TW200908378A - Manufacturing method of a light emitting diode - Google Patents

Manufacturing method of a light emitting diode Download PDF

Info

Publication number
TW200908378A
TW200908378A TW96129483A TW96129483A TW200908378A TW 200908378 A TW200908378 A TW 200908378A TW 96129483 A TW96129483 A TW 96129483A TW 96129483 A TW96129483 A TW 96129483A TW 200908378 A TW200908378 A TW 200908378A
Authority
TW
Taiwan
Prior art keywords
layer
emitting diode
light
manufacturing
substrate
Prior art date
Application number
TW96129483A
Other languages
Chinese (zh)
Other versions
TWI349382B (en
Inventor
wen-jie Xu
yu-quan Liu
zhen-hua Fu
shi-hong Li
Tai-Jun Wang
Original Assignee
Tekcore Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tekcore Co Ltd filed Critical Tekcore Co Ltd
Priority to TW96129483A priority Critical patent/TW200908378A/en
Publication of TW200908378A publication Critical patent/TW200908378A/en
Application granted granted Critical
Publication of TWI349382B publication Critical patent/TWI349382B/zh

Links

Landscapes

  • Led Devices (AREA)

Abstract

This invention is the manufacturing method of a light emitting diode (LED) component that combines an epitaxial means and an etching means that begins etching the epitaxial layer from the bottom of the LED to form protruding shapes that hangs on the sides. This causes the epitaxial layer structure of the LED to have non-rectangular inclined planes which will improve the total reflection phenomenon of the LED component and increase the light extraction efficiency of the LED. This invention has reduced production cost and is suitable for mass production due to the simplified production process.

Description

200908378 九、發明說明: 【發明所屬之技術領域】 法:有:—種發光二極體元件的製造方 造方法。 出率的务光二極體元件的製 【先前技術】 傳統發光二極體元件的製作為標準的矩型外觀,因 二=二=身的折射率與外界的空氣或封裝 二f多’使得光線很容易在界面產生全 面睥大於^ = t光一極體所產生的光到達與空氣的界 角的光將產生全反射回到二極體晶粒内 和此外,矩形的四個截面互相平行,光子在交界面離 m的機率變小’讓光子只能在内部全反射直到被 吸收^ ’使光轉成熱的形式,造成發紐果不佳。 化鋁=氮化鎵發光二極體主要是成長在絕緣的氧 ^姓刻到半導體μ層的心半導體,才能 成:型電極。但是由於傳統的氮化鎵發光二極 二阳曰,,、鍵結的能量报強,不易以濕蝕刻的方式進 ”多半以乾蝕方式進行蝕刻。以目前乾蝕刻的技 :’由於物理性㈣的效果大於化學性㈣,所以 出的形狀多數都為方正的矩形。 因此,改變發光二極體形狀是一個有效提升發光效 %的方法,如美國專利US6,229,160所揭露的倒金字汉 刪ated Invmed pyramid TIp)的發光二極體晶二 將碟化鋁鎵銦/鱗化鎵(AlGalnP/GaP)發光二極體 200908378 晶粒側面機械加工,四個截面將不再是互相平行,藉此 光就可以很有效地被引出來,外部量子效率則大幅提升 至5 5%,發光效率高達100 lm/w,是第一個達到此目標 的發光二極體。然而,此專利中所提出TIP型晶粒結 構,只能適用於使用磷化鋁鎵銦/磷化鎵(AlGalnP/GaP) 的紅光二極體上,並不適用於一般的氮化鎵發光二極 體,因為氮化鎵在一般產業是蟲晶於藍寶石(Sapphire) 基板上,由於藍寶石非常堅硬,要對其進行機械加工相 當困難,所以該專利技術的商業化生產依然無法突破。 另,也是要形成高光取出率為目的,美國專利 US6,570,190揭露發光二極體磊晶層結構為斜面的發光 二極體元件結構,藉此讓光有效地被引出來,外部量子 效率可大幅提升。但由於氮化鎵系列的發光二極體,其 原子間的鍵結較強壯,所以氮化鎵磊晶層極不易蝕刻出 具有晶格方向特性的斜角,若單純只以濕蝕刻的方式, 無法钱刻出斜面。 【發明内容】 於是為解決上述之缺失,本發明提供一種發光二極體 元件的製造方法,係結合磊晶方式及蝕刻方式,使發光二 極體磊晶層結構產生非矩形的斜面,改善界面全反射的現 象,提高發光二極體的光取出率。 本發明是一種高光取出率的發光二極體元件的製造 方法,其步驟包括有:(a)提供一基板,於該基板表面形成 一遮罩層,且該遮罩層具有複數個矩形露出基板表面的磊 晶區域;其中該基板係為藍寶石(Sapphire)、碳化矽(SiC)、 矽(Si)、砷化鎵(GaAs)和氮化鋁(A1N)基板其中之一,該遮 6 200908378 罩層材料係包括二氧化矽(si〇2)、氮化矽(siN)與光阻劑 (Ph〇t〇resist)其中之一,或鎳(Ni)、鉻(Cr)、#(Pt)及鈦(Ti) 其中之一。(b)於該些磊晶區域進行磊晶,形成一發光二極 體遙晶層’且每個磊晶區域間的發光二極體磊晶層間形成 一間隔縫。(c)於該發光二極體磊晶層上方形成一蝕刻遮罩 層。(d)使用一濕蝕刻溶液進入該間隔缝對該發光二極體磊 晶層與該遮罩層進行濕蝕刻製程,使該發光二極體磊晶層 從底部開始姓刻,形成側面外懸凸出的結構形狀;其中該 濕姓刻溶液係包括溫度範圍在5(TC至350°C加熱狀態的硫 酸(H2S04):磷酸(H3P〇4)混合液,氫氧化鉀(KOH),磷酸 (H3P〇4) ’氫氧化鉀(KOH):乙二醇混合液其中之一。⑷ 除去該餘刻遮罩層,然後於該發光二極體磊晶層上方形成 一透明導電層。⑴對該透明導電層與該發光二極體磊晶層 進行一接觸部餘刻,再形成一n型歐姆接觸電極於該接觸 部上’一ρ型歐姆接觸電極該透明導電層上,用以提供流 經該發光二極體磊晶層的驅動電流。以及(g)將該基板研 磨’並切割崩裂形成發光二極體元件。 其中該蠢晶區域表面上進一步可由該遮罩層材料形 成複數凸部,該凸部係為直線並列,四邊形、圓形及多邊 形陣列其中之一所組成,使該濕蝕刻溶液對該發光二極體 磊晶層底面進行濕蝕刻,使該發光二極體磊晶層底面形成 一凹凸表面。該凹凸表面的形成使發光區域產生光散射或 繞射的凹部及凸部的結構,進而使外部量子效率提高, 形成高光取出率之結構。 7 200908378 其中該步驟a可於該基板進行蝕刻形成一凹槽層取代 該,罩層’且該凹槽層使該基板表面形成複數個矩形的蟲 晶區域。且該^區域表面上進—步可在該基板進行錄刻 形成複數凹部,該凹部係為直線並列,四邊形、圓形及多 邊2列其中之—所組成,使該濕#刻溶液對該發光二極 體猫晶層底面進行濕餘刻,使該發光二極體蠢晶層底面形 成一凹凸表面。200908378 IX. Description of the invention: [Technical field to which the invention pertains] Method: There are: a method of manufacturing a light-emitting diode element. The production rate of the light-emitting diode component [Prior Art] The conventional light-emitting diode component is made into a standard rectangular appearance, because the light density of the two = two = the body's refractive index and the external air or package two f' It is easy to produce a total 睥 at the interface that is greater than ^ = t. The light generated by the polar body reaches the boundary with the air. The light will be totally reflected back into the diode grains. In addition, the four sections of the rectangle are parallel to each other. The probability of leaving the interface at the interface becomes smaller 'allows the photon to be totally reflected inside until it is absorbed ^' to turn the light into a hot form, resulting in poor hair. Aluminium = Gallium Nitride Light-emitting diodes are mainly grown in an insulating oxygen source that is engraved into the semiconductor layer of the semiconductor layer to form a type electrode. However, due to the traditional gallium nitride light-emitting diodes, the energy of the bonding is strong, it is not easy to wet etching. Most of the etching is performed by dry etching. The current dry etching technique: 'Because of physicality (4) The effect is greater than the chemical (4), so most of the shapes are square rectangles. Therefore, changing the shape of the light-emitting diode is a method for effectively improving the luminous efficiency, such as the inverted gold word disclosed in US Pat. No. 6,229,160. The light-emitting diode of the Invmed pyramid TIp) will be plated with aluminum gallium indium/gallium gallium (AlGalnP/GaP) light-emitting diodes 200908378. The sides of the die are machined, and the four sections will no longer be parallel to each other. The light can be effectively extracted, the external quantum efficiency is greatly increased to 5 5%, and the luminous efficiency is as high as 100 lm/w, which is the first light-emitting diode to achieve this goal. However, this patent The proposed TIP type grain structure can only be applied to a red LED using aluminum gallium indium phosphide/gallium phosphide (AlGalnP/GaP), and is not suitable for general gallium nitride light-emitting diodes because of nitrogen. Gallium in the general industry is insect crystal On the sapphire substrate, since the sapphire is very hard, it is difficult to machine it, so the commercial production of the patented technology is still unable to break through. In addition, it is also necessary to form a high-light extraction rate, and US Patent No. 6,570,190 discloses The light-emitting diode epitaxial layer structure is a beveled light-emitting diode structure, whereby the light is efficiently extracted, and the external quantum efficiency can be greatly improved. However, due to the gallium nitride series of light-emitting diodes, the interatomic The bonding of the bonding is strong, so the gallium nitride epitaxial layer is extremely difficult to etch the oblique angle having the lattice direction characteristic. If only the wet etching is used, the inclined surface cannot be carved out. [Summary of the Invention] In the absence of the invention, the present invention provides a method for fabricating a light-emitting diode element, which combines an epitaxial method and an etching method to produce a non-rectangular slope of the epitaxial layer structure of the light-emitting diode, improve the phenomenon of total reflection of the interface, and improve the light-emitting diode. Light extraction rate of the body. The present invention is a method for manufacturing a light-emitting diode element having a high light extraction rate, the steps of which include: a) providing a substrate, forming a mask layer on the surface of the substrate, and the mask layer has a plurality of epitaxial regions exposing the surface of the substrate; wherein the substrate is sapphire, SiC, 矽One of (Si), gallium arsenide (GaAs), and aluminum nitride (A1N) substrates, the cover layer 200908378 cover material includes bismuth dioxide (si〇2), tantalum nitride (siN), and photoresist (Ph〇t〇resist) one of, or one of nickel (Ni), chromium (Cr), #(Pt), and titanium (Ti). (b) epitaxy in the epitaxial regions to form a The light-emitting diode telecrystal layer 'and a spacer is formed between the light-emitting diode epitaxial layers between each of the epitaxial regions. (c) forming an etch mask layer over the epitaxial layer of the light emitting diode. (d) using a wet etching solution to enter the spacer to perform a wet etching process on the epitaxial layer of the light emitting diode and the mask layer, so that the epitaxial layer of the light emitting diode is engraved from the bottom to form a lateral overhang. a convex structure shape; wherein the wet name etching solution comprises a sulfuric acid (H2S04):phosphoric acid (H3P〇4) mixture having a temperature range of 5 (TC to 350 ° C), potassium hydroxide (KOH), phosphoric acid ( H3P〇4) 'potassium hydroxide (KOH): one of the ethylene glycol mixed solutions. (4) The residual mask layer is removed, and then a transparent conductive layer is formed over the epitaxial layer of the light-emitting diode. (1) The transparent conductive layer and the LED epitaxial layer are contacted to form a contact portion, and then an n-type ohmic contact electrode is formed on the contact portion, and a p-type ohmic contact electrode is disposed on the transparent conductive layer to provide a flow through a driving current of the epitaxial layer of the light emitting diode, and (g) grinding and dicing the substrate to form a light emitting diode element, wherein the surface of the stray area may further form a plurality of convex portions by the mask layer material, The convex portions are linearly juxtaposed, quadrilateral, circular and One of the polygon arrays is configured to wet-etch the bottom surface of the epitaxial layer of the light-emitting diode to form a concave-convex surface on the bottom surface of the epitaxial layer of the light-emitting diode. The structure of the concave portion and the convex portion which generate light scattering or diffraction further increases the external quantum efficiency and forms a structure of high light extraction rate. 7 200908378 wherein the step a can be performed on the substrate to form a groove layer instead of the cover layer. And the groove layer forms a plurality of rectangular crystal regions on the surface of the substrate, and the surface of the surface can be recorded on the substrate to form a plurality of concave portions, the concave portions are linearly juxtaposed, quadrangular, and circular And the two columns of the polygons are configured to make the wet etching solution wet the bottom surface of the LED layer of the LED body to form a concave-convex surface on the bottom surface of the stray layer of the LED.

\ 招,另—製衫法,其㈣包括卜⑷提供一基 ;k基板表面形成複數個等距離圖形排列的凸邱. (b)於該基板表面進行^,形成-發光二極體^晶 ^ ’(C)於該發光二極體磊晶層上方形成一蝕刻遮 ^⑷對該㈣遮罩層與該發光二極體蠢晶層上進行 :磊:m板表面,形成一間隔缝,使該發光二極 對今發:、矩5,⑷使用—濕餃刻溶液進人該間隔縫 节::先磊晶層與該些凸部進行濕蝕刻製程,使 D出料^=f從底部開始㈣,形成側面外懸凸 、^構形狀,且该發光二極體磊晶層底面形成一 ,(〇除去該蝕刻遮罩層,然後於該發光二極曰 :上方形成-透明導電層;(g)對該透明導電層盘;: 接晶層蝕刻形成一接觸部,再形成- n型歐姆 電,:極於該接觸部上,-ρ型歐姆接觸電極該透明: 济曰、1以提供流經該發光二極體磊晶層的驅動雷 ^元二及(h)將該基板研磨,並切割崩裂形成發光二極 其中該步驟a可於該基板進行蝕刻形成複數個等距離 200908378 圖形排列的複數個凹部取代該些凸部。該些凸部與凹部係 為直線並列,四邊形、圓形及多邊形陣列排列其中之一所 組成。 本發明的優點在於利用係結合磊晶方式及蝕刻方 式,使該發光二極體磊晶層從底部開始蝕刻,形成側面 外懸凸出的結構形狀,使發光二極體磊晶層結構成為非 矩形的斜面,藉此改善發光二極體元件界面全反射的現 象,提高發光二極體的光取出率。且本發明因為製成簡 單,可降低生產成本,適合產業大量生產。 【實施方式】 茲有關本發明之詳細内容及技術說明,現以實施例 來作進一步說明,但應暸解的是,該等實施例僅為例示 說明之用,而不應被解釋為本發明實施之限制。 本發明利用結合磊晶方式及蝕刻方式,使發光二極體 磊晶層結構形成非矩形的斜面,改善界面全反射的現象, 製作出光取出率高的發光二極體元件。 請參閱「第1圖至第7圖」,是為本發明的第一實施 例製造方法流程示意圖。本發明的第一實施例的製造步驟 包括有: (a)提供一基板100’於該基板表面形成一遮罩層110, 且該遮罩層110藉由蝕刻製程定義出圖形,形成具有複數 個矩形露出該基板100表面的磊晶區域300(如「第1圖」 所示)。其中該基板1 〇〇係為藍寶石(Sapphire)、碳化石夕 (SiC)、矽(Si)、砷化鎵(GaAs)和氮化鋁(A1N)基板其中之 一。該遮罩層110材料係包括二氧化矽(Si02)、氮化矽(SiN) 與光阻劑(Photoresist)其中之一,或鎳(Ni)、鉻(Cr)、鉑(Pt) 9 200908378 及鈦(Ti)其中之一。 (b) 於該些磊晶區域300進行磊晶,形成一發光二極體 磊晶層120 ’且每個磊晶區域300間的發光二極體蟲晶層 間形成一間隔縫130(如「第2圖」所示)。本發明利用蟲晶 成長的方式,在該遮罩層110以外的地方成長發光二極體 蠢晶層120’蟲晶成長的過程中同時會在該遮罩層11〇形 成側成長的現象,適當的選擇該遮罩層110的大小及調整 控制磊晶的成長條件形成如「第2圖」的情況。 (c) 於該發光二極體遙晶層120上方形成一餘刻遮罩層 200(如「第3圖」所示)’該蝕刻遮罩層200材料係為二氧 化矽(Si02)。 (d) 使用一濕蝕刻溶液進入該間隔缝130對該發光二極 體磊晶層120與該遮罩層110進行濕蝕刻製程,使該發光 二極體磊晶層120從底部開始蝕刻,形成側面外懸凸出的 結構形狀(如「第4圖」所示)。這是因為原始成長於基板 100上的該發光二極體磊晶層120為氮化鎵系材料,所以 該發光二極體磊晶層120的表面多為鎵原子相(Ga phase) ’濕蝕刻不易,但是經由該間隔缝130,可以使得蝕 刻溶液進入原本定義的遮罩,從底部氮原子相(N phase)開 始蝕刻’能較容易進行濕蝕刻,形成非矩形的斜角。其中 該濕蝕刻溶液包括溫度範圍在50°C至350°C加熱狀態的硫 酸(HACK):磷酸(h3P〇4)混合液,氫氧化鉀(KOH),磷酸 (ΗβΟ4),氫氧化鉀(KOH):乙二醇混合液其中之一。 (e) 除去該蝕刻遮罩層200,然後於該發光二極體磊晶 層120上方形成一透明導電層140(如「第5圖」所示);該 透明導電層140係為氧化銦錫(indium-tin-oxide ; ITO)、氧 10 200908378 化銦鋅(indium-zinc-xide ; IZO)或在呂鋅氧化物(zinc aluminium oxide ; AZO) ° (f) 對該透明導電層140與該發光二極體磊晶層120進 行蝕刻形成一接觸部150(如「第6圖」所示),再形成一 η 型歐姆接觸電極162於該接觸部150上,一 ρ型歐姆接觸 電極161於該透明導電層140上,用以提供流經該發光二 極體磊晶層的驅動電流(如「第7圖」所示)。 (g) 最後將該基板100研磨,並切割崩裂形成發光二極 體元件。 請參閱「第8圖至第11圖」,為本發明的第二實施例 製造方法流程示意圖。第二實施例製造方法步驟與前述第 一實施例相同,但於該步驟a中對該基板100進行蝕刻形 成一凹槽層170取代該遮罩層11〇,且該凹槽層170使該 基板表面形成複數個矩形的磊晶區域300(如「第8圖」所 示)。然後於該些磊晶區域300進行磊晶,利用磊晶成長的 方式’在該遮罩層110以外的地方成長發光二極體磊晶層 120 ’磊晶成長的過程中同時會在該凹槽層170形成側成 長的現象,適當的選擇該凹槽層170的大小及調整控制磊 晶的成長條件形成如「第9圖」的情況,每個磊晶區域300 間的發光二極體磊晶層間形成一間隔縫130。 然後,在該發光二極體磊晶層120上方形成該蝕刻遮 罩層200(如「第10圖」所示)。再使用該濕蝕刻溶液進入 該間隔縫130對該發光二極體磊晶層12〇進行濕蝕刻製程 (此處為凹槽無該遮罩層110),使該發光二極體磊晶層12〇 從底部開始蝕刻’形成側面外懸凸出的結構形狀(如「第 11圖」所示)。 11 200908378 ' 再來的後續製程與第一實施例相同,除去該蝕刻遮罩 , 層200,然後於該發光二極體磊晶層120上方形成該透明 導電層140 ;對該透明導電層140與該發光二極體磊晶層 120進行蝕刻形成該接觸部150,再形成該η型歐姆接觸 電極162於該接觸部150上,該ρ型歐姆接觸電極161於 該透明導電層140上,用以提供流經該發光二極體磊晶層 的驅動電流。最後將該基板100研磨,並切割崩裂形成發 光二極體元件。 請參閱「第12圖至第18圖」,為本發明的第三實施 例製造方法流程示意圖。第三實施例製造方法步驟與前述 第一實施例相同,但於該步驟a中該遮罩層110材料形成 複數凸部111於該些磊晶區域300,該凸部111係為直線 並列(如「第15圖」所示),或四邊形、圓形及多邊形陣列 (如「第13、14圖」所示,是以圓形圖型為說明例)其中之 一所組成。然後於該些蟲晶區域300進行遙晶5利用蟲 晶成長的方式’在該遮罩層110以外的地方成長發光二極 體蟲晶層120’相同的每個羞晶區域3 0 0間的發光二極體 i 磊晶層間有該間隔缝130。然後在該發光二極體磊晶層120 上方形成該蝕刻遮罩層200,再使用該濕蝕刻溶液進入該 間隔缝130對該發光二極體磊晶層120進行濕蝕刻製程, 使該發光二極體磊晶層120從底部開始蝕刻,形成側面外 懸凸出的結構形狀,且該濕蝕刻溶液對該發光二極體磊晶 層120底面的該些凸部111進行濕蝕刻,使該發光二極體 磊晶層120底面形成一凹凸表面121(如「第16圖」所示)。 該凹凸表面121的形成使發光區域產生光散射或繞射的凹 部及凸部的結構,進而使外部量子效率提高,形成高光 12 200908378 ‘取出率之結構。 . 再來的後續製程與第一實施例相同,除去該蝕刻遮罩 層200,然後於該發光二極體磊晶層120上方形成該透明 導電層140(如「第17圖」所示);對該透明導電層140與 該發光二極體磊晶層120進行蝕刻形成該接觸部150,再 形成該η型歐姆接觸電極162於該接觸部150上,該p型 歐姆接觸電極161於該透明導電層140上,用以提供流經 該發光二極體蠢晶層的驅動電流(如「第18圖」所示)。最 後將該基板100研磨,並切割崩裂形成發光二極體元件。 ; 相同的原理,第三實施例也可應用在第二實施例,是 在該磊晶區域300表面上進行蝕刻形成複數凹部,該凹部 也是為直線並列,四邊形、圓形及多邊形陣列其中之一所 組成,使該濕蝕刻溶液對該發光二極體磊晶層120底面進 行濕蝕刻,使該發光二極體磊晶層120底面形成該凹凸表 面 121。 請參閱「第19圖至第25圖」,是為本發明的第四實 施例製造方法流程示意圖。第四實施例的步驟包括有:(a) I 提供該基板100,於該基板100表面形成複數個等距離圖 形排列的複數凸部112,該凸部112材料係為二氧化矽 (Si02)。此時該些凸部112係為四邊形、圓形及多邊形陣 列其中之一所組成(如「第20、21圖」所示,是以圓形圖 型為說明例),或為直線並列(如「第22圖」所示)。(b)於 5亥基板100表面進行蠢晶’形成該發光二極體蠢晶層120, (c)於該發光二極體磊晶層120上方形成該蝕刻遮罩層 200 ; (d)對該蝕刻遮罩層200與該發光二極體磊晶層120 進行雷射切割400到該基板100表面,形成該些間隔缝 13 200908378 130,且該些間隔、縫!3〇使該發光二極體羞晶们2〇成矩 形(如「第23圖」戶斤示);⑷使用濕钱刻溶液進入該些間隔 縫130對該發光一極體磊晶層12〇與該些凸部ιΐ2進行濕 钱刻製程,使該發光二極體蠢晶I 12()從底部開始姓刻, 形成侧面外懸凸出的結構形狀,且該發光二極體磊晶層 底面形成該凹凸表面121(如「第24圖」所示);⑺除 去該關遮罩層2GG,然後於該發光二極縣晶層上方形 成該透明導電層140 ’·(g)對該透明導電層14〇與該發光二 極體磊晶層120蝕刻形成該接觸部15〇,再形成該n型歐 姆接觸電極162於该接觸部150上,該p型歐姆接觸電極 161於該透明導電層140上’用以提供流經該發光二極體 磊晶層120的驅動電流(如「第25圖」所示);最後(h)將該 基板研磨,並切割崩裂形成發光二極體元件。 又本實施例上,該步驟a也可於該基板1〇〇進行餘刻形 成複數個等距離圖形排列的凹部取代該些凸部112。 本發明的優點在於結合磊晶方式及蝕刻方式,使^亥1 光二極體蟲晶層從底部開始触刻,形成側面外懸凸出的衾士 構形狀,使發光二極體磊晶層結構成為非矩形的斜面,夢 此改善發光二極體元件界面全反射的現象,提高發光二才^ 體的光取出率。且本發明因為製成簡單,可降低生產成 本,適合產業大量生產。 惟上述僅為本發明之較佳實施例而已,並非用來限 定本發明實施之範圍。即凡依本發明申請專利範圍所= 的均等變化與修飾,皆為本發明專利範圍所涵蓋。 14 200908378 【圖式簡單說明】 第1圖至第7圖’係本發明之第—實施例的流程示意圖。 第8圖至第11圖,係本發明之第二實施例的流程示意 圖。 第12圖至第18圖,係本發明之第三實施例的流程示意 圖。 第19圖至第25圖,係本發明之第四實施例的流程示意 圖。 【主要元件符號說明】 100 :基板 110 :遮罩層 111 :凸部 112 :凸部 12〇 :發光二極體磊晶層 121 :凹凸表面 13〇 :間隔缝 140 :透明導電層 15〇 :接觸部 161 : p型歐姆接觸電極 162 : η型歐姆接觸電極 170 :凹槽層 200 :钱刻遮罩層 300 :磊晶區域 400 :雷射切割\ 招 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ^ '(C) forming an etch mask (4) over the epitaxial layer of the light-emitting diode (4) on the (4) mask layer and the stray layer of the light-emitting diode: a surface of the plate: The light-emitting diode is made to: today, the moment 5, (4) using the wet dumpling solution into the spacer section: the first epitaxial layer and the convex portions are subjected to a wet etching process, so that D discharges ^=f from Starting at the bottom (4), forming a lateral overhanging convex shape, and forming a bottom surface of the epitaxial layer of the light emitting diode, (the etch mask layer is removed, and then a transparent conductive layer is formed over the light emitting diode: (g) the transparent conductive layer disk;: the crystal layer is etched to form a contact portion, and then -n-type ohmic electricity is formed: extremely close to the contact portion, the -p-type ohmic contact electrode is transparent: 曰, 1 The substrate is ground by providing a driving force Lei Yuan 2 and (h) flowing through the epitaxial layer of the light emitting diode, and cutting and cracking to form a light emitting diode The step a can be performed by etching a plurality of concave portions of the plurality of equidistant distances 200908378 in the substrate to replace the convex portions. The convex portions and the concave portions are juxtaposed in a straight line, and one of the quadrangular, circular and polygonal arrays is arranged. The invention has the advantages that the epitaxial layer of the light emitting diode is etched from the bottom by using an epitaxial bonding method and an etching method to form a structure shape of the side hanging overhang, and the epitaxial layer of the light emitting diode is formed. The structure becomes a non-rectangular slope, thereby improving the phenomenon of total reflection at the interface of the light-emitting diode element, and improving the light extraction rate of the light-emitting diode. The invention is simple in manufacture, can reduce the production cost, and is suitable for mass production in the industry. The detailed description and the technical description of the present invention are now described by way of example only, but it should be understood that these embodiments are for illustrative purposes only and should not be construed as The invention utilizes an epitaxial method and an etching method to form a non-rectangular slope of the epitaxial layer structure of the light emitting diode, thereby improving In the phenomenon of total surface reflection, a light-emitting diode element having a high light extraction rate is produced. Please refer to "Figs. 1 to 7", which is a schematic flow chart of a manufacturing method according to a first embodiment of the present invention. The manufacturing steps of the example include: (a) providing a substrate 100' to form a mask layer 110 on the surface of the substrate, and the mask layer 110 defines a pattern by an etching process to form a plurality of rectangles to expose the surface of the substrate 100. The epitaxial region 300 (shown in Figure 1), wherein the substrate 1 is sapphire, carbonized silicon (SiC), germanium (Si), gallium arsenide (GaAs), and nitrided. One of the aluminum (A1N) substrates. The material of the mask layer 110 includes one of cerium oxide (SiO 2 ), cerium nitride (SiN) and photoresist (Photoresist), or nickel (Ni), chromium (Cr) ), one of platinum (Pt) 9 200908378 and titanium (Ti). (b) performing epitaxy on the epitaxial regions 300 to form a light emitting diode epitaxial layer 120' and forming a spacer 130 between the light emitting diode layers between each of the epitaxial regions 300 (eg, 2) shows). In the method of growing the crystallites, the growth of the light-emitting diode stray layer 120' in the process of growing the crystal layer of the light-emitting diode is further increased on the side of the mask layer 11 The size of the mask layer 110 and the adjustment and control of the growth conditions of the epitaxial layer are as shown in the "second figure". (c) forming a mask layer 200 over the LED layer 120 (as shown in Fig. 3). The material of the etch mask layer 200 is cerium oxide (SiO 2 ). (d) using a wet etching solution to enter the spacer 130 to perform a wet etching process on the LED epitaxial layer 120 and the mask layer 110, so that the LED epitaxial layer 120 is etched from the bottom to form The shape of the structure that protrudes from the side overhang (as shown in Figure 4). This is because the LED epitaxial layer 120 originally grown on the substrate 100 is a gallium nitride-based material, so the surface of the LED epitaxial layer 120 is mostly a gallium atom phase (Ga phase). It is not easy, but through the gap 130, the etching solution can be brought into the originally defined mask, and etching can be performed from the bottom nitrogen phase (N phase) to form a non-rectangular oblique angle. Wherein the wet etching solution comprises a sulfuric acid (HACK):phosphoric acid (h3P〇4) mixture, a potassium hydroxide (KOH), a phosphoric acid (ΗβΟ4), a potassium hydroxide (KOH) in a heating state in a temperature range of 50° C. to 350° C. ): One of the glycol mixture. (e) removing the etch mask layer 200, and then forming a transparent conductive layer 140 over the LED epitaxial layer 120 (as shown in FIG. 5); the transparent conductive layer 140 is indium tin oxide. (indium-tin-oxide; ITO), oxygen 10 200908378 indium-zinc-xide (IZO) or in zinc-zinc oxide (AZO) ° (f) for the transparent conductive layer 140 and The LED epitaxial layer 120 is etched to form a contact portion 150 (as shown in FIG. 6), and an n-type ohmic contact electrode 162 is formed on the contact portion 150, and a p-type ohmic contact electrode 161 is formed. The transparent conductive layer 140 is configured to provide a driving current flowing through the epitaxial layer of the light emitting diode (as shown in FIG. 7). (g) Finally, the substrate 100 is ground and cut to form a light-emitting diode element. Please refer to "Fig. 8 to Fig. 11", which is a flow chart showing the manufacturing method of the second embodiment of the present invention. The manufacturing method steps of the second embodiment are the same as those of the foregoing first embodiment, but the substrate 100 is etched in the step a to form a groove layer 170 instead of the mask layer 11 , and the groove layer 170 makes the substrate A plurality of rectangular epitaxial regions 300 are formed on the surface (as shown in Fig. 8). Then, epitaxial growth is performed on the epitaxial regions 300, and the epitaxial growth method is used to grow the epitaxial growth layer of the epitaxial layer 120' outside the mask layer 110. The layer 170 forms a side growth phenomenon, and the size of the groove layer 170 is appropriately selected and the growth conditions for controlling the epitaxial growth are formed as in the case of "Fig. 9", and the light-emitting diode epitaxy is performed between each of the epitaxial regions 300. A gap 130 is formed between the layers. Then, the etch mask layer 200 is formed over the LED epitaxial layer 120 (as shown in Fig. 10). Then, the wet etching solution is used to enter the spacer 130 to perform a wet etching process on the LED epitaxial layer 12 (where the recess is not provided with the mask layer 110), so that the LED epitaxial layer 12 is 〇 etched from the bottom to form a structural shape that protrudes from the side of the outer surface (as shown in Figure 11). 11 200908378 'The subsequent process is the same as the first embodiment, the etch mask is removed, the layer 200 is formed, and then the transparent conductive layer 140 is formed over the LED epitaxial layer 120; the transparent conductive layer 140 is The LED epitaxial layer 120 is etched to form the contact portion 150, and the n-type ohmic contact electrode 162 is formed on the contact portion 150. The p-type ohmic contact electrode 161 is disposed on the transparent conductive layer 140. A driving current flowing through the epitaxial layer of the light emitting diode is provided. Finally, the substrate 100 is ground and cut to form a light-emitting diode element. Referring to Fig. 12 to Fig. 18, there is shown a flow chart of a manufacturing method of a third embodiment of the present invention. The manufacturing method steps of the third embodiment are the same as those of the first embodiment, but in the step a, the mask layer 110 material forms a plurality of convex portions 111 in the epitaxial regions 300, and the convex portions 111 are juxtaposed in a straight line (eg, "Figure 15"), or a quadrilateral, circular, and polygonal array (as shown in "Figures 13, 14", which is a circular pattern as an example). Then, in the crystallite region 300, the method of growing the crystallites by using the crystallites 'the growth of the luminescent crystal layer 120' outside each of the mask layer 110 is the same as each of the shame regions 300. The spacer 130 is formed between the epitaxial layers of the light emitting diode i. Then, the etch mask layer 200 is formed over the LED epitaxial layer 120, and the wet etching solution is used to enter the spacer 130 to perform a wet etching process on the LED epitaxial layer 120. The epitaxial epitaxial layer 120 is etched from the bottom to form a structural shape in which the side surface is overhanged, and the wet etching solution wet-etches the convex portions 111 on the bottom surface of the epitaxial layer 120 of the light emitting diode to make the light A concave-convex surface 121 is formed on the bottom surface of the diode epitaxial layer 120 (as shown in Fig. 16). The formation of the uneven surface 121 causes the light-emitting region to have a structure in which light is scattered or diffracted by the concave portion and the convex portion, thereby improving the external quantum efficiency and forming a high light 12 200908378 'removal rate structure. The subsequent process is the same as that in the first embodiment, the etch mask layer 200 is removed, and then the transparent conductive layer 140 is formed over the LED epitaxial layer 120 (as shown in FIG. 17); The transparent conductive layer 140 and the LED epitaxial layer 120 are etched to form the contact portion 150, and the n-type ohmic contact electrode 162 is formed on the contact portion 150. The p-type ohmic contact electrode 161 is transparent. The conductive layer 140 is configured to provide a driving current flowing through the stray layer of the light emitting diode (as shown in FIG. 18). Finally, the substrate 100 is ground and cut and cracked to form a light-emitting diode element. With the same principle, the third embodiment can also be applied to the second embodiment. The etching is performed on the surface of the epitaxial region 300 to form a plurality of recesses, which are also juxtaposed in a straight line, one of a quadrilateral, a circular and a polygonal array. The wet etching solution wet-etches the bottom surface of the LED epitaxial layer 120 to form the uneven surface 121 on the bottom surface of the LED epitaxial layer 120. Please refer to "Fig. 19 to Fig. 25", which is a flow chart showing the manufacturing method of the fourth embodiment of the present invention. The steps of the fourth embodiment include: (a) I providing the substrate 100, and forming a plurality of equidistant patterns 112 of a plurality of equidistant patterns on the surface of the substrate 100, the material of the protrusions 112 being cerium oxide (SiO 2 ). At this time, the convex portions 112 are composed of one of a quadrilateral, circular and polygonal array (as shown in "20th and 21st", which is a circular pattern as an example), or a straight line juxtaposition (such as "Figure 22"). (b) forming a light-emitting diode stray layer 120 on the surface of the 5-well substrate 100, and (c) forming the etch mask layer 200 over the light-emitting diode epitaxial layer 120; (d) The etch mask layer 200 and the LED epitaxial layer 120 are laser-cut 400 to the surface of the substrate 100 to form the spacers 13 200908378 130, and the spacers and slits! 3〇 该 该 该 该 该 该 该 发光 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( And performing the wet etching process on the protrusions ιΐ2, so that the light-emitting diode I 12() is engraved from the bottom, forming a structure shape of the side overhanging protrusion, and the bottom surface of the LED epitaxial layer Forming the uneven surface 121 (as shown in FIG. 24); (7) removing the closed mask layer 2GG, and then forming the transparent conductive layer 140'·(g) on the transparent conductive layer over the light-emitting diode layer The layer 14A and the LED epitaxial layer 120 are etched to form the contact portion 15A, and the n-type ohmic contact electrode 162 is formed on the contact portion 150. The p-type ohmic contact electrode 161 is disposed on the transparent conductive layer 140. The upper portion is used to provide a driving current flowing through the epitaxial layer 120 of the light emitting diode (as shown in FIG. 25); finally (h) the substrate is ground and cut to form a light emitting diode element. In this embodiment, the step a may be performed on the substrate 1 to replace the convex portions 112 by forming recesses in a plurality of equidistant pattern arrangements. The invention has the advantages that in combination with the epitaxial method and the etching method, the crystal layer of the ^1 photodiode is touched from the bottom, and the shape of the gentleman who protrudes from the side is formed, so that the epitaxial layer structure of the light emitting diode is formed. It becomes a non-rectangular slope, which improves the phenomenon of total reflection at the interface of the light-emitting diode element and improves the light extraction rate of the light-emitting diode. Moreover, the invention is simple in manufacture, can reduce production costs, and is suitable for mass production in the industry. The above is only the preferred embodiment of the invention, and is not intended to limit the scope of the invention. That is, the equivalent changes and modifications of the scope of the patent application of the present invention are covered by the scope of the invention. 14 200908378 [Simplified illustration of the drawings] Figs. 1 to 7 are schematic views showing the flow of the first embodiment of the present invention. Fig. 8 through Fig. 11 are schematic flow charts showing a second embodiment of the present invention. Fig. 12 to Fig. 18 are schematic flowcharts showing a third embodiment of the present invention. 19 to 25 are schematic flow charts showing a fourth embodiment of the present invention. [Description of main component symbols] 100: Substrate 110: Mask layer 111: convex portion 112: convex portion 12: light-emitting diode epitaxial layer 121: uneven surface 13: spacer 140: transparent conductive layer 15: contact Portion 161: p-type ohmic contact electrode 162: n-type ohmic contact electrode 170: groove layer 200: money mask layer 300: epitaxial region 400: laser cutting

Claims (1)

200908378 十、申請專利範圍: 1·一種發光二極體元件的製造方法,其步驟包括有: (a) 提供一基板,於該基板表面形成一遮罩層,且該遮罩 層具有複數個矩形露出基板表面的磊晶區域; (b) 於該些蟲晶區域進行蠢晶,形成一發光二極體蠢晶 層’且每個蠢晶區域間的發光二極體蠢晶層間形成一 間隔縫; (c) 於該發光二極體磊晶層上方形成一蝕刻遮罩層; (d) 使用一濕蝕刻溶液進入該間隔缝對該發光二極體磊晶 層與該遮罩層進行濕钕刻製程,使該發光二極體蟲晶 層從底部開始蝕刻’形成侧面外懸凸出的結構形狀; (e) 除去該蝕刻遮罩層,然後於該發光二極體磊晶層上方 形成一透明導電層; ⑴對該透明導電層與該發光二極體磊晶層進行蝕刻形成 一接觸部’再形成一 η型歐姆接觸電極於該接觸部上, Ρ型歐姆接觸電極於該透明導電層上,用以提供流經 該發光二極體磊晶層 的驅動電流,及 (g)將該基板研磨,並切割崩裂形成發光二極體元件。 2·如申請專利範圍第1項所述的製造方法,其中該基板係為 藍寶石、碳化石夕(SiC)、矽(Si)、砷化鎵(GaAs)和氮化鋁(A1N) 基板其中之一。 3.如申請專利範圍第1項所述的製造方法,其中該遮罩層材 料係包括二氧化矽(Si02)、氮化矽(SiN)與光阻劑其中之 16 200908378 4. 如申請專利範圍第1項所述的製造方法,其中該遮罩層材 料係包括鎳(Ni)、鉻(Cr)、鉑(Pt)及鈦(Ti)其中之一。 5. 如申請專利範圍第所述的製造方法’其中該祕刻溶 液係包括溫度範圍在5(rc至35(rc加熱狀態的硫酸 (¥04)·屬酸(仏扣4)混合液’氫氧化鉀(K〇H),填酸 (H3P〇4) ’氫氧化鉀(KOH):乙二醇混合液其中之一。 6. 如申請專利範圍第i項所述的製造方法,其中該蠢晶區域 表面上進一步可由該遮罩層材料形成複數凸部,使該濕 钕刻溶液對該發光二極體蟲晶層底面進行濕㈣,使二 發光一極體磊晶層底面形成一凹凸表面。 7. 如申請專利範圍第6項所述的製造方法,其中該此凸部係 為直線並列’四邊形、圓形及多邊形陣列其中之 且 成。 、、’ 8. 如申請專利範圍第i項所述的製造方法, 於該基板進行姓刻形成一凹槽層取代該遮罩芦〜日t可 槽層使該基板表面形成複數個矩形的蟲晶巴罩域曰。,且如 圍第8項所述的製造方法,其―晶區域 在該基板進行_形錢數凹部,使兮 刻溶㈣該發光二極妓晶層底面進行⑥❹丨: 该發光二極體遙晶層底面形成—凹凸表面。*…吏 ^如申料㈣9韻述㈣造方法,其巾 成。料_*多相_其中之—所組 η·—種發光二極體元件的製造方法’其步驟包括有: 200908378 (a) 提供一基板,於該基板表面形成複數個等距離圖形排 列的複數凸部; (b) 於該基板表面進行蠢晶,形成一發光二極體蟲晶層; (c) 於该發光二極體蠢晶層上方形成一敍刻遮罩層; (d) 對5亥钱刻遮罩層與該發光二極體蠢晶層進行雷射切割 到該基板表面,形成複數個間隔縫,且該些間隔縫使 3 亥4¾光一極體蟲晶層成矩形; (e) 使用一濕蝕刻溶液進入該些間隔縫對該發光二極體磊 晶層與該些凸部進行濕蝕刻製程,使該發光二極體磊 晶層從底部開始蝕刻,形成側面外懸凸出的結構形 狀,且5亥發光二極體蠢晶層底面形成一凹凸表面; (f) 除去該蝕刻遮罩層,然後於該發光二極體磊晶層上方 形成一透明導電層; (g) 對該透明導電層與該發光二極體磊晶層進行蝕刻形成 接觸σ卩再形成一 η型歐姆接觸電極於該接觸部上, 一Ρ型歐姆接觸電極於該透明導電層上,用以提供流經 該發光二極體磊晶層的驅動電流;及 (h) 將該基板研磨,並切割崩裂形成發光二極體元件。 如申請專利範圍第u項所述的製造方法,其中該基板係 為藍寶石、碳化石夕啊)、石夕(Si)、坤化鎵(GaAs)和氮化 I呂(A1N)基板其中之一。 13.如申請專利範圍第n項所述的製造方法,其中該些凸部 材料係包括二氧切⑼⑹、氮切_)與光阻劑其°中 之一。 18 200908378 I4.如申請專利範圍第Π項所述的製造方法,其中該些凸部 材料係包括鎳⑽)、鉻(Cr)、鉑(Pt)及鈦(Ti)其中之一。 15如申請專利範圍第21項所述的製造方法,其中該些凸部 係為直線並列,四邊形、圓形及多邊形陣列排列其中之 一所組成。 16·如申請專利範圍第n項所述的製造方法,其中該濕钱刻 溶液包括溫度範圍在50t至350t加熱狀態的硫酸 (H2S04):璘酸财〇4)混合液,氫氧化鉀(K〇H),磷酸 (H3P〇4) ’氫氧化鉀(K0H):乙二醇混合液其中之一。 17. 如申請專利範圍第n項所述的製造方法,其中該步驟珏 可於該基板進行姓刻形成複數個等距離圖形排列的凹a 部取代該些凸部。 18. 如申請專利範㈣17項所述的製造方法,其中該些凹部 係為直線並列’四邊形、圓形及多邊料賴列其 一所組成。 19200908378 X. Patent Application Range: 1. A method for manufacturing a light-emitting diode element, the steps comprising: (a) providing a substrate, forming a mask layer on the surface of the substrate, and the mask layer has a plurality of rectangles Exposing an epitaxial region on the surface of the substrate; (b) performing stray crystals in the parasitic regions to form a stray layer of a light-emitting diode and forming a space between the stray layers of the light-emitting diodes between each of the stray regions (c) forming an etch mask layer over the epitaxial layer of the light emitting diode; (d) using a wet etching solution to enter the spacer to wet the epitaxial layer of the light emitting diode and the mask layer The etching process is such that the LED layer is etched from the bottom to form a structural shape in which the side is overhanged; (e) removing the etching mask layer, and then forming a layer over the LED epitaxial layer a transparent conductive layer; (1) etching the transparent conductive layer and the LED epitaxial layer to form a contact portion' to form an n-type ohmic contact electrode on the contact portion, and a Ρ-type ohmic contact electrode on the transparent conductive layer On, to provide The light-emitting diode through epitaxial layer driving current, and (g) polishing the substrate, and a light emitting diode chipping cutting element. 2. The manufacturing method according to claim 1, wherein the substrate is sapphire, carbon carbide (SiC), bismuth (Si), gallium arsenide (GaAs), and aluminum nitride (A1N) substrates. One. 3. The manufacturing method according to claim 1, wherein the mask layer material comprises cerium oxide (SiO 2 ), cerium nitride (SiN), and a photoresist. 16 200908378 4. The manufacturing method according to Item 1, wherein the mask layer material comprises one of nickel (Ni), chromium (Cr), platinum (Pt), and titanium (Ti). 5. The manufacturing method as described in the scope of the patent application, wherein the secret solution comprises a temperature range of 5 (rc to 35 (r-heated sulfuric acid (¥04)·acid (suckle 4) mixture hydrogen] Potassium oxide (K〇H), acid (H3P〇4) 'potassium hydroxide (KOH): one of the ethylene glycol mixture. 6. The manufacturing method according to claim i, wherein the stupid Further, a plurality of protrusions may be formed on the surface of the crystal region by the mask layer material, so that the wet etching solution wets the bottom surface of the LED layer, so that the bottom surface of the epitaxial layer of the two light-emitting diodes forms a concave-convex surface. 7. The manufacturing method according to claim 6, wherein the convex portion is a straight line juxtaposed with a quadrangular, circular, and polygonal array, and is formed as an item i of the patent application scope. In the manufacturing method, the substrate is formed with a groove layer instead of the mask layer, and the groove surface of the mask is formed to form a plurality of rectangular wormhole regions on the surface of the substrate. The manufacturing method according to the item, wherein the "crystalline region" is carried out on the substrate The ruthenium is dissolved (4) The bottom surface of the luminescent diode layer is 6 ❹丨: The bottom surface of the luminescent diode layer is formed into a concave-convex surface. *... 吏 ^ As for the application (4) 9 rhyme (4) method, the towel is formed. _*Multiphase _ among them η ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ (b) performing a stray crystal on the surface of the substrate to form a light-emitting diode crystal layer; (c) forming a mask layer over the stray layer of the light-emitting diode; (d) The engraved mask layer and the stray layer of the LED are laser-cut to the surface of the substrate to form a plurality of spacers, and the spacers form a rectangular layer of 3 ray light and a polar layer; (e) Using a wet etching solution to enter the spacers to perform a wet etching process on the epitaxial layer of the LED and the protrusions, so that the epitaxial layer of the LED is etched from the bottom to form a lateral overhanging protrusion. a structural shape, and a bottom surface of the 5 illuminating diode stray layer forms an uneven surface; (f) removing the etch mask layer, and then forming a transparent conductive layer over the epitaxial layer of the light emitting diode; (g) etching the transparent conductive layer and the epitaxial layer of the light emitting diode to form a contact σ卩Forming an n-type ohmic contact electrode on the contact portion, a germanium-type ohmic contact electrode on the transparent conductive layer for providing a driving current flowing through the epitaxial layer of the light-emitting diode; and (h) The substrate is ground and cut and cracked to form a light-emitting diode element. The manufacturing method according to claim 5, wherein the substrate is sapphire, carbon stone, Si, and GaAs And a method for manufacturing a nitrided I (N1N) substrate. The method of claim n, wherein the convex material comprises oxy-cut (9) (6), nitrogen-cut and photoresist One of its °. The manufacturing method according to the invention of claim 2, wherein the convex material comprises one of nickel (10)), chromium (Cr), platinum (Pt) and titanium (Ti). The manufacturing method according to claim 21, wherein the convex portions are linearly juxtaposed, and one of a quadrangular, circular, and polygonal array arrangement. The manufacturing method according to item n of the patent application, wherein the wet money engraving solution comprises a mixture of sulfuric acid (H2S04): tannic acid crucible 4) in a temperature range of 50t to 350t, potassium hydroxide (K) 〇H), phosphoric acid (H3P〇4) 'potassium hydroxide (K0H): one of the ethylene glycol mixtures. 17. The manufacturing method according to claim n, wherein the step 珏 can replace the convex portions on the substrate by forming a concave a portion in which a plurality of equidistant pattern arrangements are formed. 18. The manufacturing method according to the application of claim 4, wherein the recesses are linearly juxtaposed, and the quadrilateral, circular and polygonal materials are arranged. 19
TW96129483A 2007-08-10 2007-08-10 Manufacturing method of a light emitting diode TW200908378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96129483A TW200908378A (en) 2007-08-10 2007-08-10 Manufacturing method of a light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96129483A TW200908378A (en) 2007-08-10 2007-08-10 Manufacturing method of a light emitting diode

Publications (2)

Publication Number Publication Date
TW200908378A true TW200908378A (en) 2009-02-16
TWI349382B TWI349382B (en) 2011-09-21

Family

ID=44723655

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96129483A TW200908378A (en) 2007-08-10 2007-08-10 Manufacturing method of a light emitting diode

Country Status (1)

Country Link
TW (1) TW200908378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9484496B2 (en) 2010-02-04 2016-11-01 Lg Innotek Co., Ltd. Light emitting device, method of manufacturing the same, light emitting device package and lighting system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9484496B2 (en) 2010-02-04 2016-11-01 Lg Innotek Co., Ltd. Light emitting device, method of manufacturing the same, light emitting device package and lighting system

Also Published As

Publication number Publication date
TWI349382B (en) 2011-09-21

Similar Documents

Publication Publication Date Title
CN100592539C (en) Manufacture method of light-emitting diode element
EP1577958B1 (en) Photonic crystal light emitting device
JP4939099B2 (en) Method for manufacturing vertical structure group 3 nitride light emitting device
JP4824293B2 (en) Photonic crystal light emitting device
JP5325365B2 (en) Manufacturing method of LED having longitudinal structure
US8709845B2 (en) Solid state lighting devices with cellular arrays and associated methods of manufacturing
US8343788B2 (en) Light emitting device and manufacturing method thereof
JP5150218B2 (en) Manufacturing method of ZnO-based semiconductor light emitting device
KR20090104931A (en) Integrated large-area vertical structured group 3 nitride-based light emitting diode and its methods
TW201225334A (en) Optoelectronic device and method for manufacturing the same
JPWO2011027679A1 (en) Semiconductor light emitting device
Xi et al. Enhanced light extraction in GaInN light-emitting diode with pyramid reflector
JP2012114407A (en) Method for fabricating vertical light emitting devices and substrate module for the same
EP1935037A1 (en) Group iii nitride semiconductor light-emitting device
KR20050070459A (en) Light emitting diode with vertical electrode structure and manufacturing method of the same
KR101219120B1 (en) High efficiency LED and Method for fabricating of the same
JPWO2014058069A1 (en) Semiconductor light emitting device and manufacturing method thereof
TW200410428A (en) LED and manufacturing method thereof
KR20060105396A (en) Light-emitting gallium nitride-based iii-v group compound semiconductor device with polarization inverted layer
JP2009076647A (en) Manufacturing method of light emitting diode element
TW200908378A (en) Manufacturing method of a light emitting diode
TW200937509A (en) Fabrication of semiconductor devices
KR100955821B1 (en) Nitride light emitting device and the manufacturing method thereof
KR20050096583A (en) Light emitting diode
CN116404076A (en) Light emitting diode and preparation method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees