having Mn = 261, 〇〇〇 g / mol, as determined by size exclusion chromatography (corrected using linear polystyrene). Sample Preparation and Monolithic Pulling. Using a Nanchang Round Mine, the tensile specimen was cut from a 2 mm sheet into 25 mm long and 0.25 inch wide rods. Tensile testing was performed on Instr〇n 42〇1 using a priced (10) Bluehill software. The specimen was attached using a gas clamp pressurized to 8 psi. The 1 吋 gauge Instr〇n mechanical extensometer was reset to zero and attached to the specimen prior to testing to measure tensile strain. The tensile test was performed at 0.05, 0.5 and 5 mm/s. The indentation method of the nano indentation method uses a jade saw (sewer) to manually cut several pmma sheets. The sheets were embedded in a Buehler Epoxicure resin and cured therein, and an internal 1.25 inch diameter hardened material was formed for metallographic polishing. Polishing was achieved using Struers R〇top〇l and following a series of five grinding steps under 7 〇N applied force: i) uoo particle size Sic paper, using DI water lubricant for 2 sec; ii) 2400 grit SiC paper, using water-repellent full-slip agent, lasting 〇sec; iii) 4000 grit sic paper, using m water lubricant for 10 sec; 3 micron diamond in Tex fine cloth, using diamond 31 200909792 paste incremental lubricant, duration 3 min ; v) 0.25 micron diamond in Texmet cloth, using Lec 〇 diamond paste incremental lubricant for 4 min. Final polishing was achieved on a Buehler Vibromet using a 0.25 μηι diamond on a LeCloth surface under a load of 300 gm and using Leco Diamond Paste to increase the lubricant for 2 hours. Nanoindentation method - constant should be performed on a MTS nanoindenter equipped with a DCM head and a Berkovich diamond Accutip indenter (MTS Ν&η〇Instruments in 〇ak Ridge, Tennessee) Trace experiment. The area function of the tip of the positive indenter is determined by the manufacturer using molten yttria. The test was controlled via an MTS Testworks software computer using a continuous stiffness measurement (CSM) method that provides accurate detection of the surface of the indented material. Set the CSM parameter to a frequency of 75 Hz and an amplitude of 1 nm. Surface detection is caused by an increase in the stiffness of the harmonic contact above 100 N/m. The strain rate target of the load curve is set to 〇.〇5/s and the constant unloading rate is between 0 7 and 0 8 mN/s. The traditional 〇liver_Pharr calculation of the reduced modulus Er and the hardness [ [see 〇Uver and pharr, 乂M_U: 1564; 〇liver and Pharr, implementation (10) fine 19:3 (2〇〇4)], automatically by Testworks software Execution, its Poisson's ratio is set to 〇·35, and the unloading curve part for automatic calculation is set to nanoindentation method - the constant displacement rate will be given to MTS DCM Nai equipped with DCM head and Berkovich diamond Accutip indenter The nanoindentation test was performed on a meter indenter. The area function of the tip of the indenter by the manufacturer. The test was controlled by a MTS TeStworks software computer using a continuous stiffness measurement (csm) method that provides accurate detection of the surface of the trace material. Set the csm parameter

Hz之頻率及〗nm之振幅。表面侦測係由調和性接觸 剛性增加高於100 N/m而引發。標準㈣丁_〇咖咖 方法係猎由在該方法中用恆定位移速率標準替換怪定應變 速率標準來修改。使用Test霜匕軟體之輸出函數來輸出 負载-位移曲線資料以進行黏滯性_彈性_塑性-黏著性分析。 PMMA之負載位移曲線输製於5巾。顯示五個位移 控制之負载·卸載測定,其中各測定之最大穿透深度及平均 速度匯總於表2中。由於曲線之間對應於不同壓痕速度之 遲滯性明顯,所以確定材料具有黏滯性、彈性及塑性特=。The frequency of Hz and the amplitude of 〖nm. Surface detection is triggered by an increase in the stiffness of the harmonic contact above 100 N/m. Standard (4) Ding _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The output function of the Test Cream software was used to output the load-displacement curve data for viscous_elasticity-plasticity-adhesion analysis. The load displacement curve of PMMA is transferred to 5 towels. The load and unloading measurements of the five displacement controls are shown, wherein the maximum penetration depth and average velocity for each measurement are summarized in Table 2. Since the hysteresis between the curves corresponding to different indentation velocities is significant, it is determined that the material has viscosity, elasticity, and plasticity.

表2.奈米壓痕法測定參數。此處,為最大穿透, 為最大負載,v為壓痕速度,且5為變形變數s之 變化率。 、句 為分析資料且評估聚合物之黏滞性-彈性-塑性性質, 根據下式將(p_h )描述變換成(σ-ε )描述為有用的.Table 2. Measurement parameters for the nanoindentation method. Here, for maximum penetration, for maximum load, v is the indentation velocity, and 5 is the rate of change of the deformation variable s. In order to analyze the data and evaluate the viscous-elastic-plastic properties of the polymer, it is useful to describe the (p_h) description into (σ-ε) according to the following equation.

fhf2 UJ 4 3π 33 200909792Fhf2 UJ 4 3π 33 200909792

P a+払系(應力-應變)中之負載-位移曲線繪製於圖ό 藉由將σ_ε曲線之負載部分用直線擬合各 形速率(^ 3 么 及低)之有效減折模數五,。結果匯總於表 i"由橾準表達式五=尽"將減折模數轉變為 ^ 其中取泊松比v = 0·35。)為達成比較之目的, 7可對相同聚合物以不同應變速率進行整體拉伸载。在圖 中將模數計算值及整體模數計算值繪製為有效應變速 率^之函數;可見結果非常一致。 ______標記 ~-二-_I s, sec'1 --— _ Er, GPa E, GPa ri? ' —-— 2.18E-01 6.53 5.73 4.80E-02 3.86 3.39 —低 ------ 5.00E-03 5.30 4.65 •減折模數及杨氏模數之計算值為平均應變速率 之函數。 黏彈效應表現在模數對變形速率之依賴性上。為近似 异出特徵鬆弛時間τ,方(或更精確言之,柔度對$ 之依賴性可擬合成以下函數: E \s) = JQ+j] exp(-ir) 乃、及τ之值匯總於表4中。 34 200909792 J〇, GPa-' J1, GPa*1 -—~~_ T, S G Γ: 0.174 〜----- 0.13 25 表4·本度參數及特徵鬆弛時間之計算值。 ㈣Π,之塑性性質,諸如屈服應力或屈服應 艾考慮曲線之負載與卸載部分兩者為有用的。對於 測定之情形,塑性量度方可定義為: H = Er{s^t~ef\ 此處,心為最大變形,e/為最終變形(與材料塑性相 關)。//愈高,材料行為愈為「彈性」(對於給定^)。 詳言之,可將//與塑性變形開始時所處之應力(亦即,材 料硬度)相關聯。接著,屈服應力〜可基於Tab〇r式算出 [參見 D. Tabor,TTze o/Meia/s, 〇xfor(jThe load-displacement curve in the P a + lanthanum (stress-strain) is plotted in Fig. 藉 by fitting the load portion of the σ_ε curve with a straight line to fit the effective reduction modulus of the rate (^ 3 and low). The results are summarized in the table i " by the quasi-expression of the five = do " convert the reduced modulus to ^ where Poisson's ratio v = 0.35. For the purpose of comparison, 7 can perform the overall tensile loading of the same polymer at different strain rates. In the figure, the calculated value of the modulus and the calculated value of the overall modulus are plotted as a function of the effective speed ratio ^; the results are very consistent. ______ mark ~-two-_I s, sec'1 --- _ Er, GPa E, GPa ri? ' —- — 2.18E-01 6.53 5.73 4.80E-02 3.86 3.39 —Low ------ 5.00 E-03 5.30 4.65 • The calculated values of the reduced modulus and Young's modulus are a function of the average strain rate. The viscoelastic effect is manifested in the dependence of the modulus on the rate of deformation. To approximate the out-of-symmetry relaxation time τ, or more precisely, the dependence of compliance on $ can be fitted to the following function: E \s) = JQ+j] exp(-ir) is the value of τ, and τ Summarized in Table 4. 34 200909792 J〇, GPa-' J1, GPa*1 -—~~_ T, S G Γ: 0.174 ~----- 0.13 25 Table 4· Calculation of the parameters and characteristic relaxation time. (d) 塑性, the plastic properties, such as yield stress or yielding, are useful in considering both the load and the unloading portion of the curve. For the case of measurement, the plasticity measure can be defined as: H = Er{s^t~ef\ where the heart is the maximum deformation and e/ is the final deformation (related to the material plasticity). // The higher the material behavior, the more "elastic" the material is (for a given ^). In particular, // can be correlated with the stress at which plastic deformation begins (i.e., material hardness). Then, the yield stress ~ can be calculated based on the Tab〇r formula [see D. Tabor, TTze o/Meia/s, 〇xfor(j

Clarendon Press,1951](其中 Tabor 常數 9):Clarendon Press, 1951] (where Tabor constant 9):

H = kaY 之計算值在表5中給出。 H, GPa σν, GPa 0.5 0.172 表5 · PMMA之硬度及屈服應力計算值。 因為PMMA之屈服應力之典型文獻值在5〇至15〇 MPa 之範圍内’所以此方法所給出之估算值略高於預期值。此 35 200909792 差異可能歸因於壓縮中之應變硬化。 標準Oliver-Pharr分析得出以下、E、Η及之估 算值:Er = 5.46 Gpa; E = 4.79 Gpa ; Η = 0.31 Gpa; oy= 0.107The calculated values of H = kaY are given in Table 5. H, GPa σν, GPa 0.5 0.172 Table 5 · Calculation of hardness and yield stress of PMMA. Since the typical literature value for the yield stress of PMMA is in the range of 5 〇 to 15 MPa ‘, the estimate given by this method is slightly higher than expected. This 35 200909792 difference may be due to strain hardening in compression. The standard Oliver-Pharr analysis yields the following estimates for E, Η and: Er = 5.46 Gpa; E = 4.79 Gpa; Η = 0.31 Gpa; oy = 0.107

Gpa。 實施例3-PC奈米壓痕法 自英國 Huntingdon 的 Goodfellow Cambridge 有限公司 獲得呈薄片形式之(2 mm厚)聚碳酸酯(pc )(件號 CT303100)。此為 Mw=49 〇〇() g/m〇1 且 Mn=13 000 g/m〇i 之Bayer Makrolon型pc,如可藉由尺寸排除層析法(使用 線性聚本乙稀校正)所測定。 樣品製備及整體也伸测隸 使用局速圓錯將拉伸試樣自2 mm薄片切成2.5忖長 且〇·25吋寬之棒狀物。在Instr〇n 42〇1上使用instr〇n Bliiehill軟體執行拉伸測試。使用加壓至8〇卩以之&价 氣夾將試樣附著。將i吋標距長之Instr〇n機械伸長計重設 為零,且在測試之前附著於試樣以量測拉伸應變。拉伸測 試係在0.05、0.5及5爪爪“下執行。 使用玉工鋸手工切割數片PC薄片。將該等片包埋於Gpa. Example 3 - PC Nanoindentation Method A polycarbonate (pc) (part number CT303100) in sheet form (2 mm thick) was obtained from Goodfellow Cambridge Co., Ltd., Huntingdon, England. This is a Bayer Makrolon type pc with Mw=49 〇〇() g/m〇1 and Mn=13 000 g/m〇i, as determined by size exclusion chromatography (corrected using linear polystyrene) . The sample preparation and the overall extension were measured by using a round-trip error. The tensile specimen was cut from a 2 mm sheet into a 2.5-inch long rod of 忖·25吋 width. The tensile test was performed on the Instr〇n 42〇1 using the instr〇n Bliiehill software. The sample was attached using a gas clamp that was pressurized to 8 Torr. The Instr〇n mechanical extensometer with a gauge length of i吋 was reset to zero and attached to the specimen prior to testing to measure the tensile strain. The tensile test was performed under 0.05, 0.5 and 5 claws. Several pieces of PC sheets were manually cut using a jade saw. The pieces were embedded in

Buehh Epoxicure樹月旨中且在其中固化,且形成内部(a 吋直徑之硬化物以進行金相拋光。使用Struers _〇ρ〇ι且 根據均在7 0 N外加力下進杆w |丨尤加 進仃以下之一系歹丨五個研磨步 成拋光: 1 ) 1200粒度SiC紙,使用DI水潤滑劑,歷時2〇咖; 36 200909792 ii) 2400粒度SiC紙,使用DI水潤滑劑,歷時i〇 sec ; iii) 4000粒度SiC紙,使用DI水潤滑劑,歷時1〇 sec ; iv) Texmet布中之3微米金剛石,使用Leco金剛石 膏增量潤滑劑,歷時3 min ; v) Texmet布中之〇·25微米金剛石,使用Leco金剛 石膏增量潤滑劑,歷時4 min。 在Buehler Vibromet上、在300 gm負載下使用在 LeCloth表面上之0·25 μηι金剛石、使用Leco金剛石膏增 ϊ潤滑劑歷時2小時達成最終抛光。 奈米壓痕法-恆定應#竦率 在裝備有DCM頭及Berkovich金剛石Accutip壓痕儀 之MTS奈米壓痕儀(田納西州〇ak Ridge的MTS Nano Instruments )上執行奈米壓痕法實驗。由廠商用熔融二氧 化石夕校正壓痕儀尖端之面積函數。使用提供壓痕材料表面 之精確偵測的連續剛性測定(CSM )方法,經由MTS Testworks軟體電腦控制該測試。將CSM參數設定為75 Hz 之頻率及1 nm之振幅。表面偵測係由調和性接觸剛性增 加高於100 N/m而引發。負載曲線之應變速率目標設定為 0.05/s,且恆定卸載速率在0.7與0.8 mN/s之間。減折模 數Er及硬度Η之傳統Oliver-Pharr計算[參見〇Hver及pharr, J. Mater. Res. 7:1564 ; Oliver 及 Pharr,乂 施如心心! 9:3 (2004)]係由Testworks軟體自動執行,其泊松比設定為 0.35’且用於自動計鼻之卸載曲線部分設定為5〇%。 奈来壓痕法-恆定位移途率营給 37 200909792 在裝備有DCM頭及Berkovich金剛石Accutip壓痕儀 _ S DCM奈米壓痕儀上執行奈米壓痕法實驗。由廠商 用熔融二氧化矽校正壓痕儀尖端之面積函數。使用提供壓 痕材料表面之精確偵測的連續剛性測定(CSM )方法,經 由MTS Testw〇rks軟體電腦控制該測試。將csm參數設定 為75 Hz之頻率及i nm之振幅。表面憤測係由調和性接觸 剛性增加高於⑽N/m而引發。標準MTS ^〜^㈣ 方法係藉由在該方法中錄定位移速率標準替換怪定應變 速率標準來修改。使用Testw〇rks軟體之輸出函數而輸出 負載-位移曲線資料以進行黏滯性_彈性_塑性_黏著性分析。 pc之負載-位移曲線繪製於圖8中。顯示五個位移杵 制之負載·卸載測定,其中各測定之最大穿透深度及平均: ^匯總於表6巾。由於曲線之間對應於不同壓痕速度之遲 坪性明顯’所以確定材料具有黏滞性、彈性及塑性特徵。The Buehh Epoxicure tree is solidified in and cured, and forms an internal (a 吋 diameter hardened material for metallographic polishing. Using Struers _〇ρ〇ι and according to the 7 0 N applied force, the rod w | Add one of the following 歹丨 five grinding steps to polish: 1) 1200 grit SiC paper, using DI water lubricant, lasting 2 〇 coffee; 36 200909792 ii) 2400 grit SiC paper, using DI water lubricant, duration I〇sec ; iii) 4000 grit SiC paper, using DI water lubricant for 1 sec; iv) 3 micron diamond in Texmet cloth, using Leco diamond paste incremental lubricant for 3 min; v) Texmet cloth After the 25 micron diamond, the Leco diamond paste incremental lubricant was used for 4 minutes. The final polishing was achieved on a Buehler Vibromet using 0. 25 μηι diamond on the LeCloth surface under a load of 300 gm and using Leco diamond paste to lubricate the lubricant for 2 hours. Nanoindentation Method - Constant Response The nanoindentation test was performed on a MTS Nanoindenter (MTS Nano Instruments, 〇ak Ridge, Tennessee) equipped with a DCM head and a Berkovich diamond Accutip indenter. The area function of the indenter tip is corrected by the manufacturer using molten silica. The test was controlled via an MTS Testworks software computer using a continuous stiffness measurement (CSM) method that provides accurate detection of the surface of the indented material. Set the CSM parameter to a frequency of 75 Hz and an amplitude of 1 nm. Surface detection is caused by an increase in the stiffness of the harmonic contact above 100 N/m. The strain rate target for the load curve was set at 0.05/s and the constant unloading rate was between 0.7 and 0.8 mN/s. The traditional Oliver-Pharr calculation of the reduced modulus Er and the hardness [ [see 〇Hver and pharr, J. Mater. Res. 7:1564; Oliver and Pharr, 如施如心心! 9:3 (2004)] is automatically executed by Testworks software with a Poisson's ratio set to 0.35' and the unloading curve portion for automatic metering is set to 5〇%. Nai indentation method - constant displacement rate camp 37 200909792 Performed a nanoindentation test on a DCM head and a Berkovich diamond Accutip indenter _ S DCM nanoindenter. The area function of the indenter tip is corrected by the manufacturer using molten cerium oxide. The test is controlled by a MTS Testw〇rks software computer using a continuous stiffness measurement (CSM) method that provides accurate detection of the surface of the indented material. Set the csm parameter to a frequency of 75 Hz and an amplitude of i nm. Surface indifference is triggered by an increase in the stiffness of the harmonic contact above (10) N/m. The standard MTS^~^(4) method is modified by replacing the strange strain rate standard with the recorded displacement rate standard in the method. The load-displacement curve data was output using the output function of the Testw〇rks software for viscosity_elasticity_plasticity_adhesion analysis. The load-displacement curve of pc is plotted in Figure 8. The load and unloading measurements for five displacements are shown, with the maximum penetration depth and average for each measurement: ^ summarized in Table 6. The material has viscous, elastic and plastic characteristics because of the obvious lateness of the curves corresponding to different indentation velocities.

----————L^iOE^ 户又.不米壓痕法測定參數。此處,為最大穿透, ⑽為最大負載,V為壓痕速度,且5為變形變數ε之平均 38 200909792 變化率。 為分析資料且評估聚合物之黏滯性· 根據下式將(P-h)描述變換成((y 性性質, ;指述為有用的: 4 3π ^γ/2 p πΚ2 新座標系(應力-應變)中夕咨 中。拉士政 1 ώ Τ之負載-位移曲線繪製於圖9 中 藉由將σ_ε曲線之負截邱八田士 ,一 貝戰*刀用直線擬合來計算各變开, 速率(尚、中及低)之有效減折模數 乂 .f 敦仏。結果匯總於表7 中。(經由標準表達式£ = # Λ _ V;將減折模數轉變為楊 氏模數’其中取泊松比V = 爾 f, , · )為達成比較之目的, 了對相同聚合物以不同應變速率 1 〇 φ ^ 仃1體拉伸測定。在圖 10令’將模數計算值及整體磁叙、+ 率” T k 及正體模數測定值繪製為有效應變速 半·^之函數;可見結果非常一致----————L^iOE^ Households. The parameters are determined by the indentation method. Here, for maximum penetration, (10) is the maximum load, V is the indentation velocity, and 5 is the average of the deformation variables ε 38 200909792 rate of change. To analyze the data and evaluate the viscosity of the polymer, transform the (Ph) description into ((y- nature, ;refer to useful: 4 3π ^γ/2 p πΚ2 new coordinate system (stress-strain) according to the following formula In the middle of the evening, the load-displacement curve of Lashizheng 1 ώ 绘制 is plotted in Figure 9. By dividing the negative σ_ε curve by Qiu Ba Tianshi, one bell warping * knife is used to calculate the opening, rate The effective reduced modulus of (shang, medium and low) 乂.f 仏. The results are summarized in Table 7. (via the standard expression £ = # Λ _ V; convert the reduced modulus to Young's modulus' Among them, the Poisson's ratio V = er f, , · ) is used for the purpose of comparison, and the same polymer is measured at different strain rates of 1 〇φ ^ 仃1. In Figure 10, the modulus is calculated. The overall magnetic quotation, + rate "T k and the measured value of the normal body modulus are plotted as a function of the effective shift half-^; the visible results are very consistent

S, sec'1 — Er, CJPg 3.72 1LIAEi〇2 1 ----—----- 3.64 Ll^OE-os_|_ 2.35 之函數。減折模數及揚氏模數之計算值為平均應變速率‘ E, GPa 27 19 2.06 算出特徵鬆弛時 轉^放應表現在模數對變形速率之依賴性上。為近似 Γ’厶C或更精確言之,柔度對j 39 200909792 之依賴性可擬合成以下函數·· ^ (^) = Λ + ^ exp(-ir) Λ、…及τ之值匯總於表8中。 _ ~~— ---_ Jn, GPa-1 J 1 〇p - -1 ~~SS、s ----^ 1 ? 1 0.3 _ 0.25 « ·*人松to呷間之計算值〇 為分析PC之塑性神暂,& , + 』旺性質,諸如屈服應力或 之情形,塑性量度Η可定義為: Η = Ελ^){ει-εί\ 考慮曲線之負載與卸載部分兩者為有用的。對於高二 此處,ε,為最大變形,e/為最終變形(與材料塑性相 關)。//愈高’材料行為愈為「彈性」(對於給定^)。 洋言之’可將Η與塑性變形開始時所處之應力(亦即,材 料硬度)相關聯。接著,屈服應力〜可基於Tabor式算出 [參見 D. Tabor, TTze ifardness anc/ Sirewgi/i o/Meia,s,Oxford Clarendon Press, 1951](其中 Tabor 常數 #2.9): H — Ic^y //及q之計算值在表9中給出。 200909792 H, GPa rr ΠΡη 0.2 -----υ γ-, α -—0.069 表9· pc之硬度及屈服應力計算值。 結果與廠商規格中之室溫下聚碳酸酯之整體拉伸值非 常一致(0_06_0.07 GPa,E = 2.3-2.4 GPa)。 標準Oliver-Pharr分析得出以下Er、e、Η及σ之估 算值:Er = 3.9〇 GPa; E = 3.42 GPa; Η = 〇·2ι Gpa; 〇广 〇 〇72 GPa。 實施例4-~PS奈米壓痕法 自密西根州Midland的The Dow化學公司獲得呈擠出 球粒形式之聚苯乙烯(PS X PS 1683 )。此Ps為Mw=269,〇〇〇 g/mol且Mn=96,300 g/mol之通用無規型ps,如可藉由尺 寸排除層析法(使用線性聚苯乙烯校正)所測定。 製備及整體拉伸測詖 藉由在255 C下使用以下順序壓縮成型來製備拉伸試· 樣:在1,000 psi下7 min進行熔融;在40 000 psi下7 min 進行成型;及40 min緩慢冷卻至室溫。使用高速圓鋸將拉 伸試樣自成型形式切成2_5吋長且0.25吋寬之棒狀物。在 Instron 4201上使用Instron BluehU1軟體執行拉伸測試。 使用加壓至80 psi之instron氣夾將試樣附著。將【吋標 距長之Instron機械伸長計重設為零,且在測試之前附著= 試樣以量測拉伸應變。拉伸測試係在〇 〇5、〇 5及5 下執行。 41 200909792 將PS球粒包埋於Buehler Epoxicure樹脂中且在其中 固化,且形成内部1.25吋直徑之硬化物以進行金相抛光。 使用Struers Rotopol且根據均在7〇 N外加力下進行以下 之一系列五個研磨步驟達成拋光: i ) 1200粒度SiC紙,使用DI水潤滑劑,歷時2〇咖; ii ) 2400粒度SiC紙,使用DI水潤滑劑,歷時1〇咖; Hi) 4000粒度SiC紙’使用DI水潤滑劑,歷時1〇咖; iv) Texmet布中之3微米金剛石,使用Leeo金剛石 膏增量潤滑劑,歷時3 min ; v) Texmet布中之0.25微米金剛石,使用Lec〇金剛 石膏增量潤滑劑,歷時4 min。 在Buehler Vibromet上、在300 gm負載下使用在 LeCloth表面上之〇_25 μηι金剛石、使用Lec〇金剛石膏增 量潤滑劑歷時2小時達成最終拋光。 奈米壓痕法-恆定應變遠率 在裝備有DCM頭及Berkovich金剛石Accutip壓痕儀 之MTS奈米壓痕儀(田納西州〇ak Ridge的MTS Instruments)上執行奈米壓痕法實驗。由廠商用熔融二氧 化石夕校正慶痕儀尖端之面積函數。使用提供壓痕材料表面 之精確偵測的連續剛性測定(CSM )方法,經由MTs Testworks軟體電腦控制該測試。將CSM參數設定為75 ^ 之頻率及1 nm之振幅。表面偵測係由調和性接觸剛性增 加高於1 00 N/m而引發。負載曲線之應變速率目標設定為 〇_〇5/s,且恆定卸載速率在0.7與〇8 mN/s之間。減折模 42 200909792 數Er及硬度Η之傳統〇liver_Pharr計算[參見〇liver及pharr, J. Mater. Res. 7:1564 ; Oliver 及 Pharr,·/.偷⑽.及仏 1 9:3 (2〇〇4)]係由Testworks軟體自動執行,其泊松比設定為 0.3 5,且用於自動計算之卸載曲線部分設定為5〇%。 奈米壓痕法-惶定位移逑率眚龄 在裝備有DCJV[頭及Berk〇vich金剛石Accutip壓痕儀 之MTS DCM奈米壓痕儀上執行奈米壓痕法實驗。由廠商 用炫融二氧化石夕校正壓痕儀尖端之面積函數。使用提供壓 痕材料表面之精確偵測的連續剛性測定(csm)方法,經 由MTS TeStw〇rks軟體電腦控制該測試。將csm參數設定 為75 Hz之頻率及1 nm之振幅 剛性增加高於100 N/m而引發 表面偵測係由調和性接觸S, sec'1 — Er, CJPg 3.72 1LIAEi〇2 1 ---------- 3.64 Ll^OE-os_|_ 2.35. The calculated value of the reduced modulus and Young's modulus is the average strain rate ‘ E, GPa 27 19 2.06. When calculating the characteristic relaxation, the rotation should be expressed in the dependence of the modulus on the deformation rate. To approximate Γ'厶C or more precisely, the dependence of compliance on j 39 200909792 can be fitted to the following function·· ^ (^) = Λ + ^ exp(-ir) The values of Λ, ..., and τ are summarized in In Table 8. _ ~~— ---_ Jn, GPa-1 J 1 〇p - -1 ~~SS, s ----^ 1 ? 1 0.3 _ 0.25 « · * Calculated value of human pine to 〇 is analysis The plasticity of the PC, & , + wang properties, such as the yield stress or the case, the plasticity measure Η can be defined as: Η = Ελ^){ει-εί\ Considering both the load and the unloading part of the curve is useful . For the second highest, ε is the maximum deformation and e/ is the final deformation (related to the material plasticity). //The higher the material behavior, the more "elastic" (for a given ^). The foreign language's can relate the enthalpy to the stress at which plastic deformation begins (ie, material hardness). Next, the yield stress ~ can be calculated based on the Tabor formula [see D. Tabor, TTze ifardness anc/Sirewgi/io/Meia, s, Oxford Clarendon Press, 1951] (where Tabor constant #2.9): H - Ic^y // and The calculated values of q are given in Table 9. 200909792 H, GPa rr ΠΡη 0.2 -----υ γ-, α -0.069 Table 9· pc hardness and yield stress calculated. The results were in good agreement with the overall tensile values of the polycarbonate at room temperature in the manufacturer's specifications (0_06_0.07 GPa, E = 2.3-2.4 GPa). The standard Oliver-Pharr analysis yields the following estimates of Er, e, Η and σ: Er = 3.9 〇 GPa; E = 3.42 GPa; Η = 〇·2ι Gpa; 〇广 〇 〇 72 GPa. Example 4 - PS Nanoindentation Method Polystyrene (PS X PS 1683) in the form of extruded pellets was obtained from The Dow Chemical Company, Midland, Michigan. This Ps is a general-purpose random ps of Mw = 269, 〇〇〇 g / mol and Mn = 96,300 g / mol, as determined by size exclusion chromatography (corrected using linear polystyrene). Preparation and bulk tensile test Tensile test specimens were prepared by compression molding at 255 C using the following sequential compression: 7 min at 1,000 psi; 7 min at 40 000 psi; and 40 min Slowly cool to room temperature. The drawn specimen was cut into a 2 mm long and 0.25 inch wide rod from the formed form using a high speed circular saw. Tensile testing was performed on an Instron 4201 using an Instron BluehU1 software. The sample was attached using an instron gas clamp pressurized to 80 psi. The Instron mechanical extensometer was reset to zero and the specimen was attached before the test to measure the tensile strain. Tensile testing is performed at 〇 〇 5, 〇 5 and 5. 41 200909792 PS pellets were embedded in a Buehler Epoxicure resin and cured therein, and an internal 1.25 inch diameter hardened material was formed for metallographic polishing. Polishing was achieved using Struers Rotopol and performing one of the following five grinding steps under 7 〇N applied force: i) 1200 grit SiC paper with DI water lubricant for 2 ; coffee; ii) 2400 grit SiC paper, Using DI water lubricant, lasting 1 〇 coffee; Hi) 4000 granule SiC paper 'using DI water lubricant, lasting 1 〇 coffee; iv) 3 micron diamond in Texmet cloth, using Leeo diamond paste incremental lubricant, lasting 3 Min ; v) 0.25 micron diamond in Texmet cloth, using Lec 〇 diamond paste incremental lubricant for 4 min. The final polishing was achieved on a Buehler Vibromet using a 〇25 μηι diamond on a LeCloth surface under a load of 300 gm and using a Lec(R) diamond paste to increase the lubricant for 2 hours. Nanoindentation Method - Constant Strain Farness The nanoindentation test was performed on a MTS Nanoindenter (MTS Instruments in 〇ak Ridge, Tennessee) equipped with a DCM head and a Berkovich diamond Accutip indenter. The area function of the tip of the reticle is corrected by the manufacturer using molten oxidized silica. The test is controlled via a MTs Testworks software computer using a continuous stiffness measurement (CSM) method that provides accurate detection of the surface of the indented material. Set the CSM parameter to a frequency of 75 ^ and an amplitude of 1 nm. The surface detection is caused by an increase in the stiffness of the harmonic contact of more than 100 N/m. The strain rate target of the load curve is set to 〇_〇5/s and the constant unloading rate is between 0.7 and 〇8 mN/s. Reduced bending mode 42 200909792 Number Er and hardness Η traditional 〇liver_Pharr calculation [see 〇liver and pharr, J. Mater. Res. 7:1564; Oliver and Pharr,··. steal (10). and 仏1 9:3 (2 〇〇4)] is automatically executed by Testworks software, its Poisson's ratio is set to 0.3 5, and the unloading curve portion for automatic calculation is set to 5〇%. Nanoindentation Method - 惶 Positioning Transfer Rate Age The nanoindentation test was performed on an MTS DCM nanoindenter equipped with a DCJV [head and Berk〇vich diamond Accutip indenter. The area function of the tip of the indenter is corrected by the manufacturer. The test was controlled by a MTS TeStw〇rks software computer using a continuous stiffness measurement (csm) method that provides accurate detection of the surface of the indented material. Set the csm parameter to a frequency of 75 Hz and an amplitude of 1 nm. The increase in stiffness is higher than 100 N/m and the surface detection is caused by harmonic contact.

才承準 MTS Testworks CSM 方法係藉由在該方法中用位移速率標準替換悝定應變 2標準來修改。使用Testw〇rks軟體之輸出函數而輸出 負載-位移曲線資#,以進行黏滯性·彈性·塑性·黏著 析。 ps之負載-位移曲線繪製於圖 制之t恭i# 顯不五個位移控 負载-卸載測定,其中各測定之最大 度匯蜱於矣 八芽透冰度及平均速 〜於表10中。由於曲線之間對應於 遲滯性明H β 卜丨』座痕速度之 月顏,所以確定材料具有黏滞性、彈性及塑性特徵。 43 200909792 標記 hmnr, nm P…,mN v, nm/sec 121.79 0.13 94.13 南·低 102.84 0.07 2.59 中-中 59.82 0.03 29.62 低-南 24.71 0.013 76.48 低-低 11.82 0.0028 3.94 -l^sec'1 ------ -1λ〇7Ε-01 -U0E-03 ^6〇E-02The MTS Testworks CSM method is modified by replacing the set strain 2 standard with the displacement rate standard in this method. The load-displacement curve is output using the output function of the Testw〇rks software for viscosity, elasticity, plasticity, and adhesion analysis. The load-displacement curve of ps is plotted on the graph. The system is not the five displacement controls. The load-unloading measurement, in which the maximum degree of each measurement is at 矣 eight buds and the average speed ~ is shown in Table 10. Since the curves correspond to the lunar surface of the hysteresis H H 座 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 43 200909792 Marking hmnr, nm P..., mN v, nm/sec 121.79 0.13 94.13 South · Low 102.84 0.07 2.59 Medium - Medium 59.82 0.03 29.62 Low - South 24.71 0.013 76.48 Low - Low 11.82 0.0028 3.94 -l^sec'1 -- ---- -1λ〇7Ε-01 -U0E-03 ^6〇E-02

r 表10.奈米壓痕法測定參數。此處’ ;!OTa;c為最大穿透, 為最大負載,V為壓痕速度,且;?為變形變數 <千均 變化率。 為分析資料且評估聚合物之黏滯性-彈性-塑性性質, 根據下式將(P-h )描述變換成(σ_ε )描述為有用的: ,3/2 Ρ 新座標系(應力-應變)中之負載_位移曲線繪製於圖Η 中。藉由將σ-ε曲線之負載部分用直線擬合來計算各變形 速率(高、中及低)之有效減折模數五,。結果匯總於表Η 中。(經由標準表達式五=尽"_ 將減折模數轉化為楊 ,杈數’其中取泊松比ν = 〇·35。)為達成比較之目的, 可對相同聚合物以不同應變速率進行整體拉伸測定。在圖 13 11, ^ τ ’將模數計算值及整體模數測定值繪製為有效應變迷 44 200909792 率 之函數;可見結果非r Table 10. Determination of parameters by the nanoindentation method. Here ';!OTa;c is the maximum penetration, the maximum load, V is the indentation speed, and?? For the deformation variable < thousand mean rate of change. In order to analyze the data and evaluate the viscous-elastic-plastic properties of the polymer, it is useful to transform the (Ph) description into (σ_ε) according to the following formula: , 3/2 Ρ in the new coordinate system (stress-strain) The load_displacement curve is plotted in Figure 。. The effective reduced modulus of each deformation rate (high, medium, and low) is calculated by fitting the load portion of the σ-ε curve with a straight line. The results are summarized in Table 。. (via the standard expression five = do " _ convert the reduced modulus to Yang, the number 'which takes the Poisson's ratio ν = 〇 · 35.) For the purpose of comparison, the same polymer can be used at different strain rates The overall tensile measurement was performed. In Fig. 13 11, ^ τ ', the calculated value of the modulus and the measured value of the overall modulus are plotted as a function of the effective strain 44 44 200909792 rate;

之函數 i^l〇E-03 常一致 Er, GPa E, GPa L 5.50 4.83 1 4.34 3.81 1 3.59 3.15 --------I-/_ I J ·上 J_ 減折模數及揚氏模數之計算值為平均應變速率 …1㉟政應表現在模數對變形速率之依賴性上。為近似 异出特徵鬆料間或更精確言之,柔度π)對s 之依賴性可擬合成以下函數: 五 CO = J〇 + { exp(_5,) A、及τ之值匯總於表12中。The function i^l〇E-03 is always consistent Er, GPa E, GPa L 5.50 4.83 1 4.34 3.81 1 3.59 3.15 --------I-/_ IJ · Upper J_ reduced modulus and Young's mode The calculated value of the number is the average strain rate... 135 should be expressed in the dependence of the modulus on the deformation rate. To approximate the heterogeneous characteristics between loose or more precisely, the dependence of compliance π) on s can be fitted to the following function: V CO = J〇 + { exp(_5,) A, and the values of τ are summarized in the table 12 in.

表1 2.柔度參數及特徵鬆弛時間之計算值。 為分析PS之塑性性質’諸如屈服應力或屈服應變, 考慮曲線之負栽與卸載部分兩者為有用的。對於高-低測定 之情形’塑性量度好町定義為: 此處,〜為最大變形,^為最終變形(與材料塑性相 45 200909792 關)。好愈高’材料行為愈為「彈性」(對於給定e,)。 詳言之’可將开與塑性變形開始時所處之應力(亦即,材 料硬度)相關聯。接著,屈服應力〜可基於Tab〇r式算出 [參見D_ Tabor,27ie —&削抑 <他油,〇χ如^Table 1 2. Calculated values of compliance parameters and characteristic relaxation times. To analyze the plastic properties of PS, such as yield stress or yield strain, it is useful to consider both the loading and unloading portions of the curve. For the case of high-low measurement, the plasticity measure is defined as: where ~ is the maximum deformation and ^ is the final deformation (closed to the material plastic phase 45 200909792). The better the higher the material behavior, the more "elastic" (for a given e,). In detail, the opening can be correlated with the stress at which plastic deformation begins (i.e., material hardness). Then, the yield stress ~ can be calculated based on the Tab〇r formula [see D_ Tabor, 27ie — &<<other oil, such as ^

Clarendon Press, ι951](其中 Tab〇r 常數 9):Clarendon Press, ι951] (where Tab〇r constant 9):

H = kaY 丑及〜之計算值在表13中給出。屈服應變之估算係 基於可將材料視為黏滯性_彈性_塑性之假定。在p S之情形 下,已知脆性斷裂優先於塑性,所以在整體測試中所觀測 到之硬度可低於奈米壓痕法所獲得之估算值。 H, GPa σγ. GPa 0.45 0.155 表13.PS之硬度及屈服應力之計算值。 標準 Oliver-Pharr 算值:Er = 5.13 GPa ; E GPa。 分析得出以下Er、E、Η及Gy之估 = 4.50 GPa ; Η = 0.25 GPa ; ay = 0.085 結論 應瞭解上述實施例意欲為可研究之材料及可使用之程 序的說明性實施例,而非詳盡實施例。類似程序可用以表 徵其他材料之黏滯性、彈性及/或塑性性質。 46 200909792 【圖式簡單說明】 圖1 (a)為-例示性配置之示意圖。 圖1 ( b)為代表黏滯性_彈 之奈米壓痕法的典型負載_位移曲線。塑_科之基於綱 圖1“)為可用於測定材料之機械性質 與負載速率及穿透深度⑻之函數的示意圖。-- 塑%析奈米壓痕法結果之構成性黏滯性-彈性 -塑性杈型之圖示。 圖3為(P/Pt)擬合(實線)對(P/Pt) FEA資料(點: 之散點圖;趨勢線表明兩組非常接近。 。圖4 ( a )為針對小穿透深度及大負載速率及小負載速 率之負载-位移關係(P_h )的FEA(符號)及模型擬合(線)。 ^圖4(b)為針對大穿透深度及大負載速率及小負載速 率之負載-位移關係(P_h )的FEA(符號)及模型擬合(線)。 圖5顯示奈米壓痕法之PMMA負載-位移曲線。 圖6顯示pMMA之計算之應力-應變曲線。 圖7比較PMMA之模數對應變速率。 圖8顯示奈米壓痕法之pc負載-位移曲線。 圖9顯示PC之計算之應力-應變曲線。 圖10比較PC之模數對應變速率。 圖11顯示奈米壓痕法之PS負載-位移曲線。 圖12顯示PS之計算之應力-應變曲線。 圖13比較PS之模數對應變速率。 圖14為說明本發明方法之一具體實例的流程圖,當第 47 200909792 二負載·位移關係 要線性彈性特性 之遲滯性小於或等於預定值時,對應於主 圖1 5為# + 一奋 ’、5 本發明方法之一具體實例的流程圖,當第 二:^性大_值且第―關 彈性特性。 黏滞性 圖1 6為說明本發明方法之一具體實例的流程圖,當第 一負載位移關係之遲滯性大於預定值且第三負載-位移關 係之遲滯性大於預定值時,對應於主要黏滯性_彈性-塑性 【主要元件符號說明】 益 48The calculated values of H = kaY ugly and ~ are given in Table 13. The estimation of the yield strain is based on the assumption that the material can be considered as viscous_elastic_plastic. In the case of p S , it is known that brittle fracture takes precedence over plasticity, so the hardness observed in the overall test can be lower than the estimate obtained by the nanoindentation method. H, GPa σγ. GPa 0.45 0.155 Table 13. Calculated values of hardness and yield stress of PS. Standard Oliver-Pharr calculation: Er = 5.13 GPa; E GPa. The analysis yields the following estimates for Er, E, Η and Gy = 4.50 GPa; Η = 0.25 GPa; ay = 0.085 Conclusion It should be understood that the above examples are intended to be illustrative examples of materials that can be studied and procedures that can be used, rather than Detailed embodiment. Similar procedures can be used to characterize the viscous, elastic and/or plastic properties of other materials. 46 200909792 [Simple description of the diagram] Figure 1 (a) is a schematic diagram of an exemplary configuration. Figure 1 (b) is a typical load-displacement curve representing the nanoindentation method for viscous_elastic. The model based on the model 1 ") is a function that can be used to determine the mechanical properties of the material and the load rate and penetration depth (8). - The viscous viscosity of the results of the plastic % nanoindentation method - elasticity - Figure of the plastic 杈 type. Figure 3 is the (P/Pt) fitting (solid line) versus (P/Pt) FEA data (point: scatter plot; the trend line indicates that the two groups are very close. Figure 4 ( a) FEA (symbol) and model fit (line) for load-displacement relationship (P_h) for small penetration depth and large load rate and small load rate. ^ Figure 4(b) is for large penetration depth and FEA (symbol) and model fit (line) of load-displacement relationship (P_h) for large load rate and small load rate. Figure 5 shows PMMA load-displacement curve for nanoindentation. Figure 6 shows calculation of pMMA Stress-strain curve Figure 7 compares the modulus-dependent rate of change for PMMA. Figure 8 shows the pc load-displacement curve for the nanoindentation method. Figure 9 shows the calculated stress-strain curve for PC. Figure 10 compares the modulus of PC. For strain rate, Figure 11 shows the PS load-displacement curve for the nanoindentation method. Figure 12 shows the calculated stress-strain for PS. Figure 13 compares the modulus corresponding to the rate of change of PS. Figure 14 is a flow chart illustrating a specific example of the method of the present invention, when the hysteresis of the linear elastic characteristic of the 47th 200909792 load-displacement relationship is less than or equal to a predetermined value. Corresponding to the flowchart of the main figure 15 is #+一奋', 5 is a specific example of the method of the present invention, when the second: ^ is large _ value and the first - off elastic characteristic. Viscosity diagram 16 is an illustration A flow chart of a specific example of the method of the present invention, when the hysteresis of the first load displacement relationship is greater than a predetermined value and the hysteresis of the third load-displacement relationship is greater than a predetermined value, corresponding to the main viscosity_elastic-plastic [mainly Component Symbol Description] Benefit 48

Claims (1)

200909792 十、申請專利範圍: 1. —種經由壓痕法來測定樣品性質之方法,其包含以 下步驟: (I) 選擇將執行壓痕之該樣品之區域; (II) 用壓痕儀尖端在該所選區域内、在一個以上位 置處 '以一個以上負載速率及一個以上穿透深度將該樣品 壓痕,以獲得複數個負載_位移關係; 及200909792 X. Patent Application Range: 1. A method for determining the properties of a sample by indentation, comprising the steps of: (I) selecting the region of the sample that will perform the indentation; (II) using the indenter tip Indenting the sample at more than one load rate and one or more penetration depths in the selected region at more than one location to obtain a plurality of load-displacement relationships; (111 )使用該等負載_位移關係來測定該樣品之至少兩 種物理性質。 2. 如申請專利範圍帛i項之方法,|中(ii)包含以下 步驟: 用壓痕儀尖端在該所選區域内之第一位置處、以第一 負載速率及第-穿透深度將該樣品壓痕以獲得第一負载-位 移關係; 内之第二位置處、以第二 品壓痕以獲得第二負載-位 用壓痕儀尖端在該所選區域 負載速率及第二穿透深度將該樣 移關係,其中 該第-負載速率與該第二負載速率不相同,及 分析自該第一負載速率與該第二負載速率中之較大 獲得之負載-位移關係以測定該材料之至少一種性質。- 3.如申請專利範圍第2項 步驟: ,、中(1〇包含以- 處 用屋痕儀尖端在該所選區域内之第一位置 49 200909792 ::負载速率及第一穿透深度將該樣品壓痕 載-位移關係; 〇又行弟貝 一種】質),及析該第一負載’移關係以測定該材料之至少 第二痕儀尖端在該所選區域内之第二位置處、以 、…及第-穿透深度將該樣品壓痕以獲得第一負 載-位移關係,其中 &付弟一貞 該第-負载速率大於該第二負載速率。 ii )進一步包 含以下步驟: 4.如申請專利範圍第3項之方法,其中 (d )將該第二負載-位 預定值 貝戟位移關係之遲滯性盥筮 相比較。 ,、乐 含 :5·如申請專利範圍第4項之方法,其中⑻進—步包 (e )用壓痕儀尖端在該所 第三負載速率及第三穿透深度將 載-位移關係,其中 該第三負載速率大於該第 且 該第三穿透深度大於該第 選區域内之第三位置處、以 該樣品壓痕以獲得第三 負載速率; 度兩者。 6.如申請專利範圍第5項 ^义万法,其中 穿透味度與該第二穿透深 當該第二負載-位移關係 定值時,則不再進行壓痕。 之遲滯性小於或等於該第 預 50 200909792 7:如申請專利範圍第5項之方法,其中 當該第二負载-位 時,則(π)進—步包:關係之遲滞性大於該第-預定值 相讀。)將該第二負载_位移關係之遲滯性與第二預定值 8·如申請專利範圍第7項之方法,其中當該第三負載 位移關叙遲隸切㈣於㈣二狀 進一步包含: 11) A (g)用壓痕儀尖端在該所選區域内之第四位置處、以 第四負載速率及第四穿透深声 牙边冰度將该樣品壓痕以獲得第四 載-位移關係,其中 、 該第四負載速率大於該第二負載速率且小於該第—負 載速率及該第三負載速率; 、 且 穿透深度及該第二穿透深 該第四穿透深度大於該第 度且小於該第三穿透深度。 9·如申請專利範圍第7項之方法,其中當該第三負載_ 位移關係之遲滯性大於該第二預定值時,則(^ )進 '一步 包含: ’ (g)用壓痕儀尖端在該所選區域内之曾 n又第四位置處、以 第四負載速率及第四穿透深度將該樣品壓# i /艮以獲得第四負 載-位移關係,其中 該第四負載速率小於該第一負載速率 A該第三負載速 率; 51 200909792 且 該第四穿透深度大於該第一穿透深度與該第二穿透深 度兩者; 及 (h )用壓痕儀尖端在該所選 區域内之第五位置處、以 第五負載逮率及第五穿透深度將該樣品壓痕以獲得第五負 載-位移關係,其中 ' ^該第五負載速率大於該第二負載速率及該第四負載速 率且小於該第一負載速率及該第三負載速率; 且 該第五穿透深度大於該帛一穿透深度及該第二穿透深 度且小於該第三穿透深度及該第四穿透深度, 其中(g)及(h)可以任何次序執行。 W·如申請專利範圍第2-9項中任一項之方法,其中 忒第-穿透深度及該第二穿透深度各自獨立地為約 〇. 1至〇·ι倍於該壓痕儀尖端半徑, 該^ —負載速率為約lnm/sJ_ 100 000 nm/s,且 該弟二負載速率為約o.i nm/s至1〇,_ nm/s。 I1·如申請專利範圍第5-9項中任一項之方法,其中 X第~穿透沬度為約0.5至1.0倍於該壓痕儀尖端半 徑’且 /第一負载速率為約1 nm/s至1〇〇,〇〇〇 nm/s 〇 j2.如申請專利範圍第8項之方法,其中 X第四穿透深度為約〇 2至〇 5倍於該壓痕儀尖端半 52 200909792 徑,且 該第四負載速率為約 13.如申請專利範圍第 該第四穿透深度為約 徑 〇_3 nm/s 至 3〇,_ nm/s。 9項之方法,其中 〇·5至1.〇倍於該壓痕儀尖端半 該第四負載速率為約(M nm/s至1〇,〇〇〇 nm/s, 該第五穿透深度為約〇2至〇5拉, 主υ.5倍於該壓痕儀尖端半 徑,且 該第五負載速率為約〇·3 nm/s至30,〇〇〇 nm/s。 14. 如申請專利範圍第5_9項中任一項之方法,其中 該第-穿透深度及該第二穿透深度各自獨立地選擇為 約0.0 1至0 · 1倍於該壓痕儀尖端半徑, 該第-負載速率及該第三負載速率獨立地為約lnm/s 至 100,000 nm/s, 該第二負載速率為約〇.lnm/sm〇〇〇nm/s q 該第三穿透深度為約〇.5至U倍於該壓痕儀尖端半 徑。 15. 如申請專利範圍第8項之方法,其中 該第一穿透深度及該笛-饮 X第一穿透深度各自獨立地為約 0.01至0.1倍於該壓痕儀尖端半徑, s亥第一負載速率及該第三負載 月取迷率獨立地為約1 nm/s 至 100,000 nm/s, 5亥第^一負載速率為約〇彳nm/ s 勹、]u.l nm/s 至 10 〇〇〇 nm/s, 該第三穿透深度為約〇 •至1.0倍於該壓痕儀尖端半 53 200909792 徑, 該第四穿透深度為 徑,且 該第四負載速率為約0.3 nm/s至3〇,_ nm/s。 16. 如申請專利範圍第9項之方法,其中 該第-穿透深度及該第二穿透深度各自獨立地為約 0.01至0.1倍於該壓痕儀尖端半徑, 該第一負載速率及該第三負載速率獨立地為約“m/s 至 100,000 nm/s, 該第二負載速率及該第四負載速率獨立地約_ 至 10,000 nm/s, 該第三穿透深度及該第四穿透深度獨立地為約〇5至 1.0倍於該壓痕儀尖端半徑, 該第五穿透深度為約0.2至0.5倍於該壓痕儀尖 徑,且 該第五負載速率為約〇.3 nm/s至3〇,〇〇〇⑽^。 17. 如申請專利範圍第2_9項中任—項之方法,其中該 第一位置與該第二位置相同。 K如申請專利範圍第μ項中任—項之方法,其中 該樣品經屡痕之區域内之各位置與其他壓痕位置相隔 至少5倍於該等穿透深度中之最高者的中心-中 19·如申請專利範圍第μ項中任—項之方法其㈣ 歷痕儀尖端包含選自由以下各物組成之群之材料:石夕、碳 化石夕、氮切、金剛石、藍f石或塗有碳切、氮化石夕、 54 200909792 金剛石及藍寶石之矽。 2〇·如申請專利範圍第1-9項中任-項之,該 =尖端為球狀或抛物線狀,且具有約5至約2:一 樣品範圍第1-9項中任一項之方法,其中該 ν 10倍於最高穿透深度之厚度。 至::請專利範圍第Μ項中任-項之方法,其中該 種物理性質係選自由楊氏模數、黏著功、屈服應變、 黏滯度及__组成之群。 屈服應變 23_如申請專利範圍第丨_9項中任一 等負載-位移關係係經由以下變 、’其中二 (σ_ε)曲線 冑換轉變為有效應力-應變 3π (W 、3/2 其中户為負载,户_為最低負載(p 深度…為該屢痕儀尖端之半徑。、)4為穿透 如申吻專利範圍第!_9項中任_ 折模數、揚氏模數、鬆弛時間及屈服強度中::’其中: 藉由將該等有效應力雇 之至>、一者係 韦效應力-應變曲線擬合成微機 25.如申請專圍第〗_9射任 、而獲得。 該歷痕儀尖端為球狀或拋物線 '方法,其中 55 200909792 (iii)包含將該等所得 载-位移關係擬合成以下模 型 E. 其中 1 - expi sr Xe{s)e + [\-Xe{£)s],Y expi :εγ 1 + C / \ ε 1/3 9 s = D—~ ㈤ \εΥ y ^load [r_ 3/2 ε = (4/3π)(_'σ = (Ρ·ρ‘)/πΙι2=(ρ+2πγΚ)/πΚ2; νΜ及νΗ分別表示麥克斯韋(Maxweiuan )及虎克 (Hookean)元素之相對貢獻,其中〜+vh= !; R為該壓痕儀尖端之半徑;p為測定之負載;h為穿透 深度;ht為最終穿透深度;、為該壓痕儀達到&之總時 間,Er為減折模數’ τ為鬆他時間;丫為該廢痕儀尖端與該 樣品之間的黏著功;s為屈服應變;1 〇及D為憑經驗決 定之常數。 26.如申請專利範圍第25項之方法,其中當⑻⑴ 中之遲滞性小於或等於預定值時,則在擬合資料時使用 27.如申請專利筋衝笛, 乾圍第25項之方法,其中當(ii) (d) 中之遲滞性小於或等於預定 I、預又值時,則在擬合資料時使用ε 28· -種系統,其包含: 56 200909792 壓痕儀尖端,其用於將樣品壓痕; 控制器,其用於控制該壓痕儀尖端對該樣品之壓痕, 而能夠獲得複數個負載_位移關係,其中 該複數個負載-位移關係代表多個樣品位置、多個負載 速率及多個穿透深度;及 貝料分析系統,其基於該複數個負载-位移關係而測定 該樣品之至少兩種物理性質。 29.如申請專利範圍帛28項之系統,其中該複數個負 載-位移關係乃根據如申請專利範圍帛“9帛中任一項之方 法所收集。 山30.如申清專利範圍第28項之系統,其中該壓痕儀尖 選自由以下各物組成之群之材料:矽、碳化矽、氮 化:、金剛石、藍寶石或塗有碳化石夕、氮化石夕、金剛石及 藍寶石之妙。 儀 徑 31.如申請專利範圍第28或3〇項 大端為球狀或抛物線狀,且具有約 之系統,其中該壓痕 5至約200 nm之半 專利範圍帛29項之系統,其中該壓痕儀尖 私為球狀或抛物線狀,且 §資料刀析系統經組態成以經由以下變換而將該等負 位移關係轉變成有效應力_應變(111) The load-displacement relationship is used to determine at least two physical properties of the sample. 2. As in the method of claim 帛i, |(ii) comprises the steps of: using the indenter tip at a first position in the selected region at a first load rate and a first penetration depth Sample indentation to obtain a first load-displacement relationship; at a second location within the second indentation to obtain a second load-bit indenter tip at a selected region load rate and a second penetration depth Moving the sample relationship, wherein the first load rate is different from the second load rate, and analyzing a load-displacement relationship obtained from the larger of the first load rate and the second load rate to determine the material At least one property. - 3. If the second step of the patent application scope is: , , (1) contains - the first position in the selected area 49 200909792 :: load rate and first penetration depth a sample indentation-displacement relationship; and a first load-shift relationship to determine at least a second tracer tip of the material at a second location within the selected region, And... the penetration depth of the sample is indented to obtain a first load-displacement relationship, wherein the first load rate is greater than the second load rate. Ii) further comprising the following steps: 4. The method of claim 3, wherein (d) comparing the hysteresis 盥筮 of the second load-bit predetermined value to the Bellows displacement relationship. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Wherein the third load rate is greater than the first and the third penetration depth is greater than the third location within the selected region, the sample is indented to obtain a third load rate; 6. For example, in the scope of claim 5, the penetration odour and the second penetration depth are no longer indented when the second load-displacement relationship is fixed. The hysteresis is less than or equal to the first pre-50 200909792 7: The method of claim 5, wherein when the second load-bit, the (π)-step packet: the hysteresis of the relationship is greater than the - The predetermined value is read. The second load_displacement relationship has a hysteresis and a second predetermined value. The method of claim 7, wherein when the third load is shifted, the fourth load is further divided into four (4) and further comprises: 11 A (g) indenting the sample with the indenter tip at a fourth position in the selected region at a fourth load rate and a fourth penetration deep edging edge to obtain a fourth load-displacement relationship Wherein the fourth load rate is greater than the second load rate and less than the first load rate and the third load rate; and the penetration depth and the second penetration depth the fourth penetration depth is greater than the first degree And less than the third penetration depth. 9. The method of claim 7, wherein when the hysteresis of the third load_displacement relationship is greater than the second predetermined value, then (^) into the step comprises: '(g) using an indenter tip Pressing the sample at a fourth load rate and a fourth penetration depth at a fourth and fourth position in the selected region to obtain a fourth load-displacement relationship, wherein the fourth load rate is less than the a first load rate A the third load rate; 51 200909792 and the fourth penetration depth is greater than both the first penetration depth and the second penetration depth; and (h) using the indenter tip in the selected area The sample is indented at a fifth position within the domain at a fifth load capture rate and a fifth penetration depth to obtain a fifth load-displacement relationship, wherein '^ the fifth load rate is greater than the second load rate and the first a fourth load rate and less than the first load rate and the third load rate; and the fifth penetration depth is greater than the first penetration depth and the second penetration depth and less than the third penetration depth and the fourth Penetration depth, where (g) and (h) Performed in any order. The method of any one of claims 2-9, wherein the first penetration depth and the second penetration depth are each independently about 1 to ι·ι times the indenter Tip radius, the load rate is about 1 nm/sJ_100 000 nm/s, and the second load rate is about oi nm/s to 1 〇, _ nm/s. The method of any one of claims 5-9, wherein the X-penetration twist is about 0.5 to 1.0 times the tip radius of the indenter' and the first loading rate is about 1 nm. /s to 1〇〇, 〇〇〇nm/s 〇j2. The method of claim 8 wherein the fourth penetration depth of X is about 〇2 to 〇5 times the tip of the indenter half 52 200909792 The diameter, and the fourth load rate is about 13. As described in the patent application, the fourth penetration depth is about 〇3 nm/s to 3 〇, _nm/s. The method of item 9, wherein 〇·5 to 1.〇 times the tip of the indenter half the fourth load rate is about (M nm/s to 1 〇, 〇〇〇nm/s, the fifth penetration depth For about 〇2 to 〇5 pull, the main υ.5 times the tip radius of the indenter, and the fifth load rate is about 〇·3 nm/s to 30, 〇〇〇nm/s. The method of any one of clauses 5-9, wherein the first penetration depth and the second penetration depth are each independently selected to be about 0.01 to 0.1 times the radius of the indenter tip, the first The load rate and the third load rate are independently from about 1 nm/s to 100,000 nm/s, and the second load rate is about 〇.lnm/sm〇〇〇nm/sq. The third penetration depth is about 〇.5. To U times the tip radius of the indenter. The method of claim 8, wherein the first penetration depth and the first penetration depth of the flute X are each independently about 0.01 to 0.1 times At the tip radius of the indenter, the first load rate and the third load month rate are independently from about 1 nm/s to 100,000 nm/s, and the load rate is about 〇彳nm/ s 勹] ul nm / s to 10 〇〇〇 nm / s, the third penetration depth is about 〇 • to 1.0 times the tip of the indenter half 53 200909792 diameter, the fourth penetration depth is the diameter, and the first The fourth load rate is about 0.3 nm/s to 3 〇, _ nm/s. The method of claim 9, wherein the first penetration depth and the second penetration depth are each independently about 0.01. Up to 0.1 times the tip radius of the indenter, the first load rate and the third load rate are independently about "m/s to 100,000 nm/s, and the second load rate and the fourth load rate are independently about _ to 10,000 nm/s, the third penetration depth and the fourth penetration depth are independently about 5 to 1.0 times the indenter tip radius, and the fifth penetration depth is about 0.2 to 0.5 times The indenter has a tip diameter, and the fifth load rate is about 〇.3 nm/s to 3 〇, 〇〇〇(10)^. 17. The method of any one of clauses 2-9, wherein the A position is the same as the second position. K is the method of any one of the items in the scope of the patent application, wherein the sample passes through each of the regions Positioning at least five times the center of the highest of the penetration depths from the other indentation positions - in the method of any of the items in the item μ of the scope of the application, the fourth item of the history of the indentation is selected from the following Material composition group: Shi Xi, carbonized stone, nitrogen cut, diamond, blue f stone or coated with carbon cut, nitrided stone, 54 200909792 diamond and sapphire. 2. The method of any one of claims 1 to 9 wherein the tip is spherical or parabolic and has a method of any one of items 1-9 Where ν is 10 times the thickness of the highest penetration depth. To: The method of any of the above-mentioned items, wherein the physical property is selected from the group consisting of Young's modulus, adhesive work, yield strain, viscosity, and __. Yield strain 23_If the load-displacement relationship of any of the 申请_9 items in the patent application scope is changed to the effective stress-strain 3π (W, 3/2 among the households via the following change, 'the two (σ_ε) curve) For the load, the household _ is the lowest load (p depth...the radius of the tip of the repeater.), 4 is the penetration of the patent range of the patents _9 items _ folding modulus, Young's modulus, relaxation time And the yield strength:: 'where: by applying the effective stress to the >, one of the Wei effect force-strain curves is fitted to the microcomputer 25. If the application is for the _9 shot, it is obtained. The tip of the tracer is a spherical or parabolic method, where 55 200909792 (iii) includes fitting the resulting load-displacement relationship to the following model E. where 1 - expi sr Xe{s)e + [\-Xe{£ )s], Y expi : εγ 1 + C / \ ε 1/3 9 s = D—~ (5) \εΥ y ^load [r_ 3/2 ε = (4/3π)(_'σ = (Ρ·ρ ')/πΙι2=(ρ+2πγΚ)/πΚ2; νΜ and νΗ represent the relative contributions of Maxweiuan and Hookean elements, respectively, where ~+vh= !; R is the The radius of the tip of the indenter; p is the measured load; h is the penetration depth; ht is the final penetration depth; and the total time for the indenter to reach & Er is the reduced modulus' τ is loose Time; 丫 is the adhesion work between the tip of the waste meter and the sample; s is the yield strain; 1 〇 and D are empirically determined constants. 26. The method of claim 25, wherein (8)(1) When the hysteresis is less than or equal to the predetermined value, it is used when fitting the data. 27. If the patented ribs are used, the method of the 25th item is used, wherein the hysteresis in (ii) (d) is less than or When it is equal to the predetermined I and the pre-value, the ε 28· system is used when fitting the data, which includes: 56 200909792 Indenter tip for indenting the sample; controller for controlling the pressure The indentation of the sample at the tip of the tracer can obtain a plurality of load-displacement relationships, wherein the plurality of load-displacement relationships represent a plurality of sample positions, a plurality of load rates, and a plurality of penetration depths; and a bedding analysis system , which is determined based on the plurality of load-displacement relationships At least two physical properties of the sample. 29. The system of claim 28, wherein the plurality of load-displacement relationships are collected according to the method of any one of the following claims. For example, the system of claim 28, wherein the indenter tip is selected from the group consisting of bismuth, tantalum carbide, nitriding: diamond, sapphire or coated with carbon carbide, nitrite Diamond, sapphire and magic. Instrumentation 31. If the big end of the 28th or 3rd item of the patent application is spherical or parabolic, and has a system of about 50, the indentation is 5 to about 200 nm, and the system is 29, wherein The indenter tip is spherical or parabolic, and the data analysis system is configured to convert the negative displacement relationship into an effective stress _ strain via the following transformation nR2 57 200909792 4 hY2 /、 為負載’户一為最低負載(户一),/2為穿透 冰又’且及為該壓痕儀尖端之半徑。 # 中請專利範圍第Μ狀㈣,其巾該壓痕儀尖 而為球狀或抛物線狀,且 ㈣rt料分析系統經組態成藉由將該等有效應力-應變曲 線 &成微機械模型來計1揚&谐叙 Μ 兴I术寸鼻杨氏模數、鬆弛時間及屈服強 度中之至少一者。 34·如申請專利範圍第29項之系統,其中 °玄壓痕儀尖端為球狀或拋物線狀,且 …4貝料分析系統基於該複數個負載·位移關係,藉由將 -亥等負载-位移關係擬合成以下模型來測定該樣品之至少兩 種物理性質, Ε. 1 - expJ -- ^e(s)s + [l-Xe(e)sh 1 - expJ 其中 / \1/3 1 + C ε ’ s^d 4 K_ J ^load R_ 3/2 场): :(4/37l)(h/R)3/2 : σ = (P - Pmin)^R2 = (ρ +2πγΚ)/πΚ2 ; 及νΗ分別表不麥克斯韋及虎克元素之相對貢獻,其 58 200909792 中 VM+ VH= 1 ; R為該壓痕儀尖端之半徑;P為測定之負載;h為穿透 深度;ht為最終穿透深度;t1(5ad為該壓痕儀達到ht之總時 間;為減折模數;τ為鬆弛時間;γ為該壓痕儀尖端與該 樣品之間的黏著功;為屈服應變;且C及D為憑經驗決 定之常數。 35.如申請專利範圍第34項之系統,其中該至少兩種 物理性質係選自由揚氏模數、黏著功、屈服應變、黏滯度 及鬆弛時間組成之群。 十一、圖式: 如次頁 59nR2 57 200909792 4 hY2 /, for the load 'household one for the lowest load (household one), /2 for the penetrating ice and 'and the radius of the tip of the indenter. #中专利的范围范围(4), the indenter is spherical or parabolic, and (iv) the rt material analysis system is configured to form the micromechanical model by the effective stress-strain curve & To calculate at least one of the Young's modulus, relaxation time, and yield strength. 34. The system of claim 29, wherein the tip of the oscillating indenter is spherical or parabolic, and the ... 4 bunker analysis system is based on the plurality of load-displacement relationships, by loading -H The displacement relationship is fitted to the following model to determine at least two physical properties of the sample, Ε. 1 - expJ -- ^e(s)s + [l-Xe(e)sh 1 - expJ where / \1/3 1 + C ε ' s^d 4 K_ J ^load R_ 3/2 Field): :(4/37l)(h/R)3/2 : σ = (P - Pmin)^R2 = (ρ +2πγΚ)/πΚ2 And νΗ respectively represent the relative contributions of Maxwell and Hooke elements, respectively, in VM 2009 V V V = 1 in 2009 200979; R is the radius of the indenter tip; P is the measured load; h is the penetration depth; ht is the final wear Penetration depth; t1 (5ad is the total time of the indenter reaching ht; is the reduced modulus; τ is the relaxation time; γ is the adhesion between the tip of the indenter and the sample; is the yield strain; and C And D is a constant determined by experience. 35. The system of claim 34, wherein the at least two physical properties are selected from the group consisting of Young's modulus, adhesive work, yield strain, and viscosity. And the group consisting of eleven relaxation time, the drawings: such as hypophosphorous Page 59
TW097125665A 2007-07-10 2008-07-08 Process for determining viscous, elastic, plastic, and adhesive (VEPA) properties of materials using AFM-based or conventional nano-indentation TW200909792A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US94873107P 2007-07-10 2007-07-10

Publications (1)

Publication Number Publication Date
TW200909792A true TW200909792A (en) 2009-03-01

Family

ID=39894280

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097125665A TW200909792A (en) 2007-07-10 2008-07-08 Process for determining viscous, elastic, plastic, and adhesive (VEPA) properties of materials using AFM-based or conventional nano-indentation

Country Status (2)

Country Link
TW (1) TW200909792A (en)
WO (1) WO2009009595A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI490469B (en) * 2012-05-04 2015-07-01 Zhen Ding Technology Co Ltd System and method for testing curing degree of material and method of forming solder mask layer

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011115519B4 (en) 2011-10-11 2014-10-02 HS - Technische Beratung Method for material testing
RU2561788C1 (en) * 2014-06-17 2015-09-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Method of determination of coefficient of viscosity of microdestruction of thin films from multicomponent amorphous and nanocrystal metal alloys (versions)
US9541575B2 (en) * 2014-11-26 2017-01-10 Tufts University Exploitation of second-order effects in atomic force microscopy
CN111735728B (en) * 2020-05-22 2023-03-31 扬州市舜意机械有限公司 Method and device for identifying mechanical property of vibration damping coating
EP4174472A4 (en) * 2020-06-25 2023-08-09 Fujitsu Limited Material evaluation device, material evaluation method, and material evaluation program
GB2615332B (en) * 2022-02-03 2024-04-03 Plastometrex Ltd Indentation plastometry
CN114544876B (en) * 2022-02-23 2022-11-25 上海大学 Method and system for determining characteristics of viscoelastic material
CN115472248B (en) * 2022-09-23 2023-06-13 哈尔滨工业大学 Molecular dynamics simulation calculation method for nano indentation test of CuZrAl amorphous alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062038A1 (en) * 1999-04-13 2000-10-19 White Kenneth W Determination of adhesion strength of hvof coating by spherical indentation
KR100418700B1 (en) * 2001-07-23 2004-02-11 이형일 Ball indenter based on FEA solutions for property evaluation
ITTO20040535A1 (en) * 2004-07-30 2004-10-30 Univ Pisa DEVICE FOR THE DETECTION OF MECHANICAL CHARACTERISTICS OF MATERIALS, IN PARTICULAR METAL MATERIALS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI490469B (en) * 2012-05-04 2015-07-01 Zhen Ding Technology Co Ltd System and method for testing curing degree of material and method of forming solder mask layer

Also Published As

Publication number Publication date
WO2009009595A2 (en) 2009-01-15
WO2009009595A3 (en) 2009-03-12

Similar Documents

Publication Publication Date Title
TW200909792A (en) Process for determining viscous, elastic, plastic, and adhesive (VEPA) properties of materials using AFM-based or conventional nano-indentation
Bhushan et al. Nanomechanical characterisation of solid surfaces and thin films
Ebenstein et al. Nanoindentation of biological materials
Menčík Uncertainties and errors in nanoindentation
Hay et al. Instrumented indentation testing
Chicot et al. Influence of visco-elasto-plastic properties of magnetite on the elastic modulus: multicyclic indentation and theoretical studies
Charitidis Nanoscale deformation and nanomechanical properties of polydimethylsiloxane (PDMS)
Menčík Determination of mechanical properties by instrumented indentation
Wang et al. Interface fracture toughness in thermal barrier coatings by cross-sectional indentation
Wang et al. Nanoscale creep deformation in Zr-based metallic glass
Qian et al. Role of phase transition in the unusual microwear behavior of superelastic NiTi shape memory alloy
Puthoff et al. Dynamic friction in natural and synthetic gecko setal arrays
Chasiotis Mechanics of thin films and microdevices
Charitidis Nanoscale deformation and nanomechanical properties of soft matter study cases: polydimethylsiloxane, cells and tissues
Hu Characterization of materials, nanomaterials, and thin films by nanoindentation
Schall et al. Atomistic simulation of the influence of pre-existing stress on the interpretation of nanoindentation data
Tang et al. On radial crack and half-penny crack induced by Vickers indentation
Tangpatjaroen et al. Size dependence of nanoscale wear of silicon carbide
Fazeli et al. Molecular dynamics simulation of plastic deformation and interfacial delamination of NiTi/Ag bilayer by cyclic-nanoindentation: Effects of crystallographic orientation of substrate
Sattari et al. Wear in superelastic shape memory alloys: A thermomechanical analysis
Lefever et al. Heterogeneity in the small-scale deformation behavior of disordered nanoparticle packings
Beake et al. Advanced nanomechanical test techniques
Qian et al. Nanofretting behaviors of NiTi shape memory alloy
Guru et al. Development of empirical models for estimation polymer indentation fatigue and validation with finite element simulation models
Elmustafa et al. Stacking fault energy and dynamic recovery: do they impact the indentation size effect?