200909776 九、發明說明: C 明 屬 】 發明領域 本發明涉及一種羅盤,具體地涉及一種利用太陽投射 5的影子來精確測量並顯示方向或位置的電子日晷羅盤以及 利用該羅盤進行測量的方法。 【先前技術1 發明背景 在很多領域,例如建築、裝飾、航海、軍事等’都需 10要精確地確定方向。一般來說,在上述領域中利用磁緘來 確定方向,例如磁羅盤。磁羅盤利用地球本身具有磁南極 和磁北極的性質,通過帶有指標的可以旋轉的裝置來指示 方向。在實際應用中,磁羅盤附近的地球磁場可能會受到 其他磁場或者附近含鐵的金屬的干擾,因此有效的磁場補 15償對獲得精確的方位是非常必要的。 PHILIPS公司生産的半導體器件KMZ52是一種專門用 於電子磁羅盤的二位元磁場感測器,利用磁阻(MR)技術, 並用翻轉技術消除信號偏移。現有技術中具有利用這種感 測器5又s十的電子指南針,例如《電子産品世界》細5年第4 期中A開的用電路來補償地球磁場和感測器KMZ52本身 特性引起的精度不準確的電子指南針。 另外一種測定方向的裝置爲陀螺羅盤,基於速度陀螺 的原理在不同方位上測量地球自轉角速度的分量,通過 計算地球自轉角速度的方法來測定子午線的方位,或在地 200909776 球自轉産生的陀螺力矩作用下,使陀螺轉子轴向子午線趨 近,繞子午線擺動,從而確定北向。 【發明内容】 發明概要 5 無論是利用磁緘,還是利用電子指南針來測量方向, 均因爲地球磁場本身的性質以及實際上其他磁場和含鐵金 屬的存在而影響測量的準確性。同時,地球磁極與真實方 位之間存在一定的角度偏差。即使利用電路的方法進行了 補償,準確性仍然不理想,同時可能會因爲測量器件本身 10 的電學特性引入新的影響精度因素。利用陀螺羅盤的裝置 結構複雜,成本高,且存在速度偏差。因此需要一種脫離 地磁,仍然能夠精確確定方向的裝置和方法。 本發明提供一種羅盤裝置,包括外殼,定位針,曰晷 針,感測器和電路裝置,其中日晷針爲筆直針狀物,固定 15 於定位針的旋轉軸心,與定位針旋轉的平面垂直,感測器 固定於外殼上,在定位針旋轉至與日晷針日影重合時,感 測被測物體的測量角度值,設置在羅盤裝置内部的電路裝 置將上述測量值與固有日影角度進行比較,並將差值資訊 通過顯示裝置輸出,顯示被測物體的方位角。 20 本發明的另一個方面在於,所述羅盤裝置還包括旋轉 盤,其中定位針的中心與旋轉盤的中心同軸,且定位針與 旋轉盤之間的位置關係保持固定,所述的感測器包括光源 和光敏元件兩部分。 本發明還提供一種羅盤裝置,包括,外殼,定位針, 6 200909776 曰晷針,參考盤和固有曰影角度計算裝置,其中曰晷針爲 筆直針狀物,固定於定位針的旋轉轴心,與定位針旋轉的 平面垂直,該參考盤具有1-360度的角度資訊,可以與定位 針同轴旋轉,在定位針旋轉至與日晷針日影重合時,感測 5 被測物體的測量角度值,將上述測量值與固有日影角度進 行比較,計算出被測物體的方位角。 本發明還提供一種利用羅盤裝置測量位置的方法,包 括如下步驟: 將包括外殼,定位針,日晷針,感測器和電路裝置的 10 羅盤裝置放置在太陽光下,和將筆直針狀物的日暴針,固 定於定位針的旋轉軸心,與定位針旋轉的平面垂直,和旋 轉定位針,使其轉向被測物體,和再次旋轉定位針,使其 與曰晷針日影重合,和利用感測器輸出被測物體與固有曰 影角度差值的角度資訊,和運用電路裝置,顯示被測物體 15 的方位角。 地球轴心的北部,被稱爲真北,真北與地磁的磁北不 同。由於本發明所量度的方位是以地球轴心南北兩方向所 帶來的方位和角度,而並不是地磁所帶來的方位和角度, 因此本發明所量度的方向爲真北方向,是地球本體内真正 20 的方位。 本發明能夠利用太陽的影子來確定被測物體的方位 角,所確定的方位精確度高,排除了地磁的干擾,採用電 子方式可以使計算更加快捷,閱讀方位資料更加便利。利 用本發明提供的電子日晷羅盤裝置結構簡單,成本相對較低。 7 200909776 圖式簡單說明 結合下列附圖,將對本發明進行進一步的細節描述: 第1圖爲本發明的電子日I羅盤一種實施方式的立體圖; 第2圖爲根據本發明一種實施方式的羅盤裝置結構關 5 係配合示意圖; 第3圖爲根據本發明的一種實施方式的羅盤裝置結構 分解示意圖; ° 第4圖爲根據本發明一種實施方式的電路裝置示意圖; 第5圖爲根據本發明-種實施方式的電子曰暴羅盤裝 10 置工作流程圖; < 第6圖爲根據本發明的一種實施方式的電子曰晷羅盤 裝置在日光下工作的示意圖。 【貴^]| 較佳實施例之詳細說明 15 第1圖所示爲根據本發明的電子日晷羅盤裝置丨一種實 施方式的立體圖,其外殼爲長方體,包括定位針⑻和日暴 針102。定位針101爲扁的直長條形並且具有兩端,一端較 尖銳。從定位針正面的中心開始,向尖銳端的方向使用現 有技術中的各種方法,例如,抹潰法,形成與定位針顏色 20不同的有色直線107,優選地爲白色油漆線。曰晷針102爲 細長的筆直針狀物,可將其蚊於定位針1()1的中心,使日 晷針102垂直於定位針1G1正面的表面。在電子日晷羅盤裝 置1不工作的時候可將日晷針1〇2從定位針中心取出。可選 擇地,在定位針1G1的中心形成白色絲印水滴形狀,水滴的 200909776 頂邛指向定位針的尖銳端1〇3。可以利用現有技術中的多種 自然或者合成材料’例如有機玻璃、金屬、合金、木、竹, 來製備定位針10卜優選地爲透明的聚甲基丙稀酸甲脂,可 以利用CNC機加工而成。 5 如第2和3圖所示,電子日晷羅盤裝置1還包括上錶盤 201、主機殼202和同步旋轉盤2〇3。上錶盤2〇1與同步旋轉 琉203均爲圓盤形狀。定位針的背面具有主軸,以如第3 圖所示的方式,將上錶盤2(H、主機殼2〇2、同步旋轉盤2〇3 連接於疋位針101的主轉軸2〇4。主轉軸2〇4的末端具有與同 1〇步旋轉盤203正面中心相配合的形狀,使定位針1〇1與同步 旋轉盤203之間的相對位置㈣固定,即定位針⑻旋轉的 時候,同步旋轉盤203跟隨定位針1〇1 一起旋轉。可替換地, 將主轉軸2G4EI定於同步旋轉盤加上,並依次將主機殼 搬、上錶盤201、定位針101套於主轉軸2〇4上利用相似 b的方法’將定位針101與同步旋轉盤2〇3結合,使定位針與 同步旋轉盤203-起旋轉。如第3圖所示,在主機殼2〇2内, 同步旋轉盤203的兩側,沿著同步旋轉盤2〇3半徑的方向, 固定多個感測器304,優ϋ的感測器由光源、光敏元件兩部 刀組成’光源和光敏凡件中-種固定在主機殼2()2内的分隔 20板3〇1上’沿同一半徑佈置,與圓心的距離不同,光源和光 敏几件中的另一種固定在與前—種對應的羅盤裝置丨的外 殼上,位於同步旋轉盤203的另一側(未示出),其中光敏元 件可以爲光敏二極體或光電晶體。如第2圖所示,在同步旋 轉盤203上,通過透明與非透明的區域,形成多組條型編碼 200909776 209,以便用於輸出格雷碼(gray code),二進位碼或bcd碼。 由於同步旋轉盤203與定位針1G1同錢轉,所述的感測器 3〇4可以感測到定位針1()1旋轉帶來的同步旋轉㈣3㈣ 的角度變化,從而測量定位針101的角度資气。 5 可選擇地,在上錶盤2〇1表面印有參考位置資訊,例 如,從圓心韓射出的射線,將整個圓盤均句地表面分割爲 四個區域;在所分的四條區域線上順時針依次標記北、南、 20 二,票記’其中將〇度標記於含有“北”的區域線上,然 後順時針依次均勻標記卜細度。採用這種參考資訊,可以 1〇㈣卢在不湘電路裝置的情況下,從上錶㈣1直接讀出 疋位針101移動的角度,從而確定位置。可選擇的,還可在 上錶盤加的表面同時標記有天干、地支的資訊,例如,可 在圓盤表面形成多個圍繞圓心的同心圓,從〇度兩側各7.5 度的地方開始將這些同心圓均勾地分爲24個部分,從〇度兩 側各7.5度的地方所圍成的區域開始,順時針依次標記: 子'癸’醜、艮、寅;甲、卯、乙;辰、巽、巳;丙 '午、 丁;未、坤、申;庚、酉、辛;戍、乾、亥;壬,其中將 子、癸;醜、卵、乙;辰、午、丁;未、酉、辛;戌、十 二個部分標記爲“陰,,,其他部分標記爲“陽,,;將乾、子、 艮印H T坤、酉的八個部分標記爲“天”,將癸; 貝,乙,巳,丁,申;辛;亥的八個部分標記爲“人,,其 餘八個部分標記爲“地”;將其中壬,子、癸標記爲“坎”; 醜、艮、寅標記爲“艮”;甲、印、乙標記爲“震”;辰、異、 巳標記爲“巽”;丙、午、丁標記爲“離,、未、坤、申標記 10 200909776 爲“坤”;庚、酉、辛標記爲“兒”;戍 人 导乙、亥標兰己爲“專乞’’。 對上述資t請標記,有浙在__置資朗同時,參 考有關天干、地支的資訊内容。 可以利用現有技術中任何適合的材料來製備所述的上 5錶盤’例如有機玻璃、塑膠、金屬、合金等,優選地使用 塗有祕漆的丙烯腈-丁二稀-苯乙烯來製備;可以利用一體 成型或者分別成型的方法來製備定位針1〇1和主轉軸2〇4 ; 可利用例如塑膠來製備主機殼202;可以利用現有技術中任 何絕緣的、並易於固定感測器的材料來製備所述的分隔板 1〇 301 ’例如透明的有機玻璃;可以利用現有技術中的任何材 料來製造同步旋轉盤203,只要所述感測器3〇4能夠在同步 旋轉盤203移動的時候感測到信號變化。 固有曰影角度是指在某一時刻、某一經緯度位置處的 真近點角(true anomaly),是測量點處本身所固有的性質, 15 隨時間、經緯度而變化的,不隨其他因素而改變,所述時 間、經緯度爲本地資訊。現有技術中存在多種計算所述角 度的方法。例如使用Clear Sky Institute,在網站 h.ttp://www.clearskyiristitute.com/xephem/jL 公開的方法,或 英國曰晷協會(British Sundial Society)在他們的網站 20 http://www.simdialsoc.org.uk/戶斤公開的方法。在這裏,將上 述網站中於本申請申請日前所公開的内容作爲現有技術結 合入本申請中。 例如第3圖所示,電子日晷羅盤裝置1還包括將感測器 304輸出的資料進行處理、顯示的裝置。包括,計算電路 11 200909776 401,記憶體402,輸入(日期時間經緯度)裝置4〇3,顯示幕 404和減法器405四部分。其中計算電路4〇1可以爲單片機, 例如微處理機控制器(MCU)或專用積體電路(ASIC),用於 存儲計算固有日影角度Θ的方程式。最終獲得固有日影角度θ。 通過輸入裝置403將測量點的日期、時間和經緯度的資 料輪入方程式中計算Θ ;記憶體4〇2可以爲電可擦可編程唯 。賣圮憶體(EEPROM),或者固定記憶體(n〇nv〇latile memory),用來存儲曰期、時間和所在時區經緯度的資訊; 輪人裝置403可以爲按紐輸入;顯示幕彻可以爲液晶顯示 〇幕;如第4圖所示,輸入裝置彻將日期、時間及經緯度資 訊輪入記憶體402中,記憶體4〇2將上述資訊輸入計算電路 4〇1得到固有日影角度θ ’將θ與感測器谢所讀取的測量點 與曰影之間的角度差φ輸入減法器4〇5,輸出真實的方位角 α ’顯示於顯示幕4G4上,通過選擇独,顯示幕侧還可以 S顯不記憶體402中所存儲#資訊和固有日影角度0。利用低 壓直流電給上述裝置供電,優選地爲9_12V直流電、並利用 開關對整個電路裝置進行控制。 可選擇地’本發明還可以採用一般的Gps定位系統傷 獲得當地資訊,然後通過查表法獲得當地的經緯度,通過 給疋的時間計异1D有日影角度。利用Gps线的優點在 於,在使用電子日暴羅盤裝置的時候,使用者不需要自行 輪入,便可自動獲得經緯度資訊。 爲了使測试的效果更加精確,本發明提供的電子曰暴 羅盤裝置1還可以有選擇地增加校準裝置:包括,水平儀 12 200909776 113 ’放置於電子日晷羅盤裝置1的表面’優選的爲液泡水 平儀,通過觀測液泡的位置,確定所述羅盤裝置1是否水平 放置;轉盤微調控制輪114,放置於羅盤裝置表面除底面外 的任何位置,與主轉軸204相連接,如前文所述由於同步旋 5 轉盤203與定位針1〇1與主轉軸204同少旋轉,因此微調控制 輪114可以通過控制主轉軸204,使同#旋轉盤2〇3和定位針 101發生小角度的轉動。可採用現有技術中的任何水平儀和 微調控制輪來實現上述功能;少兩個電子測距儀 (electronic distance measurement)(未米出),例如超聲波測距 10 儀,紅外測距儀,放置於電子曰晷羅盤裝置1的表面上’用 於在測量較近距離物體位置的時候,分別測量羅盤裝置1至 物體表面的距離,從而保證參考邊II6 ’如第6圖所示,與 被測物體(例如一個工作架)平行。 第5圖,第6圖顯示了本發明所述的電子曰晷羅盤裝置1 15在充足的陽光下使用的工作過程。在步驟5〇1,將羅盤1的 表面上的某個位置標記爲測量點115,對於測量距離較遠的 物體,例如建築物,使用者將該羅盤裝置1的該測量點115 面向需要測量的物件601,對於測量距離較近的物體,使用 者可通過電子測距儀的資訊將該羅盤裝置的參考邊116與 20被測物體,例如裝飾物,保持平行;少驟502,使用水平儀 113將羅盤裝置1的位置校正爲水平,將定位針1〇1轉向測量 點115,此步驟的目的在於確定被測物體的位置,使感測器 304感測一個初始值;步驟503,旋轉定位針1〇1,使尖銳端 103指向日晷針102在太陽下投射的日影;步驟504 ’對微調 13 200909776 控制輪114進行調節,使定位針101的尖銳端103和有色直線 107與日晷針102在太陽下所投射的日影相重合,步驟503和 504的目的在於使感測器304感測到一個結束值,與步驟502 的初始值相比較,使感測器304能夠獲得被測物體與日影之 5 間的角度差φ ;步驟505,感測器304讀取日影與測量點115 之間的角度差φ ’如上文所述,這個角度φ是日影固有角度0 和測量點本身角度α,即被測量的方位角度之間的差值,也 就是φ=θ-α,要獲得被測量的方位角α還需要進行下一步; 步驟506,啓動計算電路401,將記憶體402中的日期、時間、 10所在時區經緯度的資料輸入計算電路401中或通過GPS定 位系統確定經緯度資訊,計算出當地固有的日影角度0,最 後將上述等式進行移項計算,獲得被測量的方位角α=θ_φ。 儘管由此結合特定的實施例對本發明進行了描述,但 疋對本領域技術人員來說,很多其他改變和變更以及其他 15使用是很明顯的。因此,本發明不是由這裏特別公開的内 容所限定。 【_式簡單說明】 第1圖爲本發明的電子曰晷羅盤一種實施方式的立體圖; 第2圖爲根據本發明一種實施方式的羅盤裝置結構關 20 係配合示意圖; 第3圖爲根據本發明的一種實施方式的羅盤裝置結構 分解示意圖; 第4圖爲根據本發明—種實施方式的電路裝置示意圖; 第5圖爲根據本發明一種實施方式的電子曰晷羅盤裝 14 200909776 置工作流程圖; 第6圖爲根據本發明的一種實施方式的電子日晷羅盤 裝置在日光下工作的示意圖。 【主要元件符號說明】 1...電子曰晷羅盤裝置 204…主轉轴 101...定位針 304...感測器 102...日晷針 301...分隔板 107...有色直線 209...多組條型編碼 103".尖銳端 304...感測器 113…水平儀 401...計算電路 114...微調控制輪 402...記憶體 115…測量點 403...輸入裝置 116…參考邊 404...顯示幕 201·.·上錶盤 405...減法器 202…主機殼 406...GPS定位系統 203...同步旋轉盤 501〜506...步驟 15BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compass, and more particularly to an electronic sundial compass that utilizes the shadow of the sun projection 5 to accurately measure and display the direction or position and a method of measuring using the compass. [Prior Art 1 Background of the Invention In many fields, such as construction, decoration, navigation, military, etc., it is necessary to accurately determine the direction. In general, magnetic fields are used in the above fields to determine the direction, such as a magnetic compass. The magnetic compass utilizes the nature of the Earth's own magnetic south and magnetic north poles, indicating the direction through a rotatable device with an indicator. In practical applications, the Earth's magnetic field near the magnetic compass may be disturbed by other magnetic fields or nearby iron-containing metals, so effective magnetic field compensation is necessary to obtain accurate orientation. The KMZ52 semiconductor device manufactured by PHILIPS is a two-dimensional magnetic field sensor specifically used for electronic magnetic compasses. It uses magnetoresistive (MR) technology and uses flipping technology to eliminate signal offset. In the prior art, there is an electronic compass using such a sensor 5, for example, the circuit of A in the fourth phase of the "Electronics World" is used to compensate the accuracy of the earth magnetic field and the characteristic of the sensor KMZ52 itself. Accurate electronic compass. Another device for measuring the direction is a gyrocompass, which measures the component of the angular velocity of the earth in different directions based on the principle of the speed gyro. The method of calculating the angular velocity of the earth is used to determine the orientation of the meridian, or the gyroscopic moment generated by the rotation of the ball at 200909776. Under the gyro rotor, the axial meridian is approached, and swings around the meridian to determine the north direction. SUMMARY OF THE INVENTION Summary Whether using magnetic yoke or using an electronic compass to measure direction, the accuracy of the measurement is affected by the nature of the earth's magnetic field itself and indeed the presence of other magnetic fields and iron-containing metals. At the same time, there is a certain angular deviation between the earth's magnetic pole and the real square. Even if the circuit is compensated, the accuracy is still not satisfactory, and a new influence on the accuracy factor may be introduced due to the electrical characteristics of the measuring device itself 10. The device using the gyro compass has a complicated structure, high cost, and speed deviation. There is therefore a need for an apparatus and method that is capable of accurately determining the direction of geomagnetism. The invention provides a compass device, comprising a casing, a positioning pin, a boring pin, a sensor and a circuit device, wherein the corona needle is a straight needle fixed to the rotation axis of the positioning pin, perpendicular to the plane of rotation of the positioning pin The sensor is fixed on the outer casing, and when the positioning pin rotates to coincide with the sundial needle shadow, the measured angle value of the measured object is sensed, and the circuit device disposed inside the compass device performs the above measured value and the inherent sunshade angle. Compare and output the difference information through the display device to display the azimuth of the measured object. In another aspect of the invention, the compass device further includes a rotating disk, wherein a center of the positioning pin is coaxial with a center of the rotating disk, and a positional relationship between the positioning pin and the rotating disk is kept fixed, the sensor It includes two parts, a light source and a photosensitive element. The present invention also provides a compass device, comprising: a housing, a positioning pin, a 6 200909776 boring needle, a reference disk and an inherent shadow angle calculating device, wherein the boring needle is a straight needle, fixed to the rotation axis of the positioning pin, Vertically perpendicular to the plane in which the positioning pin rotates, the reference disk has an angle information of 1-360 degrees, which can be rotated coaxially with the positioning pin, and senses the measuring angle of the object to be measured when the positioning pin rotates to coincide with the sundial needle shadow. The value is compared with the inherent shadow angle to calculate the azimuth of the measured object. The present invention also provides a method of measuring a position using a compass device, comprising the steps of: placing a 10 compass device including a housing, a positioning pin, a sundial needle, a sensor, and a circuit device under sunlight, and placing a straight needle The violent needle is fixed to the rotation axis of the positioning pin, perpendicular to the plane in which the positioning pin rotates, and rotates the positioning pin to turn the object to be measured, and rotates the positioning pin again to coincide with the day shadow of the needle, and The angle information of the difference between the measured object and the inherent shadow angle is output by the sensor, and the azimuth angle of the measured object 15 is displayed by using the circuit device. The northern part of the Earth's axis is called Zhenbei, and the true north is different from the magnetic north of geomagnetism. Since the measured orientation of the present invention is the orientation and angle brought by the north-south direction of the earth's axis, and is not the azimuth and angle brought by the geomagnetism, the direction of the invention is the true north direction, which is the earth's body. The true 20 orientation inside. The invention can utilize the shadow of the sun to determine the azimuth angle of the measured object, and the determined azimuth accuracy is high, and the interference of the geomagnetism is eliminated, and the electronic method can make the calculation faster and the reading orientation information is more convenient. The electronic corona compass device provided by the invention has a simple structure and a relatively low cost. 7 200909776 BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be further described in detail in conjunction with the following drawings: Figure 1 is a perspective view of an embodiment of an electronic day I compass of the present invention; and Figure 2 is a compass device in accordance with an embodiment of the present invention. FIG. 3 is a schematic exploded view of a compass device according to an embodiment of the present invention; FIG. 4 is a schematic diagram of a circuit device according to an embodiment of the present invention; FIG. 5 is a schematic diagram of a circuit device according to an embodiment of the present invention; The electronic turbulent compass assembly of the embodiment is arranged in a flow chart; < Fig. 6 is a schematic view showing the operation of the electronic cymbal disk device according to an embodiment of the present invention in daylight. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 15 Fig. 1 is a perspective view showing an embodiment of an electronic corona compass apparatus according to the present invention, the outer casing of which is a rectangular parallelepiped including a positioning pin (8) and a violent needle 102. The positioning pin 101 has a straight straight strip shape and has two ends, one end being sharp. Starting from the center of the front side of the locating needle, various methods in the prior art, such as the squeegee method, are used to form a colored line 107, preferably a white paint line, that is different from the locating needle color 20, in the direction of the sharp end. The needle 102 is an elongated straight needle which can be mosquitoed to the center of the positioning needle 1 () 1 so that the needle 102 is perpendicular to the surface of the front surface of the positioning needle 1G1. When the electronic corona device 1 is not in operation, the corona needle 1〇2 can be taken out from the center of the positioning pin. Alternatively, a white silk screen water drop shape is formed at the center of the positioning pin 1G1, and the 200909776 top of the water drop points to the sharp end 1〇3 of the positioning pin. The positioning needle 10, preferably transparent polymethyl methacrylate, can be prepared by using a variety of natural or synthetic materials in the prior art, such as plexiglass, metal, alloy, wood, and bamboo, and can be machined by CNC. to make. 5 As shown in Figs. 2 and 3, the electronic corona device 1 further includes an upper dial 201, a main casing 202, and a synchronous rotating disc 2〇3. The upper dial 2〇1 and the synchronous rotation 琉203 are both disc-shaped. The rear surface of the positioning pin has a main shaft, and the upper dial 2 (H, the main casing 2〇2, the synchronous rotating disc 2〇3) is connected to the main rotating shaft 2〇4 of the clamping needle 101 as shown in Fig. 3 . The end of the main rotating shaft 2〇4 has a shape matching with the front center of the first rotating disc 203, so that the relative position (four) between the positioning pin 1〇1 and the synchronous rotating disc 203 is fixed, that is, when the positioning needle (8) rotates, The synchronous rotating disk 203 rotates together with the positioning pin 1〇1. Alternatively, the main rotating shaft 2G4EI is fixed to the synchronous rotating disk, and the main casing, the upper dial 201, and the positioning pin 101 are sequentially placed on the main rotating shaft 2〇. 4, using the method similar to b', the positioning pin 101 is combined with the synchronous rotating disk 2〇3 to rotate the positioning pin and the synchronous rotating disk 203. As shown in Fig. 3, in the main casing 2〇2, synchronization On both sides of the rotating disk 203, a plurality of sensors 304 are fixed along the direction of the radius of the synchronous rotating disk 2〇3, and the superior sensor is composed of a light source and a photosensitive member, which are composed of a light source and a photosensitive member. Kinded on the partition 20 plate 3〇1 fixed in the main casing 2()2, 'arranged along the same radius, the distance from the center of the circle is not The other of the light source and the photosensitive member is fixed on the outer casing of the compass device corresponding to the front type, on the other side (not shown) of the synchronous rotating disk 203, wherein the photosensitive member may be a photosensitive diode or Photoelectric crystal. As shown in Fig. 2, on the synchronous rotating disk 203, a plurality of sets of strip codes 200909776 209 are formed through transparent and non-transparent areas for outputting gray code, binary code or bcd. Since the synchronous rotating disk 203 and the positioning pin 1G1 are rotated together, the sensor 3〇4 can sense the angular change of the synchronous rotation (4) 3 (4) caused by the rotation of the positioning pin 1()1, thereby measuring the positioning pin 101. The angle of the position. 5 Optionally, the reference position information is printed on the surface of the upper dial 2〇1, for example, the ray emitted from the center of the circle, dividing the entire surface of the disc into four areas; The four regional lines mark the north, south, and 20 in a clockwise order, and the ticket 'marks the twist on the area line containing the north, and then evenly marks the fineness in clockwise. This reference information can be used. (4) Lu is at In the case of the non-Xiang circuit device, the angle at which the clamp needle 101 moves is directly read from the above table (4) 1 to determine the position. Alternatively, the surface of the upper dial may be marked with information on the sky and the ground, for example, A plurality of concentric circles around the center of the circle can be formed on the surface of the disc. These concentric circles are divided into 24 parts from 7.5 degrees on both sides of the twist, and are surrounded by 7.5 degrees on both sides of the twist. The area begins to be marked in clockwise order: sub-癸 丑 艮, 艮, 寅; A, 卯, B; Chen, 巽, 巳; C 'noon, Ding; Wu, Kun, Shen; G, 酉, Xin;戍, 干,亥; 壬, which will be sons, 癸; ugly, eggs, B; Chen, Wu, Ding; No, 酉, Xin; 戌, twelve parts marked as "yin,,, other parts marked as" Yang,,; mark the eight parts of Gan, Zi, 艮印 HT Kun, 酉 as "天", will 癸; Bei, B, 巳, Ding, Shen; Xin; the eight parts of Hai are marked as "people, The remaining eight parts are marked as "ground"; the 壬, 癸, 癸 are marked as "kan"; ugly, 艮, 寅 mark "艮"; A, India, and B are marked as "shock"; Chen, X, and 巳 are marked as "巽"; C, 午, and 丁 are marked as "off, not, Kun, and Shen 10 10 200909776 as "kun"; Geng, 酉, and Xin are marked as "children"; 戍人导乙, hai hailan is "specialized". Please mark the above-mentioned capital t, and Zhejiang has at the same time __Financing Lang, and refer to the information content of Tiangan and Dijia. The upper 5 dials, such as plexiglass, plastic, metal, alloy, etc., may be prepared using any suitable material in the prior art, preferably using a lacquer-coated acrylonitrile-butadiene-styrene; The positioning pin 1〇1 and the main rotating shaft 2〇4 are prepared by integral molding or separately forming; the main casing 202 can be prepared by using, for example, plastic; any insulating material which is easy to fix the sensor in the prior art can be utilized. To prepare the partitioning plate 1 301 ′′ such as transparent plexiglass; the synchronous rotating disk 203 can be manufactured using any material in the prior art as long as the sensor 3 〇 4 can move on the synchronous rotating disk 203 The signal changes are sensed. The intrinsic shadow angle refers to the true anomaly at a certain moment and a certain latitude and longitude position. It is the inherent property of the measurement point itself, 15 varies with time, latitude and longitude, and does not depend on other factors. Change, the time, latitude and longitude are local information. There are a number of methods in the prior art for calculating the angle. For example, using the Clear Sky Institute, the method published on the website h.ttp://www.clearskyiristitute.com/xephem/jL, or the British Sundial Society on their website 20 http://www.simdialsoc. The method of org.uk/household public. Here, the contents disclosed in the above-mentioned website before the filing date of the present application are incorporated into the present application as prior art. For example, as shown in Fig. 3, the electronic corona device 1 further includes means for processing and displaying the data output from the sensor 304. Including, the calculation circuit 11 200909776 401, the memory 402, the input (date and time latitude and longitude) device 4〇3, the display screen 404 and the subtractor 405 are four parts. The calculation circuit 4〇1 may be a single chip microcomputer, such as a microprocessor controller (MCU) or a dedicated integrated circuit (ASIC), for storing an equation for calculating an inherent day angle Θ. The inherent daylight angle θ is finally obtained. The date, time, and latitude and longitude information of the measurement point are calculated by the input device 403 into the equation; the memory 4〇2 can be electrically erasable and programmable. Selling memory (EEPROM), or fixed memory (n〇nv〇latile memory), used to store the information of the time, time and latitude and longitude of the time zone; the wheel device 403 can be input for the button; the display can be The liquid crystal display curtain; as shown in FIG. 4, the input device thoroughly inputs the date, time, and latitude and longitude information into the memory 402, and the memory 4〇2 inputs the above information into the calculation circuit 4〇1 to obtain the inherent day angle θ ' The angle difference φ between the measurement point and the shadow read by the sensor and the sensor is input to the subtracter 4〇5, and the true azimuth angle α′ is outputted on the display screen 4G4, and the screen side is displayed by selecting alone. It is also possible to display the #information and the intrinsic day angle 0 stored in the memory 402. The device is powered by low voltage direct current, preferably 9-12 VDC, and the entire circuit arrangement is controlled by a switch. Alternatively, the present invention can also obtain local information by using a general GPS positioning system injury, and then obtain the local latitude and longitude by the look-up table method, and have a diurnal angle by giving the time of the 疋. The advantage of using the Gps line is that when using the electronic day-of-the-day compass device, the user can automatically obtain the latitude and longitude information without having to wheel in by himself. In order to make the test effect more accurate, the electronic turbulence compass device 1 provided by the present invention can also selectively increase the calibration device: including, the level 12 200909776 113 'placed on the surface of the electronic corona device 1' is preferably a bubble level By observing the position of the bubble, determining whether the compass device 1 is placed horizontally; the turntable fine-tuning control wheel 114 is placed at any position on the surface of the compass device except the bottom surface, and is connected with the main rotating shaft 204, as described above due to the synchronous rotation 5 The turntable 203 and the positioning pin 1〇1 rotate with less the main rotating shaft 204. Therefore, the fine adjustment control wheel 114 can rotate the same rotating disk 2〇3 and the positioning pin 101 by a small angle by controlling the main rotating shaft 204. Any of the levels and fine-tuning control wheels of the prior art can be used to achieve the above functions; less than two electronic distance measurement (not metered out), such as ultrasonic ranging 10 instrument, infrared range finder, placed in electronics The surface of the cymbal disk device 1 is used to measure the distance of the compass device 1 to the surface of the object when measuring the position of the object at a relatively close distance, thereby ensuring that the reference edge II6' is as shown in Fig. 6, and the object to be measured ( For example a work frame) parallel. Fig. 5, Fig. 6 shows the operation of the electronic cymbal device 1 15 of the present invention for use in sufficient sunlight. In step 5〇1, a certain position on the surface of the compass 1 is marked as a measuring point 115. For an object measuring a far distance, such as a building, the user faces the measuring point 115 of the compass device 1 to be measured. The object 601, for measuring objects closer to the distance, the user can use the information of the electronic range finder to keep the reference side 116 of the compass device and the object to be measured, such as a decoration, parallel; less than 502, using the level 113 The position of the compass device 1 is corrected to be horizontal, and the positioning pin 1〇1 is turned to the measuring point 115. The purpose of this step is to determine the position of the measured object, so that the sensor 304 senses an initial value; and in step 503, the rotating positioning pin 1 〇1, the sharp end 103 is directed to the sun shadow projected by the sundial needle 102 in the sun; step 504' adjusts the fine adjustment 13 200909776 control wheel 114 so that the sharp end 103 of the positioning pin 101 and the colored straight line 107 and the sundial needle 102 are in the sun The next projected day shadows coincide, and the purpose of steps 503 and 504 is to cause sensor 304 to sense an end value that is compared to the initial value of step 502 to enable sensor 304 to obtain the measured value. The angle difference φ between the body and the day shadow is 5; in step 505, the sensor 304 reads the angle difference φ between the day shadow and the measuring point 115. As described above, the angle φ is the sunshade natural angle 0 and the measurement The angle α of the point itself, that is, the difference between the measured azimuth angles, that is, φ=θ-α, requires the next step to obtain the measured azimuth angle α; Step 506, the calculation circuit 401 is started, and the memory is The date, time, and the time zone latitude and longitude data of the time zone of 402 are input into the calculation circuit 401 or the latitude and longitude information is determined by the GPS positioning system, and the local inherent shadow angle 0 is calculated, and finally the above equation is calculated by shifting the item to obtain the measured The azimuth angle α = θ_φ. Although the present invention has been described in connection with the specific embodiments thereof, many other changes and modifications and other uses will be apparent to those skilled in the art. Accordingly, the invention is not limited by what is specifically disclosed herein. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of an embodiment of an electronic cymbal disk of the present invention; FIG. 2 is a schematic view of a structure of a compass device according to an embodiment of the present invention; FIG. 3 is a schematic view of a structure according to the present invention; Schematic diagram of a structure of a compass device according to an embodiment of the present invention; FIG. 4 is a schematic diagram of a circuit device according to an embodiment of the present invention; FIG. 5 is a flow chart of an operation of an electronic pan panel 14 200909776 according to an embodiment of the present invention; Figure 6 is a schematic illustration of an electronic sundial compass device operating in daylight in accordance with an embodiment of the present invention. [Description of main component symbols] 1...Electronic 曰晷Roller device 204...Main rotating shaft 101...Positioning pin 304...Sensor 102...Day pin 301...Partition plate 107... Colored line 209...Multi-strip type code 103" Sharp end 304...Sensor 113...Level 401...Computation circuit 114...Fine adjustment control wheel 402...Memory 115...Measurement point 403 ... input device 116 ... reference side 404 ... display screen 201 · · upper dial 405 ... subtractor 202 ... main housing 406 ... GPS positioning system 203 ... synchronous rotating disc 501 ~ 506. ..Step 15