KR102397828B1 - Electrochromic device having improved discoloring performance and driving method for thereof - Google Patents

Electrochromic device having improved discoloring performance and driving method for thereof Download PDF

Info

Publication number
KR102397828B1
KR102397828B1 KR1020200057736A KR20200057736A KR102397828B1 KR 102397828 B1 KR102397828 B1 KR 102397828B1 KR 1020200057736 A KR1020200057736 A KR 1020200057736A KR 20200057736 A KR20200057736 A KR 20200057736A KR 102397828 B1 KR102397828 B1 KR 102397828B1
Authority
KR
South Korea
Prior art keywords
layer
color
electrochromic
changing
electrochromic device
Prior art date
Application number
KR1020200057736A
Other languages
Korean (ko)
Other versions
KR20210140934A (en
Inventor
한태영
김정필
박재형
장해성
이춘엽
Original Assignee
에스케이씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨 주식회사 filed Critical 에스케이씨 주식회사
Priority to KR1020200057736A priority Critical patent/KR102397828B1/en
Publication of KR20210140934A publication Critical patent/KR20210140934A/en
Application granted granted Critical
Publication of KR102397828B1 publication Critical patent/KR102397828B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F1/15165Polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds
    • G02F1/15245Transition metal compounds based on iridium oxide or hydroxide

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

본 발명은 외부 전원공급에 의하여 변색되는 전기 변색소자와 이의 구동방법에 관한 것으로, 본 발명에 따른 전기 변색소자는 서로 다른 이종의 변색물질이 혼합된 변색층이 외부 광에 의해 활성화됨으로써 변색 반응속도와 변색 시 광투과율 범위를 향상할 수 있고 소자의 구조적인 약화를 방지할 수 있는 전기 변색소자에 관한 것이다. The present invention relates to an electrochromic device that is discolored by external power supply and a method of driving the same. In the electrochromic device according to the present invention, a discoloration layer in which different discoloration materials are mixed is activated by external light, thereby changing a color change reaction rate It relates to an electrochromic device capable of improving the light transmittance range and preventing structural deterioration of the device during discoloration and discoloration.

Description

변색성능이 향상된 전기 변색소자 및 이의 구동방법{Electrochromic device having improved discoloring performance and driving method for thereof} Electrochromic device having improved discoloring performance and driving method for thereof

본 발명은 외부 전원공급에 의하여 변색되는 전기 변색소자와 이의 구동방법에 관한 것으로, 보다 상세하게는 서로 다른 변색물질이 혼합된 변색층이 특정 에너지를 가지는 외부 광에 의해 발생된 전자가 변색물질을 활성화시켜 변색 반응속도와 변색 시 광투과율의 범위를 향상할 수 있고 소자의 구조적인 약화를 방지할 수 있는 전기 변색소자와 이의 구동방법에 관한 것이다. The present invention relates to an electrochromic element that is discolored by external power supply and a driving method thereof, and more particularly, to a color-changing layer in which different color-changing materials are mixed, electrons generated by external light having a specific energy convert the color-changing material. The present invention relates to an electrochromic device capable of improving a color change reaction rate and a range of light transmittance during discoloration and preventing structural deterioration of the device by activation thereof and a driving method thereof.

전기변색(Electrochromism)이란 전압을 인가하면 전계방향에 의해 가역적으로 색상이 변하는 현상으로, 이러한 특성을 지닌 소자를 전기 변색소자 (Electrochromic Devices)라고 한다. 전기 변색소자는 전자의 이동에 의하여 색이 변하는 변색물질을 포함하여, 건축용 창유리나 자동차 미러, 고글 등의 광투과도 또는 반사도를 조절하는 용도로 이용되고 있으며, 최근에는 가시광선 영역에서의 색변화 뿐만 아니라 적외선 차단효과까지 있다는 것이 알려지면서 에너지 절약형 제품으로의 응용 가능성에 대해서도 큰 관심을 받고 있다.Electrochromism is a phenomenon in which the color changes reversibly according to the direction of an electric field when a voltage is applied, and devices having this characteristic are called electrochromic devices. Electrochromic devices, including color-changing materials that change color due to the movement of electrons, are used to control light transmittance or reflectivity of architectural windows, automobile mirrors, goggles, etc. However, as it is known that it has an infrared blocking effect, the possibility of application as an energy-saving product is also receiving great attention.

전기변색 소재는 소정 간격의 투명기판사이에 전극층, 전기 변색층, 전해질층 및 이온 저장층이 순차적으로 적층되어 외부 전원공급에 의하여 전기 변색층이 변식된다. 이와 같은 전원 변색층은 산화, 환원 반응에 의해 변색되는데, 사용되는 변색물질에 따라 변색 응답속도나 변색 시 광투과율 범위와 같은 변색성능이 제한된다. In the electrochromic material, an electrode layer, an electrochromic layer, an electrolyte layer, and an ion storage layer are sequentially stacked between a transparent substrate at a predetermined interval, and the electrochromic layer is changed by external power supply. The power discoloration layer is discolored by oxidation and reduction reactions, and discoloration performance such as discoloration response speed or light transmittance range during discoloration is limited depending on the discoloration material used.

또한, 변색소자 제조 후 소자를 활성화하기 위하여 높은 전압을 인가하여 일측 전극을 통하여 양이온을 주입하는 충전 과정이 필요한데, 충전 시 변색 반응에 사용되는 전압보다 높은 전압이 인가됨에 따라 전해질의 부반응이 발생하거나, 변색물질의 구조가 붕괴되어 소자의 내구성 및 신뢰성이 저하되는 문제가 있다. In addition, in order to activate the device after manufacturing the color-changing device, a charging process of injecting positive ions through one electrode by applying a high voltage is required. , there is a problem in that the structure of the color-changing material is collapsed and the durability and reliability of the device are lowered.

대한민국 공개특허공보 제10-2006-0092362호 (발명의 명칭: 전기 변색소자 및 그 제조방법)Republic of Korea Patent Publication No. 10-2006-0092362 (Title of the invention: electrochromic device and manufacturing method thereof)

본 발명은 상술한 문제점을 해결하고자 창안된 것으로서, 본 발명은 반응속도와 변색 시 광투과율 범위를 향상할 수 있고 소자의 구조적인 약화를 방지할 수 있는 전기 변색소자와 이의 구동방법을 제공하는데 그 목적이 있다.The present invention has been devised to solve the above problems, and the present invention provides an electrochromic device capable of improving reaction speed and a light transmittance range during color change, and preventing structural deterioration of the device, and a method for driving the same. There is a purpose.

이와 같은 과제를 달성하기 위하여, 본 발명은 전극층이 형성되어 마주보는 투명기판에 사이에 전기 변색층, 전해질층 및 이온 저장층이 적층되는 전기 변색소자로, 상기 전기 변색층은 서로 다른 종류의 변색물질이 혼합되며, 초기화시 소정의 파장과 세기를 가지는 외부 광이 조사되어 전자를 생성시키는 것을 특징으로 한다.In order to achieve the above object, the present invention provides an electrochromic device in which an electrode layer is formed and an electrochromic layer, an electrolyte layer, and an ion storage layer are stacked between the opposing transparent substrates, wherein the electrochromic layer has different types of color change The materials are mixed, and external light having a predetermined wavelength and intensity is irradiated during initialization to generate electrons.

본 발명에 있어서, 상기 전기 변색층은 변색 반응속도 또는 변색 시 광투과율이 상이한 변색물질이 혼합되어 형성된다. In the present invention, the electrochromic layer is formed by mixing color-changing materials having different color-changing reaction rates or light transmittance during color change.

본 발명에 있어서, 상기 전기 변색층은 WO3, TiO2, MoO3, viologen, PEDOT 중 2이상이 혼합되거나, NiO, Ir(OH)2, CoO2, ITO 중 2이상이 혼합되어 형성된다. 이때, TiO2/WO3는 1/9 ~ 3/7 비율로 혼합된다.In the present invention, the electrochromic layer is WO 3 , TiO 2 , MoO 3 , viologen, two or more of PEDOT are mixed, or NiO, Ir(OH) 2 , CoO 2 , ITO Two or more are mixed and formed. At this time, TiO 2 /WO 3 is mixed in a ratio of 1/9 to 3/7.

또한, 본 발명은 이와 같은 전기 변색소자에 외부 광을 조사하여 초기화한 이후, 외부 전원을 인가하여 상기 전기 변색층을 변색시키는 전기 변색소자 구동방법을 제공한다. 이때, 외부 광은 자외선 또는 가시광선으로 1,000~3,000mJ 세기로 조사된다. In addition, the present invention provides a method of driving an electrochromic device for initializing the electrochromic device by irradiating external light, and then applying an external power to change the color of the electrochromic layer. At this time, external light is irradiated with ultraviolet or visible light at an intensity of 1,000 to 3,000 mJ.

본 발명에 따르면, 변색특성이 상이한 서로 다른 종류의 변색물질을 혼합하여 형성된 변색층을 외부 광을 조사하여 활성화됨으로써 변색 반응속도와 변색 시 광투과율 범위를 향상할 수 있고, 또한 외부 광을 조사하여 변색층을 활성화시켜 소자의 초기화 전압을 낮출 수 있어 소자의 신뢰성과 내구성을 향상시킬 수 있다. According to the present invention, the color-changing layer formed by mixing different kinds of color-changing materials having different color-changing properties is activated by irradiating external light to improve the color-changing reaction rate and the light transmittance range during color change, and also by irradiating external light. By activating the discoloration layer, the initialization voltage of the device can be lowered, thereby improving the reliability and durability of the device.

도 1은 본 발명에 따른 전기 변색소자를 도시한 구성도이다.
도 2는 본 발명에 따른 전기 변색층을 모식적으로 도시한 도면이다.
도 3은 본 발명에 따른 실시예에 외부 광을 조사하여 초기화한 이후에 외부 전원을 인가하여 측정한 변색 시 광투과율과, 외부 광을 조사하지 않고 외부 전원을 인가하여 측정한 변색 시 광투과율을 비교한 그래프이다.
도 4는 본 발명에 따른 실시예와 비교예의 변색속도를 비교한 그래프이다.
1 is a configuration diagram illustrating an electrochromic device according to the present invention.
2 is a view schematically showing an electrochromic layer according to the present invention.
3 shows the light transmittance at the time of discoloration measured by applying an external power source after initialization by irradiating external light in an embodiment according to the present invention, and the light transmittance at the time of discoloration measured by applying an external power source without irradiating external light. This is a comparison graph.
4 is a graph comparing the discoloration rate of Examples according to the present invention and Comparative Examples.

이하, 첨부 도면을 참조하여 본 발명의 실시예를 상세히 설명한다. 그러나, 다음에 예시하는 본 발명의 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시예에 한정되는 것은 아니다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the embodiment of the present invention illustrated below may be modified in various other forms, and the scope of the present invention is not limited to the embodiment described below.

도 1은 본 발명에 따른 전기 변색소자의 구성을 도시한 도면으로, 이를 참조하면 본 발명에 따른 전기 변색소자는 소정 간격을 두고 대향하는 투명기판 (110,170) 사이에 전극층(120,160), 전기 변색층(130), 전해질층(140), 이온 저장층(150)이 적층되어 형성된다. 1 is a view showing the configuration of an electrochromic device according to the present invention. Referring to this, the electrochromic device according to the present invention includes electrode layers 120 and 160 and an electrochromic layer between opposing transparent substrates 110 and 170 at a predetermined interval. 130 , the electrolyte layer 140 , and the ion storage layer 150 are stacked.

투명기판 (110,170)은 태양광이 내부로 투과하도록 광투과율이 95% 이상인 투명 플라스틱이나 유리가 사용될 수 있다. 투명 플라스틱으로는 폴리 에틸렌 테레프탈레이트(PET), 폴리에틸렌 나프탈레이트(PEN), 폴리카보네이트(PC), 폴리프로필렌(PP), 폴리이미드(PI), 트리 아세틸셀룰로오스(TAC)가 사용될 수 있다. 기재층(10,50)은 10㎛~5mm 두께로 형성된다. The transparent substrates 110 and 170 may be made of transparent plastic or glass having a light transmittance of 95% or more so that sunlight is transmitted therein. As the transparent plastic, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polypropylene (PP), polyimide (PI), and triacetyl cellulose (TAC) may be used. The substrate layers 10 and 50 are formed to a thickness of 10 μm to 5 mm.

전극층(120,160)은 각각 상부 및 하부 투명기관(110,170)에 형성되어 빛의 투과를 방해하지 않으면서 전기가 흐를 수 있는 투명 전도성 재료로 형성되는데, ITO, ATO, FTO, IZO, ZnO, 구리 산화물, 아연 산화물, 티타늄 산화물과 같은 금속 산화물이 사용될 수 있다. 전극층(120,160)은 스퍼터링과 같은 공지의 코팅공정을 통해 투명기판(110,170)에 박막의 필름형태로 형성될 수 있는데, 바람직하게는 300nm~1,000nm 두께로 형성된다. The electrode layers 120 and 160 are formed in the upper and lower transparent organs 110 and 170, respectively, and are formed of a transparent conductive material that allows electricity to flow without interfering with the transmission of light, ITO, ATO, FTO, IZO, ZnO, copper oxide, A metal oxide such as zinc oxide or titanium oxide may be used. The electrode layers 120 and 160 may be formed in the form of a thin film on the transparent substrates 110 and 170 through a known coating process such as sputtering, and are preferably formed to a thickness of 300 nm to 1,000 nm.

전기 변색층(130)은 전극층(120) 상에 형성되어 공급되는 전원에 의해 주입되는 전하 또는 전해질 이온의 이동에 의해 변색되는 층으로, 환원되어 변색되는 환원 변색물질과 산화되어 변색되는 산화 변색물질 중 어느 하나로 이루어질 수 있다. 환원 변색물질로는 WO3, TiO2, MoO3, viologen, PEDOT가 사용될 수 있으며, 산화 변색물질로는 NiO, Ir(OH)2, CoO2, ITO이 사용될 수 있다. The electrochromic layer 130 is formed on the electrode layer 120 and is a layer that is discolored by the movement of electric charges or electrolyte ions that are injected by the power supplied. It can be done in any one of WO 3 , TiO 2 , MoO 3 , viologen, PEDOT can be used as a reducing color change material, and NiO, Ir(OH) 2 , CoO 2 , ITO as an oxidation color change material. can be used

전기 변색층(130)은 이와 같은 환원 또는 산화 변색물질로 형성 시에 변색 반응속도 또는 변색 시 광투과율 범위가 서로 다른 종류의 변색물질이 혼합되어 형성될 수 있다. 즉, 전기 변색층(130)은 환원 변색층으로 구현하는 경우에는 상술한 WO3, TiO2, MoO3, viologen 중 2 이상을 혼합하여 형성할 수 있고, 산화 변색층으로 구현하는 경우에는 NiO, Ir(OH)2, CoO2 중 2 이상을 혼합하여 형성할 수 있다. 이와 같이 본 발명의 전기 변색층(130)은 서로 다른 변색물질을 혼합함으로써 변색소자에 요구되는 변색성능을 충족시킬 수 있다. The electrochromic layer 130 may be formed by mixing different kinds of color-changing materials having different color-changing reaction rates or light transmittance ranges at the time of color change when formed of such a reducing or oxidizing color-changing material. That is, the electrochromic layer 130 may be formed by mixing two or more of the above-described WO 3 , TiO 2 , MoO 3 , and viologen when implemented as a reduced color-chromic layer, and when implemented as an oxidation-colored layer, NiO, Ir(OH) 2 , may be formed by mixing two or more of CoO 2 . As described above, the electrochromic layer 130 of the present invention can satisfy the color change performance required for the color change device by mixing different color change materials.

예를 들어, TiO2와 WO3를 혼합하여 전기 변색층(130)을 형성하는 경우 TiO2는 WO3보다 상대적으로 전자의 전달 속도가 빠르고, WO3는 TiO2에 비하여 상대적으로 변색 시 광투과율이 넓은 특징을 가지고 있다. 따라서, TiO2와 WO3를 일정 비율로 혼합하면 변색 반응속도와 변색 시 광투과율 범위를 함께 향상할 수 있는데, 이를 위하여 TiO2/WO3는 1/9 ~ 3/7 비율로 혼합되는 것이 바람직하다. 여기서, 혼합되는 TiO2 비율이 증가되면 변색 속도는 향상되지만 광투과율 범위가 감소하는 문제가 있다.For example, when the electrochromic layer 130 is formed by mixing TiO 2 and WO 3 , TiO 2 has a relatively faster electron transfer rate than WO 3 , and WO 3 has relatively higher light transmittance when discolored than TiO 2 . It has a wide range of features. Therefore, when TiO 2 and WO 3 are mixed in a certain ratio, the discoloration reaction rate and the light transmittance range at the time of discoloration can be improved together. For this, TiO 2 /WO 3 is preferably mixed in a ratio of 1/9 to 3/7. Do. Here, when the mixed TiO 2 ratio is increased, the discoloration rate is improved, but there is a problem in that the light transmittance range is reduced.

또한, 이와 같은 전기 변색층(130)은, 후술하는 바와 같이 서로 다른 변색물질의 밴드갭 차이로 인하여 특정에너지를 가지는 외부 광에 의한 활성화 효과가 나타날 수 있다. In addition, the electrochromic layer 130 may have an activation effect by external light having a specific energy due to a difference in band gaps of different color-changing materials, as will be described later.

도 2에 제1 변색물질(131)과 제2 변색물질(132)이 혼합되어 조성된 전기 변색층(130)이 도시되어 있는데, 서로 다른 변색물질이 혼합된 용액을 롤투롤 장비를 이용하여 슬롯코팅, 그라비아 코팅 등으로 투명 전도성 기판 상에 코팅 될 수 있으며, 바람직하게는 100nm~900nm 두께로 형성된다.FIG. 2 shows an electrochromic layer 130 formed by mixing a first color-changing material 131 and a second color-changing material 132. A solution in which different color-changing materials are mixed is slotted using a roll-to-roll device. It may be coated on the transparent conductive substrate by coating, gravure coating, etc., and is preferably formed to a thickness of 100 nm to 900 nm.

전해질층(140)은 전기 변색층(130)의 변색이나 탈색을 위해 수소 이온이나 리튬 이온의 이동 환경을 제공하는 층으로, 자외선 조사에 따라 경화될 수 있는 액상의 고분자 전해질이 사용될 수 있다. 자외선 경화수지는 PEG계 또는 우레탄계 올리고머, 저분자량의 PEGDMe, PEGDA, 광 또는 열 개시제가 혼합하여 조성될 수 있으며, 여기에 용매에 전해질염이 녹은 액체 전해질이 형성된다. 이때, 용매는 EC, PC, DMC, DEC, EMC 등을 단일 혹은 혼합되어 사용될 수 있으며, 전해질염은 H+, Li+, Na+, K+, Rb+, Cs+를 포함하는 화합물이 사용될 수 있는데, 예를 들어 LiClO4, LiBF4, LiAsF6, 또는 LiPF6 와 같은 리튬염 화합물이 단일 또는 복합되어 사용될 수 있다. 이와 같이 조성되는 전해질은 균일한 간격을 가지고 전기 변색층(130) 및 이온 저장층(150) 사이에 갭 코팅되어 층상으로 형성되는데, 바람직하게는 100㎛~500㎛로 형성된다.The electrolyte layer 140 is a layer that provides an environment for movement of hydrogen ions or lithium ions for discoloration or decolorization of the electrochromic layer 130 , and a liquid polymer electrolyte that can be cured by UV irradiation may be used. The UV-curable resin may be composed by mixing a PEG-based or urethane-based oligomer, low molecular weight PEGDMe, PEGDA, and a photo or thermal initiator, and a liquid electrolyte in which an electrolyte salt is dissolved in a solvent is formed. In this case, as the solvent, EC, PC, DMC, DEC, EMC, etc. may be used singly or in combination, and the electrolyte salt may be a compound containing H + , Li + , Na + , K + , Rb + , Cs + . However, for example, LiClO 4 , LiBF 4 , LiAsF 6 , or a lithium salt compound such as LiPF 6 may be used singly or in combination. The electrolyte composed in this way is formed in a layered manner by gap-coated between the electrochromic layer 130 and the ion storage layer 150 with uniform spacing, and preferably is formed in a thickness of 100 μm to 500 μm.

이온 저장층(150)은 전기 변색층(130)의 변색을 위한 가역적 산화, 환원 반응시, 전기 변색층(130)과의 전하 균형(charge balance)을 맞추기 위해 형성된다. 이온 저장층(150)은, 전기 변색층(130)과는 발색 특성이 상이한 변색물질, 즉, 상보적인 발색 특성을 가지는 변색물질을 포함하도록 형성된다. 전기 변색층(130)의 전하량에 따라 이온 저장층(150)의 두께가 형성되는데, 바람직하게 100nm~2000nm로 형성된다The ion storage layer 150 is formed to balance charge with the electrochromic layer 130 during reversible oxidation and reduction reactions for color change of the electrochromic layer 130 . The ion storage layer 150 is formed to include a color change material having a color development characteristic different from that of the electrochromic layer 130 , that is, a color change material having complementary color development characteristics. The thickness of the ion storage layer 150 is formed according to the amount of charge of the electrochromic layer 130, and is preferably formed in a range of 100 nm to 2000 nm.

이와 같이 투명기판(110,170) 사이에 전극(120,160), 전기 변색층(130), 전해질층(140), 이온 저장층(150)이 적층 형성되어 변색소자(100)가 제조되면, 전기 변색층(130)과 이온 저장층(150)에 전자를 여기시키도록 외부 광이 조사된다. In this way, the electrodes 120, 160, the electrochromic layer 130, the electrolyte layer 140, and the ion storage layer 150 are stacked between the transparent substrates 110 and 170 to form the color-changing device 100, and the electrochromic layer ( 130) and the ion storage layer 150 is irradiated with external light to excite electrons.

조사되는 외부 광은 전기 변색층(130)과 이온 저장층(150)의 전자를 충분하게 여기시킬 수 있도록 조사되는데, 본 발명의 전기 변색층(130)의 경우 서로 다른 변색물질이 혼합되어 형성됨에 따라 각각 변색물질의 밴드갭에 따라 전자를 여기시킬 수 있는 파장 대역의 광이 조사된다. 예를 들어 TiO2와 WO3가 혼합되는 경우, TiO2밴드갭은 3.1~3.94eV로 자외선 대역(315~400nm)의 광이 조사될 수 있으며, 밴드갭이 2.4eV인 WO3를 활성화하도록 가시광선 대역(400~700nm)의 광이 조사될 수 있는데, 자외선과 가시광선을 함께 조사하여 TiO2과 WO3를 모두 활성화시킬 수도 있다. The irradiated external light is irradiated to sufficiently excite electrons of the electrochromic layer 130 and the ion storage layer 150. In the case of the electrochromic layer 130 of the present invention, different color-changing materials are mixed and formed. Accordingly, light of a wavelength band capable of exciting electrons is irradiated according to the band gap of each color-changing material. For example, when TiO 2 and WO 3 are mixed, TiO 2 bandgap is 3.1 to 3.94 eV, and light in the ultraviolet band (315 to 400 nm) can be irradiated, and it is visible to activate WO 3 having a band gap of 2.4 eV. Light in the light band (400-700 nm) may be irradiated, and both TiO 2 and WO 3 may be activated by irradiating UV and visible light together.

그리고, 외부 광은 1,000~3,000mJ 세기로 조사되는데, 외부 광의 세기가 3,000mJ를 초과하면 전해질의 열화가 발생할 수 있고, 1,000mJ 미만이면 두께가 두꺼운 전기 변색층(130)에 충분한 활성이 이루어지지 않는 문제가 있다. And, external light is irradiated with an intensity of 1,000 to 3,000 mJ. If the intensity of external light exceeds 3,000 mJ, deterioration of the electrolyte may occur, and if it is less than 1,000 mJ, sufficient activity is not achieved in the thick electrochromic layer 130. there is no problem

이와 같이 제1 변색물질(131)과 제2 변색물질(132)이 혼합된 전기 변색층(130)에 제1 변색물질(131)의 전자를 여기시키는 광이 조사되면, 여기된 전자의 일부는 전해질 내부의 1가 양이온(H+, Li+ 등)과 반응하고, 여기된 전자의 나머지는 제2 변색물질(132)과 반응한 후 전해질 내부의 1가 양이온과 반응하여 활성화된다. As described above, when light that excites electrons of the first color-changing material 131 is irradiated to the electrochromic layer 130 in which the first color-changing material 131 and the second color-changing material 132 are mixed, some of the excited electrons are It reacts with monovalent cations (H+, Li+, etc.) inside the electrolyte, and the remainder of the excited electrons react with the second color-changing material 132 and then react with monovalent cations inside the electrolyte to be activated.

따라서, 초기화 이후 전기 변색층(130)의 원활한 변색반응이 가능함은 물론, 활성화된 전기 변색층(130)과 이온 저장층(150)의 전위 차이로 인하여 활성화 되지 않은 경우의 초기화 전압에 비하여 40~60%의 낮은 전압으로도 초기화가 가능하여,높은 전압의 인가로 발생하는 전해질의 부반응과 접합 계면의 손상을 야기하지 않아 소자의 내구성 및 신뢰성을 향상시킬 수 있다.Therefore, a smooth discoloration reaction of the electrochromic layer 130 after initialization is possible, as well as 40 ~ compared to the initialization voltage when not activated due to a potential difference between the activated electrochromic layer 130 and the ion storage layer 150 Since initialization is possible even with a low voltage of 60%, the durability and reliability of the device can be improved without causing side reactions of the electrolyte and damage to the junction interface that occur when a high voltage is applied.

<실시예><Example>

한 쌍의 10㎛ 두께의 폴리에틸렌 테레프탈레이트(PET) 투명기판의 표면에 ITO 전극층을 500nm로 각각 형성하였다. 그리고, TiO2/WO3이 1/3로 혼합된 변색용액을 조성한 후, 전극층이 형성된 어느 하나의 투명기판 상에 600nm 두께로 코팅하여 전기 변색층을 형성하였으며, 다른 투명기판 상에 이온 변색층을 형성하였다. 그리고, EC에 LiClO4을 용해한 액체 전해질을 조성한 후, 전기 변색층과 이온 변색층을 사이에 액체 전해질을 갭 코팅하여 한 쌍의 투명기판을 합지하여 변색소자를 제조하였다.An ITO electrode layer of 500 nm was formed on the surface of a pair of 10 μm thick polyethylene terephthalate (PET) transparent substrates, respectively. Then, a color-changing solution in which TiO 2 /WO 3 was mixed in 1/3 was prepared, and then coated to a thickness of 600 nm on any one of the transparent substrates on which the electrode layer was formed to form an electrochromic layer, and an ionic color-changing layer on the other transparent substrate. was formed. Then, a liquid electrolyte in which LiClO 4 was dissolved in EC was prepared, and a liquid electrolyte was gap-coated between the electrochromic layer and the ion-chromic layer, and a pair of transparent substrates were laminated to manufacture a color-changing device.

<비교예><Comparative example>

WO3로 전기 변색층을 형성한 것이 이외에는 실시예와 동일하다. It is the same as in Example except that the electrochromic layer was formed of WO 3 .

<광투과율 측정><Measurement of light transmittance>

먼저 실시예에 자외선을 10분 동안 조사하여 소자를 초기화한 후, 전원을 인가하여 광투과율을 측정하였고(도 3의 붉은색 그래프), 다음으로, 자외선 조사 없이 전원을 인가하여 광투과율을 측정하였다(도 3의 푸른색 그래프). 이때, 광투과율은 UV/Vis-spectrometer를 사용하여 투과율을 측정하였다.First, the device was initialized by irradiating UV light for 10 minutes in Example, then power was applied to measure light transmittance (red graph in FIG. 3 ), and then, power was applied without UV irradiation to measure light transmittance. (blue graph in FIG. 3). In this case, the light transmittance was measured using a UV/Vis-spectrometer.

도 3에 나타나는 바와 같이, 광을 조사하여 전기 변색층을 활성화한 경우에는, 가시광선 투과율이 25~62%인 반면에, 광을 조사하지 않은 경우는 가시광선 투과율이 22~57%로, 광을 조사하여 소자를 활성화한 경우 광투과율 범위가 넓었다.As shown in FIG. 3 , when the electrochromic layer is activated by irradiating light, the visible light transmittance is 25 to 62%, whereas when the light is not irradiated, the visible light transmittance is 22 to 57%, When the device was activated by irradiation, the light transmittance range was wide.

<변색속도 측정><Measurement of discoloration speed>

실시예 및 비교예에 각각 자외선을 10분 동안 조사하여 소자를 초기화한 후, 전원을 인가하여 광투과율을 측정하였다(도 4의 붉은색 그래프-실시예, 푸른색 그래프-비교예). 도 4에 나타난 바와 같이, 실시예는 비교예와 비교하여 빠르게 변색됨을 알 수 있다.After initializing the device by irradiating each of the Examples and Comparative Examples with ultraviolet light for 10 minutes, power was applied to measure the light transmittance (red graph in FIG. 4 - Example, blue graph - Comparative example). As shown in Figure 4, it can be seen that the Example is discolored faster than the Comparative Example.

이와 같은 결과는 변색속도가 빠른 TiO2와 광투과율 범위가 넓은 WO3를 혼합하여 형성된 실시예의 전기 변색층이 광 조사에 따라 활성화된 이후 전원이 인가되어 변색 시 넓은 범위의 광투과율과 빠른 변색속도를 보임을 알 수 있으며, 또한 낮은 초기화 전압을 인가하더라도 우수한 변색성능이 발현됨을 확인할 수 있다.These results show that the electrochromic layer of the embodiment formed by mixing TiO 2 with a fast discoloration rate and WO 3 with a wide light transmittance range is activated by light irradiation, and then power is applied to change color when the light transmittance is wide and fast discoloration rate. It can be seen that the color change performance is excellent even when a low initialization voltage is applied.

이상과 같이 설명한 본 발명은 기재된 실시 예에 한정되는 것은 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 변형예 또는 수정예들은 본 발명의 특허청구범위에 속한다 해야 할 것이다.The present invention described above is not limited to the described embodiments, and it is apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the present invention. Accordingly, it should be said that such variations or modifications fall within the scope of the claims of the present invention.

110, 170 : 투명기판 120, 160 : 전극층
130 : 변색층 131 : 제1 변색물질
132 : 제2 변색물질 140 : 전해질층
150 : 이온 저장층
110, 170: transparent substrate 120, 160: electrode layer
130: color-changing layer 131: first color-changing material
132: second color-changing material 140: electrolyte layer
150: ion storage layer

Claims (7)

전극층이 형성되어 마주보는 투명기판 사이에 전기 변색층, 전해질층 및 이온 저장층이 적층되는 전기 변색소자에 있어서,
상기 전기 변색층은,
WO3, TiO2, MoO3, viologen 및 PEDOT 중 2 이상의 환원 변색물질을 포함하여 형성된 단일층 구조, 또는 NiO, Ir(OH)2 및 CoO2 중 2 이상의 산화 변색물질을 포함하여 형성된 단일층 구조를 가지며,
제조 후 초기화시 상기 2 이상의 변색물질 중 어느 하나의 변색물질을 여기시키는 파장의 외부광, 또는 어느 2 이상의 변색물질을 각각 여기시키는 파장의 외부광 각각을 조사하여 전자를 활성화시키는 것을 특징으로 하며,
상기 2 이상의 변색물질은 변색 반응속도 또는 변색 시 광투과율 범위가 상이한, 전기 변색소자.
In an electrochromic device in which an electrode layer is formed and an electrochromic layer, an electrolyte layer, and an ion storage layer are stacked between opposing transparent substrates,
The electrochromic layer is
WO 3 , TiO 2 , MoO 3 , a single-layer structure formed including two or more reducing color change materials among viologen and PEDOT, or a single-layer structure formed including two or more oxidation color change materials among NiO, Ir(OH) 2 and CoO 2 has,
It is characterized in that the electrons are activated by irradiating external light of a wavelength that excites any one of the two or more color-changing materials or external light of a wavelength that respectively excites any two or more color-changing materials during initialization after manufacturing,
The two or more color-changing materials have different color-changing reaction rates or light transmittance ranges during color-changing, electrochromic devices.
삭제delete 제1항에 있어서,
상기 전기 변색층은,
WO3, TiO2, MoO3, viologen, PEDOT 중 2이상이 혼합되어 형성되는 것을 특징으로 하는 전기 변색소자.
The method of claim 1,
The electrochromic layer is
WO 3 , TiO 2 , MoO 3 , viologen, electrochromic device, characterized in that formed by mixing two or more of PEDOT.
제1항에 있어서,
상기 전기 변색층은,
NiO, Ir(OH)2, CoO2 2이상이 혼합되어 형성되는 것을 특징으로 하는 전기 변색소자.
The method of claim 1,
The electrochromic layer is
In NiO, Ir(OH) 2 , CoO 2 An electrochromic device characterized in that two or more are mixed and formed.
제3항에 있어서,
TiO2/WO3는 1/9 ~ 3/7 비율로 혼합되는 것을 특징으로 하는 전기 변색소자.
4. The method of claim 3,
TiO 2 /WO 3 Electrochromic device, characterized in that mixed in a ratio of 1/9 to 3/7.
전극층이 형성되어 마주보는 투명기판 사이에 전기 변색층, 전해질층 및 이온 저장층이 적층되며, 상기 전기 변색층은 WO3, TiO2, MoO3, viologen 및 PEDOT 중 2 이상의 환원 변색물질을 포함하여 형성된 단일층 구조, 또는 NiO, Ir(OH)2 및 CoO2 중 2 이상의 산화 변색물질을 포함하여 형성된 단일층 구조를 갖는 전기 변색소자 구동방법에 있어서,
상기 전기 변색소자 제조 후 상기 2 이상의 변색물질 중 어느 하나의 변색물질을 여기시키는 파장의 외부광, 또는 어느 2 이상의 변색물질을 각각 여기시키는 파장의 외부광 각각을 조사하여 전자를 활성화시키는 초기화 단계; 및
초기화 후 상기 전기 변색소자에 외부 전원을 인가하여 상기 전기 변색층을 변색시키는 단계를 포함하는 것을 특징으로 하며,
상기 2 이상의 변색물질은 변색 반응속도 또는 변색 시 광투과율 범위가 상이한, 전기 변색소자 구동방법.
An electrode layer is formed and an electrochromic layer, an electrolyte layer, and an ion storage layer are stacked between the opposing transparent substrates, and the electrochromic layer includes two or more reducing color change materials among WO 3 , TiO 2 , MoO 3 , viologen and PEDOT. In the method for driving an electrochromic device having a single-layer structure formed, or a single-layer structure formed including two or more oxidation color change materials among NiO, Ir(OH) 2 and CoO 2 ,
an initialization step of activating electrons by irradiating external light having a wavelength to excite any one of the two or more color-changing materials or external light having a wavelength for exciting each of the two or more color-changing materials after the electrochromic device is manufactured; and
and discoloring the electrochromic layer by applying an external power to the electrochromic element after initialization,
The method for driving an electrochromic device, wherein the two or more color-changing materials have different color-changing reaction rates or light transmittance ranges during color change.
제6항에 있어서,
상기 외부 광은 자외선 또는 가시광선으로 1,000~3,000mJ 세기로 조사되는 것을 특징으로 하는 전기 변색소자 구동방법.
7. The method of claim 6,
The method for driving an electrochromic device, characterized in that the external light is irradiated with an intensity of 1,000 to 3,000 mJ with ultraviolet or visible light.
KR1020200057736A 2020-05-14 2020-05-14 Electrochromic device having improved discoloring performance and driving method for thereof KR102397828B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200057736A KR102397828B1 (en) 2020-05-14 2020-05-14 Electrochromic device having improved discoloring performance and driving method for thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200057736A KR102397828B1 (en) 2020-05-14 2020-05-14 Electrochromic device having improved discoloring performance and driving method for thereof

Publications (2)

Publication Number Publication Date
KR20210140934A KR20210140934A (en) 2021-11-23
KR102397828B1 true KR102397828B1 (en) 2022-05-12

Family

ID=78694975

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200057736A KR102397828B1 (en) 2020-05-14 2020-05-14 Electrochromic device having improved discoloring performance and driving method for thereof

Country Status (1)

Country Link
KR (1) KR102397828B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034957A1 (en) * 2022-08-08 2024-02-15 에스케이씨 주식회사 Electrochromic element and window device comprising same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060092362A (en) 2005-02-17 2006-08-23 주식회사 엘지화학 Electrochromic device and process for fabricating the same
KR20160127866A (en) * 2015-04-27 2016-11-07 곽준영 Method for manufacturing electrochromic layer and electrochromic device
KR102160686B1 (en) * 2017-10-26 2020-09-29 주식회사 오리온 Electro-chromic device
KR101994807B1 (en) * 2017-12-05 2019-06-28 한국에너지기술연구원 Method of manufacturing electrolyte membrane and electrochromic device, the device thereof

Also Published As

Publication number Publication date
KR20210140934A (en) 2021-11-23

Similar Documents

Publication Publication Date Title
JP6798098B2 (en) Electrochromic device and its manufacturing method
JP6665210B2 (en) Electrochromic device and smart window with electrochromic device
JP7080250B2 (en) Electrochromic film and electrochromic devices including it
KR102149672B1 (en) Electrochromic device
KR102038184B1 (en) An Electrochromic Device
EP3686666B1 (en) Method for manufacturing electrochromic device
CN104122730A (en) Reflection type electrochromism device
JP2006030820A (en) Display device and display method
JP2017026750A (en) Electrochromic device, light control glasses, and method for manufacturing the electrochromic device
KR102397828B1 (en) Electrochromic device having improved discoloring performance and driving method for thereof
KR102079142B1 (en) An Electrochromic Device
KR102335565B1 (en) Electrochromic device
KR102034444B1 (en) Electrochromic Device
KR102010734B1 (en) An Electrochromic Device
KR102126683B1 (en) method for operating an electrochromic device
US11156892B2 (en) Electrochromic device comprising hybrid electrolyte layer and method for fabricating the same
KR102126684B1 (en) method for operating an electrochromic device
KR102468146B1 (en) Electrochromic device and manufacturing method thereof
JP5526887B2 (en) Electrochromic display device
JP5445338B2 (en) Method for manufacturing electrochromic display element
KR102452903B1 (en) Electrochromic device capable of uniform discoloration
KR102334482B1 (en) Sealing method of device and chromic device and solar cell device thereby
KR102522644B1 (en) Electrochromic device having dispersed chromic complex object with core-shell structure
US20190258127A1 (en) Electrochromic device and manufacturing method therefor
KR102042797B1 (en) Electrochromic device with hybrid electrolyte and method of fabricating the same

Legal Events

Date Code Title Description
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant