200907522 九、發明說明: 【發明所屬之技術領域】 本發明之目的係為提供一種電致色變結構及其製 造方法,特別是透過一種其電致色變層中具有複數個 互相接觸之導電奈米粒子,該導電奈米粒子層具有透 光性,且該些導電奈米粒子表面包覆著電致色變材 料,藉以增加著色、去色之反應速率及循環壽命的電 致色變結構與其製造方法者。 【先前技術】 電致色變(electrochromic)的概念已於1961提 出,其主要係利用「電致色變物質在受到外加電場的 作用之下,將會改變其對光的吸收能力,而導致顏色 及光穿透度的變化,且具有可逆及持續的特性」。即對 電致色變材料施予外加電位時,其顏色會改變。例如, 當電致色變結構被施予一可見光,實質上電致色變結 構會吸收某特定波長之光穿透,藉此,以防止過度的 光線穿過電致色變結構,可用以調節不同波長光之入 射量。傳統之電致色變結構包含一第一透明導電基 材、一電致色變層、一電解質層及一第二透明導電基 材,第一透明導電基材及第二透明導電基材位於電致 色變結構的最外側,電解質層與電致色變層則係配置 於第一透明導電基材及第二透明導電基材間,當在第 一透明導電基材及第二透明導電基材間施予一預設電 位差,便可使電致色變結構改變顏色,達成所預設之 光學特性。 200907522 典型的第一透明導電基材及第二透明導電基材係 由玻璃及在玻璃上設導電薄膜而成,但是在一些特殊 的應用上亦有利用在塑膠材料上設導電薄膜作為透明 導電基材者。電致色變層可以有機化合物實現,如紫 精【Vi〇l〇gen】或吡啶【Pyrodine】,或是以無機化合 物來實現,例如無機過渡金屬化合物氧化鶴【恥3】、 氧化鉬【M0O3】或五氧化二飢【VA5】。另一方面,電 解質層可用一已添加鋰氣化物及高氯酸鹽之溶液。根 據不同的光學特性,電致色變結構可應用作為調節室 内陽光入射能量之智慧型窗戶(Smart windows)、汽車 的反強光照後鏡(Anti-dazzling Rear view Mirrors)、車内的天窗(Sun Roofs)、靜態圖案看板或 數子顯示器(Static display Devices)等等。 請參閱第一圖所示,其係顯示現有電致色變結構 之示意圖,該現有的電致色變結構係為呈薄膜式結 構’其包含一第一透明導電基材(11)、一電致色變層 (12)、一電解質層(13)、一絕緣層(14)及一第二透明 導電基材(15),該電致色變層(12)及電解質層(13)介 於第一及第二透明導電基材(11)、(15)中間,並在周 圍以絕緣層(14)予以封裝;又,由於著色與去色反應 速度與離子擴散進入電致色變層(丨2)的速率有關,當 電致色變層(12)之厚度越厚離子要擴散至整個電致色 變層(12)之時間就越長;反之,電致色變層(12)越薄, 則離子可快速擴散至整個電致色變層(12),但卻會影 響顏色的對比度。今,現有之薄膜式電致色變結構由 200907522 於其本身結構上的限制使其反應面積受限而影響反應 速率,若為了提升反應速率而減低電致色變層(12)厚 度,卻會使顏色的對比度降低,以致造成實務應用上 的諸多不便。 【發明内容】 今,發明人即是鑒於現有之電致色變結構無法滿 足業界對其反應速率及顏色對比度的需求,於是本發 明人基於多年從事研究與諸多實務經驗,經多方研究 設計與專題探討,遂於本發明提出一種電致色變結構 及其製造方法,以作為前述期望之實現方式與依據。 本發明之目的為提供一種電致色變結構及其製造 方法,尤其是指一種在電致色變層中設複數個互相接 觸之導電奈米粒子,該導電奈米粒子層具有透光性, 且每一導電奈米粒子表面係包覆一電致色變材料,以 增加其著色、去色之反應速率者。 而本發明之目的、功效是由以下之技術所達成: 其包含一第一透明導電基材、一第二透明、不透 明或反射式導電基材、一第一電致色變層及一電解質 層;第一透明導電基材、第二導電基材係位於電致色 變結構的二側,並令第一電致色變層及電解質層位處 於第一透明導電基材與第二透明、不透明或反射式導 電基材之間,該第一電致色變層係包含複數個互相接 觸之導電奈米粒子,且每一導電奈米粒子表面係包覆 一電致色變材料,此外該導電奈米粒子層具有透光 性,當第一透明導電基材及第二導電基材間被施予一 8 200907522 預設電位差時,電解質層中之離子將會遷入或遷出電 致色變層,並據此改變電致色變層中電致色變材料之 光學特性,使該電致色變結構之顏色因此產生著色或 去色之變化。 承上所述,因本發明之電致色變結構之第一電致 色變層係包含複數個互相接觸之導電奈米粒子,且每 一導電奈米粒子表面係包覆一電致色變材料,而使電 致色變層成為多孔隙之薄膜結構,藉由該多孔隙結構 增加電致色變層有效參與變色反應之面積,而達到提 升顏色對比與加速變色反應速率的效果,有效解決現 有薄膜式電致色變結構之缺點,且加入導電奈米粒子 後,可強化整體電致色變結構,大幅提升結構之耐用 性。 茲為使貴審查委員對本發明之技術特徵及所達 成之功效有更進一步之暸解與認識,下文僅提供較佳 之實施例及相關圖式以為輔佐之用,並以詳細之說明 文字配合說明如後。 【實施方式】 以下將參照相關圖式,說明本發明較佳實施例之 電致色變結構及其製造方法,其中相同的元件將以相 同的參照符號加以說明。 請參閱第二圖,係顯示本發明之電致色變結構之 構造示意圖,其包含一第一透明導電基材(21)、一第 二導電基材(22)〔可為透明、不透明或反射式〕、一第 一電致色變層(23)及一電解質層(24)。 9 200907522 該第一透明導電基材(21),係由玻螭或塑膠材料製 成,並於其第一端面(211)上設有導電薄膜(212)〔可 為透明導電薄膜〕; 該第二導電基材(22)〔可為透明、不透明或反射 式〕’其第一端面(221)上同樣設有導電薄膜(222); 該第一電致色變層(23),係建置於第一透明導電 基材(21)及第二導電基材(22)之間,其包含複數個互 相接觸之導電奈米粒子(231),每一導電奈米粒子(231) 之導電度大於1〇4 ohm、-1,而除了互相接觸的界面以 外’其餘表面係包覆一電致色變材料(232),且該導電 奈米粒子(231)層具有透光性,並互相接觸;又該導電 奈米粒子(231)較佳的是氧化銦錫【IT〇, indium tin oxide】奈米粒子; 該電解質層(24),係建置於第一電致色變層(23) 及第二導電基材(22)之間,該電解質層(24)係由過氯 酉夂鐘【LiCl〇4】及碳酸丙烯【pr〇pyiene Carbonate(PC)】二者混合而成,亦可為由過氣酸鋰、 碳酸丙稀及聚曱基丙烯酸曱酯【pMMA】三者混合而成, 或可以提供變色所需之離子,如K+、H+、Li +等所組成 之組群中選出之材料所組成; 據此’當第一透明導電基材(21)及第二導電基材 (22)間接設一電源装置(25)後,並施予一預設之正電 位差或負電位差時’則電解質層(24)中之離子將會擴 散遷入第一電致色變層(23)或由第一電致色變層(23) 遷出’以改變電致色變層(23)之電致色變材料(232) 10 200907522 的光學特性。 其中,本發明之電致變色結構更包含一第二電致 色變層(26)【請一併參閱第三圖所示】,其係設置在電 解質層(24)及第二導電基材(22)之間,該第二電致色 變層(26)同樣包含複數個互相接觸之導電奈米粒子 (261),每一導電奈米粒子(261)之導電度大於1〇4 ohnTV1,而除了互相接觸的界面以外,表面係包覆電 致色變材料(262),且該導電奈米粒子(261)層具有透 光性,並互相接觸;又該導電奈米粒子(261)較佳的是 氧化銦錫奈米粒子。 上述電致色變材料(232)、(262)係由自過渡金屬 氧化物(transition metal oxides),如鎢氧化物 (tungsten oxide)、鉬氧化物(molybdenum oxide)、 釩氧化物(vanadium oxide)、鎳氧化物、鈦氧化物 (titanium oxide)、鈮氧化物(niobium oxide)、鈽氧 化物(cerium oxide)、鈷氧化物(c〇balt oxide)、鈕 氧化物(tantalum oxide)、鉻氧化物(chromium ox i de)、錳氧化物(manganese ox i de )、鐵氧化物(i ron oxide)、釕氧化物(ruthenium oxide)、铑氧化物 (rhodium oxide)及鈒氧化物(iridium oxide),或過 渡金屬氰化物(transition metal hexacyanometallates),如普魯士藍(Prussian blue)、普魯士藍衍生物及六氰鐵化銦(InHCF),亦或 是有機化合物或導電高分子(organic materiais),如 紫精、吡啶及聚乙撐二氧噻吩 200907522 【Poly-3,4-Ethylenedioxythiophene,PED0T】所組 成之組群中選出之材料經處理後所組成。 上述電致色變結構更可利用封裝技術將之封裝成 一結構體,並於其外圍形成一絕緣層(27)【請一併參 第四圖】。 請一併參閱第五圖,係顯示本發明電致色變結構 之製造方法的步驟流程圖,其步驟順序為: a步驟(S41):先在第一透明導電基材(21)及第二 導電基材(22)的第一端面(211)、(221)上設導電薄膜 (212)、(222); b步驟(S42):於第一透明導電基材(21)設有導電 薄膜(212)的一側處配置第一電致色變層(23),該第一 電致色變層(23)具有複數個互相接觸之導電奈米粒子 (231) ’且每一導電奈米粒子(231)之導電度大於1〇4 ohn^nf1 ’而除了互相接觸的界面以外,表面包覆著電 致色變材料(232),同時該導電奈米粒子(231)層具有 透光性,並互相接觸; c步驟(S43):在第一電致色變層(23)與第二導電 基材(22)之導電薄膜(222)之間配置電解質層(24); 據此’在第一透明導電基材(21)及第二導電基材 (22)間接設一電源裝置(25),以在第一透明導電基材 (21)及第二導電基材(22)之間施予一預設之正電位或 負電位時’則電解質層(24)中之離子將會擴散遷入第 一電致色變層(23)或由第一電致色變層(23)遷出,進 而改變第一電致色變層(23)之電致色變材料(232)的 12 200907522 光學特性’達成電致色變結構之著色或去色狀態。 上述之電致色變結構之製造方法更包括d步驟 (S44)【請一併參閱第六圖】:在第二導電基材(22)之 V電薄膜(222)與電解質層(24)之間配置一第二電致 色變層(26) ’該第二電致色變層(26)包含複數個互相 接觸之導電奈米粒子(261),每-導電奈米粒子(261) 表面係包覆電致色變材料(262),且該導電奈米粒子 (261)層具有透光性,並互相接觸;又該導電奈米粒子 (261)較佳的是氧化銦錫奈米粒子。 产上述電致色變材料(232)、(262)係由自過渡金屬 氧化物如鶴氧化物、翻氧化物、飢氧化物、錄氧化 ,、欽氧化物、銳氧化物、#氧化物、姑氧化物、艇 氧化物、鉻氧化物、鐘氧及銀氧化物,或過渡金屬氮 普魯氏藍及六氮鐵化姻,亦或是有機化合物 或同刀子’如紫精、σ比咬及聚乙樓二氧嗟吩所組 成之la群中選出之材料經處理後所組成。 〃上述電致色變結構之製造方法其在c步驟或d步 驟之後更包括- e步驟(S45):將上述之電致色變結構 =以封衣’並據此在其外圍形成絕緣層(27)【請一併 參閱第七、八圖】。 ^述導電奈米粒子(231)、(261)較佳的是氧化銦 、不米粒子’上述電致色變材料(232)、(262)係由自 過,金屬氧化物’如鹤氧化物、銦氧化物、鈒氧化物、 鎳氧化物、鈇氧化物、銳氧化物、純化物、钻氧化 物1 旦氧化物、鉻氧化物、猛氧化物、鐵氧化物、舒 13 200907522 氧化物、铑氧化物及銥氧化物,或過渡金屬氰化物, 如普魯氏藍及六氰鐵化銦,亦或是有機化合物或導電 高分子,如紫精、吡啶及聚乙撐二氧噻吩所組成之組 群中選出之材料經處理後所組成。 上述電解質層(24)係由過氯酸鋰及碳酸丙浠二者 混合而成,亦可為由過氯酸鋰、碳酸丙烯及聚甲基丙 烯酸甲酯三者混合而成,或可以提供變色所需之離 子,如Γ、H+、Li +等所組成之組群中選出之材料所組 成。 請參閱第九〜十圖所示,該第九圖係為電致色變 結構未加入互相接觸之導電奈米粒子之變色效果示意 圖’而第十圖為電致色變結構加入互相接觸之導電奈 米粒子之變色效果示意圖,由圖中可看出未加入導電 奈米粒子(231)、(261)之穿透度變化為55%,加入導 電奈米粒子(231)、(261)後之穿透度變化大幅提昇為 75%’由此可驗證本發明之電致色變結構確實可提昇顏 色之變色效果。 請參閱第十一圖及第十二圖,該第十一圖係為電 致色變結構加入互相接觸之導電奈米粒子之反應速度 圖’而第十二圖係為電致色變結構未加入互相接觸之 導電奈米粒子之反應速度圖。其中,著色時間定義為 著色時穿透率(T)由90%變化至10%所需之時間,而去 色4間則定義為去色時穿透率(T)由1〇%變化至go%所 而之時間,至於穿透率差(AT)的定義為去色時穿透率 與著色時穿透率之差;由第—、十二圖所示之曲線 14 200907522 可知’加入互相接觸之導電奈米粒子(231)、(261)之 電致色變結構去色速度少於1秒,著色速度2. 4秒; 未加入導電奈米粒子(231)、(261)之電致色變結構去 色速度8秒’著色速度2. 4秒;加入導電奈米粒子 (231)、(261)之電致色變結構其著色速度雖與未加入 導電奈米粒子(231)、(261)相當,但同樣著色時間本 發明加入導電奈米粒子(231)、(261)之電致色變結構 之穿透率的變化較大,因此相對其相對較快。 請參閱第十三a圖及第十三b圖,該第a圖係為 電致色變結構未加入互相接觸之導電奈米粒子之著退 色電里欲度對反應次數圖’而該第b圖係為電致色變 結構加入互相接觸之導電奈米粒子之著退色電量密度 對反應次數圖,由圖中可看出未加入導電奈米粒子 (231)、(261)之電致色變結構著退色的反應電量隨著 反應次數的增加而遞減’循環10000次後衰退幅度分 別為32. 9%(著色)與29. 3%(退色)’而加入導電奈米粒 子(231)、(261)之電致色變結構在循環次數—直增加 到10000次後,期間的反應電量就沒有明顯的衰退, 始終保持在一定的水準。由此可驗證本發明之電致色 變結構確實可以改善其循環壽命。 以上所述僅為舉例性,而非為限制性者。任何未 脫離本發明之精神與範疇’而對其進行之等效修改或 變更,均應包含於後附之申請專利範圍中。 綜上所述,本發明實施例確能達到所預期之使用 功效,又其所揭露之具體構造,不僅未曾見諸於同類 15 200907522 產品中,亦未曾公開於申請前,誠已完全符合專利法 之規定與要求,爰依法提出發明專利之申請,懇請惠 予審查,並賜准專利,則實感德便。 200907522 【圖式簡單說明】 第一圖:係顯示現有之電致色變結構之示意圖 第二圖:係顯示本發明之電致色變結構的其一較佳 實施例不意圖 第三圖:係顯示本發明之電致色變結構的其二較佳 實施例示意圖 第四圖:係顯示本發明之電致色變結構的其三較佳 貫施例不意圖 第五圖:係顯示本發明之製造電致色變結構之方法 的其一較佳實施例步驟流程圖 第六圖:係顯示本發明之製造電致色變結構之方法 的其二較佳實施例步驟流程圖 第七圖:係顯示本發明之製造電致色變結構之方法 的其三較佳實施例步驟流程圖 第八圖:係顯示本發明之製造電致色變結構之方法 的其四較佳實施例步驟流程圖 第九圖:係為未加入電致色變結構未加入導電奈米 粒子之變色效果示意圖 第十圖:為電致色變結構加入導電奈米粒子之變色 效果示意圖 第十一圖:係為電致色變結構加入導電奈米粒子之 反應速度圖 第十二圖:係為電致色變結構未加入導電奈米粒子 之反應速度圖 第十三a圖:係為電致色變結構未加入互相接觸 17 200907522 之導電奈米粒子之著退色電量密 度對反應次數圖 第十三b圖:係為電致色變結構加入互相接觸之 導電奈米粒子之著退色電量密度 對反應次數圖 【主要元件符號說明】 <現有> (11) 第一透明導電基材 (12) 電致色變層 (13) 電解質層 (14) 絕緣層 (15) 第二透明導電基材 <本發明> (21) 第一透明導電基材 (211) 第一端面 (212) 導電薄膜 (22) 第二導電基材 (221) 第一端面 (222) 導電薄膜 (23) 第一電致色變層 (231) 導電奈米粒子 (232) 電致色變材料 (24) 電解質層 (25) 電源裝置 (26) 第二電致色變層 (261) 導電奈米粒子 (262) 電致色變材料 (27) 絕緣層 (S41) a步驟 (S42) b步驟 (S43) c步驟 (S44) d步驟 (S45) e步驟 18200907522 IX. Description of the Invention: [Technical Field] The present invention aims to provide an electrochromic structure and a method for fabricating the same, in particular, through a plurality of electrically conductive layers having mutual contact with each other in an electrochromic layer a rice particle having a light transmissive property, and the surface of the conductive nanoparticle is coated with an electrochromic material, thereby increasing an electrochromic structure of a coloring, decoloring reaction rate and a cycle life thereof Manufacturing method. [Prior Art] The concept of electrochromic has been proposed in 1961. It mainly uses "electrochromic substances to change their ability to absorb light under the action of an applied electric field, resulting in color." And changes in light penetration, and have reversible and continuous characteristics." That is, when an applied potential is applied to the electrochromic material, the color thereof changes. For example, when an electrochromic structure is applied to a visible light, a substantially electrically discolored structure absorbs light of a particular wavelength, thereby preventing excessive light from passing through the electrochromic structure, which can be used to adjust The amount of light incident at different wavelengths. The conventional electrochromic structure comprises a first transparent conductive substrate, an electrochromic layer, an electrolyte layer and a second transparent conductive substrate, wherein the first transparent conductive substrate and the second transparent conductive substrate are electrically The outermost side of the color-changing structure, the electrolyte layer and the electrochromic layer are disposed between the first transparent conductive substrate and the second transparent conductive substrate, when the first transparent conductive substrate and the second transparent conductive substrate By applying a predetermined potential difference, the electrochromic structure can be changed in color to achieve the predetermined optical characteristics. 200907522 The typical first transparent conductive substrate and the second transparent conductive substrate are made of glass and a conductive film on the glass, but in some special applications, a conductive film is also provided on the plastic material as a transparent conductive base. Material. The electrochromic layer can be realized by an organic compound, such as viologen [Vi〇l〇gen] or pyridine [Pyrodine], or by an inorganic compound, such as an inorganic transition metal compound oxidized crane [Shame 3], molybdenum oxide [M0O3] 】 or pentoxide hunger [VA5]. Alternatively, the electrolyte layer may be a solution in which lithium gasification and perchlorate have been added. Depending on the optical properties, the electrochromic structure can be applied as a smart window for adjusting indoor solar incident energy, anti-dazzling Rear view Mirrors, and sun roofs in the car. ), static pattern board or static display devices, and so on. Referring to the first figure, which is a schematic diagram showing an existing electrochromic structure, the conventional electrochromic structure is in a film structure, which comprises a first transparent conductive substrate (11), an electric a color changing layer (12), an electrolyte layer (13), an insulating layer (14) and a second transparent conductive substrate (15), the electrochromic layer (12) and the electrolyte layer (13) are interposed The first and second transparent conductive substrates (11), (15) are interposed and surrounded by an insulating layer (14); and, due to the coloring and decoloring reaction speed and ion diffusion into the electrochromic layer (丨2) The rate is related. The thicker the thickness of the electrochromic layer (12), the longer the ion will diffuse to the entire electrochromic layer (12); on the contrary, the thinner the electrochromic layer (12) , the ions can quickly diffuse to the entire electrochromic layer (12), but it will affect the contrast of the color. Nowadays, the existing film-type electrochromic structure is limited by its structure in 200907522, which limits the reaction area and affects the reaction rate. If the thickness of the electrochromic layer (12) is reduced in order to increase the reaction rate, The contrast of the color is lowered, resulting in inconvenience in practical applications. SUMMARY OF THE INVENTION Now, the inventor is in view of the fact that the existing electrochromic structure cannot meet the industry's demand for its reaction rate and color contrast, so the inventor has been engaged in research and many practical experiences for many years, and has been researched and designed by many parties. In view of the above, an electrochromic structure and a method for fabricating the same are proposed as the implementation and basis of the foregoing. An object of the present invention is to provide an electrochromic structure and a method for fabricating the same, and more particularly to providing a plurality of electrically conductive nanoparticles in contact with each other in an electrochromic layer, the conductive nanoparticle layer having light transmissivity. And each surface of the conductive nanoparticle is coated with an electrochromic material to increase the reaction rate of coloring and decoloring. The object and effect of the present invention are achieved by the following technology: comprising a first transparent conductive substrate, a second transparent, opaque or reflective conductive substrate, a first electrochromic layer and an electrolyte layer The first transparent conductive substrate and the second conductive substrate are located on two sides of the electrochromic structure, and the first electrochromic layer and the electrolyte layer are in the first transparent conductive substrate and the second transparent and opaque Or between the reflective conductive substrates, the first electrochromic layer comprises a plurality of conductive nanoparticles in contact with each other, and each of the conductive nanoparticle particles is coated with an electrochromic material, and the conductive The nano particle layer has light transmissivity. When a predetermined potential difference between the first transparent conductive substrate and the second conductive substrate is applied, the ions in the electrolyte layer will move into or out of the electrochromic change. The layer, and thereby changing the optical properties of the electrochromic material in the electrochromic layer, such that the color of the electrochromic structure causes a change in coloration or discoloration. According to the above, the first electrochromic layer of the electrochromic structure of the present invention comprises a plurality of conductive nano-particles in contact with each other, and each of the surface of the conductive nano-particles is coated with an electrochromic change. The material, and the electrochromic layer becomes a porous film structure, and the porous structure increases the area of the electrochromic layer to effectively participate in the color change reaction, thereby achieving the effect of improving the color contrast and accelerating the color change reaction rate, and effectively solving the problem. The shortcomings of the existing thin film electrochromic structure, and the addition of conductive nano particles, can strengthen the overall electrochromic structure and greatly improve the durability of the structure. In order to provide a better understanding and understanding of the technical features and the efficacies of the present invention, the following is only to provide a preferred embodiment and related drawings for the purpose of assistance, and . [Embodiment] Hereinafter, an electrochromic structure and a method of manufacturing the same according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings, wherein the same elements will be described with the same reference numerals. Referring to the second figure, there is shown a schematic structural view of an electrochromic structure of the present invention, which comprises a first transparent conductive substrate (21) and a second conductive substrate (22) (which may be transparent, opaque or reflective). a first electrochromic layer (23) and an electrolyte layer (24). 9 200907522 The first transparent conductive substrate (21) is made of a glass or plastic material, and is provided with a conductive film (212) (which may be a transparent conductive film) on the first end surface (211) thereof; The second conductive substrate (22) (which may be transparent, opaque or reflective) has a conductive film (222) on the first end surface (221); the first electrochromic layer (23) is constructed. Between the first transparent conductive substrate (21) and the second conductive substrate (22), the plurality of conductive nano particles (231) contacting each other, the conductivity of each conductive nano particle (231) is greater than 1〇4 ohm, -1, and except for the interface in contact with each other, the remaining surface is coated with an electrochromic material (232), and the conductive nanoparticle (231) layer is translucent and in contact with each other; Further, the conductive nanoparticle (231) is preferably an indium tin oxide (IT) nanoparticle; the electrolyte layer (24) is built in the first electrochromic layer (23) and Between the second conductive substrates (22), the electrolyte layer (24) is made of perchlorinated ruthenium [LiCl〇4] and propylene carbonate [pr〇pyiene C] Arbonate (PC)] is a mixture of two, which can be mixed with lithium peroxyacid, propylene carbonate and decyl acrylate (pMMA), or can provide ions needed for discoloration, such as K+ a material selected from the group consisting of H+, Li+, etc.; accordingly, when the first transparent conductive substrate (21) and the second conductive substrate (22) are indirectly provided with a power supply device (25), And when a predetermined positive potential difference or negative potential difference is applied, then the ions in the electrolyte layer (24) will diffuse into the first electrochromic layer (23) or by the first electrochromic layer (23). Move out 'to change the optical properties of the electrochromic material (232) 10 200907522 of the electrochromic layer (23). Wherein, the electrochromic structure of the present invention further comprises a second electrochromic layer (26) [please refer to the third figure together], which is disposed on the electrolyte layer (24) and the second conductive substrate ( 22), the second electrochromic layer (26) also includes a plurality of conductive nano particles (261) in contact with each other, and the conductivity of each of the conductive nanoparticles (261) is greater than 1〇4 ohnTV1, and In addition to the interface in contact with each other, the surface is coated with an electrochromic material (262), and the conductive nanoparticle (261) layer is translucent and in contact with each other; and the conductive nanoparticle (261) is preferably used. It is indium tin oxide particles. The electrochromic materials (232) and (262) are made of transition metal oxides such as tungsten oxide, molybdenum oxide, vanadium oxide. , nickel oxide, titanium oxide, niobium oxide, cerium oxide, c〇balt oxide, tantalum oxide, chromium oxide (chromium ox i de), manganese oxide (manganese ox i de ), iron oxide (r ron oxide), ruthenium oxide, rhodium oxide, and iridium oxide. Or transition metal hexacyanometallates, such as Prussian blue, Prussian blue derivatives and indium hexacyanoferrate (InHCF), or organic compounds or organic materiais, such as viologen , pyridine and polyethylene dioxythiophene 200907522 [Poly-3,4-Ethylenedioxythiophene, PED0T] selected from the group consisting of materials after treatment. The above electrochromic structure can be packaged into a structure by using a packaging technology, and an insulating layer (27) is formed on the periphery thereof (please refer to FIG. 4 together). Please refer to FIG. 5, which is a flow chart showing the steps of the manufacturing method of the electrochromic structure of the present invention. The sequence of steps is as follows: a step (S41): first on the first transparent conductive substrate (21) and second Conductive films (212) and (222) are disposed on the first end faces (211) and (221) of the conductive substrate (22); b (S42): a conductive film is disposed on the first transparent conductive substrate (21) ( A first electrochromic layer (23) is disposed at one side of 212), the first electrochromic layer (23) having a plurality of electrically conductive nanoparticles (231)' in contact with each other and each of the conductive nanoparticles (231) The conductivity is greater than 1〇4 ohn^nf1 ' and the surface is coated with an electrochromic material (232) in addition to the interface in contact with each other, and the conductive nanoparticle (231) layer is translucent. And contacting each other; c step (S43): disposing an electrolyte layer (24) between the first electrochromic layer (23) and the conductive film (222) of the second conductive substrate (22); A transparent conductive substrate (21) and a second conductive substrate (22) are indirectly provided with a power supply device (25) for the first transparent conductive substrate (21) and the second conductive substrate (22) When a predetermined positive or negative potential is applied, the ions in the electrolyte layer (24) will diffuse into the first electrochromic layer (23) or by the first electrochromic layer (23). Moving out, thereby changing the electrochromic material (232) of the first electrochromic layer (23), 12 200907522 optical properties 'to achieve the coloring or decoloring state of the electrochromic structure. The manufacturing method of the electrochromic structure described above further includes a step d (S44) [please refer to the sixth figure together]: a V-electrode film (222) and an electrolyte layer (24) on the second conductive substrate (22) Between the second electrochromic layer (26) is disposed. The second electrochromic layer (26) comprises a plurality of conductive nano particles (261) in contact with each other, and each surface of the conductive nano particles (261) The electrochromic material (262) is coated, and the conductive nanoparticle (261) layer is translucent and in contact with each other; and the conductive nanoparticle (261) is preferably indium tin oxide particles. The above electrochromic materials (232) and (262) are produced from self-transition metal oxides such as helium oxides, oxides, annihilation oxides, oxidized oxides, cerium oxides, sharp oxides, oxides, Ruthenium oxides, boat oxides, chromium oxides, clock oxygen and silver oxides, or transition metals such as Nitrogen and hexammine, or organic compounds or knives such as viologen and σ The material selected from the group consisting of the dioxin dioxin and the dioxin pentoxide is processed. The manufacturing method of the above electrochromic structure further comprises an e step (S45) after the step c or the step d: forming the electrochromic structure described above as a seal and forming an insulating layer on the periphery thereof ( 27) [Please refer to the seventh and eighth figures together. Preferably, the conductive nanoparticles (231) and (261) are indium oxide and non-rice particles. The above electrochromic material (232), (262) is derived from a metal oxide such as a crane oxide. , indium oxide, cerium oxide, nickel oxide, cerium oxide, sharp oxide, purified material, diamond oxide 1 dan oxide, chromium oxide, oxidized oxide, iron oxide, Shu 13 200907522 oxide, Antimony oxides and antimony oxides, or transition metal cyanides, such as Prussian blue and indium hexacyanoferrate, or organic compounds or conductive polymers such as viologen, pyridine and polyethylene dioxythiophene The materials selected in the group are processed and processed. The electrolyte layer (24) is a mixture of lithium perchlorate and propylene carbonate, or may be mixed with lithium perchlorate, propylene carbonate and polymethyl methacrylate, or may provide discoloration. The desired ions, such as materials selected from the group consisting of ruthenium, H+, Li+, etc., are composed. Please refer to the ninth to tenth views, the ninth figure is a schematic diagram of the color change effect of the electrically-induced color-changing structure without adding conductive nano-particles in contact with each other', and the tenth figure is the electrically-induced color-changing structure added to the conductive contact with each other. Schematic diagram of the color change effect of nano particles. It can be seen from the figure that the change in the transmittance of the conductive nano particles (231) and (261) is 55%, and the conductive nano particles (231) and (261) are added. The change in penetration is greatly increased to 75%'. Thus, it can be verified that the electrochromic structure of the present invention can enhance the color discoloration effect. Please refer to the eleventh and twelfth figures. The eleventh figure shows the reaction rate diagram of the electrically-induced color-change structure in which the conductive nano-particles are in contact with each other. The twelfth figure is the electrochromic structure. A reaction rate diagram of the conductive nanoparticles in contact with each other is added. Among them, the coloring time is defined as the time required for the transmittance (T) to change from 90% to 10% during coloring, and the coloring 4 is defined as the transmittance (T) from 1% to go when decoloring. % of time, as for the difference in transmittance (AT) is defined as the difference between the transmittance at the time of color removal and the transmittance at the time of coloring; the curve shown in the first and the twelfth figure 14 200907522 knows that 'joining each other's contact The electrochromic structure of the conductive nanoparticles (231) and (261) has a decoloring speed of less than 1 second, and the coloring speed is 2.4 seconds; the electrochromic color of the conductive nanoparticles (231) and (261) is not added. Variable structure color removal speed 8 seconds 'coloring speed 2. 4 seconds; addition of conductive nano particles (231), (261) electrochromic structure, although the color speed is not added to the conductive nanoparticles (231), (261 ), but the same coloring time, the electrochromic structure of the conductive nano particles (231) and (261) of the present invention has a large change in transmittance, and thus is relatively fast. Please refer to the thirteenth and the thirteenth bth diagrams. The figure a is the photochromic structure of the electro-optical structure without the mutual contact of the conductive nanoparticles. The figure shows the number of reaction times of the fading charge density of the electro-optical structure added to the conductive nano-particles in contact with each other. It can be seen from the figure that the electrochromic change of the conductive nano-particles (231) and (261) is not added. The reaction charge with the fading of the structure decreases with the increase of the number of reactions. After the cycle of 10000 cycles, the decay amplitudes are 32.9% (coloring) and 29.3% (fading), respectively, and the conductive nano particles (231) are added. 261) The electrochromic structure is increased in the number of cycles - after increasing to 10,000 times, there is no significant decline in the amount of reaction during the period, and it is always maintained at a certain level. From this, it can be verified that the electrochromic structure of the present invention can indeed improve its cycle life. The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims. In summary, the embodiment of the present invention can achieve the expected use efficiency, and the specific structure disclosed therein has not been seen in the same kind of 2009 200907522 product, nor has it been disclosed before the application, and has completely complied with the patent law. The provisions and requirements, 提出 legally filed an application for an invention patent, pleaded for review, and granted a patent, it is really sensible. 200907522 [Simplified description of the drawings] Fig. 1 is a schematic view showing an existing electrochromic structure. Fig. 2 is a view showing a preferred embodiment of the electrochromic structure of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 4 is a schematic view showing a second preferred embodiment of the electrochromic structure of the present invention, which is not intended to be a fifth view: showing the present invention Step-by-step flow chart of a preferred embodiment of a method for fabricating an electrochromic structure. FIG. 6 is a flow chart showing the steps of a second preferred embodiment of the method for fabricating an electrochromic structure of the present invention. Process flow chart showing three preferred embodiments of the method for fabricating an electrochromic structure of the present invention. FIG. 8 is a flow chart showing the steps of the fourth preferred embodiment of the method for fabricating an electrochromic structure of the present invention. Figure 9: Schematic diagram of the discoloration effect of the non-electrically-induced color-changing structure without the addition of conductive nano-particles. Figure 10: Schematic diagram of the color-changing effect of adding conductive nano-particles to the electrochromic structure. Figure 11: Electro-induced Color change Reaction Velocity Diagram of Adding Conductive Nanoparticles Figure 12: Reaction Velocity Diagram of Electron-induced Color Change Structure without Addition of Conductive Nanoparticles Figure 13a: Electrochromic Structure Not Connected to Each Other 17 200907522 The fading charge density of the conductive nanoparticle particles on the number of reactions is shown in the thirteenth b-th diagram: the color-denatured structure is added to the conductive nano-particles in contact with each other. <Existing> (11) First transparent conductive substrate (12) Electrochromic layer (13) Electrolyte layer (14) Insulating layer (15) Second transparent conductive substrate <The present invention> (21) First transparent conductive substrate (211) first end surface (212) conductive film (22) second conductive substrate (221) first end surface (222) conductive film (23) first electrochromic layer (231) conductive Nanoparticles (232) Electrochromic material (24) Electrolyte layer (25) Power supply unit (26) Second electrochromic layer (261) Conductive nanoparticle (262) Electrochromic material (27) Insulation Layer (S41) a step (S42) b step (S43) c step (S44) d step (S45) e step 18