TW200905723A - Semiconductor gas driving out apparatus - Google Patents

Semiconductor gas driving out apparatus Download PDF

Info

Publication number
TW200905723A
TW200905723A TW96126634A TW96126634A TW200905723A TW 200905723 A TW200905723 A TW 200905723A TW 96126634 A TW96126634 A TW 96126634A TW 96126634 A TW96126634 A TW 96126634A TW 200905723 A TW200905723 A TW 200905723A
Authority
TW
Taiwan
Prior art keywords
exhaust gas
gas
semiconductor
treatment chamber
gas introduction
Prior art date
Application number
TW96126634A
Other languages
Chinese (zh)
Inventor
Hiroshi Imamura
Original Assignee
Kanken Techno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanken Techno Co Ltd filed Critical Kanken Techno Co Ltd
Priority to TW96126634A priority Critical patent/TW200905723A/en
Publication of TW200905723A publication Critical patent/TW200905723A/en

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

The present invention provides a semiconductor gas driving out apparatus, which can effectively and certainly decompose semiconductor gas to be harmless and is easy to be maintained. The semiconductor gas driving out apparatus is characterized in having a reactor 14, which comprises: a tube-shaped reactor body 30, whose inside, surrounded by fire-resisting material, disposes an off-gas processing chamber for thermal-decomposing semiconductor off-gas X, and whose bottom sets up a gas inlet 40 and a gas outlet 42 at positions closed to each other; an electric heater 32 for heating the off-gas processing chamber; and a gas introducing tube 34, whose upper end is disposed on an upper part of the off-gas processing chamber 38, and whose lower end inserts into the gas inlet in a protruding way toward to the outside of the reactor body 30, so as to introduce the semiconductor off-gas X to the upper part of the off-gas processing chamber 38.

Description

200905723 九、發明說明 【發明所屬之技術領域】 本發明係關於一種將由半導體製造裝置所排出之對人 體或環境有害的半導體排氣進行熱分解而予以無害化的半 導體排氣處理裝置。 【先前技術】 由半導體製造裝置排出的半導體排氣(gas)係對人 體或環境有害,而且具有可燃性、爆炸性,對於槪金屬具 有高腐蝕性。以該半導體排氣的代表例而言’係列舉週期 表III、IV、V族元素的氫化物,例如SiH4、PH3、B2H6 等’而且在製造步驟中加以使用但未反應的SiH2Ch、。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 [Prior Art] The semiconductor gas discharged from the semiconductor manufacturing apparatus is harmful to humans or the environment, and is flammable and explosive, and is highly corrosive to base metals. In the representative example of the semiconductor exhaust gas, a series of hydrides of Group III, IV, and V elements, such as SiH4, PH3, B2H6, etc., and SiH2Ch which is used in the production step but are not reacted,

SiHCl3、Si2H6、TEOS (四乙氧基矽烷,tetraethoxysilane )等Si化合物亦包含在該排氣中。 以往,半導體排氣係在利用大量氮氣予以稀釋後’使 該排氣濃度在爆炸下限以下,另外進行在與大量過剩的空 氣相混合以後,直接釋出至大氣的處理。 但是,目前對於環境保護的認識提升’並且環境管理 變得較爲嚴謹,如前所述之大氣釋出方法係趨向嚴格限制 的方向。因此,變得必須積極地將半導體排氣予以除害。 因此,當將半導體排氣釋出至大氣中時,使用半導體排氣 處理裝置,俾以至少將有毒氣體的濃度降低至容許値以下 〇 在此,以半導體排氣的處理方法而言’可大致分爲濕 -4 - 200905723 式法、吸附法、加熱分解法及燃燒法等4種方法’若由功 能、初始成本(initial cost )、運轉成本(running cost ) 、設置空間(installation space) '安全性等所有方面來 看’並沒有完美的處理法。 其中,加熱分解法尤其係在反應爐內配設棒狀的電熱 加熱器(electrical heater ),藉由該加熱器所發出的高熱 ,將半導體排氣導入形成在反應爐內的加熱區域(heated region),且將該氣體進行熱分解的電熱加熱分解法係極 爲符合作業現場的需求(need ),而在多數現場予以採用 。其係基於若使用該加熱分解法,可對應在半導體製造現 場所發生的所有種類的半導體排氣的除害之故。 然而,在使用該加熱分解法的半導體排氣處理裝置中 ,由於使用將電轉換成熱的電熱加熱器作爲熱源,因此耗 費很多電費。 此外,在作業上’由於在反應爐內產生粉塵作爲反應 產生物,因此若囤積一定程度的粉塵,會有不僅半導體排 氣處理裝置,連半導體製造裝置的運轉亦會暫時停止,以 進行清除粉塵的清掃作業(亦即維修(maintenance))的 問題。其係基於有因熱分解的結果所產生的氧化物的粉塵 堆積在反應爐內面而使半導體排氣的流通路徑閉塞之虞之 故。 此外,在使用加熱分解法的半導體排氣處理裝置中, 以在半導體排氣的加熱分解中限制反應的要因而言,有供 給空氣量、賦予反應系統內的能量(電熱加熱器的表面溫 -5- 200905723 度)、在反應爐內移動的氣體的容量及速度,但除此以外 ’亦會受到排氣與空氣的亂流所造成的混合情形影響。亦 即’若排氣與空氣在層流移動,反應效率會降低,因此因 亂流而將兩者相混合在提高反應效率方面是重要的。尤其 在電熱加熱分解法中,無法獲得如氣體燃燒法的情形般因 火焰燃燒所造成的較強亂流,爲了進行充分的氣流攪拌, 必須另外具備使亂流發生的手段。 在此’爲了在氣體移動中發生亂流,在通路配置障礙 物是有效的方法,但如上所示之障礙物的存在會提高通氣 阻力,並且容易堆積因反應所產生的粉塵,由此會有增加 通氣阻力而招致惡性循環的問題。 此外,如上所述,半導體排氣對於金屬具有高腐蝕性 ,因而必須對於配設在反應爐內的電熱加熱器進行使其表 面免於腐鈾的防蝕處理,但是即使進行如上所示的防蝕處 理,亦難以完全防止腐蝕,而亦會有必須依使用態樣(亦 即進行熱分解的氣體種類)的不同,而頻繁替換該電熱加 熱器的問題。 接著,在使用加熱分解法的半導體排氣處理裝置中, 由於會有電熱加熱器所發出的高熱蓄積在反應爐內之上部 的傾向,因此當欲將反應爐內全體維持在可進行半導體排 氣之熱分解的溫度範圍時,必須配合相對形成低溫的反應 爐內下部的溫度而使電熱加熱器動作。如此一來,在已形 成充分高溫的反應爐內的上部,係持續電熱加熱器3 4所 造成的不需要的加熱’而亦有平白消耗電氣能量的問題。 -6 - 200905723 【發明內容】 (發明所欲解決之課題) 本發明係鑑於如上所示之問題點而硏創者’其課題爲 :第一、使反應爐內中之半導體排氣的熱分解效率提升’ 第二、使反應爐內的維修負擔減輕。換言之,本發明之主 要課題在提供一種可有效且確實地將半導體排氣進行分解 並予以無害化之維修性佳的半導體排氣處理裝置。 (解決課題之手段) 申請專利範圍第1項記載的發明係一種半導體排氣處 理裝置10, 「係具備反應爐14,其構成爲包含:筒狀反 應爐本體3 0,在由耐火材料所包圍的內部設置將半導體排 氣X予以熱分解的排氣處理室38,並且在底部彼此接近 的位置開設氣體導入口 40與氣體排出口 42;電熱加熱器 32,用以將排氣處理室38加熱;以及氣體導入管34,將 其上端配設在排氣處理室3 8的上部,並且以使其下端朝 反應爐本體30的外部突出的方式插入氣體導入口 40,而 將半導體排氣X導入排氣處理室38之上部」。 在該發明中,係在反應爐1 4底部彼此接近的位置開 設氣體導入口 40與氣體排出口 42’而且在氣體導入口 40 插入氣體導入管34 ’因此當半導體排氣X在氣體導入管 3 4的內部流通時,在該排氣X、以及在排氣處理室3 8內 予以熱分解後之高溫的處理完畢半導體排氣X之間進行熱 200905723 交換。 此外,氣體導入管34係將半導體排氣X供給至處於 高熱蓄積傾向的排氣處理室38的上部者。因此,透過氣 體導入管34而導入至排氣處理室38的半導體排氣X係確 實曝露在高熱,而可有效使該半導體排氣X熱分解。 申請專利範圍第2項記載的發明係在如申請專利範圍 第1項記載的半導體排氣處理裝置1〇中,「電熱加熱器 32係內建在反應爐本體30或氣體導入管34之至少任一者 」,藉此可確實防止因氟化氫(HF )等腐蝕性氣體而使電 熱加熱器3 2腐蝕。 申請專利範圍第3項記載的發明係在如申請專利範圍 第1項或第2項記載的半導體排氣處理裝置10中,「設 有刮除器(scraper ) 36,其沿著氣體導入管34的內周面 及反應爐本體30的內周面,在非接觸狀態下進行移動」 〇 在該發明中,藉由刮除器3 6,經常(間歇性)拂落欲 附著在氣體導入管34之內周面及反應爐本體30之內周面 的粉塵,而可防止粉塵堆積在該內周面。此外,由於刮除 器3 6沿著氣體導入管3 4及反應爐本體3 0的內周面旋轉 ,因此經常攪弄氣體導入管34及反應爐本體30內的半導 體排氣X而形成亂流。結果,在排氣處理室3 8內確保足 夠的滯留時間,而可確實地使半導體排氣X熱分解。 申請專利範圍第4項記載的發明係在如申請專利範圍 第1項或第2項之半導體排氣處理裝置1〇中「利用用以 -8- 200905723 將排氣處理室3 8的上部進行加熱的上段加熱器元件( upper heater element) 32A、及用以將排氣處理室38的下 部進行加熱的下段加熱器元件(lower heater element) 3 2B構成電熱加熱器32,並且在反應爐14設置:用以測 定排氣處理室3 8上部之溫度的上部溫度感測器(upper temperature sensor) 50;以及用以測定排氣處理室38下 部之溫度的下部溫度感測器(lower temperature sensor) 5 2,根據由上部溫度感測器5 0所測定的溫度資料(dtat ) 來控制上段加熱器元件32A的輸出,且根據由下部溫度感 測器52所測定的溫度資料來控制下段加熱器元件32B的 輸出」。 在該發明中,係可分別獨立地對排氣處理室3 8的上 部與下部進行溫度控制。因此,可進行以下控制:減少用 以將呈蓄積高熱傾向之排氣處理室3 8的上部進行加熱的 上段加熱器元件3 2 A的輸出,增加將相對上易形成低溫之 排氣處理室38的下部進行加熱的下段加熱器元件32B的 輸出。結果可抑制無謂的電能消耗,有效地將排氣處理室 38整體保持在可進行半導體排氣X之熱分解的均勻溫度 範圍。 申請專利範圍第5項記載的發明係在如申請專利範圍 第1項或第2項記載的半導體排氣處理裝置1 〇中「設置 複數個氣體導入口 40以及插入該氣體導入口的氣體導入 管34」’藉此亦可對應大容量之半導體排氣X的處理。 -9- 200905723 (發明之效果) 根據本發明,可在氣體導入管的內外進行半導體排氣 X的熱交換,且可有效地使該半導體排氣X進行熱分解。 此外,藉由將電熱加熱器內建在反應爐本體或氣體導 入管之至少任一者,可確實防止該電熱加熱器腐鈾。 再者,藉由設置沿著氣體導入管的內周面及反應爐本 體的內周面而在非接觸狀態下以圓周狀進行移動的刮除器 ,可防止粉塵堆積在氣體導入管及反應爐本體的內周面, 並且可在排氣處理室內形成亂流,而可提高半導體排氣的 熱分解效率。 接著,利用用以將排氣處理室的上部進行加熱的上段 加熱器元件、及用以將排氣處理室的下部進行加熱的下段 加熱器元件構成電熱加熱器,並且在反應爐設置:用以測 定排氣處理室上部之溫度的上部溫度感測器;以及用以測 定排氣處理室下部之溫度的下部溫度感測器,根據由上部 溫度感測器所測定的溫度資料來控制上段加熱器元件的輸 出,且根據由下部溫度感測器所測定的溫度資料來控制下 段加熱器元件的輸出,藉此可分別獨立地對排氣處理室的 上部與下部進行溫度控制,可抑制無謂的電能消耗,有效 地將排氣處理室整體保持在可進行半導體排氣X之熱分解 的均勻溫度範圍。 因此,可提供一種有效且確實地將半導體排氣進行分 解而予以無害化之維修性佳的半導體排氣處理裝置。 -10- 200905723 【實施方式】 以下按照圖示實施例說明本發明。第1圖係顯示本發 明裝置之流程的槪略圖(fl〇w sheet )。如該圖所示,本 實施例的半導體排氣處理裝置丨〇大致上係由入口洗氣器 (inlet scrubber ) 12、反應爐 14、出口 洗氣器(outlet scrubber ) 16、排氣風扇(exhaust fan ) 18 及水槽( storage tank) 20 等所構成。 入口洗氣器12係用以去除導入反應爐14之半導體排 氣X所含粉塵或水溶性氣體等者,具有:直管型洗氣器( scrubber)本體12a;以及設置在前述洗氣器本體12a內 部的頂部附近,且將水W或藥液形成噴霧狀予以撒放的 噴霧噴嘴(spray nozzle) 12b。 該入口洗氣器12的頂部係透過入口導管(iniet duct )22而與工廠的半導體製造裝置(未圖示)相連結,將由 半導體製程所排出的各種半導體排氣X導入該入口洗氣器 1 2的頂部。 此外,在本實施例中,入口洗氣器12係構成爲:與 水槽20分開配設,並且利用水洗氣體供給配管24及排水 管26將兩者相連接而將入口洗氣器12的排水送入水槽20 ,但亦可將該入口洗氣器12立設在水槽20上而使入口洗 氣器1 2的內部與水槽20的內部直接相連通。 接著,在噴霧噴嘴12b與水槽20之間設置循環水泵 28,將貯留在水槽20內的水W抽吸至噴霧噴嘴12b。 反應爐14係藉由電熱加熱分解法將半導體排氣X進 -11 - 200905723 行分解的裝置’如第2圖所示’由反應爐本體3〇、電熱加 熱器32、氣體導入管34及刮除器36等所構成。 反應爐本體30大致上係由陶瓷等耐火材料所構成的 筒狀內襯構件30a、及由岩絨(rock w〇〇1 )或陶瓷纖維( ceramic fiber)等所構成’由圍繞前述內襯構件3〇a之外 周的隔熱構件30b及不鏽鋼(stainless-steel) (SUS)等 所構成’由圍繞前述隔熱構件30b之外周的外皮套罩( outer jactet) 30c所構成,內襯構件3〇a的內部空間密閉 ,而形成排氣處理室3 8。 此外’在該反應爐本體30的底部中央開設有氣體導 入口 40,並且在接近該氣體導入口 40的位置開設有氣體 排出口 42。接著,在氣體導入口 40係插入有用以將半導 體排氣X導入排氣處理室38內的氣體導入管34,在氣體 排出口 4 2係連接有用以將經排氣處理室3 8予以分解處理 的半導體排氣X送給至後述之出口洗氣器16的分解氣體 送給配管44。 在此’在該分解氣體送給配管44的上游側安裝有用 以噴射在其內部利用循環水泵2 8所抽吸的水W的淋洗器 4 4 a 〇 電熱加熱器32係將排氣處理室38內加熱而使半導體 排氣X進行熱分解者。以構成該電熱加熱器3 2的加熱器 元件而言’係列舉如將碳化矽模塑成中實或中空棒狀體的 發熱體,或如第2圖所示,將鎳絡(Nichrome)線或康泰 爾(Kanthal )(山特維克 aB ( Sandvik AB )公司註冊商 -12 - 200905723 標)線等金屬線捲繞成線圈(C 0 i 1 )狀的發熱體等。 在本實施例之半導體排氣處理裝置10中,如第2圖 所示’電熱加熱器3 2係由用以將排氣處理室3 8的上部進 行加熱的上段加熱器元件3 2 A、及用以將排氣處理室3 8 的下部進行加熱的下段加熱器元件3 2 B所構成。 此外’該上段加熱器元件32A及下段加熱器元件32B (亦即電熱加熱器32)係內建在反應爐本體30的內部, 更具體而言係內建在內襯構件30a的內表面側。 接著,在上段加熱器元件32A及下段加熱器元件32B 之各元件的端部設有供電部32a及32b,該供電部32a及 3 2b之各部係透過電線46a及46b而與電力控制手段48相 連接。該電力控制手段48係由定序器(sequencer )等所 構成,用以控制供給至上段加熱器元件3 2 A及下段加熱器 元件32B之各元件的電力。 在此,在本實施例之半導體排氣處理裝置1〇中,在 反應爐1 4設有用以測定排氣處理室3 8上部之溫度的上部 溫度感測器50 ;以及用以測定排氣處理室3 8下部之溫度 的下部溫度感測器5 2 ’利用上部溫度感測器5 0及下部溫 度感測器5 2所測定出的溫度資料係分別透過配線5 0 a及 5 2 a而提供至電力控制手段4 8。因此’根據利用上部溫度 感測器5 0及下部溫度感測器5 2所測定出的溫度資料’對 供給至上段加熱器元件3 2 A及下段加熱器元件3 2 B之各元 件的電力量進行控制。 氣體導入管34係由如哈氏合金(HASTELLOY®)( -13- 200905723 哈氏合金公司(Haynes International)註冊商標)般耐熱 性/耐腐蝕性佳的金屬或陶瓷等所構成的管狀構件,配置 在其上端(前端)接近反應爐本體30之頂棚面的位置。 此外,在該氣體導入管34的下端(後端)係連接有水洗 氣體供給配管24 ’其由入口洗氣器1 2的下端導出且將經 入口洗氣器12予以洗淨的半導體排氣X送入該氣體導入 管34。 刮除器3 6係用以沿著氣體導入管3 4的內周面及反應 爐本體3 0的內周面而以非接觸狀態以圓周狀進行移動, 將附著在氣體導入管34及反應爐本體30之內周面的粉塵 予以去除,並且在排氣處理室38內產生亂流者。在本實 施例中,該刮除器3 6係由:安裝在反應爐14之頂棚部分 的馬達(motor) 54;透過旋轉軸5 6而與馬達54相連接 的旋轉板5 8 ;由與氣體導入管34之內周面僅具有少許間 隔,而由旋轉板58垂設的第1攪拌棒60;以及由與反應 爐本體3 0之內周面僅具有少許間隔,而由旋轉板5 8垂設 的第2攪拌棒62所構成。 第1攪拌棒6 0與氣體導入管3 4內周面之間的間隔、 以及第2攪拌棒62及反應爐本體3 0內周面之間的間隔若 適當調整即可,但以1mm至2 mm較爲適合。此外,第1 攪拌棒60及第2攪拌棒62的材質係以不鏽鋼(Sus )較 爲適合,但若爲具耐熱性、且獲得充分之機械強度、熱撞 擊強度的材質,則亦可使用其他材質,例如氧化鋁( almina )、多銘紅柱石(mullite)等陶瓷等。 -14- 200905723 此外,第1攪拌棒60及第2攪拌棒62的配置或數目 、長度、形狀等亦可按照半導體排氣X的成分(組成)或 濃度、風量等而適當改變。 在如上所示所構成的刮除器36中,當使馬達54驅動 時,安裝在旋轉板58的第〗攪拌棒60及第2攪拌棒62 係沿著氣體導入管34的內周面及反應爐本體30的內周面 而以非接觸狀態以圓周狀進行旋轉移動。在此,藉由在馬 達5 4設置使該馬達5 4僅在預先設定的預定時間動作的計 時器(timer )裝置(未圖示),例如以使刮除器36每1 小時動作1分鐘的方式,可使刮除器3 6間歇性運轉。 出口洗氣器16係用以去除在反應爐14內將半導體排 氣X予以熱分解時所衍生的粉塵或水溶性氣體等,並且# 變爲高溫的半導體排氣X予以冷卻者,具有:在其下端^ 接有分解氣體送給配管44的直管型洗氣器本體1 6a ·,以及 以與半導體排氣X流通方向相對向的方式由上方噴霧清 '淨 的水(以下稱爲「新水NW」)或藥液的朝下的噴霧噴嘴 16b (參照第1圖)。 在本實施例中,係將出口洗氣器1 6立設在用以貯留 水W或藥液的水槽20上,且將由噴霧噴嘴1 6b所噴霧的 新水NW送入水槽20,但亦可將該出口洗氣器16與水槽 20分別配設並且利用配管將兩者相連接而將出口洗氣器 1 6的排水送入水槽2 0。 接著,出口洗氣器16的頂部出口係透過通氣装置( breather ) 64而與用以將處理完畢的半導體排氣X釋出至 -15- 200905723 大氣中的排氣風扇1 8相連接。 水槽20係用以貯留供給至入口洗氣器1 2或淋洗器 44a等的水W’而且回收由入口洗氣器12、淋洗器44a及 出口洗氣器16等所排出的水W的容器體。 在該水槽2 0由於經常供給利用出口洗氣器1 6之噴霧 噴嘴16予以噴霧的新水NW,因此以不貯留預定量以上的 水W的方式,使剩餘水溢流(overflow )且送至排水處理 裝置(未圖示)。 其中,在除了本實施例之半導體排氣處理裝置10中 之反應爐1 4以外的其他部分,由於保護各部免於受到半 導體排氣X所含有或者因該排氣X分解所產生的氫氟酸 (hydrofluoric acid)等腐蝕性成分所造成的腐触,而施 行藉由聚氯乙烯(poiyviny1 chloride) '聚乙烯( polyethylene)、不飽和聚醋(unsaturated polyester)樹 脂及含氟樹脂(fluorine Plastic)等之耐腐餓性內襯( lining )或塗佈(coating )。 接著說明本實施例之半導體排氣處理裝置1 0的作用 。由半導體製造裝置排出的半導體排氣X係透過入口導管 22而導入入口洗氣器12內’與由噴霧噴嘴12b所散佈的 霧狀的水w相接觸,且將該氣體F中的粉塵由噴霧噴嘴 1 2b與水W相接觸而予以捕捉且被送入水槽20。此外’ 排氣X中的水溶性成分亦與其同時地在水W中予以吸收 去除。 由入口洗氣器1 2予以洗淨的低溫濕潤的半導體排氣 -16- 34 ° 200905723 X係透過水洗氣體供給配管24而被送入氣體導入管 排氣X係將氣體導入管34上升,在與在該上升中5 分解後的半導體排氣X之間進行熱分解,且在充分預 時間點由氣體導入管3 4的前端釋出至排氣處理室3 8 在充分預熱後,由氣體導入管34的前端釋出至 爐本體30內(具體而言係排氣處理室38內)的排氣 保持在充分的高溫,且在因刮除器3 6而產生亂流的 處理室3 8內立即予以熱分解。 此時,當在半導體排氣X含有氟化合物時’會因 體排氣X的熱分解而發生氟(F2),並且該氟(F2) 氣中的氫或水立即反應’而產生劇毒而且極易溶於水 化氫(HF)。 如上所示予以熱分解的半導體排氣X接著係經由 排出口 42而被導入分解氣體送給配管44。 在分解氣體送給配管44內安裝有淋洗器44a ’由 直接將水W噴霧在由排氣處理室3 8予以分解之最高 分子運動最活躍之狀態的半導體排氣x ’因此半導體 X與水W可以較高的機率氣液接觸。亦即可以較高機 因半導體排氣X的熱分解而衍生的粉塵或水溶性成分 如H F )與水W氣液接觸。因此,可有效地使粉塵或 性成分在水W中溶解/吸收’而可減輕在後述之出 氣器16的排氣處理負荷’並且可防止粉塵等堆積在 氣體送給配管4 4內。此外,可在將由反應爐14予以 解之高溫的半導體排氣X送至出口洗氣器16之前預 以熱 熱的 內。 反應 X係 排氣 半導 與空 的氟 氣體 於可 溫且 排氣 率使 (例 水溶 口洗 分解 熱分 先冷 -17- 200905723 卻’而可使用抑制耐熱性之廉價品(例如在表面設置耐腐 鈾性樹脂被覆膜的不鏽鋼材等)作爲形成該淋洗器44a以 後之排氣流通路徑的材料。 其中’由淋洗器44a所噴霧的水W係在分解氣體送給 配管44流下之後’透過出口洗氣器16的下端部而被送至 水槽2 0。 接著,藉由淋洗器44a有效去除粉塵或水溶性水分而 且予以冷卻的半導體排氣X係被導入至出口洗氣器16, 且由出口洗氣器1 6內的下側朝向上側流通。 接著,在出口洗氣器16內,藉由新水NW進行充分 的洗淨與溫度降低,而完成有害成分之除害的處理完畢的 半導體排氣X係透過排氣風扇18而釋出至大氣中。 根據本實施例之半導體排氣處理裝置10,由於在反應 爐14底部彼此接近的位置開設氣體導入口 40與氣體排出 口 42,而且在氣體導入口 40插入有氣體導入管34,因此 當半導體排氣X在氣體導入管34的內部流通時,可在該 排氣X與在排氣處理室38內經熱分解之高溫的處理完畢 半導體排氣X之間進行熱交換。因此可有效地使半導體排 氣X進行熱分解。 此外,由於電熱加熱器32內建於反應爐本體30,因 此可確實防止因氟化氫(HF )等腐蝕性氣體而使電熱加熱 器32腐蝕,而可降低因電熱加熱器32破損以致電熱器的 替換頻率。 再者,由於在反應爐14設有沿著氣體導入管34的內 -18- 200905723 周面及反應爐本體30的內周面而以非接觸狀態以圓周狀 進行移動的刮除器3 6,因此經常(間歇性)將欲附著在氣 體導入管34之內周面及反應爐本體30之內周面的粉塵拂 落,而可防止粉塵堆積在該內周面。此外,由於刮除器36 沿著氣體導入管34及反應爐本體30的內周面旋轉,因此 經常攪弄氣體導入管34及反應爐本體30內的半導體排氣 X而形成亂流。結果可在排氣處理室3 8內確保足夠的滯 留時間,而確實地使半導體排氣X進行熱分解。 接著,由於(1 )利用用以將排氣處理室3 8的上部進 行加熱的上段加熱器元件3 2 A、及用以將排氣處理室3 8 的下部進行加熱的下段加熱器元件3 2B構成電熱加熱器 3 2,並且(2 )在反應爐14設置:用以測定排氣處理室3 8 上部之溫度的上部溫度感測器5 0 ;以及用以測定排氣處理 室3 8下部之溫度的下部溫度感測器52,( 3 )根據由上部 溫度感測器5 0所測定的溫度資料來控制上段加熱器元件 32A的輸出,且根據由下部溫度感測器52所測定的溫度 資料來控制下段加熱器元件32B的輸出,因此可分別獨立 地對排氣處理室3 8的上部與下部進行溫度控制。因此, 可進行以下控制:減少用以將呈蓄積高熱傾向之排氣處理 室3 8的上部進行加熱的上段加熱器元件32 A的輸出,增 加將相對於排氣處理室3 8之上部易形成相對低溫之排氣 處理室3 8的下部進行加熱的下段加熱器元件3 2B的輸出 ,可抑制平白的電能消耗,有效地將排氣處理室3 8整體 保持在可進行半導體排氣X之熱分解的均句溫度範圍。 -19 - 200905723 其中’在上述實施例中’係顯示將電熱加熱器32內 建在反應爐本體3 0內的情形’但亦可將該電熱加熱器3 2 內建在以厚壁模塑的氣體導入管34內。在該情形下,亦 可確實防止因氟化氫(HF )等腐蝕性氣體而使電熱加熱器 3 2腐餓的情形。此外’當將電熱加熱器3 2內建在氣體導 入管34時,可降低逸脫至反應爐14外部的熱的量(所謂 熱損失(heat loss))’而可更加提升半導體排氣X的熱 分解效率。 此外,在上述之例中’係顯示在反應爐本體30分別 設置1個氣體導入口 40及氣體導入管34的情形,但設在 該反應爐本體30的氣體導入口 40及插入該氣體導入口 40 的氣體導入管34的數目亦可爲複數。其係基於藉由設置 複數個氣體導入口 40及氣體導入管34,亦可對應大容量 之半導體排氣X的處理之故。 此外,在上述之例中,係顯示將電熱加熱器32內建 於反應爐本體3 0的情形,但以使例如應進行除害處理的 半導體排氣X中之腐鈾性成分所佔比例較低的方式,當電 熱加熱器3 2的腐蝕不會造成問題時’亦可將電熱加熱器 32設在排氣處理室38內。 【圖式簡單說明】 第1圖係顯示本發明之一實施例之半導體排氣處理裝 置之流程的槪略圖。 第2圖係顯示本發明之一實施例之反應爐之槪略的槪 -20- 200905723 略剖面圖。 【主要元件符號說明】 10:半導體排氣處理裝置 1 2 :入口洗氣器 12a :洗氣器本體 1 2 b :噴霧噴嘴 1 4 :反應爐 1 6 :出口洗氣器 1 6 a :洗氣器本體 1 6 b :噴霧噴嘴 1 8 :排氣風扇 2 0 :水槽 22 :入口導管 24 :水洗氣體供給配管 2 8 :循環水泵 30 :反應爐本體 3 0 a :內襯構件 3 〇 b :隔熱構件 3 0 c :外皮套罩 3 2 :電熱加熱器 32A :上段加熱器元件 32B :下段加熱器元件 32a、 32b:供電部 -21 200905723 34 :氣體導入管 3 6 :刮除器 3 8 :排氣處理室 40 :氣體導入口 4 2 :氣體排出口 44 =分解氣體送給配管 44a :淋洗器 46a、 46b:電線 4 8 :電力控制手段 5 0 :上部溫度感測器 5 0 a :配線 5 0 b :配線 52 :下部溫度感測器 5 2 a :配線 5 4 :馬達 5 6 :旋轉軸 5 8 :旋轉板 6 〇 :第1攪拌棒 62 :第2攪拌棒 64 :通氣裝置 A :外氣 W :水 X :排氣 -22Si compounds such as SiHCl3, Si2H6, TEOS (tetraethoxysilane) are also contained in the exhaust gas. Conventionally, after the semiconductor exhaust system is diluted with a large amount of nitrogen gas, the exhaust gas concentration is equal to or lower than the lower limit of the explosion, and the mixture is directly discharged to the atmosphere after being mixed with a large excess of the vapor phase. However, the current awareness of environmental protection has increased' and environmental management has become more rigorous. The atmospheric release methods described above tend to be strictly restricted. Therefore, it has become necessary to actively destroy the semiconductor exhaust gas. Therefore, when the semiconductor exhaust gas is released into the atmosphere, the semiconductor exhaust gas treatment device is used, so that at least the concentration of the toxic gas is lowered to the allowable enthalpy below, and in the case of the semiconductor exhaust gas treatment method, Divided into four methods: wet-4 - 200905723 type method, adsorption method, heating decomposition method and combustion method. 'If function, initial cost, running cost, installation space' safety There is no perfect treatment for all aspects of sex and so on. Among them, the thermal decomposition method is particularly characterized in that a rod-shaped electric heater is disposed in the reaction furnace, and the semiconductor exhaust gas is introduced into a heating region formed in the reaction furnace by the high heat generated by the heater. The electrothermal decomposition method that thermally decomposes the gas is in line with the needs of the job site and is used in most sites. This is based on the fact that the thermal decomposition method can be used to eliminate the damage of all types of semiconductor exhaust gas generated in the semiconductor manufacturing site. However, in the semiconductor exhaust gas treatment apparatus using the thermal decomposition method, since an electrothermal heater that converts electricity into heat is used as a heat source, much electricity is consumed. In addition, in the operation, since dust is generated as a reaction product in the reaction furnace, if a certain amount of dust is accumulated, not only the semiconductor exhaust gas treatment device but also the operation of the semiconductor manufacturing device is temporarily stopped to remove the dust. The problem of cleaning operations (ie maintenance). This is based on the fact that the dust of the oxide generated as a result of thermal decomposition is deposited on the inner surface of the reactor to block the flow path of the semiconductor exhaust gas. Further, in the semiconductor exhaust gas treatment device using the thermal decomposition method, in order to limit the reaction in the thermal decomposition of the semiconductor exhaust gas, there is an amount of supplied air and energy in the reaction system (surface temperature of the electrothermal heater - 5- 200905723 degrees), the capacity and speed of the gas moving in the reactor, but otherwise it will be affected by the mixing caused by the turbulent flow of exhaust gas and air. That is, if the exhaust gas and the air move in a laminar flow, the reaction efficiency is lowered. Therefore, it is important to mix the two in a turbulent flow to improve the reaction efficiency. In particular, in the electrothermal heating decomposition method, it is not possible to obtain a strong turbulent flow due to flame combustion as in the case of the gas combustion method, and in order to perform sufficient airflow agitation, it is necessary to additionally provide a means for generating turbulent flow. Here, in order to cause turbulent flow during gas movement, it is effective to arrange an obstacle in the passage, but the presence of the obstacle as shown above increases the ventilation resistance, and it is easy to accumulate the dust generated by the reaction, thereby Increase the ventilation resistance and cause a vicious circle. Further, as described above, the semiconductor exhaust gas is highly corrosive to the metal, and therefore it is necessary to perform an anti-corrosion treatment for the surface of the electrothermal heater disposed in the reaction furnace to protect the surface from uranium, but even if the anti-corrosion treatment as described above is performed It is also difficult to completely prevent corrosion, and there is also a problem that the electric heater is frequently replaced depending on the type of use (that is, the type of gas to be thermally decomposed). Next, in the semiconductor exhaust gas treatment device using the thermal decomposition method, since the high heat generated by the electrothermal heater tends to accumulate in the upper portion of the reaction furnace, it is desirable to maintain the entire semiconductor combustion chamber in the reaction furnace. In the temperature range of thermal decomposition, it is necessary to operate the electrothermal heater in accordance with the temperature in the lower portion of the reactor in which the low temperature is formed. As a result, in the upper portion of the reactor which has formed a sufficiently high temperature, the unnecessary heating caused by the electrothermal heater 34 is continued, and there is also a problem that the electric energy is consumed in a flush manner. -6 - 200905723 SUMMARY OF THE INVENTION (Problems to be Solved by the Invention) The present invention has been made in view of the above problems, and the subject matter is: first, thermal decomposition of semiconductor exhaust gas in a reaction furnace Efficiency improvement' Second, the maintenance burden in the reactor is reduced. In other words, the main problem of the present invention is to provide a semiconductor exhaust gas treatment device which is capable of effectively and reliably decomposing and decomposing semiconductor exhaust gas and which is excellent in maintainability. (Means for Solving the Problem) The invention described in claim 1 is a semiconductor exhaust gas treatment device 10, which is provided with a reaction furnace 14 configured to include a cylindrical reactor body 30 surrounded by a refractory material An exhaust treatment chamber 38 that thermally decomposes the semiconductor exhaust gas X is disposed, and a gas introduction port 40 and a gas discharge port 42 are opened at positions close to each other at the bottom; and an electrothermal heater 32 for heating the exhaust treatment chamber 38 And the gas introduction pipe 34, the upper end of which is disposed in the upper portion of the exhaust gas treatment chamber 38, and is inserted into the gas introduction port 40 so that the lower end thereof protrudes toward the outside of the reactor body 30, and the semiconductor exhaust gas X is introduced. The upper part of the exhaust treatment chamber 38". In the invention, the gas introduction port 40 and the gas discharge port 42' are opened at positions close to each other at the bottom of the reaction furnace 14, and the gas introduction pipe 34' is inserted in the gas introduction port 40. Therefore, when the semiconductor exhaust gas X is in the gas introduction pipe 3 At the time of internal circulation of 4, heat 200905723 is exchanged between the exhaust gas X and the processed semiconductor exhaust gas X which is thermally decomposed in the exhaust gas treatment chamber 38. Further, the gas introduction pipe 34 supplies the semiconductor exhaust gas X to the upper portion of the exhaust gas treatment chamber 38 which is in a high heat accumulation tendency. Therefore, the semiconductor exhaust gas X introduced into the exhaust gas treatment chamber 38 through the gas introduction pipe 34 is surely exposed to high heat, and the semiconductor exhaust gas X can be effectively thermally decomposed. In the semiconductor exhaust gas treatment device 1 according to the first aspect of the invention, the electrothermal heater 32 is built in at least the reactor body 30 or the gas introduction pipe 34. In addition, it is possible to surely prevent the electrothermal heater 32 from being corroded by a corrosive gas such as hydrogen fluoride (HF). In the semiconductor exhaust gas treatment device 10 according to the first or second aspect of the invention, the invention is provided with a scraper 36 along the gas introduction pipe 34. The inner peripheral surface and the inner peripheral surface of the reactor body 30 are moved in a non-contact state. In the present invention, the scraper 3 6 is often (intermittently) slumped to adhere to the gas introduction pipe 34. Dust on the inner circumferential surface and the inner circumferential surface of the reactor body 30 prevents dust from accumulating on the inner circumferential surface. Further, since the scraper 36 rotates along the inner peripheral surface of the gas introduction pipe 34 and the reactor body 30, the semiconductor exhaust gas X in the gas introduction pipe 34 and the reactor body 30 is often stirred up to form a turbulent flow. . As a result, a sufficient residence time is ensured in the exhaust gas treatment chamber 38, and the semiconductor exhaust gas X can be reliably thermally decomposed. The invention described in claim 4 is in the semiconductor exhaust gas treatment device 1 of the first or second aspect of the patent application, "heating the upper portion of the exhaust gas treatment chamber 38 with -8-200905723" The upper heater element 32A and the lower heater element 3 2B for heating the lower portion of the exhaust treatment chamber 38 constitute the electrothermal heater 32, and are disposed in the reaction furnace 14: An upper temperature sensor 50 for measuring the temperature of the upper portion of the exhaust treatment chamber 38; and a lower temperature sensor for measuring the temperature of the lower portion of the exhaust treatment chamber 38. The output of the upper heater element 32A is controlled based on the temperature data (dtat) measured by the upper temperature sensor 50, and the lower heater element 32B is controlled based on the temperature data measured by the lower temperature sensor 52. Output". In the invention, the temperature control of the upper and lower portions of the exhaust gas treatment chamber 38 can be independently performed. Therefore, it is possible to control the output of the upper stage heater element 3 2 A for heating the upper portion of the exhaust gas treatment chamber 38 which is in a tendency to accumulate high heat, and to increase the exhaust gas treatment chamber 38 which is relatively easy to form a low temperature. The lower portion carries the output of the heated lower stage heater element 32B. As a result, unnecessary power consumption can be suppressed, and the exhaust gas treatment chamber 38 as a whole can be effectively maintained in a uniform temperature range in which thermal decomposition of the semiconductor exhaust gas X can be performed. In the semiconductor exhaust gas treatment device 1 according to the first or second aspect of the invention, the invention provides a plurality of gas introduction ports 40 and a gas introduction pipe inserted into the gas introduction port. 34"' This can also be used for the processing of large-capacity semiconductor exhaust X. -9-200905723 (Effect of the Invention) According to the present invention, heat exchange of the semiconductor exhaust gas X can be performed inside and outside the gas introduction pipe, and the semiconductor exhaust gas X can be efficiently thermally decomposed. Further, by electrically building the electrothermal heater in at least one of the reactor body or the gas introduction pipe, the electric heater can be surely prevented from being uranium. Further, by providing a scraper that moves circumferentially in a non-contact state along the inner circumferential surface of the gas introduction pipe and the inner circumferential surface of the reactor body, dust can be prevented from accumulating in the gas introduction pipe and the reaction furnace. The inner peripheral surface of the body can form turbulent flow in the exhaust gas treatment chamber, and the thermal decomposition efficiency of the semiconductor exhaust gas can be improved. Next, the upper heater element for heating the upper portion of the exhaust treatment chamber and the lower heater element for heating the lower portion of the exhaust treatment chamber constitute an electrothermal heater, and are disposed in the reaction furnace: An upper temperature sensor for measuring the temperature of the upper portion of the exhaust treatment chamber; and a lower temperature sensor for measuring the temperature of the lower portion of the exhaust treatment chamber, and controlling the upper heater according to the temperature data measured by the upper temperature sensor Output of the component, and controlling the output of the lower heater element according to the temperature data measured by the lower temperature sensor, thereby independently controlling the temperature of the upper and lower portions of the exhaust treatment chamber, respectively, suppressing unnecessary electrical energy The consumption effectively maintains the entire exhaust gas treatment chamber in a uniform temperature range in which thermal decomposition of the semiconductor exhaust gas X can be performed. Therefore, it is possible to provide a semiconductor exhaust gas treatment apparatus which is effective and sure to decompose the semiconductor exhaust gas and which is harmless and excellent in maintainability. -10-200905723 [Embodiment] Hereinafter, the present invention will be described in accordance with the illustrated embodiments. Fig. 1 is a schematic diagram showing the flow of the apparatus of the present invention. As shown in the figure, the semiconductor exhaust gas treatment device of the present embodiment is substantially composed of an inlet scrubber 12, a reaction furnace 14, an outlet scrubber 16, and an exhaust fan (exhaust). Fan ) 18 and storage tank 20 etc. The inlet scrubber 12 is for removing dust or water-soluble gas contained in the semiconductor exhaust gas X introduced into the reaction furnace 14, and has a straight tube type scrubber body 12a, and a gas scrubber body Near the top of the inside of 12a, the water spray W or the chemical liquid is sprayed into a spray nozzle 12b. The top of the inlet scrubber 12 is connected to a semiconductor manufacturing apparatus (not shown) of the factory through an inlet duct 22, and various semiconductor exhaust gases X discharged from the semiconductor process are introduced into the inlet scrubber 1 . The top of 2. Further, in the present embodiment, the inlet scrubber 12 is configured to be disposed separately from the water tank 20, and is connected to the water by the washing gas supply pipe 24 and the drain pipe 26 to discharge the drain of the inlet scrubber 12. The water tank 20 is introduced into the water tank 20, but the inlet scrubber 12 may be erected on the water tank 20 to directly communicate the inside of the inlet scrubber 12 with the inside of the water tank 20. Next, a circulating water pump 28 is provided between the spray nozzle 12b and the water tank 20, and the water W stored in the water tank 20 is sucked to the spray nozzle 12b. The reactor 14 is a device for decomposing the semiconductor exhaust X into -11 - 200905723 by electrothermal heating decomposition method, as shown in Fig. 2, from the reactor body 3, the electrothermal heater 32, the gas introduction tube 34, and the scraping The divider 36 is constructed. The reactor body 30 is substantially a cylindrical lining member 30a made of a refractory material such as ceramics, and is composed of rock wool or ceramic fiber, etc. The heat insulating member 30b and the stainless steel (SUS) of the outer periphery of 3〇a are constituted by an outer jacket 7c surrounding the outer periphery of the heat insulating member 30b, and the lining member 3 is formed. The internal space of 〇a is sealed to form an exhaust treatment chamber 38. Further, a gas introduction port 40 is opened at the center of the bottom of the reactor body 30, and a gas discharge port 42 is opened at a position close to the gas introduction port 40. Next, a gas introduction pipe 34 for introducing the semiconductor exhaust gas X into the exhaust gas treatment chamber 38 is inserted into the gas introduction port 40, and is connected to the gas discharge port 42 to separate the exhaust gas treatment chamber 38. The semiconductor exhaust gas X is supplied to the decomposition gas of the outlet scrubber 16 to be described later, to the pipe 44. Here, the eluent 4 4 a is used to spray the water W sucked by the circulating water pump 28 inside the upstream side of the decomposition gas supply pipe 44. The electric heating heater 32 is an exhaust treatment chamber. The semiconductor exhaust gas X is thermally decomposed by heating in 38. In the case of the heater element constituting the electrothermal heater 32, a series of heat generating bodies for molding tantalum carbide into a solid or hollow rod-shaped body or, as shown in Fig. 2, a nickel-nickel (Nichrome) line Or a metal wire such as Kanthal (Sandvik AB (registered company -12 - 200905723)) is wound into a heating element of a coil (C 0 i 1 ). In the semiconductor exhaust gas treatment device 10 of the present embodiment, as shown in Fig. 2, the electrothermal heater 32 is composed of an upper heater element 3 2 A for heating the upper portion of the exhaust treatment chamber 38, and The lower stage heater element 3 2 B is used to heat the lower portion of the exhaust gas treatment chamber 38. Further, the upper stage heater element 32A and the lower stage heater element 32B (i.e., the electrothermal heater 32) are built in the inside of the reactor body 30, more specifically, the inner surface side of the inner liner member 30a. Next, power supply portions 32a and 32b are provided at the ends of the respective elements of the upper heater element 32A and the lower heater element 32B, and the respective portions of the power supply portions 32a and 32b are transmitted through the electric wires 46a and 46b to the power control means 48. connection. The power control means 48 is constituted by a sequencer or the like for controlling the electric power supplied to each of the upper heater element 3 2 A and the lower heater element 32B. Here, in the semiconductor exhaust gas treatment apparatus 1 of the present embodiment, the reaction furnace 14 is provided with an upper temperature sensor 50 for measuring the temperature of the upper portion of the exhaust treatment chamber 38; and for measuring the exhaust treatment. The lower temperature sensor of the lower portion of the chamber 38 is used to provide the temperature data measured by the upper temperature sensor 50 and the lower temperature sensor 52 through the wirings 5 0 a and 5 2 a, respectively. To the power control means 48. Therefore, the amount of power supplied to each of the upper heater element 3 2 A and the lower heater element 3 2 B is based on the temperature data measured by the upper temperature sensor 50 and the lower temperature sensor 52. Take control. The gas introduction pipe 34 is a tubular member made of a metal or ceramic such as HASTELLOY® (registered trademark of Haynes International Co., Ltd.), which is excellent in heat resistance and corrosion resistance. At the upper end (front end) thereof, it is close to the ceiling surface of the reactor body 30. Further, at the lower end (rear end) of the gas introduction pipe 34, a washing gas supply pipe 24' is connected to the semiconductor exhaust X which is led out from the lower end of the inlet scrubber 12 and which is cleaned by the inlet scrubber 12. This gas introduction pipe 34 is fed. The scraper 36 is configured to move in a circumferential direction in a non-contact state along the inner circumferential surface of the gas introduction pipe 34 and the inner circumferential surface of the reactor body 30, and is attached to the gas introduction pipe 34 and the reaction furnace. The dust on the inner peripheral surface of the body 30 is removed, and a turbulent flow is generated in the exhaust treatment chamber 38. In the present embodiment, the scraper 36 is composed of: a motor 54 mounted on the ceiling portion of the reaction furnace 14; a rotating plate 58 connected to the motor 54 through the rotating shaft 56; The inner circumferential surface of the introduction pipe 34 has only a slight interval, and the first stirring bar 60 which is suspended by the rotary plate 58; and the inner circumferential surface of the reaction furnace body 30 has only a slight interval, and is suspended by the rotating plate 58. The second stirring rod 62 is provided. The interval between the first agitating bar 60 and the inner peripheral surface of the gas introduction pipe 344 and the interval between the second agitating bar 62 and the inner circumferential surface of the reactor body 30 may be appropriately adjusted, but 1 mm to 2 Mm is more suitable. Further, the materials of the first agitating rod 60 and the second agitating rod 62 are preferably stainless steel (Sus), but other materials having heat resistance and sufficient mechanical strength and thermal impact strength may be used. Materials such as ceramics such as alumina (almina) and mullite. In addition, the arrangement, the number, the length, the shape, and the like of the first stirring rod 60 and the second stirring rod 62 may be appropriately changed in accordance with the composition (composition), concentration, air volume, and the like of the semiconductor exhaust gas X. In the scraper 36 configured as described above, when the motor 54 is driven, the first stirring rod 60 and the second stirring rod 62 attached to the rotary plate 58 are along the inner peripheral surface of the gas introduction pipe 34 and reacted. The inner circumferential surface of the furnace body 30 is rotationally moved in a circumferential direction in a non-contact state. Here, by providing a timer device (not shown) for operating the motor 5 4 only for a predetermined time set in advance, for example, the scraper 36 is operated for 1 minute every hour. In this way, the scraper 36 can be operated intermittently. The outlet scrubber 16 is for removing dust or water-soluble gas generated when the semiconductor exhaust gas X is thermally decomposed in the reaction furnace 14, and is cooled by the semiconductor exhaust gas X which becomes a high temperature, and has: The lower end is connected to the straight-tube type scrubber main body 16a of the decomposed gas supply pipe 44, and the water is cleaned from above by the direction opposite to the direction in which the semiconductor exhaust X flows (hereinafter referred to as "new" Water NW") or the downward spray nozzle 16b of the chemical solution (see Fig. 1). In the present embodiment, the outlet scrubber 16 is erected on the water tank 20 for storing the water W or the chemical liquid, and the new water NW sprayed by the spray nozzle 16b is sent to the water tank 20, but The outlet scrubber 16 and the water tank 20 are disposed separately, and the drains of the outlet scrubber 16 are sent to the water tank 20 by connecting the two by a pipe. Next, the top outlet of the outlet scrubber 16 is connected to an exhaust fan 18 for discharging the processed semiconductor exhaust X to the atmosphere of -15-200905723 through a breather 64. The water tank 20 is for storing water W' supplied to the inlet scrubber 12 or the rinser 44a, and recovers the water W discharged from the inlet scrubber 12, the rinser 44a, the outlet scrubber 16, and the like. Container body. Since the fresh water NW sprayed by the spray nozzle 16 of the outlet scrubber 16 is frequently supplied to the water tank 20, the remaining water is overflowed and sent to the water W without storing a predetermined amount or more. Drainage treatment device (not shown). In addition, in the portion other than the reaction furnace 14 in the semiconductor exhaust gas treatment device 10 of the present embodiment, the hydrofluoric acid which is generated by the semiconductor exhaust gas X or decomposed by the exhaust gas X is protected from the respective portions. Corrosion caused by corrosive components such as hydrofluoric acid, and by polyvinylidene chloride, unsaturated polyester resin, fluorine plastic, etc. Resistant to hunger or lining or coating. Next, the action of the semiconductor exhaust gas treatment device 10 of the present embodiment will be described. The semiconductor exhaust gas X discharged from the semiconductor manufacturing apparatus is introduced into the inlet scrubber 12 through the inlet duct 22 to be in contact with the misty water w dispersed by the spray nozzle 12b, and the dust in the gas F is sprayed. The nozzle 1 2b is caught in contact with the water W and is sent to the water tank 20. Further, the water-soluble component in the exhaust gas X is also absorbed and removed in the water W at the same time. The low-temperature wet semiconductor exhaust gas to be cleaned by the inlet scrubber 1 - 16 - 34 ° 200905723 The X-type is sent to the gas introduction pipe exhaust gas through the water-washing gas supply pipe 24, and the gas introduction pipe 34 is raised. Thermal decomposition is performed between the semiconductor exhaust gas X after the decomposition 5 is decomposed, and is released from the front end of the gas introduction pipe 34 to the exhaust gas treatment chamber 3 at a sufficient pre-time point. The exhaust gas discharged from the front end of the introduction pipe 34 into the furnace body 30 (specifically, in the exhaust gas treatment chamber 38) is maintained at a sufficiently high temperature, and the processing chamber 3 8 is turbulent due to the scraper 36. Immediately thermally decompose inside. At this time, when the semiconductor exhaust gas X contains a fluorine compound, fluorine (F2) is generated due to thermal decomposition of the bulk exhaust gas X, and hydrogen or water in the fluorine (F2) gas immediately reacts to generate highly toxic and extremely Soluble in hydration hydrogen (HF). The semiconductor exhaust gas X thermally decomposed as described above is then introduced into the decomposition gas supply pipe 44 through the discharge port 42. In the decomposition gas supply pipe 44, a rinser 44a is installed. The semiconductor exhaust gas x' is sprayed directly in the state in which the highest molecular motion decomposed by the exhaust treatment chamber 38 is the most active. W can have a higher probability of gas-liquid contact. That is, dust or a water-soluble component such as H F which is derived from thermal decomposition of the semiconductor exhaust X can be brought into contact with water and gas. Therefore, the dust or the sexual component can be effectively dissolved/absorbed in the water W, and the exhaust gas treatment load of the gas discharge device 16 to be described later can be reduced, and dust or the like can be prevented from accumulating in the gas supply pipe 4 4 . Further, it is possible to preheat the semiconductor exhaust gas X at a high temperature which is resolved by the reaction furnace 14 before it is sent to the outlet scrubber 16. The X-ray exhaust semi-conducting and the empty fluorine gas are allowed to be warmed and the exhaust rate is made (for example, the water-soluble mouth washes and decomposes the heat, and the heat is first cooled -17-200905723), and an inexpensive product that suppresses heat resistance can be used (for example, on the surface setting) The stainless steel material of the uranium-resistant resin coating film is used as a material for forming the exhaust gas flow path after the rinsing device 44a. The water W sprayed by the rinsing device 44a flows down the decomposition gas supply pipe 44. Then, it is sent to the water tank 20 through the lower end portion of the outlet scrubber 16. Next, the semiconductor exhaust gas X which is effectively removed by the rinser 44a and cooled and cooled is introduced into the outlet scrubber. 16, and the lower side of the outlet scrubber 16 flows toward the upper side. Next, in the outlet scrubber 16, sufficient washing and temperature reduction are performed by the fresh water NW to complete the decontamination of harmful components. The processed semiconductor exhaust gas X is released into the atmosphere through the exhaust fan 18. According to the semiconductor exhaust gas treatment device 10 of the present embodiment, the gas introduction port 40 and the gas discharge are opened at positions close to each other at the bottom of the reaction furnace 14. The port 42 and the gas introduction pipe 34 are inserted into the gas introduction port 40. Therefore, when the semiconductor exhaust gas X flows inside the gas introduction pipe 34, the exhaust gas X and the high temperature which is thermally decomposed in the exhaust treatment chamber 38 can be used. The heat exchange between the processed semiconductor exhaust gases X is performed. Therefore, the semiconductor exhaust gas X can be thermally decomposed efficiently. Further, since the electrothermal heater 32 is built in the reactor body 30, it is possible to reliably prevent hydrogen fluoride (HF). The corrosive gas causes the electrothermal heater 32 to corrode, and the replacement frequency of the electrothermal heater due to breakage of the electrothermal heater 32 can be reduced. Further, since the reaction furnace 14 is provided along the gas introduction tube 34, -18-200905723 The wiper 3 6 that moves circumferentially in a non-contact state on the inner surface of the circumferential surface and the reactor body 30 is therefore often (intermittently) attached to the inner circumferential surface of the gas introduction pipe 34 and the reactor body. The dust on the circumferential surface of the inner surface of the crucible is prevented from being deposited on the inner peripheral surface. Further, since the scraper 36 is rotated along the inner peripheral surface of the gas introduction pipe 34 and the reaction furnace body 30, the gas is often scrambled. The semiconductor exhaust gas X in the inlet pipe 34 and the reactor main body 30 forms a turbulent flow. As a result, a sufficient residence time can be secured in the exhaust gas treatment chamber 38, and the semiconductor exhaust gas X is surely thermally decomposed. 1) an upper heater element 3 2 A for heating the upper portion of the exhaust treatment chamber 38 and a lower heater element 3 2B for heating the lower portion of the exhaust treatment chamber 38 to constitute an electrothermal heater 3 2 and (2) disposed in the reaction furnace 14: an upper temperature sensor 50 for measuring the temperature of the upper portion of the exhaust treatment chamber 38; and a lower temperature for measuring the temperature of the lower portion of the exhaust treatment chamber 38 The sensor 52, (3) controls the output of the upper heater element 32A according to the temperature data measured by the upper temperature sensor 50, and controls the lower heating according to the temperature data measured by the lower temperature sensor 52. The output of the element 32B is thus temperature controlled independently of the upper and lower portions of the exhaust treatment chamber 38, respectively. Therefore, the following control can be performed to reduce the output of the upper heater element 32 A for heating the upper portion of the exhaust treatment chamber 38 which is in a tendency to accumulate high heat, and the increase will be easily formed with respect to the upper portion of the exhaust treatment chamber 38. The output of the lower stage heater element 32B, which is heated at a lower portion of the exhaust gas treatment chamber 38, which is relatively low temperature, can suppress the power consumption of the whitening, and effectively maintain the exhaust gas treatment chamber 38 as a whole for the heat of the semiconductor exhaust X. The average temperature range of the decomposition. -19 - 200905723 wherein 'in the above embodiment' shows the case where the electrothermal heater 32 is built in the reactor body 30. However, the electrothermal heater 32 can also be built in a thick wall molded. The gas is introduced into the tube 34. Also in this case, it is possible to surely prevent the electric heater 32 from being starved by a corrosive gas such as hydrogen fluoride (HF). Further, when the electric heating heater 32 is built in the gas introduction pipe 34, the amount of heat that escapes to the outside of the reaction furnace 14 (so-called heat loss) can be reduced, and the semiconductor exhaust gas X can be further improved. Thermal decomposition efficiency. In the above-described example, the case where one gas introduction port 40 and the gas introduction pipe 34 are provided in the reactor main body 30 is shown, but the gas introduction port 40 provided in the reactor main body 30 and the gas introduction port are inserted. The number of gas introduction pipes 34 of 40 may also be plural. This is based on the fact that a plurality of gas introduction ports 40 and gas introduction pipes 34 are provided, and the processing of the semiconductor exhaust gas X of a large capacity can be handled. Further, in the above-described example, the case where the electrothermal heater 32 is built in the reactor main body 30 is shown, but the ratio of the uranium-containing component in the semiconductor exhaust gas X, for example, which should be subjected to the decontamination treatment, is shown. In a low manner, when the corrosion of the electric heater 32 does not cause a problem, the electrothermal heater 32 can also be disposed in the exhaust treatment chamber 38. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the flow of a semiconductor exhaust gas treatment apparatus according to an embodiment of the present invention. Fig. 2 is a schematic cross-sectional view showing a schematic of 反应-20-200905723 of a reactor of an embodiment of the present invention. [Description of main component symbols] 10: Semiconductor exhaust gas treatment device 1 2: inlet scrubber 12a: scrubber body 1 2 b : spray nozzle 1 4 : reaction furnace 1 6 : outlet scrubber 1 6 a : scrubbing Main body 1 6 b : spray nozzle 1 8 : exhaust fan 20 : water tank 22 : inlet duct 24 : water washing gas supply pipe 2 8 : circulating water pump 30 : reactor body 3 0 a : lining member 3 〇 b : partition Heat member 30c: outer jacket cover 3 2: electric heater 32A: upper heater element 32B: lower heater element 32a, 32b: power supply unit-21 200905723 34: gas introduction pipe 3 6 : scraper 3 8 : Exhaust treatment chamber 40 : Gas introduction port 4 2 : Gas discharge port 44 = Decomposition gas supply pipe 44a : Ejector 46a, 46b: Wire 4 8 : Power control means 5 0 : Upper temperature sensor 5 0 a : Wiring 5 0 b : Wiring 52 : Lower temperature sensor 5 2 a : Wiring 5 4 : Motor 5 6 : Rotary shaft 5 8 : Rotating plate 6 〇: First stirring bar 62 : Second stirring bar 64 : Venting device A: External air W: Water X: Exhaust-22

Claims (1)

200905723 十、申請專利範圍 1 . 一種半導體排氣處理裝置,係具備反應爐,其構成 爲包含:筒狀反應爐本體,在由耐火材料所包圍的內部設 置將半導體排氣予以熱分解的排氣處理室,並且在底部彼 此接近的位置開設氣體導入口與氣體排出口; 電熱加熱器,用以將前述排氣處理室加熱;以及 氣體導入管,將其上端配設在前述排氣處理室的上部 ,並且以使其下端朝前述反應爐本體的外部突出的方式插 入前述氣體導入口,而將前述半導體排氣導入前述排氣處 理室之上部。 2 .如申請專利範圍第1項之半導體排氣處理裝置,其 中,前述電熱加熱器係內建在前述反應爐本體或前述氣體 導入管之至少任一者。 3 .如申請專利範圍第1項或第2項之半導體排氣處理 裝置,其中,設有刮除器,其沿著前述氣體導入管的內周 面及前述反應爐本體的內周面,在非接觸狀態下進行移動 〇 4 .如申請專利範圍第1項或第2項之半導體排氣處理 裝置,其中,利用用以將前述排氣處理室的上部進行加熱 的上段加熱器元件、及用以將前述排氣處理室的下部進行 加熱的下段加熱器元件構成前述電熱加熱器,並且 在前述反應爐設置:用以測定前述排氣處理室上部之 溫度的上部溫度感測器;以及用以測定前述排氣處理室下 部之溫度的下部溫度感測器, -23- 200905723 根據由前述上部溫度感測器所測定的溫度資料來控制 前述上段加熱器元件的輸出,且根據由前述下部溫度感測 器所測定的溫度資料來控制前述下段加熱器元件的輸出。 5 .如申請專利範圍第1項或第2項之半導體排氣處理 裝置,其中,設置複數個前述氣體導入口以及插入該氣體 導入口的前述氣體導入管。 -24-200905723 X. Patent Application No. 1. A semiconductor exhaust gas treatment device comprising a reaction furnace comprising: a cylindrical reaction furnace body, and an exhaust gas for thermally decomposing semiconductor exhaust gas inside a refractory material a processing chamber, and a gas introduction port and a gas discharge port at a position close to each other at the bottom; an electric heater for heating the exhaust gas treatment chamber; and a gas introduction pipe, the upper end of which is disposed in the exhaust gas treatment chamber The upper portion is inserted into the gas introduction port so that the lower end thereof protrudes toward the outside of the reactor body, and the semiconductor exhaust gas is introduced into the upper portion of the exhaust treatment chamber. The semiconductor exhaust gas treatment device according to claim 1, wherein the electrothermal heater is built in at least one of the reactor body or the gas introduction pipe. 3. The semiconductor exhaust gas treatment device according to claim 1 or 2, wherein a scraper is provided along an inner circumferential surface of the gas introduction pipe and an inner circumferential surface of the reaction furnace body A semiconductor exhaust gas treatment device according to claim 1 or 2, wherein the upper heater element for heating the upper portion of the exhaust gas treatment chamber is used, and The lower heater element for heating the lower portion of the exhaust gas treatment chamber constitutes the electrothermal heater, and the reaction furnace is provided with an upper temperature sensor for measuring the temperature of the upper portion of the exhaust gas treatment chamber; a lower temperature sensor for measuring the temperature of the lower portion of the exhaust treatment chamber, -23-200905723, controlling the output of the aforementioned upper heater element based on the temperature data measured by the aforementioned upper temperature sensor, and according to the lower temperature sense The temperature data measured by the detector controls the output of the aforementioned lower heater element. The semiconductor exhaust gas treatment device according to claim 1 or 2, wherein the plurality of gas introduction ports and the gas introduction pipe inserted into the gas introduction port are provided. -twenty four-
TW96126634A 2007-07-20 2007-07-20 Semiconductor gas driving out apparatus TW200905723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96126634A TW200905723A (en) 2007-07-20 2007-07-20 Semiconductor gas driving out apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96126634A TW200905723A (en) 2007-07-20 2007-07-20 Semiconductor gas driving out apparatus

Publications (1)

Publication Number Publication Date
TW200905723A true TW200905723A (en) 2009-02-01

Family

ID=44722842

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96126634A TW200905723A (en) 2007-07-20 2007-07-20 Semiconductor gas driving out apparatus

Country Status (1)

Country Link
TW (1) TW200905723A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI495829B (en) * 2013-08-09 2015-08-11 Orient Service Co Ltd Exhaust gas treatment device
CN109718649A (en) * 2017-10-31 2019-05-07 汉科系统科技股份有限公司 High-effect tail gas treatment device
TWI660116B (en) * 2017-10-05 2019-05-21 漢科系統科技股份有限公司 Exhaust gas treatment equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI495829B (en) * 2013-08-09 2015-08-11 Orient Service Co Ltd Exhaust gas treatment device
US9259679B2 (en) 2013-08-09 2016-02-16 Orient Service Co., Ltd. Waste gas treatment apparatus
TWI660116B (en) * 2017-10-05 2019-05-21 漢科系統科技股份有限公司 Exhaust gas treatment equipment
CN109718649A (en) * 2017-10-31 2019-05-07 汉科系统科技股份有限公司 High-effect tail gas treatment device

Similar Documents

Publication Publication Date Title
JP5952984B1 (en) Exhaust gas treatment equipment
US7976807B2 (en) Method for detoxifying HCD gas and apparatus therefor
CN101332405A (en) Water gas treatment device
CN104645779A (en) Gas Processing Apparatus
JP6336059B2 (en) Heat exchanger and exhaust gas treatment apparatus using the heat exchanger
TW200905723A (en) Semiconductor gas driving out apparatus
JP2010023000A (en) Waste gas detoxification apparatus
JP3016690B2 (en) Semiconductor manufacturing exhaust gas abatement method and apparatus
JP4174396B2 (en) Exhaust gas introduction structure and exhaust gas treatment apparatus using the structure
TWI793614B (en) Gas treatment furnace and exhaust gas treatment device using it
JP5368003B2 (en) Filtration type dust collector and exhaust gas abatement system using the same
JP2004261777A (en) Apparatus for treating semiconductor exhaust gas
JP3242875B2 (en) Exhaust gas abatement apparatus and exhaust gas abatement method
JP3625978B2 (en) Semiconductor manufacturing exhaust gas abatement system
JP2007260557A (en) Ozone gas decomposition device and treatment system
KR20090011472A (en) A exhaust gas disposal appartus of semiconductor
KR100290706B1 (en) Apparatus for treating aqueous waste gas and method therefor
WO2023199410A1 (en) Method for treating exhaust gas containing nitrogen compound, and apparatus for said method
WO2024075312A1 (en) Gas removal apparatus and gas treatment method
JP2010017636A (en) Scrubber and waste gas detoxification apparatus using the same
JP2005218911A (en) Exhaust gas treatment method and exhaust gas treatment apparatus
TW202323725A (en) Gas processing furnace and exhaust gas processing device using same